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Abstract. Momentum and scalar (heat and water vapor)
transfer between a walnut canopy and the overlying atmo-
sphere are investigated for two seasonal periods (before and
after leaf-out), and for five thermal stability regimes (free and
forced convection, near-neutral condition, transition to sta-
ble, and stable). Quadrant and octant analyses of momentum
and scalar fluxes followed by space-time autocorrelations of
observations from the Canopy Horizontal Array Turbulence
Study’s (CHATS) thirty meter tower help characterize the
motions exchanging momentum, heat, and moisture between
the canopy layers and aloft.

During sufficiently windy conditions, i.e. in forced con-
vection, near-neutral and transition to stable regimes, mo-
mentum and scalars are generally transported by sweep and
ejection motions associated with the well-known canopy-
top “shear-driven” coherent eddy structures. During extreme
stability conditions (both unstable and stable), the role of
these “shear-driven” structures in transporting scalars de-
creases, inducing notable dissimilarity between momentum
and scalar transport.

In unstable conditions, “shear-driven” coherent struc-
tures are progressively replaced by “buoyantly-driven” struc-
tures, known as thermal plumes; which appear very efficient
at transporting scalars, especially upward thermal plumes
above the canopy. Within the canopy, downward thermal
plumes become more efficient at transporting scalars than
upward thermal plumes if scalar sources are located in
the upper canopy. We explain these features by suggesting
that: (i) downward plumes within the canopy correspond to
large downward plumes coming from above, and (ii) upward

plumes within the canopy are local small plumes induced by
canopy heat sources where passive scalars are first injected if
there sources are at the same location as heat sources. Above
the canopy, these small upward thermal plumes aggregate
to form larger scale upward thermal plumes. Furthermore,
scalar quantities carried by downward plumes are not mod-
ified when penetrating the canopy and crossing upper scalar
sources. Consequently, scalars appear to be preferentially in-
jected into upward thermal plumes as opposed to in down-
ward thermal plumes.

In stable conditions, intermittent downward and upward
motions probably related to elevated shear layers are respon-
sible for canopy-top heat and water vapor transport through
the initiation of turbulent instabilities, but this transport re-
mains small. During the foliated period, lower-canopy heat
and water vapor transport occurs through thermal plumes as-
sociated with a subcanopy unstable layer.

1 Introduction

Forests play an important role in biosphere-atmosphere ex-
changes of momentum, energy, water vapor, carbon diox-
ide and other trace gases. Understanding these exchanges
is important for many environmental applications and for
properly representing surface exchange in weather and cli-
mate models (Harman, 2012). Conditional analysis of mo-
mentum and scalar fields (temperature, water vapor, trace
gases) have shown that canopy-atmosphere exchange largely
occurs through intermittent ventilation of the canopy air
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space by coherent eddy structures (e.g.Gao et al., 1989; Lu
and Fitzjarrald, 1994; Scanlon and Albertson, 2001; Thomas
and Foken, 2007a). More precisely, quadrant analysis has
shown that momentum fluxes are largely explained by strong
sweeps and weak ejections associated with these coherent
eddy structures (Finnigan, 2000; Poggi et al., 2004). Time-
traces of scalar fields reveal ramp patterns which result from
these coherent structures (e.g.,Gao et al., 1989; Paw U et al.,
1992; Finnigan et al., 2009). Under near-neutral conditions,
observations confirm this similarity between momentum and
scalar transport over a range of vegetated surface types (Cop-
pin et al., 1986; Chen, 1990). With departure from neutral
stability conditions, the mechanisms responsible for momen-
tum and scalar transport seem to differ due to modifica-
tion of the coherent eddy structure topology (Chen, 1990;
Li and Bou-Zeid, 2011). Across all stability classes, scalar-
scalar transport dissimilarity has also been observed within
the atmospheric boundary layer (ABL) and over vegetation
which has been attributed to differences of distribution of
scalar sources and sinks (Williams et al., 2007) and to the
scalar gradient across the top of the ABL’s entrainment zone
(Moene et al., 2006).

Coherent eddy structures apparently play a crucial role in
momentum and scalar transport. Over homogeneous vege-
tation canopies, coherent eddy structures have been inves-
tigated for years using outdoor and wind-tunnel measure-
ments (e.g.,Gao et al., 1989; Paw U et al., 1992; Collineau
and Brunet, 1993a,b; Turner et al., 1994; Qiu et al., 1995;
Shaw et al., 1995; Brunet and Irvine, 2000; Ghisalberti and
Nepf, 2002; Steiner et al., 2011) as well as numerical exper-
iments (Shaw and Schumann, 1992; Kanda and Hino, 1994;
Patton et al., 2001; Su et al., 2000; Fitzmaurice et al., 2007;
Watanabe, 2004; Dupont and Brunet, 2008; Finnigan et al.,
2009). These efforts have contributed substantially to our un-
derstanding of canopy-scale organized motions, but most of
the analysis has been limited to near-neutral stability condi-
tions. It is thought that these coherent structures scale with
vorticity thickness and that the average (or “characteristic”)
structure can be described as the superposition of two hair-
pin vortices with strong sweeps (gusts) and weak ejections
(bursts) between the hairpin legs (Finnigan et al., 2009). In
contrast to “buoyantly-driven” motions (thermal plumes) in
free convection, these “shear-driven” structures are generated
by processes similar to those occurring in a plane-mixing
layer flow (Raupach et al., 1996), whereBrunet and Irvine
(2000) attempted to extendRaupach et al.’s (1996) mixing-
layer analogy to non-neutral atmospheric conditions using a
broader data set.

Recent studies indicate that these “shear-driven” coherent
eddy structures may not be the sole structure type partici-
pating in canopy exchange (e.g.Poggi et al., 2004; Thomas
and Foken, 2007b). Dupont and Patton(2012) observed that
both seasonally driven canopy morphology evolution and de-
partures from neutral stability can weaken the plane mixing-
layer analogy of canopy flow, which can even vanish com-

pletely in the weak-wind free convective and strongly stable
regimes.Dupont and Patton(2012) speculated that with in-
creasing instability, the “shear-driven” coherent eddy struc-
tures may initially coexist with and ultimately be replaced
by thermal plumes. This speculation is consistent withLi
and Bou-Zeid’s (2011) recent study over natural surfaces
(a lake and a vineyard), who also suggested that with in-
creasing instability the transport dissimilarity between mo-
mentum and scalars could be explained through modifica-
tion of the near-neutral surface atmospheric boundary layer’s
hairpin vortices and hairpin packets and their evolution into
upward- and downward-moving thermal plumes. In sparse
canopies,Poggi et al.(2004) and Kobayashi and Hiyama
(2011) suggested that mixing-layer type structures might also
coexist with traditional atmospheric surface layer (ASL) tur-
bulence. Forest heterogeneities at scales similar to canopy-
height may further modify the efficiency of those turbulent
structures at exchanging momentum (Bohrer et al., 2009).
In canopies with large and sparse trunk spaces, the mixing-
layer’s shear-driven structures might also coexist with well-
defined wake structures which develop in the lee of tree stems
(Cava and Katul, 2008; Launiainen et al., 2007; Dupont et al.,
2012), but with length scales similar to the scale of the indi-
vidual canopy elements. In stable atmospheric stability con-
ditions, an unstable layer can develop in the lower canopy
(Shaw et al., 1988; Jacobs et al., 1994; Dupont and Patton,
2012), generating the potential development of both inter-
mittent, small “shear-driven” type coherent eddy structures
at the canopy top and thermal plumes lower in the canopy.
Consequently, with seasonal canopy changes and with the
diurnal evolution of atmospheric stability, the mechanisms
responsible for turbulent momentum and scalar exchange be-
tween the canopy and the atmosphere may vary. In order to
identify regions of the canopy that participate to the turbu-
lent exchanges with the above canopy,Thomas and Foken
(2007a) proposed a classification of the degree of coupling
of a canopy through five exchange regimes.

The goal of the present paper is to: (1) further investigate
the sensitivity of momentum and scalar transport over a de-
ciduous forest to the thermal stability and to the seasonal
changes of the forest, (2) establish whether heat, water va-
por and momentum are transported similarly, and (3) char-
acterize the turbulent structures accomplishing momentum
and scalar transport. To that purpose, we use measurements
from the 30 m profile tower of the Canopy Horizontal Ar-
ray Turbulence Study (CHATS) (Patton et al., 2011). Com-
pared to previous studies (e.g.,Coppin et al., 1986; Chen,
1990; Thomas and Foken, 2007a; Li and Bou-Zeid, 2011),
we investigate momentum and scalar transport: (1) within
and above the vegetation from tower with unparalleled sen-
sor density, (2) across two different seasonal periods (with
and without leaves) for which scalar source/sink distributions
vary accordingly, and (3) across five atmospheric stability
regimes (free and forced convection, near-neutral, transition
to stable and stable).
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Table 1. Perimeters defining the five stability regimes, whereL is the Obukhov length evaluated at the mean canopy heighth. SeeDupont
and Patton(2012) for further detail.

Stability regimes No-leaves With-leaves

Free Convection (FrC) −20 ≤h/L < −0.2 −20 ≤h/L < −0.2
Forced Convection (FoC) −0.2 ≤h/L < −0.01 −0.2 ≤h/L < −0.01
Near-Neutral (NN) −0.01 ≤h/L < 0.02 −0.01 ≤h/L < 0.006
Transition to Stable (TS) 0.02 ≤h/L < 0.6 0.006 ≤h/L < 0.6
Stable (S) 0.6 ≤h/L < 20 0.6 ≤h/L < 20

Dupont and Patton(2012) analyzed statistical profiles of
micrometeorological fields from first- to fourth-moments in
great detail following five above stability regimes and two
seasonal periods. In this current study, after recalling the
main experimental setup (Sect.2), we present an investiga-
tion of momentum, heat and water vapor transport through
quadrant and octant analyses (Sects.3 and4). The organized
turbulent structures are then analyzed through space-time au-
tocorrelations in Sect.5. Finally, in Sect.6, we discuss the
general behavior of turbulent exchange within the CHATS
walnut orchard as impacted by canopy morphology and at-
mospheric stability.

2 Method

2.1 Experiment

The CHATS experiment took place in Spring 2007 in one
of Cilker Orchard’s walnut (Juglans regia) blocks in Dixon,
California. The campaign consisted of two intensive mea-
surement periods: one focusing on the walnut trees before
leaf-out and another on the walnut trees after leaf-out. The
trees were planted in a nearly-square pattern and were all
about 25 yr old with an average heighth of about ten me-
ters. Before leaf-out, the cumulative PAI (Plant Area Index)
was about 0.7, while following leaf-out the PAI increased to
about 2.5, with a lower density in the subcanopy.

A 30 m tower installed in the block sampled turbulent ve-
locity components and virtual temperature fluctuations si-
multaneously at: 6 within-canopy levels (1.5, 3.0, 4.5, 6.0,
7.5, 9.0 m), one canopy-top level (10.0 m), and 6 above-
canopy levels (11.0, 12.5, 14.0, 18.0, 23.0, 29.0 m) using
thirteen Campbell Scientific CSAT3 sonic anemometers op-
erating at 60 Hz. Twelve NCAR-Vaisala Hygrothermometers
(TRH) operating at 2 Hz sampled air temperature and rela-
tive humidity profiles at the same heights as the CSAT3’s,
except the 12.5 m level. Campbell Scientific KH2O Kryp-
ton hygrometers sampling at 20 Hz measured water vapor
density fluctuations at 6 levels (1.5, 4.5, 7.5, 10.0, 14.0, and
23.0 m). All instruments on the tower were intercalibrated at
the NCAR calibration facility prior to and following the ex-
periment. Turbulence measurements were quality controlled
following standard procedures (Dupont and Patton, 2012).

For a more complete description of the CHATS experiment,
we refer the reader toPatton et al.(2011).

The integration time for all statistics is 30 min for unsta-
ble and near-neutral conditions and is 5 min for stable con-
ditions. This shorter integration time for stable conditions is
used to reduce contributions from non-turbulent motions. At
all heights, the recorded wind velocity components were ro-
tated horizontally so thatu represents the horizontal compo-
nent along the mean wind directionx deduced at canopy top,
v the horizontal component in the transversey-direction, and
w the vertical component in thez-direction. Statistical vari-
ables are classified following five thermal stability regimes
defined at the canopy top following the procedure described
in Dupont and Patton(2012): free convection (referred here-
after as FrC), forced convection (FoC), near-neutral (NN),
transition to stable (TS) and stable (S). Table1 presents the
h/L perimeters defining these stability regimes for the two
seasonal periods, whereL is the Obukhov length evaluated
at the mean canopy heighth.

In the CHATS experiment, all possible measures were
taken to limit the influence of any local or site hetero-
geneities. More specifically, these measures include locating
the tower: (1) centered within a tree row with booms hold-
ing the instruments into the row-middle minimizing any di-
rect influence of nearby branches or trunks (i.e. minimizing
any potential contribution from dispersive stresses following
Poggi and Katul(2008)), and (2) approximately 150 canopy
heights downwind from the orchard’s southern edge in or-
der to avoid any edge effects on the measurements when fo-
cusing on southerly winds. The subcanopy was not sparse
enough to observe the long distance edge effects observed
by Dupont et al.(2011). In addition, statistics presented in
this manuscript include averages over a large number of 30-
min (unstable and neutral conditions) and 5-min (stable con-
ditions) periods which include a range of wind direction vari-
ations, wind speed magnitude, and solar radiation or zenith
angle (Dupont and Patton, 2012). This averaging should at-
tenuate possible local effects related to the tower position.
We also note that during the experiment, the primary wind di-
rection was not generally aligned with the orchard rows (see
Figure 3 inDupont and Patton, 2012), so micrometeorologi-
cal effects introduced specifically by the orchard’s row struc-
ture are not expected; especially since the tree crown was
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nearly closed in the sampling row. Finally, for each stabil-
ity condition, wind spectra do not exhibit any high frequency
peaks related to specific small-scale structures induced by lo-
cal canopy heterogeneities (Dupont and Patton, 2012). For
these reasons, we believe that the results presented in this pa-
per are representative of the general orchard turbulence. It is
also important to emphasize that our analysis largely focuses
on the statistical trends induced by canopy-state and atmo-
spheric stability as opposed to their absolute magnitude.

2.2 Flux partitioning

Characterization of momentum, heat and water vapor trans-
port by organized turbulent structures requires a structure
identification method. Quadrant and wavelet analyses are
both viable methods, where the philosophy behind both ap-
proaches varies (e.g.Thomas and Foken, 2007a). Wavelet
analysis presumes that the flow is comprised of a superpo-
sition of different structures, each with a specific time scale
that can be separated from the other. On the other hand, quad-
rant analysis illuminates structure associated with the com-
plete flow for a confined space-time interval. Despite their
differences, both methods produce similar qualitative behav-
ior of flux partitioning. However, quantitatively,Thomas and
Foken(2007a) found discrepancies between these two ap-
proaches. Interestingly,Steiner et al.(2011) performed a sim-
ilar analysis toThomas and Foken(2007a) and found quan-
titative agreement between flux contribution estimates from
coherent structures using both methods. Therefore, the su-
periority of either method has not been clearly established.
Both methods provide value. In this study, we use quadrant
and octant hole analyses to investigate the type of event con-
tributing to the momentum, heat and water vapor fluxes.

2.2.1 Quadrant analysis

Quadrant analysis decomposes fluxes into quadrants based
upon the sign of the fluctuating quantities contributing to the
co-variance (e.g.,Willmarth and Lu, 1972). We use a param-
eterIk to define the quadrants, such that for any quadrantk,
Ik = 1 when the flux falls into quadrantk, andIk = 0 when
it does not. Thus for momentum flux in quadrant 1,I1 = 1
whenu′ > 0 andw′ > 0, andI1 = 0 otherwise. The criteria
defining each of the four quadrants are presented in Table2.
For simplicity when discussing the quadrants, we will refer
to them as Q1, Q2, Q3 and Q4.

At times, it is useful to limit our analysis solely to extreme
events. In order to partition the data in this way, we perform a
hyperbolic hole analysis followingWillmarth and Lu(1972).
In this situation, we redefine the quantityIk by Ik|H , where
Ik|H = 1 if the event falls into the quadrantk and if the event’s
magnitude is larger thanH times the average flux over the
time period at a given height (i.e.

∣∣u′w′
∣∣ > H

∣∣〈u′w′
〉∣∣). H

usually varies between 3 and 4 (Poggi et al., 2004). Here,
we useH=3 when investigating extreme events.

Time averages of momentum or scalar fluxes occurring in
each quadrantk are calculated using:

〈
u′w′

〉
k|H

=
1

N

N∑
t=1

u′w′ Ik|H , (1)

and

〈
w′φ′

〉
k|H

=
1

N

N∑
t=1

w′φ′ Ik|H , (2)

respectively. Where,〈 〉 denotes a time average overN sam-
ples. Recall that the averaging period is 30 min for unstable
(FrC and FoC) and near-neutral conditions and 5 min for sta-
ble conditions (TS and S). The prime′ depicts the deviation
from the average value,φ is either the air temperaturet or
the air specific humidityq.

For momentum flux, Q2 and Q4 correspond to ejection
(u′ < 0 andw′ > 0) and sweep (u′ > 0 andw′ < 0) motions,
respectively. In the literature, scalar Q1 and Q3 fluxes have
also been referred to as ejection and sweep motions during
unstable conditions (e.g.,Chen, 1990; Katul et al., 1997;
Thomas and Foken, 2007a; Li and Bou-Zeid, 2011). How-
ever, organized motions associated with momentum fluxes
are not necessarily the same as those transporting scalars
(Böhm et al., 2010), especially in unstable conditions. There-
fore in order to eliminate ambiguity, we will hereafter use
the termssweepand ejection motionsonly for momentum
quadrant events, i.e. fast momentum fluid transported down-
ward and slow momentum fluid transported upward, respec-
tively. For scalar fluxes under unstable conditions, Q1 and Q3
events will be referred to as upward and downward plumes.

The magnitude fractions of the momentum and scalar
fluxes within quadrantk are computed as:

F
τuw

k|H =

∣∣∣ 〈u′w′
〉
k|H

∣∣∣/∑
k

∣∣∣ 〈u′w′
〉
k|H

∣∣∣ (3)

F
τ
wφ

k|H =

∣∣∣ 〈w′φ′
〉
k|H

∣∣∣/ ∑
k

∣∣∣ 〈w′φ′
〉
k|H

∣∣∣ (4)

The reader is therefore cautioned that the magnitude frac-
tions are presented as the absolute value of the flux in a par-
ticular quadrant normalized by the sum of the absolute value
of the flux across all four quadrants. This choice permits in-
tercomparison across all stability regimes, however it should
be noted that this choice eliminates the sign of the flux and
forces the sum over all four quadrants to a value of one.

2.2.2 Octant analysis

In an octant analysis, the quadrant decomposition of the mo-
mentum flux is further decomposed following the sign of the
temperature or water vapor fluctuations in order to establish
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Table 2. Description of quadrant events for momentum (u′w′), heat (w′t ′) and water vapor (w′q ′) fluxes and their associated event names.
For any variablex: x+ signifiesx′ > 0, andx− signifiesx′ < 0.

Flux Quadrant 1 (Q1) Quadrant 2 (Q2) Quadrant 3 (Q3) Quadrant 4 (Q4)

u′w′ u+w+ u−w+ u−w− u+w−

outward interaction ejection motion inward interaction sweep motion

w′t ′ w+t+ w−t+ w−t− w+t−

warm upward warm downward cool downward cool upward
plume motion plume motion

w′q ′ w+q+ w−q+ w−q− w+q−

humid upward humid downward dry downward dry upward
plume motion plume motion

whether temperature and water vapor are transported simi-
larly as momentum. The same approach was used byBöhm
et al. (2010) and van Gorsel et al.(2010). Hence, the mo-
mentum flux in quadrantk (〈u′w′

〉k|H ) can be decomposed
as:〈
u′w′

〉
k|H

=
〈
u′w′

〉φ+

k|H
+

〈
u′w′

〉φ−

k|H
(5)

whereφ is eithert or q, andφ+

or φ−

refers to whether the
instantaneous momentum flux coincides with positive or neg-
ativeφ fluctuations.

The magnitude fractions of momentum flux in quadrantk

coincident with positive and negativeφ fluctuations are cal-
culated using:

F
τuw |φ+

k|H =

∣∣∣ 〈u′w′
〉φ+

k|H

∣∣∣/ ∑
k

∣∣∣ 〈u′w′
〉
k|H

∣∣∣ (6)

and

F
τuw |φ−

k|H =

∣∣∣ 〈u′w′
〉φ−

k|H

∣∣∣/ ∑
k

∣∣∣ 〈u′w′
〉
k|H

∣∣∣ . (7)

2.3 Correlation coefficients between fluxes

An other method to investigate the similarity between mo-
mentum, heat and water vapor fluxes is to look at the cor-
relation coefficients between momentum and scalar fluxes,
ruw,wφ , and between heat and water vapor fluxes,rwt,wq ,
whichLi and Bou-Zeid(2011) defined as:

ruw,wφ =

〈(
u′w′

−
〈
u′w′

〉 ) (
w′φ′

−
〈
w′φ′

〉 )〉
σuw σwφ

(8)

rwt,wq =

〈(
w′t ′ −

〈
w′t ′

〉 ) (
w′q ′

−
〈
w′q ′

〉 )〉
σwt σwq

(9)

whereφ is either the air temperaturet or the air specific hu-
midity q, σuw andσwφ are the standard deviation ofu′w′ and
w′φ′, respectively.

2.4 Space-time autocorrelations

In order to characterize the space and time scales of the
structures associated with individual quadrant events, space-
time autocorrelation analysis of streamwise and vertical wind
velocity components, temperature and water vapor are per-
formed using:

Rk|H
ϕϕ (T ,z) =

〈
ϕ′

|(0,Z) ϕ′
|(T ,z)

〉
k|H√〈

ϕ′2|(0,Z)

〉
k|H

〈
ϕ′2|(T ,z)

〉
k|H

(10)

where,ϕ refers to one ofu, w, t or q. Although Eq. (10) can
apply generally to any quadrant analysis, our discussion in
Sect.5 will only investigate autocorrelation analyses broken
down by heat flux quadrants. Thereforek refers to the heat
flux quadrant under consideration (as defined in Table2 for
heat flux). The reference point for the correlation is located at
the heightZ and at timeT = 0. Statistically, all other levels
were sampled with the same indicator mask as the reference
level.

The time scale associated with structure for variableϕ and
an individual quadrant event can be deduced from the space-
time autocorrelation at heightZ using:

T k|H
ϕϕ (Z) = 0.5

+∞∫
−∞

Rk|H
ϕϕ (T ,Z)dT (11)

3 Momentum transport

Quadrant analysis (e.g.,Willmarth and Lu, 1972) provides
information on the motions responsible for momentum trans-
port. Only extreme events are considered in this quadrant
analysis (H=3 in Eq.1). These extreme events account for
about 55 % to 95 % of the total momentum flux (Fig. S1 in
the Supplement), with lower contributions at canopy top and
larger contributions with increasing stability and instability.

Figure1 presents the fraction of〈u′w′
〉 in each quadrant

as defined in Eq. (3) for each measurement height partitioned
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Fig. 1.Fraction of the momentum flux〈u′w′
〉 in each momentum quadrant as defined in Eq. (3) across the three main stability regimes (FrC,

NN and S) and two seasonal periods. Quadrants are defined in Table2. Error bars indicate the standard deviation of the fractions. The dashed
line indicates the canopy top.

according to atmospheric stability and canopy morphology;
the error bars depict± one standard deviation of the mo-
mentum flux contribution in each quadrant, serving as a mea-
sure of the variability of each quadrant’s contribution at each
height.

Consistent with current understanding (e.g.,Finnigan,
1979; Shaw et al., 1983), in near-neutral conditions (NN)
momentum flux in the upper canopy occurs through a combi-
nation of ejections and sweeps, but the majority of momen-
tum transport occurs via sweeping motions (Q4, Fig.1). Dur-
ing the foliated period, sweeps and ejections transport about
80 % and 15 % of the momentum flux in the upper canopy,
respectively, compared with 70 % and 20 % during the period
with no-leaves, with standard deviations less than about 10 %
during both periods. Furthermore, sweeps dominate momen-
tum transport through the entire canopy during the period
with no-leaves, but during the foliated period sweeps only
dominate transport in the canopy’s foliated region, i.e. above
z/h ∼ 0.4 or z ∼ 4 m; suggesting that the “shear-driven” co-
herent eddy structures do not penetrate as deeply (i.e. have
a smaller vorticity thickness) when the canopy is foliated.
Above the canopy, momentum transfer still occurs largely
through sweeps and ejections, but ejections dominate above

z/h ∼ 1.4; suggesting a transition of the flow regime from
a dominance of the canopy-induced “shear-driven” coher-
ent eddy structures to that of traditional rough-wall boundary
layers whose mean wind profile varies logarithmically with
height and whose momentum transport has been shown to
largely occur through ejection (Q2) motions (e.g.,Adrian,
2007). This general feature is in agreement with previous
observations over vegetated canopies (Raupach et al., 1996;
Finnigan, 2000; Poggi et al., 2004; Dupont and Brunet, 2008)
and confirms that under near-neutral conditions momentum
transfer at canopy top primarily occurs through the penetra-
tion of the canopy by fast, downward-moving gusts.

In free convection (FrC), the momentum flux is small
(seeDupont and Patton, 2012) and its partitioning is nearly
equal across the four quadrants; with only 15 % differences
between quadrants within the canopy and standard devia-
tions of about the same order of magnitude. In the upper
canopy, downward motions dominate momentum transfer
during both seasonal periods.

In stable conditions (S), differences between quadrants are
less than 10 % throughout the canopy, with standard devi-
ations of about 15 %. Sweeps contribute slightly more to
upper-canopy momentum transport than the other quadrants
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during the period with no-leaves. However during the foli-
ated period, the distribution is more complex: in the upper
canopy, downward motions dominate slightly, while upward
motions control momentum transport in the lower canopy.
This differing behavior between the lower and upper canopy
results from the presence of a well-defined unstable layer in
the orchard subcanopy during the foliated period (Dupont
and Patton, 2012).

In the intermediate stability regimes (i.e. in the TS and
FoC regimes, see Fig. S2 in the Supplement), the momen-
tum flux distribution profiles reveal similar shape to those
from the NN regime, but with reduced overall contribution
from sweep and ejection motions and compensating larger
contributions from inward and outward interactions. These
two regimes reveal an intermediate behavior between the NN
regimes and their respective extreme stability regimes (S and
FrC).

In summary, the classic “shear-driven” coherent eddy
structures at CHATS (1) appear well defined in the NN
regime, especially during the foliated period, (2) are still
present in FoC and TS but weaker for transporting mo-
mentum, and (3) are negligible in the extreme FrC and S
regimes. This result confirmsDupont and Patton’s (2012)
observations where they showed via analysis of momen-
tum flux correlation coefficients that “shear-driven” coherent
eddy structures transport momentum most efficiently during
near-neutral conditions.

4 Scalar transport

The linkages between turbulent structures and scalar trans-
port at CHATS are now analyzed. InDupont and Patton
(2012) we observed that heat and water vapor sources are
distributed similarly during the foliated period (i.e. mostly
through the upper canopy and to a lesser extent at the ground)
while they differ during the defoliated period (i.e. small and
at the ground for water vapor, and large and both at the
ground and through the upper canopy for the heat). We sus-
pect that this scalar source distribution variation according
to seasonal period should lead to different transport behavior
between scalars.

To determine whether the same sweep/ejection events
dominating momentum also transport temperature and wa-
ter vapor, we now extend Sect.3’s quadrant analysis of mo-
mentum fluxes using octant analysis (Sect.4.1). When scalar
fluxes are not associated with the same momentum-derived
quadrant events, we then use a quadrant analysis of heat and
water vapor fluxes to identify the type of events transporting
scalars (Sect.4.2). Finally, flux correlation analysis permits
analysis of the similarity between momentum, heat and water
vapor fluxes (Sect.4.3).

4.1 Momentum flux partitioning and the connection
with scalar transport

As described in Sect.2.2.2, octant analysis helps identify
whether momentum quadrant events transport positive or
negative scalar perturbations. For both leaf-states, Figs.2a
and3a present octant analyses for temperature fluctuations,
where positive and negative fluctuations are denoted byt+

andt−, respectively.
Because heat fluxes are negligible during NN, one should

expect that momentum quadrant events during NN should
correlate witht+ and t− equally. This expectation is well-
observed during the foliated period (Fig.3a), but Fig.2a
shows that ejections are more correlated witht− thant+ (and
the opposite for sweep motions) during the period without
leaves. We attribute this discrepancy to the larger number of
30-min periods within the stable side of the NN regime than
in the unstable side (see Fig. 4 ofDupont and Patton, 2012).

In the free-convection regime (FrC) and across both sea-
sonal periods, upward motions (Q1 and Q2) correlate more
with t+ and downward motions (Q3 and Q4) more witht−

within and above the canopy, which is consistent with the
fact that temperature generally decreases with height in un-
stable conditions. On the other hand, this finding also sug-
gests that heat sources throughout the upper canopy do not
change the sign of the temperature fluctuations transported
by sweep motions penetrating the canopy. The partitioning
of upward (downward) motions betweent+ andt− exhibits
larger variability for t+ (t−) than t− (t+), which confirms
that the correlation of these motions with temperature fluctu-
ations is weakly sensitive to the sign ofu. The FrC data also
shows that within the upper canopy, downwelling motions
correlate more effectively witht− than upward motions with
t+, a feature that is somewhat exacerbated when there are
leaves on the trees. We suspect that this feature results from
the fact that upwelling motions are largely connected with
small-scale convective plumes that are in their infancy devel-
oping from canopy-imposed heat sources (either the woody
matter or the leaves), while downwelling motions are associ-
ated with large ABL-scale convective cells which are able to
penetrate through the upper canopy bringing much cooler air
from aloft.

In stable condition (S) and across both seasonal periods,
upward motions (Q1 and Q2) correlate more witht− and
downward motions (Q3 and Q4) more witht+, from the up-
per canopy to above, with a maximum at canopy top. Ejec-
tion and sweep motions have a slightly larger contribution
during the defoliated period. However in the lower canopy
during the foliated period, downward motions (Q3 and Q4)
correlate more witht− and upward motions (Q1 and Q2)
more witht+. This results from radiative cooling of the upper
canopy air by the leaves (which are of low heat capacity) such
that downward (upward) motions in the lower canopy layers
import relatively cool (warm) air. As in FrC, the variabil-
ity of the flux partition betweent+ andt− confirms that the
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Fig. 2. Fraction of the momentum flux〈u′w′
〉 in each momentum quadrant and associated with positive or negative(a) temperature and(b)

water vapor fluctuations, as defined in Eqs. (6) and (7). The three main stability regimes (FrC, NN and S) are presented for the period with
no-leaves. The quadrants are defined in Table2. Error bars indicate the standard deviation of the fractions. The dashed line indicates the
canopy top.

correlation of these motions with temperature fluctuations in
the lower canopy is weakly sensitive to the sign ofu.

In the intermediate stability regimes (i.e. TS and FoC, see
Figs. S3 and S4 in the Supplement), heat transport condi-
tioned against the four momentum quadrants appears inter-

mediate between the NN regime and the extreme stability
regimes (S and FrC). Ejection motions generally correlate
more with t− (t+) during TS (FoC) from the upper canopy
up to 29 m, while sweeping motions correlate more witht+

(t−) within the canopy during TS (FoC). Outward and inward
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Fig. 3.Same as Fig.2, but for the period with-leaves.

interaction motions appear slightly more efficient in trans-
porting heat than in NN, especially in FoC and during the
foliated period.

The octant analysis for water vapor fluctuations (Figs.2b
and3b) exhibits only few differences compared to that for
temperature fluctuations. For all stability regimes, upward
motions more likely correlate withq+ and downward mo-
tions more likely withq−; which results from the generally

negative vertical gradient of water vapor in the lower atmo-
sphere (Dupont and Patton, 2012). Similar to that found for
heat, negative water vapor fluctuations carried by downward
motions are not impacted by crossing water vapor sources
in the upper canopy during the foliated period. The upper-
canopy source during this period generally increases the ef-
ficiency of upward motions at transportingq+ above the
canopy and increases the efficiency of downward motions at
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〉 in each quadrant as defined in Eq. (4) for the three main stability

regimes (FrC, NN and S) and the two seasonal periods. The quadrants are defined in Table2. Error bars indicate the standard deviation of
the fractions. The dashed line indicates the canopy top.

transportingq− in the upper canopy. This result is consis-
tent withDupont and Patton’s (2012) correlation coefficient
analysis which suggested increased water vapor transport ef-
ficiency when emitted through the upper canopy (foliated pe-
riod) than at the ground (defoliated period).

It follows from this octant analysis that sweeps and ejec-
tions, i.e. “shear-driven” coherent eddy structures, play a
major role in transporting scalars in the FoC, NN and TS
regimes, while in FrC and S regimes upward and down-
ward motions seem more important. Organized structures
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transport scalars more efficiently if the source is distributed
through the upper canopy than if the source is at the surface.
Furthermore, scalars carried by downward motions do not
seem impacted by crossing scalar sources. More precisely,
downward motions appear more efficient at transporting dry
and cool air within the canopy in unstable conditions than up-
ward motions at transporting humid and warm air, even well
below the main water vapor and heat sources. These differ-
ent features indicate important information on scalar sources
as well as on the different characteristics between downward
and upward motions in unstable conditions.

4.2 Quadrant analysis of scalar fluxes

In free convection (FrC) and stable (S) conditions, Fig.1
showed that sweeps and ejections do not contribute signifi-
cantly more to momentum transfer than inward and outward
interactions. To establish whether heat and water vapor fluxes
behave similarly to momentum, Fig.4 shows a quadrant hole
analysis of extreme heat and water vapor flux events (H=3)
for both seasonal periods and for the three main stability
regimes (i.e. FrC, NN and S; FoC and TS regimes are pre-
sented in Fig. S5 in the Supplement). Contributions to heat
and water vapor fluxes from extreme events (H = 3) range
from 45 % to 95 % with a minimum at canopy top and de-
creasing magnitude with increasing instability (see Fig. S1
in the Supplement).

4.2.1 Above the canopy

Above the canopy, the turbulent heat flux in stable condi-
tions (S) mostly occurs through upward motions carrying
cool air (Q4) and secondly by downward motions carrying
warm air (Q2). While in unstable conditions (FrC), the turbu-
lent heat flux occurs through upward motions carrying warm
air (Q1) and then secondly by downward motions carrying
cool air (Q3). However the opposite is true with regards to
the frequency of each quadrant’s extreme event occurrence
(not shown), i.e. (i) in stable conditions (S) warm down-
ward motions occur more frequently than cool upward mo-
tions, and (ii) in free-convective conditions (FrC) cool down-
ward motions occur more frequently than warm upward mo-
tions. As conditions shift from forced (FoC) to free con-
vection (FrC), warm upward motions increasingly dominate
heat transport, while for increasingly stable conditions (from
TS to S) the amplitude difference between warm downward
and cool upward motions decreases slightly. We attribute the
relative increase of Q1 vs. Q3 in unstable conditions com-
pared to the more similar magnitudes of Q4 vs. Q2 in sta-
ble conditions to the fact that under unstable conditions,
convective plumes impart vertical asymmetry in the buoy-
ancy forcing. Updrafts confined to narrow regions efficiently
transport locally-sourced heat upward, in the direction of the
buoyancy forcing, and downdrafts are spatially much broader
and weaker transporting heat entrained from above the ABL

less-efficiently downward against the buoyancy forcing (e.g.,
Wyngaard and Brost, 1984; Schmidt and Schumann, 1989).
This more-efficient upward scalar transport by convective
plumes is consistent with previously reported in observations
above natural and urban surfaces (e.g.,Maitani and Ohtaki,
1987; Chen, 1990; Moriwaki and Kanda, 2006; Li and Bou-
Zeid, 2011).

Across all stability regimes, above-canopy turbulent wa-
ter vapor fluxes also occur mostly through humid upward
motions (Q1) and dry downward motions (Q3) (Fig.4b),
where Q1 and Q3 events dominate most prominently during
the foliated period. During the defoliated period, the above-
canopy water vapor flux partitioning across quadrants varies
less with height compared to during the foliated period. We
purport that this seasonal quadrant partition variation results
from the spatial variation in water vapor source locations be-
tween the two periods (i.e. at the ground for the defoliated
period, and distributed through the canopy for the foliated
period).

4.2.2 Within the canopy

During both seasonal periods in unstable conditions (FrC),
a switch occurs between the quadrant events responsible for
heat transport above the canopy and within; where this switch
occurs both with regards to transport efficiency (Fig.4a)
and to the frequency of occurrence (not shown). Hence, in
contrast to the above-canopy findings just discussed, cool
downward plumes (Q3 events) dominate within-canopy heat
transport, peaking at aroundz = 6 m for the defoliated pe-
riod and shifting up toz = 7 m in the presence of the leaves.
Similarly, the frequency of cool downward plumes (Q3) de-
creases while that of warm upward plumes (Q1) increases,
to even become larger than cool downward plumes (not
shown). Similarly, within-canopy water vapor fluxes also
switch near canopy-top compared to the above-canopy par-
titioning (i.e. dry downward plumes (Q3) become more ef-
ficient than humid upward plumes (Q1) at transporting wa-
ter vapor, Fig.4b). However, this switch only occurs during
the foliated period, while during the defoliated period, moist
upward plumes (Q1) remain more efficient (or equally effi-
cient) and less frequent than dry downward plumes (Q3) at
transporting water vapor. This different behavior for within-
canopy water vapor transport (i) with season and (ii) between
heat and water vapor during the defoliated period, can only
be related to water vapor’s differing source distribution be-
tween the seasonal periods and to the different source lo-
cations of heat and water vapor during the period without
leaves, respectively. Note that warm/humid upward (Q1) mo-
tions dominate transport in the subcanopy, similar that ob-
served above the canopy.

In stable conditions (S), the importance of warm down-
ward (Q4) motions observed above the canopy rapidly di-
minishes with depth into the canopy where cool upward mo-
tions (Q2) become the main mechanism for transporting heat.
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However, in the lower canopy, warm upward (Q1) and cool
downward (Q3) motions accomplish the heat transport due to
the layer’s unstable air; a feature which is more pronounced
during the foliated period. The distribution of turbulent water
vapor flux across quadrants does not change much between
above and within the canopy.

The TS regime best reveals the leaves’ role in modify-
ing the heat and moisture transport mechanisms in the lower
canopy (Fig. S5 in the Supplement). When leaves are present
under TS conditions, warm upward (Q1) and cool down-
ward (Q3) motions dominate subcanopy transport; but with-
out leaves on the trees for the same stability conditions, sub-
canopy heat transport largely occurs through warm down-
ward (Q2) motions. After leaf-out, the leaves absorb and re-
emit a portion of the surface-emitted radiation back toward
the surface keeping the surface relatively warm. Therefore
upper-canopy leaves exposed to the sky cool faster than the
surface generating an unstable subcanopy layer. Hence dur-
ing the foliated period, heat and water vapor transport in the
lower canopy occurs through thermal plumes confined within
the canopy extending to between (4, 7) m height during (TS,
S) conditions, respectively.

To recapitulate, in free convection (FrC) above-canopy
heat and water vapor transport largely occurs through a
combination of warm/humid upward (Q1) and cool/dry
downward (Q3) motions, providing evidence of convective
plumes. While in stable conditions (TS and S), cool/humid
upward motions and warm/dry downward motions gener-
ally account for their transport. In contrast to these above-
canopy findings associated with unstable conditions, upward
and downward motions switch their importance within the
canopy in response to the canopy-imposed scalar source.
This switch likely relates to the active role of heat inducing
small local thermal plumes at the heat source location which
also transport water vapor emitted at the same location.

4.3 Dissimilarity between momentum, heat and water
vapor transport

Li and Bou-Zeid (2011) recently used correlation coeffi-
cients between momentum and scalar fluxes (or scalar-scalar
fluxes) to investigate transport similarity/dissimilarity in the
atmospheric surface layer above a lake and a vineyard. Al-
thoughLi and Bou-Zeid’s 2011analysis yielded important
information on the similarity of the various fluxes and their
variation with stability, they only had information at a sin-
gle level. The instrument density on the CHATS tower per-
mits a similar analysis toLi and Bou-Zeid(2011), but with
the ability to ascertain the seasonal and vertical canopy vari-
ation’s influence on stability and transport similarity. Fig-
ure 5 presents correlation coefficients between momentum
flux and scalar (heat and water vapor) fluxes,ruw,wt and
ruw,wq , as well as the correlation coefficient between the two
scalar fluxes,rwt,wq , for both seasonal periods and for the
five stability regimes (Eqs.8 and9).

Generally speaking, Fig.5 confirms that the absolute cor-
relations between momentum and scalar fluxes decrease with
departures from neutral stability. Absolute correlations be-
tween momentum and water vapor fluxes increase during the
foliated period for the non-extreme regimes (FoC and TS) be-
cause momentum sinks and water vapor sources both largely
occur through the canopy, while during the defoliated period
water vapor solely comes from the ground. Similarly,rwt,wq

increases during the foliated period due to the general co-
location of their sources. For all stability regimes, correla-
tions between momentum and scalar fluxes decrease in the
lower canopy tending toward zero at the ground.

5 Characterization of main turbulent structures

The analysis presented in the previous sections showed that
heat and water vapor are generally transported: (1) by warm
upward and cool downward thermal plumes in free convec-
tion, (2) by sweep and ejection motions in near-neutral con-
ditions, and (3) by warm downward and cool upward mo-
tions at canopy top and by warm upward and cool down-
ward thermal plumes in the lower canopy during stable con-
ditions. Since canopy-top sweep and ejection motions dur-
ing near-neutral conditions have already been discussed in
the literature (e.g.,Shaw et al., 1983), we now use space-
time autocorrelation analysis to illuminate coherent motion
characteristics during the two extreme stability regimes (FrC
and S). Space-time autocorrelations have been computed by
considering all events (H = 0) allowing for the generation
of smoother autocorrelation contours, but with similar shape
and time scales to those found when restricting the analysis
solely to extreme events.

5.1 Warm upward and cool downward thermal plumes
during free convection

Space-time autocorrelations (Eq.10) provide information re-
garding the distance/time over which samples at a fixed lo-
cation and time are correlated with samples at earlier or later
times and other heights on the tower during a particular heat
flux quadrant event. For both seasonal periods, Figs.6–8
present contours of the average space-time autocorrelations
of u, w, t and q during free convective conditions (FrC),
where events associated with warm upward and cool down-
ward plumes (i.e. Q1 and Q3 for heat flux) are calculated
and presented separately. For all three figures, the time ref-
erence point isT = 0 min, and the space reference pointZ

varies for each figure such that:Z = 23 m (Fig.6), Z = 10 m
(canopy top, Fig.7), andZ = 4.5 m (Fig.8). For simplicity,
we will hereafter refer to space-time autocorrelations from
Eq. (10) asRuu, Rww, Rt t andRqq for autocorrelations ofu,
w, t andq, respectively, and will delineate them according to
their association with either warm upward or cool downward
plumes. In these figures, negative times correspond to times
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before the structure detection (downwind condition) and pos-
itive times to times after the structure detection (upwind con-
dition). Note that the time coordinate forRww spans a shorter
duration than the other autocorrelations.

With the reference point located above the canopy atZ =

23 m (Fig.6), autocorrelation contours ofRww, Rt t andRqq

indicate that warm upward motions are more connected to
within-canopy regions than are cool downward motions, es-
pecially during the foliated period. The within-canopy cor-
relations are generally quite low, except forRuu and Rqq

during the period with no-leaves. Scalar correlation con-
tours (i.e.Rt t andRqq ) generally extend upwind for cool-
downward plumes and downwind for warm-upward plumes.

With respect to their size and shape, autocorrelations ref-
erenced to canopy-top (Fig.7) reveal distinct differences
between the two seasonal periods compared to those refer-
enced above the canopy.Ruu and, to a lesser extent,Rww

contours appear smaller during the foliated period resulting
from the higher canopy density, where (1) the higher canopy
density limits downward penetration of the cool-downward
motions into the canopy, and (2) the leaves’ active contribu-
tion may initiate small warm-upward plumes (as discussed in

Sect.6). Rww contours exhibit generally consistent correla-
tion patterns for both seasonal periods.Ruu contours reveal
substantially more correlation thanRww, butRuu reveals no-
tably shorter time and height correlations for warm-upward
motions compared to cool-downward motions.Ruu corre-
lations during cool-downward motions tilt distinctly down-
wind. Rt t and Rqq contours also tilt downwind, generally
extending downwind within and above the canopy for warm-
upward motions plumes, and extend mostly upwind within
the canopy for cool-downward motions. ForRt t and Rqq ,
cool-downward plumes are also generally correlated over
larger depths than are warm-upward motions. As observed
for Rqq referenced toZ = 23 m,Rqq generally exhibits cor-
relation over longer times and greater depths during the de-
foliated period compared to the foliated period.

Autocorrelations using a within-canopy reference point
(Z = 4.5 m, Fig. 8), Ruu contours vertically extend over a
significantly shorter distance during the foliated period than
during the defoliated period, while the opposite is true for
Rww. Rt t and Rqq correlations reveal quite similar behav-
ior as correlations referenced to canopy top, with the ex-
ception that they are more tilted and the former are more
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Fig. 6. Autocorrelation contours ofu (Ruu), w (Rww), t (Rt t ) and q (Rqq ) associated with warm upward and cool downward plumes

referenced toZ = 23 m andT = 0 min, for free convection (FrC) and for both seasonal periods. The autocorrelations correspond toR
1|1
ϕϕ and

R
3|1
ϕϕ in Eq. (10), whereϕ is eitheru, w, t or q. Negative times correspond to times before the structure detection (downwind condition) and

positive times to times after the structure detection (upwind condition). The dashed line indicates the canopy top.

confined within the canopy. Compared to correlations ref-
erenced to canopy top,Rqq correlations during the period
with no-leaves remain significant for cool-downward mo-
tions when referenced toZ = 4.5 m, but well correlated con-
tours appear shorter in times and heights for warm-upward
motions.

Figure9a presents time scalesTuu, Tww, Tt t andTqq asso-
ciated with warm upward vs. cool downward plumes during
FrC for all Z. As was observed in the space-time autocorre-
lations,Tuu usually exceedsTt t , followed byTww. However
during the defoliated period, time scales forq (Tqq ) appear
larger than those foru (Tuu), and falls betweenTuu andTt t

during the foliated period. Irrespective of the type of motion
(warm-upward, or cool-downward), canopy-top mean values
of (Tuu, Tt t , Tww, Tqq ) are approximately (44, 14, 3, 52) s
during the defoliated period, and (25, 12.5, 3, 19.5) s during
the foliated period. TheseTuu, Tt t andTww characteristics are
consistent with previous studies which deduced time scales
from alternate methods, either lag-correlation (Baldocchi and
Meyers, 1988) or wavelet analysis (Collineau and Brunet,
1993b; Thomas and Foken, 2007b). The time-scales obtained
here agree particularly well with those observed byCollineau
and Brunet(1993b) for slightly unstable conditions over a
pine forest, butTt t andTww are slightly shorter than the time

scales presented byThomas and Foken(2007b) for a range of
stability regimes over a spruce canopy in heterogeneous com-
plex terrain.Thomas and Foken(2007b) also observed that
scalar (temperature and carbon dioxide) temporal scales were
more consistent with those ofu than those ofw, suggesting
that lateral scalar transport dominates. Figure9a shows for
CHATS that onlyq exhibits this feature, especially during
the defoliated period.

Compared to those for warm-upward plumes, above-
canopy time scales either appear larger for cool-downward
plumes or are nearly identical (Fig.9a). Within the canopy,
time scales are similar for both motion types, exceptu and
q exhibit longer time scales for cool-downward plumes dur-
ing the defoliated period.Tww andTt t do not change much
with leaf-state. On the other hand,Tuu increases almost log-
arithmically with height during the defoliated period, while
reducing to a minimum in the upper canopy during the foli-
ated period.Tqq follows Tuu’s trend during the defoliated pe-
riod. During the foliated period,Tqq also followsTuu’s trend
within the canopy, butTqq is intermediate betweenTt t and
Tuu above the canopy. The differing behavior betweenTt t

andTqq across seasonal periods most certainly reflects their
respective source distribution variations with leaf-state.
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Fig. 7.Same as Fig.6 but for autocorrelations referenced to canopy top (Z = 10 m).

Fig. 8.Same as Fig.6 but for autocorrelations referenced toZ = 4.5 m.
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Fig. 9. Temporal scales ofu, w, t andq associated with(a) warm upward and cool downward plumes in FrC regime,(b) warm downward
and cool upward motions in S regime and(c) warm upward and cool downward plumes in S regime, for both seasonal periods. Note that the

temporal scales correspond to(a) T
1|1
ϕϕ andT

3|1
ϕϕ , (b) T

2|1
ϕϕ andT

4|1
ϕϕ and(c) T

1|1
ϕϕ andT

3|1
ϕϕ in Eq. (11) with z = Z. The dashed line indicates

the canopy top and the grey background regions where the motions of interest are not dominant.

5.2 Warm-downward and cool-upward motions at
canopy top during stable conditions

Contours ofRuu, Rww, Rt t andRqq in the stable regime (S)
for warm downward and cool upward motions referenced to
time zero (T = 0 min) and to canopy top (Z = 10 m) are pre-
sented in Fig.10 for both seasonal periods. These correla-
tions correspond toR2

ϕϕ andR4
ϕϕ in Eq. (10). Time scales

Tuu, Tww, Tt t andTqq associated with these motions are also
presented in Fig.9b.

Rt t andRqq contours indicate that warm-downward mo-
tions come from above the canopy as the contours extend
higher than those of cool-upward motions and with a down-
wind tilt elliptical shape. These contours do not extend deep
into the canopy, especially during the foliated period, due to
(1) the higher canopy density, (2) the stratified layer which
develops at canopy top, and (3) the presence of the un-
stable layer in the lower canopy. On the other hand,Ruu

andRww contours do not exhibit significant differences be-
tween warm-downward and cool-upward motions.Ruu cor-
relates over slightly shorter time and height during the foli-
ated period. Temporal scales (1) appear much shorter com-
pared to those in FrC, except forTww which is similar, and
(2) reveal no significant differences between warm-upward

and cool-downward plumes, with the exception of the upper
canopy where warm-upward motions have a slightly longer
time scales. Consistent with the FrC regime,Tqq differs with
seasonal period, where during the defoliated periodTqq at
canopy top is close toTt t and during the foliated period is
close toTuu.

5.3 Warm-upward and cool-downward plumes in the
lower canopy during foliated stable conditions

Contours ofRuu, Rww, Rt t andRqq in the stable regime (S)
for warm-downward and cool-upward motions referenced to
time zero (T = 0 min) and to the middle canopy (Z = 4.5 m)
are presented in Fig.11 for the period with leaves. These
correlations correspond toR1

ϕϕ andR3
ϕϕ in Eq. (10). Time

scalesTuu, Tww, Tt t andTqq associated with these motions
are also presented in Fig.9c for the same seasonal period.

Correlated areas generally remain confined to the lower
canopy (below∼ 6 m), especially for scalars, indicating a de-
coupling between the lower- and upper-canopy regions. Con-
tours ofRuu andRww extend slightly above the canopy but
mostly on the upwind side suggesting that thermal plumes
within the canopy may destabilize the flow above acting
probably to generate Kelvin-Helmholtz structures; subtly
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Fig. 10. Autocorrelation contours ofu (Ruu), w (Rww), t (Rt t ) andq (Rqq ) associated with warm downward and cool upward motions
referenced to canopy top (Z = 10 m) andT = 0 min, for the stable regime (S) and for both seasonal periods. The autocorrelations correspond

to R
2|1
ϕϕ andR

4|1
ϕϕ in Eq. (10), whereϕ is eitheru, w, t or q. Negative times correspond to times before the structure detection (downwind

condition) and positive times to times after the structure detection (upwind condition). The dashed line indicates the canopy top.

recoupling the lower and upper canopy layers. Contours of
Ruu and Rww are almost circular within the canopy while
contours ofRt t andRqq extend more-so upwind for upward
plumes and downwind for downward plumes. Time scales
Tww, Tt t andTqq are comparable within the subcanopy with
a maximum aroundz = 4.5 m for Tww andTt t and around
z = 7 m for Tqq . Tuu is larger and increases with height
within the canopy. Hence, heat and water vapor should be
mostly transported within the subcanopy by active turbu-
lence, probably the local thermal plumes.

6 Discussion

Momentum and scalar (i.e. heat and water vapor) transfer be-
tween an orchard canopy and the overlying atmosphere has
been investigated for two seasonal periods (trees without and
with leaves), and for five thermal stability regimes (free and
forced convection, near-neutral, transition to stable, and sta-
ble). From quadrant and octant analysis of momentum and
scalar fluxes, as well as from space-time auto-correlations of
wind velocity components and scalars, we are able to iden-
tify some characteristics of the turbulent structures transport-
ing such quantities according to the atmospheric stability and

leaf state. Figure12 summarizes these characteristics which
are discussed in the following sub-sections.

6.1 Free convection regime

In this regime, scalar transport (heat and water vapor) oc-
curs mostly through thermal plumes. Due to low mean wind
speeds, shear-driven organized turbulent structures do not ex-
ist for momentum transport. Warm/humid upward thermal
plumes appear more efficient and less frequent than cool/dry
downward thermal plumes at above-canopy heat and water
vapor transport. Upward plumes are narrower and more in-
tense than surrounding downward plumes, as indicated by
the positive skewnesses of the temperature, water vapor and
vertical wind velocity (Dupont and Patton, 2012); a typical
feature of convective boundary layers.

Scalar autocorrelations, and to a lesser extent wind ve-
locity autocorrelations, have shown that downward plumes
at canopy-top come from above the canopy while upward
plumes originate mostly from within the canopy; this fea-
ture being especially true during the foliated period. Upward
plumes within the canopy were also shown to become less ef-
ficient but more frequent at transporting heat than downward
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Fig. 11.Autocorrelation contours ofu (Ruu), w (Rww), t (Rt t ) and
q (Rqq ) associated with warm upward and cool downward plumes
referenced to the middle canopy (Z = 4.5 m) andT = 0 min, for
the stable regime (S) and for the period with leaves. The autocorre-

lations correspond toR1|1
ϕϕ andR

3|1
ϕϕ in Eq. (10), whereϕ is eitheru,

w, t or q. Negative times correspond to times before the structure
detection (downwind condition) and positive times to times after the
structure detection (upwind condition). The dashed line indicates
the canopy top.

plumes, although both plumes have comparable time scales.
In order to explain these different features, we speculate that
large upward plumes of the convective boundary layer do not
form at the canopy top but somewhere above the canopy.
These large upward thermal plumes likely result from ag-
gregation of local, small, upward thermal plumes induced by
canopy-imposed heat sources that actively participate in tur-
bulence; a process which has been previously documented by
Gates and Benedict(1963) over broad-leaved and coniferous
trees. Hence, we suggest that heat sources imposed by the
canopy elements (especially during the foliated period) gen-
erate small scale plumes coalescing well above the canopy
into large upward thermal plumes. During the period with
no-leaves when the heat source from the ground overwhelms

that from the upper canopy, large upward plumes may de-
velop closer to the ground; an idea which is supported by
the large vertical extent of the correlations within and above
the-canopy for upward plumes. This mechanism explains the
frequency increase and lower intensity of upward thermal
plumes within the canopy compared to above.

Downward plumes within the canopy likely correspond to
the downwelling legs of large ABL-scale convective bound-
ary layer plumes penetrating within the canopy. Their pen-
etration attenuates through momentum absorption as these
large-scale motions encounter the canopy elements, gener-
ating a time lag between their presence at the canopy top
and at the ground. Downward plumes appear (1) more effi-
cient at scalar transport, and (2) less frequent than within-
canopy upward plumes; a consequence of directly compar-
ing against upward plumes. Upward plumes exhibit differ-
ent characteristics throughout and above the canopy, while
downward plumes remain the same fluid motion within the
canopy as found above the canopy, albeit with less vigor as
their momentum is partly attenuated by vegetation elements.

During the foliated period, water vapor sources/sinks are
similar to those for heat, occurring mostly in the upper
canopy where local thermal plumes develop. Consequently,
water vapor should be directly injected into these local up-
ward thermal plumes and be transported initially by them;
a feature suggesting that heat and water vapor should be
transported similarly during the foliated period. However, (1)
Dupont and Patton(2012) showed larger correlation coef-
ficients for heat transfer than for water vapor transfer, sug-
gesting that heat is transported more efficiently by organized
structures than water vapor, and (2) the temporal scale of the
water vapor is slightly larger than that of the temperature
but lower than that of the longitudinal velocity. We explain
this discrepancy by (1) the dominant role heat plays in gen-
erating the local upward thermal plumes (i.e. water vapor’s
contribution may be regarded as passive compared to heat in
free convection), (2) the possible local dissimilarity between
heat and water vapor source distribution, and (3) the time re-
sponse for stomata to open/close (a few minutes according to
Jones, 1992) that could generate a phase shift between water
vapor release and thermal plume development; all combin-
ing to reduce the efficiency of local upward thermal plumes
at transporting water vapor.

During the period with no-leaves, water vapor sources
occur solely at the ground while heat sources occur both
at the ground and through the canopy. Local upward ther-
mal plumes induced by upper-canopy heat sources may not
transport much water vapor, since water vapor is released at
the surface and not directly within in these plumes; which
is confirmed by the fact that water vapor’s temporal scale
is notably longer than temperature’s with temporal scales
more like the longitudinal wind velocity within and above
the canopy. When water vapor is emitted solely at the sur-
face, within-canopy upward motions transport more water
vapor than do within-canopy downward plumes; with this
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Fig. 12.Idealized representation of the turbulent structures transporting momentum and scalars (temperaturet and water vaporq) at CHATS
and their main characteristics during:(a) free convection,(b) near-neutral, and(c) stable regimes for both seasonal periods (without and with
leaves).

same characteristic found above the canopy. However, when
the scalar is imparted to the flow in a distributed fashion
through the canopy (e.g. water vapor in the foliated period, or
temperature during either period), downward motions dom-
inate within-canopy transport eventhough upward motions
still contribute more to above-canopy scalar transport. There-
fore, in free convective conditions (light winds) the scalar
source location and that scalar’s dominant role in generat-
ing vertical motions explains the reduced correlation coef-
ficient between heat and water vapor fluxes during the pe-
riod with no-leaves. Heat and water vapor are therefore trans-
ported differently during this period, with water vapor prob-
ably transported mostly by inactive large scale motions like
the longitudinal wind velocity and to a lesser extent by ther-
mal plumes developing at the ground.

The release of heat and water vapor by vegetation is not
continuous and depends on numerous environmental factors.
Scalar sources should increase with the gradient between the

surface and the surrounding air as well as with increasing
wind velocity via the exchange coefficient. Therefore, down-
ward thermal plumes carrying depleted scalar concentrations
should enhance the scalar source. When these plumes pass
through the scalar source region, the scalar quantity trans-
ported by the plumes should therefore change. However, the
CHATS observations show that scalars carried by downward
plumes are not modified when passing through the elevated
scalar source region (Sect.5.1). The only explanation for this
discrepancy could be a time delay between the plume’s pas-
sage and the plant’s response, a feature which is well known
for water vapor (through stomatal time response;Jones,
1992) but not for heat. Hence why we suggest that scalars are
preferentially emitted into local upward plumes. This process
is certainly only true when scalar sources are co-located with
heat sources. This finding may impact scalar source model-
ing within large-eddy simulations (LESs) since upward and
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downward thermal plumes are explicitly resolved by these
models.

Finally, for this stability regime the canopy appears fully
coupled with the overlying atmosphere as warm-upward and
cool-downward thermal plumes significantly contribute to
the exchange of heat and water vapor. This finding is con-
sistent with the “fully coupled canopy” regime observed by
Thomas and Foken(2007a) over a tall spruce canopy dur-
ing afternoon. However, the coupling strength differs across
scalars due to the source-location influence on scalar trans-
port efficiency. For other trace gases, this finding could have
some implications regarding the residence times of these
gases since surface emitted species are apparently trans-
ported less efficiently within the canopy layers than species
emitted in a distributed fashion through the canopy depth,
suggesting longer within-canopy residence times for surface-
emitted species.

6.2 Near-neutral regime

Dupont and Patton(2012) found that the plane mixing-
layer analogy explains turbulent flow within and above the
CHATS canopy better during the foliated period than dur-
ing the defoliated period.Finnigan et al.(2009) proposed
that these mixing-layer structures are comprised of a linked
pair of hairpin vortices; i.e. a combination of an ejection-
producing head-up and a sweep-producing head-down, with
the head-down vortex dominating at canopy-top due to rapid
straining and preferential vorticity amplification associated
with downward deflections. Resulting from the defoliated
canopy’s sparseness, sweep and ejection motions responsi-
ble for transporting momentum and scalar constituents may
be a combination of mixing-layer type coherent structures
developing below canopy top superposed with surface-layer
type structures whose length scales vary with distance from
the surface. Although, the mixing-layer structures dominat-
ing exchange during the foliated period transport these quan-
tities more efficiently. This superposition of turbulent struc-
tures within canopy was suggested byPoggi et al.(2004) and
Kobayashi and Hiyama(2011), and deduced in the orchard
canopy from the spectral analysis of the wind velocity com-
ponents (Dupont and Patton, 2012) .

6.3 Stable regime

In this regime, within-canopy micrometeorology and turbu-
lent exchange differ substantially across seasonal periods due
to the well-defined unstable layer in the lower canopy during
the foliated period.

During the no-leaves period, turbulent exchanges appear
similar to that of stable surface-layers, but with potential de-
velopment of either Kelvin-Helmholtz instabilities or grav-
ity waves in the upper canopy; although, not fully develop-
ing into mixing-layer type coherent structures like those in
the near-neutral regime likely as a result of the canopy-top

gradient Richardson number exceeding the critical value of
0.25. Initiation of these instabilities could be related to in-
termittent warm and dry downward motions associated with
residual elevated shear layers or low level jets (Mahrt, 1999).
In response, cool and humid upward motions develop but
may not be as well defined as the downward motions. These
instabilities could then propagate into the canopy airspace,
as recently observed byvan Gorsel et al.(2011) over open
canopies. For this seasonal period, the exchange regime cor-
responds to the “wave motion” regime defined byThomas
and Foken(2007a), which occurs mostly at night, particu-
larly just before sunrise.

During the foliated period, scalar turbulent exchanges in
the lower CHATS canopy occur mostly through thermal
plumes. Upward thermal plumes may act to perturb the flow
at canopy top, generating instabilities or gravity waves; in-
termittent downward motions from above can act similarly.
Hence, during the foliated period, two types of turbulent
structures may coexist within the canopy, small and inter-
mittent “shear-driven” coherent eddy structures at canopy
top and “buoyantly-driven” coherent structures in the lower
canopy. Both structures may stay confined in their region
of development, inducing a decoupling between the lower
and the upper canopy. Canopy-top instabilities may propa-
gate within the canopy but do not contribute to scalar trans-
port; which explains why autocorrelation contours ofu and
w centered at canopy-top extend deeper within the canopy
than those oft andq. Hence, for this seasonal period the ex-
change regime still corresponds to the “wave motion” regime
although turbulent exchanges exist but they stay confined
within the subcanopy.

Although gravity waves were not investigated in the
present study, they were observed above the orchard canopy
during both seasonal periods byJachens and Mayor(2012)
with a Raman-shifted Eye-safe Aerosol Lidar.

6.4 Intermediate stability regimes

The forced convection regime (FoC) should be seen as an
intermediate regime between the near-neutral (NN) and free
convection (FrC) regimes with the possible superposition of:
(i) “shear-driven” structures, mixing-layer type structures de-
veloping in the upper canopy and surface boundary-layer
type structures if the canopy is sparse, and (ii) “buoyantly-
driven” structures, or thermal plumes. With increasingly un-
stable conditions, it is not clear whether there is a distinct su-
perposition of different structure types, or if “shear-driven”
structures become progressively “buoyantly-driven” struc-
tures.Hommema and Adrian(2003) observed from smoke
visualization that in an unstable surface boundary layer tur-
bulent structures lift off the surface. They postulated that
these structure correspond to the superposition of a “shear-
driven” structure and a buoyant upward motion.

In the transition to stable regime (TS) at CHATS, an unsta-
ble layer progressively develops in the lower canopy during
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the foliated period and plane mixing-layer type structures
becomes smaller, less frequent and should look more like
Kelvin-Helmholtz type structures; a result of decreased am-
bient turbulence levels.

7 Concluding remarks

From this CHATS data analysis, a detailed schematic picture
of momentum, heat, and water vapor transport mechanisms is
presented and their associated turbulent structures over a veg-
etated canopy following the atmospheric stability at canopy
top and the canopy’s seasonal state (Fig.12). This analysis
suggests that the canopy’s seasonal state plays a vital role
in determining the turbulent transport processes coupling the
canopy layers with the overlying atmosphere. In near-neutral
stability (NN), traditional mixing-layer type structures dom-
inate turbulent scalar transport when there are leaves on the
trees. While in the absence of leaves, canopy exchange ap-
pears to occur through a combination of these mixing-layer
structures superposed with surface layer type structures.

Although the vegetation’s branches and trunks impose
heat sources during both seasonal periods, during the foli-
ated period the leaves dramatically modify the vertical tem-
perature distribution across stability ranges through their
low heat capacity, ability to regulate their own tempera-
ture through transpiration, and tendency to absorb/scatter
solar radiation and to absorb/emit thermal radiation. With
departure from near-neutral conditions, the sweep/ejection
motions associated with mixing-layer type turbulent struc-
tures no longer dominate canopy exchange. Rather, turbulent
scalar exchange occurs through thermal plumes during unsta-
ble conditions. During stable conditions, elevated radiational
cooling of the exposed leaves in the upper canopy generates
downwelling thermal plumes in the lower canopy; a feature
not present during the defoliated period, and which is of crit-
ical importance in controlling within-canopy chemical pro-
cessing of biogenic or surface-emitted reactive species.

Some turbulent exchange processes remain ambiguous
and require further study: (i) in unstable conditions, the link
between local thermal plumes generated by the vegetation el-
ements and large scale convective plumes above the canopy,
(ii) the coupling between these locally generated thermal
plumes and scalar source strength/location, and (iii) in stable
conditions, the origin and development of intermittent insta-
bilities in the upper canopy.

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/12/
5913/2012/acp-12-5913-2012-supplement.pdf.
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