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Abstract. We introduce a four-year (in 2006–2010) continu-
ous data set of aerosol optical properties at Puijo in Kuopio,
Finland. We study the annual and diurnal variation of the
aerosol scattering and absorption coefficients, hemispheric
backscattering fraction, scattering̊Angstr̈om exponent, and
single scattering albedo, whose median values over this pe-
riod were 7.2 Mm−1 (at 550 nm), 1.0 Mm−1 (at 637 nm),
0.15, 1.93 (between 450 and 550 nm), and 0.85, respectively.
The scattering coefficient peaked in the spring and autumn,
being 2–4 times those in the summer and winter. An excep-
tion was the summer of 2010, when the scattering coefficient
was elevated to∼300 Mm−1 by plumes from forest fires
in Russia. The absorption coefficient peaked in the winter
when soot-containing particles derived from biomass burn-
ing were present. The higher relative absorption coefficients
resulted in lower single scattering albedo in winter. The op-
tical properties varied also with wind direction and time of
the day, indicating the effect of the local pollutant sources
and the age of the particles. Peak values in the single scat-
tering albedo were observed when the wind blew from a pa-
per mill and from the sector without local pollutant sources.
These observations were linked, respectively, to the sulphate-
rich aerosol from the paper mill and the oxygenated organics
in the aged aerosol, which both are known to increase the
scattering characteristics of aerosols. Decreases in the single
scattering albedo in the morning and afternoon, distinct in
the summertime, were linked to the increased traffic density
at these hours. The scattering and absorption coefficients of

residential and long-range transported aerosol (two separate
cloud events) were found to be decreased by clouds. The ef-
fect was stronger for the scattering than absorption, indicat-
ing preferential activation of the more hygroscopic aerosol
with higher scattering characteristics.

1 Introduction

According to the Intergovernmental Panel on Climate
Change the direct effect of aerosols to radiative forcing is still
highly uncertain (IPCC, 2007). The direct effect arises from
light extinction by aerosol particles, i.e. due to the combined
effect of aerosol light scattering and absorption. Evaluation
of the direct effect’s magnitude is complicated, because these
properties depend on the wavelength of the incident light and
the angular distribution of the scattered light, which, in turn,
depends, e.g., on the size, concentration, and chemical com-
position of the aerosol particles. Particles that contain sulfate,
nitrate, and organic carbon predominately scatter light, and
particles that contain black carbon absorb it. Furthermore,
internal mixing (e.g., of organics and black carbon) may dra-
matically influence the aerosol optical properties (Shiraiwa
et al., 2010).

The optical properties of aerosol particles are usually
retrieved from remote sensing instruments, such as Lidar
(Klett, 1981; Ansmann et al., 1990), or from in situ instru-
ments, either airborne (e.g., Shinozuka et al., 2011; Chen et
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al., 2011) or ground-based (e.g., Bodhaine, 1983; Bodhaine,
1995; Virkkula et al., 2011). The extinction can be measured,
e.g., with a pulsed cavity ring-down spectrometer (Baynard
et al., 2007), scattering with nephelometers (Heintzenberg et
al., 1996; Anderson et al., 1996), and absorption with pho-
tometers (Arnott et al., 1999; Petzold and Schönlinner 2004).
Other important intensive properties, such as the single scat-
tering albedo (SSA), can be derived from the measured val-
ues. The SSA can be used to determine whether an aerosol
layer causes net heating or cooling. If multi-wavelength in-
struments are used,Ångstr̈om exponents can be derived for
scattering (̊as) and absorption (̊aa). The Ångstr̈om expo-
nents depend inversely on the size of the aerosol particles:
A small exponent indicates large aerosol particles, such as
sea salt and dust, whereas a large exponent is connected to
smaller aerosol particles (Bohren and Huffman, 1983), orig-
inating, for example, from combustion processes. However,
one should be careful, because theås also depends on the
imaginary part of the refractive index, especially for highly
absorbing aerosol (Bond et al., 2009).

Measurements of aerosol optical properties have been con-
ducted worldwide. Long-term and campaign-wise measure-
ments have been carried out to study climatologies at mul-
tiples sites (e.g., Bodhaine, 1983, 1995; Delene and Ogren,
2002; Andrews et al., 2011) as well as for a single site (e.g.,
Aaltonen et al., 2006; Hyv̈arinen et al., 2009; Collaud Coen
et al, 2011; Virkkula et al., 2011). The advantage of focusing
on measurements at a single site is that it allows for more
in-depth exploration of, e.g., what causes temporal cycles. In
most studies, particle size and concentration have been cou-
pled to the aerosol optical properties, but, for example, the
chemical composition and the optical properties of aerosols
have been analyzed in parallel only in few studies.

In this study we introduce a previously unpublished four-
year data set of aerosol optical properties and meteorological
parameters measured at a semi-urban measurement station,
230 m above the surroundings, in an observation tower at
Puijo in Kuopio, Finland (Leskinen et al., 2009). We inter-
pret the annual and diurnal variation of the aerosol scattering
and absorption coefficients, single scattering albedo, scatter-
ing Ångstr̈om exponent and hemispheric backscattering frac-
tion. We classify the optical properties, as well as aerosol
chemical composition obtained from aerosol mass spectrom-
etry, according to the wind direction in order to inspect the
effect of the local sources. Finally, we examine how the scat-
tering and absorption coefficients behave before, during, and
after a cloud event, i.e. a time period when the station was
covered by clouds.

Figures

Fig 1.

727

729 Fig. 1. Map of Kuopio showing Puijo (1) and its surroundings. The
dark grey areas are lakes, the light grey areas residential areas, and
the white areas forest. Also shown are the location of Savilahti mea-
surement station (2), a peat-fired district heating plant (3), a paper
mill (4), and a highway (5). The lines emerging from Puijo define
sectors for local source analysis. The direction of North and a dis-
tance bar of 3 km are also shown in the figure.

2 Methods

2.1 Site description

The measurement station at Puijo (62◦54′34′′ N,
27◦39′19′′ E) is on the top of an observation and re-
transmitting tower, which is a 75 m high building on the
Puijo hill (elevation 150 m), approximately 2 km northwest
of the city center of Kuopio (population 97 000). The
measurements are carried out at the height of 306 m a.s.l.
and 224 m above the surrounding lake level. Puijo hill is
in the southern boreal climatic zone and the surroundings
is characterized by forests with conifer (mostly pine and
spruce) and deciduous (mostly birch) trees, an undulating
terrain with rocky soil and moderate hills and many lakes
(Fig. 1).

We categorize the Puijo measurement station as a semi-
urban measurement station, because there are local pollutant
sources (traffic routes, residential areas, industrial plants) in a
particular sector (0–245◦) seen from the Puijo tower, whereas
the remaining sector (245–360◦) represents a “cleaner” sec-
tor with almost no local sources. This enables studying
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the effects of fresh emissions on various aerosol properties
(Leskinen et al., 2009). Furthermore, its elevated location
enables studies of the interaction of aerosols with low-level
clouds (Portin et al., 2009).

Since its establishment in 2005 by the research groups at
the Finnish Meteorological Institute in Kuopio and Helsinki
and at the University of Eastern Finland (Kuopio), we have
instrumented the station for continuous measurements of
aerosols, cloud droplets, weather parameters and trace gases.
In 2009, the Puijo measurement station became a part of the
Station for Measuring Forest Ecosystem – Atmosphere Re-
lations network as its fourth member (SMEAR IV). More
details about the measurement station and an overview of the
activities in its early stages are given in Leskinen et al. (2009)
and Portin et al. (2009).

2.2 Instrumentation

We measured the meteorological parameters (temperature,
relative humidity, atmospheric pressure, horizontal wind
speed and direction, visibility and precipitation intensity and
type) on the roof of the Puijo tower with a time resolution of 1
min. The temperature and relative humidity transmitters, and
the ultrasonic wind anemometer (Thies UA2D) are 2 m and
5 m above the roof, respectively. The present weather sensor
(Vaisala FD12P) and a weather camera, facing northwards,
are attached to a vertical pole at 2 m height.

The aerosol instruments are located in the space below the
roof of the tower. Sample air for the instruments is drawn
through two parallel sampling lines: One, called the intersti-
tial inlet, is equipped with an impactor with a 10-µm cut-off
size, followed by a cyclone with a 1.0-µm cut-off size (2.5 µm
before 20 November 2009), and the other, called the total air
inlet, with a heated inlet and snow-hood in order to dry the
cloud droplets. The total air inlet has the same construction
as that used and designed by Weingartner et al. (1999), who
reported that the cut-off size of the inlet is 40 µm when the
wind speed is below 20 m s−1, which is the case most of the
time at Puijo. This two-inlet setup enables simultaneous in-
terstitial and total air (interstitial + cloud drop residual) mea-
surements when the tower is covered by clouds. Unless oth-
erwise noted, all measurements described in this paper were
made through the interstitial inlet.

We measured the aerosol total and backscattering coeffi-
cients at 450 nm (σsp,450 andσbsp,450), 550 nm (σsp,550 and
σbsp,550), and 700 nm (σsp,700 andσbsp,700) by using an in-
tegrating nephelometer (TSI Model 3563) (e.g., Anderson et
al., 1996). The nephelometer illuminates the sample volume
from the side and detects the light scattered by the aerosol
particles and gas molecules in the sample with a photomulti-
plier tube over an angle of 7–170◦. The aerosol backscatter-
ing coefficient is measured when an internal shutter restricts
scattering to between 90–170◦. The nephelometer drew the
sample out of the interstitial sample line with a flow rate of
8.0 l min−1 (10 l min−1 before 8 October 2009). The neph-

elometer calibration was checked periodically (every three
months) with pure carbon dioxide and filtered air. The data
collection frequency in the nephelometer was either 1 or
5 min. The relative uncertainty in the scattering coefficient,
reported in the literature, is 10 % (Anderson et al., 1996).

We measured the aerosol absorption with a multi-angle
absorption photometer (Thermo Model 5012 MAAP). The
MAAP (Petzold and Scḧonlinner, 2004) determines aerosol
light absorption by illuminating a particle-loaded filter with
637 nm (M̈uller et al., 2011) light and measuring simulta-
neously the radiation passing through the filter. It also mea-
sures the light scattered from the filter at several detection
angles in order to resolve the influence of aerosol compo-
nents that scatter light creating a scattering aerosol artifact.
This compensation of light-scattering effects improves con-
siderably the aerosol absorption measurement in filter-based
appliances (Bond et al., 1999), especially in the MAAP (Pet-
zold and Scḧonlinner, 2004). The MAAP was connected to
the interstitial sample line and the flow rate through it was
5.0 l min−1. We performed periodic checks and flow calibra-
tions for the instrument, and collected the MAAP data every
1 min.

The MAAP provides the absorption information as an
equivalent black carbon concentration (EBC), which is ob-
tained by dividing the measured absorption coefficient by
a mass absorption coefficient (MAC) of 6.6 m2 g−1, recom-
mended by the manufacturer. To obtain the absorption coef-
ficient (σap,637), we multiplied the EBC by the same MAC
(6.6 m2 g−1). It must be noted that the MAC for a specific
aerosol can vary during its lifetime and due to changes in
its chemical composition, which causes uncertainty in the
EBC, if a constant value of MAC is used. For example, val-
ues ranging from 6.9–11.6 m2 g−1 have been reported (Knox
et al., 2009; Pandolfi et al., 2011). However, as we used
the same MAC value as the MAAP in our calculation, we
consider that the variability in MAC as a source of uncer-
tainty can be neglected. For the absorption coefficient, a rel-
ative uncertainty of 12 % has been reported by Petzold and
Scḧonlinner (2004).

We analyzed the chemical composition of the aerosols in
an intensive campaign 16 September–20 October 2008 by us-
ing aerosol mass spectrometry (AMS). The AMS measures
the chemical composition of submicron aerosol particles on-
line and in real time. The collection efficiency at the detec-
tor approaches 100 % for particles in the size range of 70–
500 nm (Jayne et al., 2000). The particles are introduced into
the AMS through a critical orifice and an aerodynamic lens
assembly, producing a narrow aerosol beam that enters an
ionization chamber, where non-refractory components flash-
vaporize and positive ions are detected by Quadrupole mass
spectrometer (Q-AMS). A more detailed description of the
instrument is given by Jayne et al. (2000). The AMS used in
this study gave the concentration of particulate sulphate and
organics, and the ratio ofm/z 44 tom/z 43, which indicates
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the degree of oxygenation of organics: the higher the ratio,
the more oxygenated the organics.

2.3 Data processing

We analyzed the nephelometer and MAAP data covering
the time range 1 September 2006–30 September 2010. First
we ruled out the unusable data due to abnormal peaks, cal-
ibrations, maintenance, flow checks, and autozeroing. Sec-
ondly, we omitted the scattering data with the relative hu-
midity higher than 50 % in the nephelometer inlet, because
the increasing water content increases the scattering coeffi-
cient (Fierz-Schmidhauser et al., 2010) too much compared
to dry particles, which we wanted to inspect. We then cor-
rected the valid measured scattering coefficients for trunca-
tion errors arising from the physical limitations of the neph-
elometer (the actual measuring angle is 7–170◦, not 0–180◦),
by using the values for no cut at the inlet, given by Anderson
and Ogren (1998), and normalized them to standard temper-
ature and pressure (273.15 K and 101 325 Pa), as described,
e.g., in Ḧanel (1998).

We calculated hourly averages of the valid data for each
instrument and used them in the following data analysis.
Based on the scattering and absorption coefficients we cal-
culated three intensive properties: the hemispheric backscat-
tering fraction (b), scatteringÅngstr̈om exponent (̊as), and
the single scattering albedo (SSA). All three are dimension-
less and independent of the amount of particles.

The b is the ratio of aerosol scattering to the backward
hemisphere to the scattering in all directions, and can be used
to estimate how much of the incoming solar radiation is re-
flected backwards.We calculated theb at the wavelengths of
450, 550 and 700 nm for the periods 1 September–30 Novem-
ber 2006 and 1 October 2009–30 September 2010. At other
times the backscatter mode in the nephelometer was inactive.
We calculated the̊as for each pair of wavelengths: 700 and
450 nm (̊as,700−450), 700 and 550 nm (ås,700−550), and 550
and 450 nm (̊as,550−450) by using the equation̊as,λ1−λ2 = -
[log (σsp,λ1/σsp,λ2) / log (λ1/λ2)].

The SSA is defined as the ratio of the scattering coef-
ficient to the extinction coefficient (the sum of the scat-
tering and absorption coefficients) at a certain wavelength.
Since the wavelengths of the nephelometer and MAAP
do not match, we determined the scattering coefficient at
637 nm (σsp,637) by using theÅngstr̈om power law,σsp,637 =

σsp,550* (637/550)−ås,700−550. The SSA at 637 nm was then
calculated as SSA637 = σsp,637/(σap,637+ σsp,637). By apply-
ing the law for propagation of errors to the relative uncertain-
ties in the scattering and absorption coefficients given above,
we obtained an upper limit of 13 % for the relative uncer-
tainty in the SSA.

We calculated monthly averages for the scattering and ab-
sorption coefficients and the SSA, and sorted the data for
each month in order to calculate the 10th, 50th (median) and
90th percentiles as an indicator for the variability of the pa-

rameter values each month. We excluded rainy periods with
a precipitation intensity more than 0.2 mm h−1, whose occur-
rence was, on an average, 11 % of the time. We also excluded
cloudy periods lasting more than 15 min (4 % of the valid
data), i.e. the periods when the tower was covered by low-
level clouds. The indication of the presence of a cloud was
adopted from Portin et al. (2009), who defined a cloud event
by a sudden drop in the horizontal visibility below 200 m and
a burst in cloud droplet concentration measured by a Cloud
Droplet Probe.

In order to examine the effect of cloud events on the
aerosol optical properties we separated the optical properties
measured from the interstitial and total sampling lines for a
four-day period (7–11 October 2010). For this special case,
the nephelometer and MAAP were connected to a four-valve
system, which changes the sampling inlets of the instruments
in 6-min cycles. During the cycle 1 the MAAP was connected
to the interstitial line and the nephelometer to the total air line
and during the cycle 2 vice versa. In this setup the MAAP
flow was increased to 8.0 l min−1 in order to maintain equal
flow rates in both inlets.

2.4 Local source analysis

We divided the measured and calculated parameters accord-
ing to the prevailing wind direction into (1) equal, 22.5-
degree sectors and (2) five sectors described below, in order
to analyse the effect of the local pollutant sources. Further-
more, we inspected the average diurnal cycles for each month
in order to identify the effects of daily (e.g., traffic) and sea-
sonally (e.g., domestic wood combustion) time-dependent
sources. The major point sources around Puijo are a paper
mill (5 km in the direction of 35◦) and a district heating plant
(3.5 km, 160◦). A distinct line source, the Route 5/E63 high-
way, runs from north (6◦) to south (192◦). The most im-
portant area sources are the eastern residential areas (1.2–
4.0 km in the sector of 45–120◦), the city center (1.6–3.2 km,
120–155◦), the southern residential areas (3.4–10 km, 155–
245◦), and the western residential areas (1.5–3.5 km, 245–
360◦). Based on the distances and bearings of the pollutant
sources, the chosen sectors were (1) 0–45◦, including the
northern highway and the paper mill, (2) 45–155◦, including
the city center and the eastern residential areas, extending
up to 4 km, (3) 155–215◦, including the district heating plant
and the southern residential areas extending up to 10 km, (4)
215–245◦, including the southwestern residential areas ex-
tending up to 4 km, and (5) 245–360◦, including the western
residential areas, extending up to 1–3 km.

It must be noted that the measurements were made ap-
proximately 230 m above the release height of the traffic
and domestic emissions, which are diluted before they reach
the measurement point. Furthermore, when the mixing layer
height is below the top of the tower (e.g., in the winter in
the nighttime), the emissions from the very nearby sources
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Table 1.Number (N ), average, standard deviation (std), 10th, 50th, and 90th percentiles, and maxima (max) of valid observations for aerosol
scattering and backscattering coefficients at 450, 550, and 700 nm (σsp,450, σbsp,450, σsp,550, σbsp,550, σsp,700, andσbsp,700 in Mm−1),
hemispheric backscattering fractions at 450, 550, and 700 nm (b450, b550, andb700), Ångstr̈om exponents between 550 and 450 nm, 700 and
450 nm, and 700 and 550 nm (ås,550−450, ås,700−450, ås,700−550), absorption coefficient at 637 nm (σap,637 in Mm−1) and single scattering
albedo at 637 nm (SSA637) based on hourly averages. *N/A = not available.

percentiles

parameter N average std 10 50 90 max

σsp,450 20 530 17.2 20.7 3.1 10.8 38.3 396.2
σsp,550 20 482 11.6 14.3 2.2 7.2 25.9 300.7
σsp,700 20 492 6.9 8.9 1.4 4.4 15.0 216.3
σbsp,450 4500 2.4 3.6 0.3 1.4 5.5 47.6
σbsp,550 4493 1.9 2.7 0.3 1.1 4.1 35.8
σbsp,700 3860 2.0 2.8 0.1 1.2 4.5 33.2
b450 4500 0.15 0.13 0.09 0.14 0.21 N/A*
b550 4492 0.18 0.21 0.12 0.17 0.25 N/A
b700 3860 0.55 2.5 0.13 0.22 0.73 N/A
ås,550−450 20530 1.87 0.71 1.11 1.93 2.50 13.9
ås,700−450 20483 1.95 0.62 1.21 2.02 2.47 10.7
ås,700−550 20492 2.02 0.86 1.16 2.10 2.56 19.5
σap,637 26 820 1.6 1.8 0.3 1.0 3.4 38.9
SSA637 20 288 0.84 0.09 0.73 0.85 0.93 0.99

might pass under the measurement point and would not be
observed.

2.5 Trajectory analysis

In order to explore long-range transport of air masses to the
site, we calculated 120-hour backward trajectories for the
period from September 2006 to September 2010 in three-
hour intervals, using the FLEXTRA trajectory model (Stohl
et al., 1995). We adopted from Leskinen et al. (2009) the
classification of the trajectories into five air mass arrival sec-
tors, named as Arctic (315–10◦), Arctic/Kola (10–70◦), East
(70–160◦), South (160–235◦) and West (235–315◦). The East
and South sectors represent the continental air/sources from
Russia and Europe, respectively. The West sector covers the
Northern Atlantic and the Arctic sector the Arctic Ocean. We
furthermore divided the Arctic sector into two sectors in or-
der to separate the Kola Peninsula sources from the clean
Arctic air. We classified each trajectory according to its main
sector, i.e. the sector where it had spent most of the time dur-
ing the last 120 h. It must be noted that these sectors do not
match with the wind direction sectors determined by the lo-
cal pollutant sources. Therefore, we calculated, for each local
source sector, the percentages of time that the air masses had
spent in each long-range transport sector before arriving at
Puijo.

3 Results and discussion

3.1 Meteorological parameters

The temperature, relative humidity and horizontal visibil-
ity had clear seasonal cycles (Fig. 2), with averages over
the four-year period of 3.2◦C, 80 % RH, and 28 km. Febru-
ary 2007 and January–February 2010 were found to be
exceptionally cold subperiods, with average temperatures
of −12.8◦C and−12.5◦C, and minimum temperatures of
−22.6◦C and−27.4◦C, respectively. The July 2010 was,
in turn, exceptionally warm throughout the Eastern Europe
(Barriopedro et al., 2011), with a maximum hourly average
of 32.9◦C at Puijo (Fig. 2a). The median of the relative hu-
midity was, in general, below 80 % in April–August, and
exceeded 95 % in October–December (Fig. 2b). The 10th
percentile of the visibility was, in general, below 200 m in
October–April (Fig. 2c). The periods with high relative hu-
midity and low visibility are optimal for investigating low-
level clouds, as will be discussed in Sect. 3.6.

3.2 Aerosol scattering and absorption

During the measurement period (2006–2010) the average
scattering coefficients, based on 20 500 hourly-averaged ob-
servations of the total scattering at 450, 550, and 700 nm,
were 17.2, 11.6, and 6.9 Mm−1, respectively (Table 1). The
average of theσsp,550 is somewhat lower than that ob-
served at another Finnish site in Hyytiälä, 200 km from Puijo
(18 Mm−1; Virkkula et al., 2011) but higher than those ob-
served at remote Arctic sites (e.g., Delene and Ogren, 2002;
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Fig. 2.731 Fig. 2. Monthly minimum (triangle up; only for temperature), 10th
percentile (lower error bar), median (square), 90th percentile (upper
error bar), and maximum (triangle down; only for temperature) of
(a) temperature,(b) relative humidity, and(c) horizontal visibility
at Puijo in September 2006–September 2010.

Aaltonen et al., 2006). The long-time average of theσap,637
at Puijo was 1.6 Mm−1, which is again lower than the value
in Hyytiälä (2.1 Mm−1; Virkkula et al., 2011) but higher than
the values at Arctic sites (e.g., Delene and Ogren, 2002). This
comparison puts Puijo into a relatively clean class, when re-
garding the aerosol optical properties. However, as we will
discuss in Sect. 3.5., the aerosol scattering and absorption
coefficients at Puijo occasionally reach values comparable to
those in highly polluted areas.

The annual cycle ofσsp,550 showed strong seasonality,
with its peak 90-percentile values in the spring (February,
March, or April, depending on the year) and autumn (August,
September, or October, depending on the year) (Fig. 3a). The
seasonal variation was similar also at 450 nm and 700 nm.
The summer of 2010 was an exception to this pattern, be-
cause long-transported aerosol from forest fires in Russia in-
creased the total scattering coefficients, as will be discussed
in Sect. 3.5. The gaps in the data in Fig. 3a are due to main-
tenance of the instrument or its deployment at another mea-
surement site.

The average of the backscattering coefficient at 450, 550,
and 700 nm was 3.3, 2.5, and 2.6 Mm−1 for the 12 months

Fig. 3.733 Fig. 3. Monthly 10th percentile (lower error bar), median (square),
and 90th percentile of(a) total scattering coefficient at 550 nm,(b)
back scattering coefficient at 550 nm, and(c) absorption coefficient
at 637 nm at Puijo in September 2006–September 2010.

when this measurement was active. This results in an average
(±1 standard deviation) hemispheric backscattering fraction
of 0.13± 0.04 at 550 nm. For the backscattering coefficient
at 550 nm (Fig. 3b) a seasonal trend cannot be determined
due to inactive backscatter mode in the nephelometer be-
tween 1 December 2006–31 October 2009, but overall the
monthly median of the hemispheric backscatter fraction var-
ied between 0.10–0.15 (Fig. 4a). Theb measured at Puijo is
in the same range asb reported for a wide variety of location
types (e.g., Delene and Ogren 2002; Aaltonen et al., 2006;
Virkkula et al., 2011).

The σap,637 peaked, depending on the year, in January–
March, when the monthly median was 1.8–3.2 Mm−1

(Fig. 3c). The maximum of the hourly averages, 38.9 Mm−1,
was observed in January 2008. During the other months the
median ranged between 0.5–1.7 Mm−1. The higher values in
the early spring are connected to low temperatures observed
during these months (Fig. 2a). During cold weather and dark
months the heating and power plants are operating at full
stretch and people tend to increase wood burning in domestic
combustion appliances, which produces, among others, parti-
cles that contain more black carbon, a good absorber of light.
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Fig. 4.735
Fig. 4. Monthly 10th percentile (lower error bar), median (square),
and 90th percentile of(a) hemispheric backscattering fraction
at 550 nm,(b) scatteringÅngstr̈om exponent between 450 and
550 nm, and(c) single scattering albedo at 637 nm at Puijo in Sep
2006–Sep 2010.

The seasonal variation – as well as the long-term statistics –
of σap,637 was similar to that observed in Hyytiälä (Virkkula
et al., 2011).

3.3 ScatteringÅngström exponent and single
scattering albedo

The long-time averages of the̊as for each pair of wave-
lengths (450/550 nm, 450/700 nm and 550/700 nm) were
nearly equal, ranging between 1.87 and 2.02 (Table 1). From
here on, we designate the scatteringÅngstr̈om exponent for
the 450/550 nm pair bẙas. The ås is lowest in the winter-
time, with its median being lowest, 1.17, in December 2006
and highest, 2.6, in June 2010 (Fig. 4b). The averageås at
Puijo is somewhat higher than the averageås of 1.7–1.8 at
Pallas (Aaltonen et al., 2006) and the averageås of 1.7 in
Hyytiälä (Virkkula et al., 2011). This indicates that at Puijo
the scattering aerosol particles are relatively small in size.

It must be noted that the̊as values increased, on an aver-
age, by 39 % after November 2009 (achieving the maximum
value 2.59 in June 2010), when we changed the cut-off size
of the interstitial inlet from 2.5 µm to 1.0 µm (Fig. 4b). This

Fig. 5.737 Fig. 5. (a) Mean single scattering albedo (SSA637) classified ac-
cording to 10-Mm−1 bins of the scattering coefficient at 550 nm
(σsp,550), (b) mean scattering̊Angstr̈om exponent between 550 and

700 nm classified according to 10-Mm−1 bins of the scattering co-
efficient at 550 nm (σsp,550), and(c) mean scattering̊Angstr̈om ex-
ponent between 550 and 700 nm classified according to 0.02 bins of
the single scattering albedo (SSA637).

means that fewer coarse particles are nowadays present in
the sample, which increases theås values, because the depen-
dence of the light scattering on the wavelength of the incident
light is stronger for smaller particles.

The SSA was lowest in the winter and highest in the sum-
mer (Fig. 4c). The average (±1 standard deviation) SSA
was (0.83± 0.09), which is somewhat lower than the SSA
at 550 nm, observed in Hyytiälä (0.88± 0.07; Virkkula et
al., 2011). Since the SSA is wavelength dependent, we es-
timated, by using the data from Virkkula et al. (2011), the
SSA at 637 nm in Hyytïalä to be 0.89.

We adopted the analysis for the SSA vs. theσsp,550 and the
ås vs.σsp,550 from Delene and Ogren (2002) and found that
the SSA at Puijo increases with increasingσsp,550 (Fig. 5a).
Our conclusion is, similarly to that made by Delene and
Ogren (2002) for Barrow, Alaska, that the absorption at
Puijo does not increase as rapidly as the scattering. The
ås vs. σsp,550, in turn, shows a more complicated relation-
ship (Fig. 5b). First, at lowσsp,550 values, the̊as increases,
peaking at the 10–20 Mm−1-bin. When theσsp,550 further
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Table 2. The averages of the aerosol optical parameters over the chosen sectors with emission sources: highway, paper mill, city center,
district heating plant, and residential areas (RA) extending up to 10 km. Please see caption of Table 1 for explanation of the parameters.

Sector 0–45◦, 45–155◦, RA 155–215◦, RA 215–245◦, RA 245–360◦, RA
highway and (0–4 km) and (0–10 km) and (0–4 km) (0–3 km)

paper mill city center district heating plant

σsp,450 19.5 21.5 22.1 16.8 10.6
σsp,550 13.2 14.4 15.0 11.4 7.2
σsp,700 7.8 8.5 9.0 6.8 4.4
σbsp,450 1.5 3.3 3.1 2.9 1.4
σbsp,550 1.1 2.5 2.3 2.1 1.1
σbsp,700 1.2 2.6 2.7 2.1 1.3
b450 0.15 0.15 0.15 0.14 0.15
b550 0.17 0.19 0.19 0.17 0.18
b700 0.31 0.67 0.57 0.32 0.52
ås,550−450 1.92 1.99 1.92 1.83 1.76
σap,637 1.2 2.0 2.5 1.6 0.9
SSA637 0.87 0.83 0.79 0.83 0.85

increases, the̊as starts to decrease, which is similar to the
findings of Delene and Ogren (2002) in Barrow, Alaska. But
when theσsp,550 value of 80 Mm−1 is exceeded, the̊as in-
creases again. On the contrary, the scatteringÅngstr̈om ex-
ponent is almost constant with increasing SSA until the SSA
exceeds 0.9 (Fig. 5c). For higher SSA values the scattering
Ångstr̈om exponent decreases rapidly. This indicates that the
scattering is more effective than absorption for large particles
with a low ås.

It must be noted that the scattering coefficient at Puijo was
measured at relatively dry conditions (RH< 50 %). There-
fore, the ambient scattering coefficient and SSA may be un-
derestimated, because the actual scattering coefficient at am-
bient conditions can be several times larger for the same
aerosol than at dry conditions (Zieger et al. 2010). A cor-
rection to match the ambient conditions would probably in-
crease the in situ SSA. However, as we have not deter-
mined the scattering enhancement factor at Puijo, we can
only present the SSA based on the scattering coefficient at
dry conditions.

3.4 The effect of local sources on aerosol optical and
chemical properties

Theσsp,550 is highest when the wind blows from the direc-
tions of traffic, industry, and residential areas (Table 2). It
experiences a local maximum when the wind blows from
the northeast, i.e. the direction where the paper mill resides
(Fig. 6a). In our earlier study we found that the air masses
coming from this direction were rich in sulphur dioxide (Le-
skinen et al., 2009), which quickly converts into sulphate and
particulate sulphate, one of the main anthropogenic scatter-
ing components.

Theσap,637 is largest with southerly winds and above the
long-time average of 1.6 Mm−1 when the wind blows from

Fig. 6.739 Fig. 6. The 10th percentile (lower error bar), median (square), and
90th percentile of(a) total scattering coefficient at 550 nm,(b)
absorption coefficient at 637 nm,(c) single scattering albedo at
637 nm, and(d) scatteringÅngstr̈om exponent between 450 and
550 nm as a function of wind direction at Puijo in Sep 2006–Sep
2010. The vertical lines are the limits for the geographical sectors
for local source analysis.
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the southern highway and larger residential areas (Fig. 6b).
These are line and areal sources of diesel particles and emis-
sons from small-scale, biomass-fired (mainly wood) combus-
tion appliances, respectively. Their emissions contain, among
other, soot, which absorbs light efficiently. As expected, we
observed the lowestσap,637 with winds from the sector 245–
360◦ with least local sources (Fig. 1; Table 2).

The effect of the the local sources can be seen more clearly
from the variation in the SSA and theås with the wind direc-
tion (Fig. 6c–d). The̊as is larger, indicated by higher 10th
percentiles, for the directions of local sources, whose parti-
cles are fresh and smaller in size than the aged particles com-
ing from longer distances. The SSA, in turn, reaches its maxi-
mum value of 0.90 when the air masses come from the north-
easterly sector, indicating highly scattering aerosol from the
paper mill, and its minimum value of 0.81 when the wind
blows from the southerly sector with highway and large res-
idential area (Fig. 1; Table 2).

The AMS analysis showed a 2–3-fold larger particulate
sulfate concentration with northeasterly winds compared to
other wind directions (Fig. 7a). The peak concentration from
the direction of the paper mill gives an explanation to the el-
evated scattering from this direction. The emissions from the
south contain 4–5-fold organics than those from the north
(Fig. 7b). With northwesterly winds the degree of oxygena-
tion is higher (Fig. 7c), which is due to the oxygenated or-
ganics in the aged aerosol particles (e.g., Aiken et al. 2008)
from the direction with less local sources.

The diurnal variation of theσap,637 and the SSA showed
morning (at ∼06:00–08:00 UTC + 2) and afternoon (at
∼17:00–19:00 UTC + 2) peaks in May–August (Fig. 8ab).
This is linked to the increased traffic at these hours. We sug-
gest that in the winter the emissions from traffic are masked
by a higher amount of more absorbing particles from other
local sources, such as domestic biomass burning appliances.
These sources are expected to be active mainly during the
daytime and in the evenings. The nightlyσap,637 was lower
than that in the daytime in all months, with a correspond-
ing decrease in scattering, resulting in higher SSA values at
night.

3.5 The effects of long-range transported aerosol

The Puijo station was influenced by long-transported aerosol
from forest fires in Russia on 29 July and 8 August 2010. On
these episode days the average of theσsp,550 was 169 Mm−1,
which is 23.5 times the average of the off-episodeσsp,550 val-
ues. Accordingly, the average of theσap,637 on the episode
days was 8.12 Mm−1, which is 12.5 times the average of
the off-episodeσap,637 values (Portin et al., 2012). The max-
imum hourly average of theσsp,550 and σap,637 during the
episodes was 301 Mm−1and 14.3 Mm−1, respectively. The
forest fire episodes did not increase theσap,637 as much as
the σsp,550, which could be explained by the domination of
aged aerosol particles with less absorptive constituents dur-

Fig. 7.741 Fig. 7. The 10th percentile (lower error bar), median (square), and
90th percentile of(a) sulphate concentration,(b) organics concen-
tration, and(c) the ratio of mass numbers 44 to 43 in non-refractory
submicron particles as a function of wind direction at Puijo, aver-
aged over the time period of 16 September–20 October 2008. The
vertical lines are the limits for the geographical sectors for local
source analysis.

ing the smoke episodes. A similar finding was done by Fis-
cher et al. (2010), who found that in an aged pollution plume
the SSA was higher than in another plume originating nearer
the source.

At Puijo the air masses entering from the northwest-
erly sector (245–360◦) can be considered as background air.
There are only a small amount of residential sources in this
sector (Fig. 1). When the wind blows from the northwest-
erly sector, the air masses have spent most of the time (73 %)
during the last 5 days over the Arctic and West long-range
transport sectors (Fig. 9), which are considered clean. Fur-
thermore, with less local or nearby sources, the air masses
from this sector can be regarded as a representative of an
aged aerosol. For the aged aerosol the SSA was higher than
for the aerosol emerging from local sources (excluding the
paper mill) in the southerly sector (Fig. 6c). Also the statistic
of the Ångstr̈om exponent showed considerably many low
values (Fig. 6d), indicating larger aerosol particles, which
is often true for an aged aerosol (e.g., Seinfeld and Pandis,
2006).
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Fig. 8a.743
Fig. 8b.

744

745

Fig. 8. The (a) absorption coefficient at 637 nm and(b) single scattering albedo at 637 nm as a function of hour (UTC + 2) and month at
Puijo. The months of the years 2006–2010 were combined. The local noon is at 13:00 o’clock during the daylight saving time in Europe and
at 12:00 o’clock at other times.

Fig. 9.747 Fig. 9. The distribution of air mass origins (trajectory sectors) with
each local source sector.

3.6 A case study for cloud effects on aerosol
optical properties

We investigated the effect of a cloud event on aerosol opti-
cal properties for a four-day period on 7–11 October 2010
(Fig. 10). During this period we observed two cloud events.
The first event started on 8 October 2010, 10:45 and lasted
2.5 h, while the second event started on 8 October 2010,
21:45 and lasted 8 hours. Before the first cloud event the
wind was blowing from the southwestern sectors (200–250◦)
with residential areas, resulting in a higherσap,637, compared
to that observed after the second cloud event, when the wind
was blowing from the northwesterly sector (245–360◦), with
relatively clean and aged aerosol. There was no rain until 10
October 2010, 08:00, i.e. well after the second cloud event.

During the two investigated cloud events both the intersti-
tial and total aerosol scattering and absorption coefficients
decreased (Fig. 10). The effect is stronger for the scatter-
ing than for absorption. The scattering and absorption coef-
ficients of the interstitial particles are by more than 90 % and
30 % smaller than that of the total aerosol particles during
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Fig. 10.749
Fig. 10. The (a) total scattering coefficient at 637 nm,(b) absorp-
tion coefficient at 637 nm, and(c) single scattering albedo at 637 nm
(SSA637) of total and interstitial (interst.) aerosol particles at Puijo
7–11 October 2010, when two cloud events (cloud ev.) took place.

the second cloud event, respectively. This results in an ap-
proximately 20 % decrease in the SSA. A similar drop in the
SSA from∼1 to 0.8 was observed by Berkowitz et al. (2011)
in a foggy situation. The scavenging is less efficient during
the first cloud event when there are local, fresher emissions
mixed in the sampled air. This is in line with the conclusion
by Sellegri et al. (2003) that aging enhances scavenging of
carbonaceous aerosols in clouds.

During the 4-year period, there were altogether 260 cloud
events, resulting in 1082 h of in-cloud data. These low-level
cloud events occurred mainly in the autumn and early winter
(Portin et al., 2009), when the relative humidity was at its
highest (Fig. 2b). The analysis of all the cloud events will be
done in a separate paper.

4 Summary and conclusions

We examined aerosol optical properties at a semi-urban mea-
surement station, 230 m above the surroundings, in an obser-
vation tower at Puijo in Kuopio, Finland, by measuring light
scattering and absorption by aerosol particles with a three-
wavelenght nephelometer and a multi-angle absorption pho-

tometer, respectively. By interpreting a four-year data set we
were able to determine the annual and diurnal variation of
the aerosol scattering and absorption coefficients, single scat-
tering albedo, scattering̊Angstr̈om exponent and the diurnal
cycle of hemispheric backscattering fraction. When we in-
spected these parameters and results from aerosol mass spec-
trometry as a function of wind direction, we could see the ef-
fect of local sources (a paper mill, traffic, and residential ar-
eas) on the aerosol optical and chemical properties. We com-
pared the measured parameters to those obtained at Arctic
sites and nearby measurement stations, and concluded that
Puijo can be regarded as a relatively clean site, regarding
the aerosol optical properties. As a case study, we examined
how the scattering and absorption coefficient were affected
by cloud events.

In our earlier study (Leskinen et al., 2009) we found that
when the wind blows from the northeast, where the paper
mill resides, the sulphur dioxide concentration is elevated.
In this study we found that also the sulphate concentration
in aerosol particles is higher for the NE sector than for the
other directions. We conclude that the increase in the scatter-
ing coefficient and single scattering albedo results from the
sulphate-rich aerosol from the paper mill, since aerosols con-
taining sulphate are known to be good scatterers of light.

When the wind blows from the sectors with traffic and
small scale wood combustion, the absorption coefficient
and organic concentration increases, while single scattering
albedo decreases. We conclude that the air masses from these
sectors contained fresh, sooty and organics-rich aerosol from
traffic and from small scale biomass combustion in residen-
tial biomass-fired appliances. The̊Angstr̈om exponent was
larger in the direction of the city center than the residential ar-
eas, suggesting that the aerosols emitted by traffic are smaller
in size than those in the residential emissions. We conclude
that in the wintertime the effect of emissions from the res-
idential areas on absorption is stronger than that from the
traffic, because the morning and afternoon peaks in the ab-
sorption coefficient, seen in the summertime, were masked
by the more absorbing aerosols from the residential areas.

We observed an increase in the single scattering albedo
when the wind blew from the northwesterly sector with less
local sources. From this direction the̊Angstr̈om exponent
was low indicating larger aerosol particles. Furthermore, the
aerosol mass spectrometry revealed that in this direction
there are more oxygenated organic aerosols in the air mass.
According to the trajectory analysis, most of the air masses
with northwesterly wind directions originate from the Arctic
region. Therefore, we conclude that the increase in the SSA
arises from the presence of long-range transported aerosol,
which are known to be larger in size and more oxygenated
than the fresh emissions.

We found that during a cloud event both the interstitial and
total aerosol values for scattering and absorption coefficients
decreased, and that the effect is stronger for the scattering
(a 90 % decrease) than for the absorption (a 30 % decrease).
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What happens to the aerosol optical properties during a cloud
event when the air masses come from different directions
with different local sources, is under a more detailed inspec-
tion. Also, more aerosol mass spectrometry data will be an-
alyzed in order to strengthen our knowledge about the role
of the chemical composition of the aerosol particles in their
activation into cloud droplets.

Acknowledgements.The authors acknowledge the financial sup-
port for instrumentation by the European Regional Development
Fund (ERDF). The authors are very grateful for the technical
support of A. Aarva, T. Anttila, A. Halm, H. K̈arki, A. Poikonen
and K. Ropa from FMI’s Observation Services.

Edited by: E. Weingartner

References

Aaltonen, V., Lihavainen, H., Kerminen, V.-M., Komppula, M.,
Hatakka, J., Eneroth, K., Kulmala, M., and Viisanen, Y.:
Measurements of optical properties of atmospheric aerosols
in Northern Finland, Atmos. Chem. Phys., 6, 1155–1164,
doi:10.5194/acp-6-1155-2006, 2006.

Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huff-
man, J. A., Docherty, K. S., ulbrich, I. M., Mohr, C., Kimmel,
J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway,
M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra,
R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A.,
Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios
of primary, secondary, and ambient organic aerosols with high-
resolution time-of-flight mass spectrometry, Environ. Sci. Tech-
nol., 42, 4478–4485, 2008.

Anderson, T. L. and Ogren, J. A.: Determining aerosol radiative
properties using the TSI 3563 integrating nephelometer, Aerosol
Sci. Technol., 29, 57–69, 1998.

Anderson, T. L., Covert, D. S., Marshall, S. F., Laucks, M. L., Charl-
son, R. J., Waggoner, A. P., Ogren, J. A., Caldow, R., Holm, R. L.,
Quant, F. R., Sem, G. J., Wiedensohler, A., Ahlquist, N. A., and
Bates, T. S.: Performance characteristics of a high-sensitivity,
three-wavelength, total scatter/backscatter nephelometer, J. At-
mos. Ocean. Technol., 13, 967–986, 1996.

Andrews, E., Ogren, J. A., Bonasoni, P., Marinoni, A., Cuevas,
E., Rodriguez, S., Sun, J. Y., Jaffe, D. A., Fischer, E. V., Bal-
tensperger, U., Weingartner, E., Collaud Coen, M., Sharma, S.,
Macdonald, A. M., Leaitch, W. R., Lin, N.-H., Laj, P., Arsov,
T., Kalapov, I., Jefferson, A., and Sheridan, P.: Climatology of
aerosol radiative properties in the free troposphere, Atmos. Res.,
102, 365–393, 2011.

Ansmann, A., Riebesell M., and Weitkamp C.: Measurements of
atmospheric aerosol extinction profiles with a Raman lidar, Opt.
Lett., 15, 746–748, 1990.

Arnott, W. P., Moosm̈uller, H., Rogers, C. F., Jin, T., and Bruch,
R.: Photoacoustic spectrometer for measuring light absorption
by aerosol: instrument description, Atmos. Environ., 33, 2845–
2852, 1999.

Barriopedro, D., Fischer, E. M., Luterbacher, J., Trigo, R. T.,
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Petzold, A. and Scḧonlinner, M.: Multi-angle absorption photome-
try – a new method for the measurement of aerosol light absorp-
tion and atmospheric black carbon, J. Aerosol Sci., 35, 421–441,
2004.

Portin, H. J., Komppula, M., Leskinen, A. P., Romakkaniemi, S.,
Laaksonen, A., and Lehtinen, K. E. J.: Observations of aerosol-
cloud interactions at the Puijo semi-urban measurement station,
Boreal Env. Res., 14, 641–653, 2009.

Portin, H., Mielonen, T., Leskinen, A., Arola, A., Pärjälä, E., Ro-
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