Tropospheric methanol observations from space: retrieval evaluation and constraints on the seasonality of biogenic emissions

- 4
- K. C. Wells¹, D. B. Millet¹, L. Hu¹, K. E. Cady-Pereira², Y. Xiao², M. W. Shephard^{3,*},
 C. L. Clerbaux^{4,5}, L. Clarisse⁵, P.-F. Coheur⁵, E. C. Apel⁶, J. de Gouw^{7,8}, C.
 Warneke^{7,8}, H. B. Singh⁹, A. H. Goldstein¹⁰, B. C. Sive¹¹
- 8 [1] {Department of Soil, Water and Climate, University of Minnesota, St. Paul, Minnesota, USA}
- 9 [2] {Atmospheric and Environmental Research, Inc., Lexington, Massachusetts, USA}
- 10 [3] {Environment Canada, Downsview, Ontario, Canada}
- 11 [4] {UMPC Univ. Paris 06, Université Versailles St-Quentin, CNRS/INSU, LATMOS-IPSL,

12 Paris, France}

- 13 [5] {Spectroscopie de l'Atmosphère, Service de Chimie Quantique et Photophysique, Université
- 14 Libre de Bruxelles, Brussels, Belgium}
- 15 [6] {Atmospheric Chemistry Division, NCAR, Boulder, Colorado, USA}
- 16 [7] {Earth System Research Laboratory, NOAA, Boulder, Colorado, USA}
- 17 [8] {CIRES, University of Colorado, Boulder, Colorado, USA}
- 18 [9] {NASA Ames Research Center, Moffett Field, California, USA}
- 19 [10] {Departments of Environmental Science, Policy, and Management and of Civil and
- 20 Environmental Engineering, UC Berkeley, Berkeley, California, USA}
- 21 [11] {Department of Chemistry, Appalachian State University, Boone, North Carolina, USA}
- [*] {presently at: Atmospheric and Climate Applications (ACApps), Inc., East Gwillimbury,
 Ontario, Canada}
- 24
- 25 Correspondence to: D. B. Millet (dbm@umn.edu)

Figure S1. Comparison of TES, IASI and airborne methanol measurements using GEOS-Chem as an intercomparison platform. Methanol abundance as modeled by GEOS-Chem (base-case simulation) is compared to aircraft (left column, ppb), TES (middle column, ppb) and IASI (right column, 10^{16} molec cm⁻²) measurements for the field campaigns shown in Fig. 2. TES data are colored according to their DOFS; only DOFS < 0.5 are shown. Red lines correspond to a reduced major axis fit to the data (only performed for r > 0.25). Uncertainty estimates correspond to the standard error of the regression.

Figure S2. Midlatitude regions considered in this study: Western US (black), Eastern US (red),
Southern Canada (green), Europe (blue), and Southern Siberia (cyan).

2

3 Figure S3. Seasonal cycle in atmospheric methanol over midlatitude regions as measured by IASI

4 (black) and predicted by the GEOS-Chem base-case (red) and optimized (green) simulations.

5 Data are for 2009. Lines show the mean for each of the midlatitude regions of Fig. S2.

	T 11 G	D · 1					-1x			a a1	•
1	Table S1.	Regional	methanol	sources	and globa	l sinks	(Tg yr ⁻¹)	of methanol	in GEO	S-Chem	for

2	2006.
_	

		Globe	W. US	E. US	S. Canada	Europe	S. Siberia
	Anthropogenic	6.1	0.02	0.13	0.04	0.52	0.05
	Biogenic	66	1.1	2.8	1.4	1.5	2.4
Sources	Biomass burning	8.7	0.03	0.03	0.12	0.01	0.46
	Photochemistry	37	0.04	0.17	0.08	0.06	0.07
	Ocean biosphere	83					
	OH oxidation	72					
Sinka	Dry deposition	27					
SIIIKS	Wet deposition	12					
	Ocean uptake	88					

- Table S2. Correlation coefficients and seasonal model-measurement root mean square differences 1 2 3
- (RMSD) for IASI, TES, and ground station data (normalized by the annual mean). Values listed

are before/after optimization.

Platform	Location	r	DJF RMSD	MAM RMSD	JJA RMSD	SON RMSD
	midlatitude mean	0.85/0.95	0.24/0.23	0.25/0.26	0.11/0.12	0.13/0.17
	W. US	0.80/0.92	0.32/0.32	0.28/0.20	0.21/0.23	0.17/0.17
IASI	E. US	0.86/0.95	0.18/0.17	0.23/0.06	0.15/0.10	0.15/0.14
IASI	S. Canada	0.76/0.93	0.23/0.18	0.27/0.15	0.26/0.12	0.20/0.11
	Europe	0.77/0.90	0.27/0.30	0.33/0.16	0.16/0.23	0.21/0.21
	S. Siberia	0.87/0.96	0.13/0.16	0.19/0.11	0.27/0.30	0.07/0.07
	W. US	0.82/0.80	0.19/0.20	0.37/0.12	0.36/0.46	0.16/0.26
	E. US	0.75/0.89	0.12/0.13	0.43/0.29	0.46/0.42	0.27/0.22
TES	S. Canada	0.80/0.82	0.33/0.33	0.31/0.26	0.37/0.35	0.32/0.43
	Europe	0.44/0.48	0.68/0.67	0.05/0.32	0.54/0.35	0.07/0.11
	S. Siberia	0.84/0.85	0.10/0.09	0.24/0.16	0.55/0.56	0.46/0.59
	Thompson Farm	0.95/0.90	0.55/0.53	0.36/0.65	0.88/0.88	0.35/0.31
Ground	KCMP Tall Tower	0.91/0.87	0.35/0.38	0.26/0.49	0.90/0.42	0.21/0.22
2	Blodgett Forest	0.95/0.91	0.11/0.23	0.17/0.23	0.44/0.35	0.03/0.24