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Abstract. A degradation mechanism forβ-caryophyllene
has recently been released as part of version 3.2 of the Mas-
ter Chemical Mechanism (MCM v3.2), describing the gas
phase oxidation initiated by reaction with ozone, OH radi-
cals and NO3 radicals. A detailed overview of the construc-
tion methodology is given, within the context of reported ex-
perimental and theoretical mechanistic appraisals. The per-
formance of the mechanism has been evaluated in chamber
simulations in which the gas phase chemistry was coupled
to a representation of the gas-to-aerosol partitioning of 280
multi-functional oxidation products. This evaluation exercise
considered data from a number of chamber studies of either
the ozonolysis ofβ-caryophyllene, or the photo-oxidation
of β-caryophyllene/NOx mixtures, in which detailed prod-
uct distributions have been reported. This includes the re-
sults of a series of photo-oxidation experiments performed
in the University of Manchester aerosol chamber, also re-
ported here, in which a comprehensive characterization of the
temporal evolution of the organic product distribution in the
gas phase was carried out, using Chemical Ionisation Reac-
tion Time-of-Flight Mass Spectrometry (CIR-TOF-MS), in
conjunction with measurements of NOx, O3 and SOA mass

loading. The CIR-TOF-MS measurements allowed approxi-
mately 45 time-resolved product ion signals to be detected,
which were assigned on the basis of the simulated tempo-
ral profiles of the more abundant MCM v3.2 species, and
their probable fragmentation patterns. The evaluation stud-
ies demonstrate that the MCM v3.2 mechanism provides an
acceptable description ofβ-caryophyllene degradation un-
der the chamber conditions considered, with the temporal
evolution of the observables identified above generally be-
ing recreated within the uncertainty bounds of key parame-
ters within the mechanism. The studies have highlighted a
number of areas of uncertainty or discrepancy, where fur-
ther investigation would be valuable to help interpret the
results of chamber studies and improve detailed mechanis-
tic understanding. These particularly include: (i) quantifica-
tion of the yield and stability of the secondary ozonide (de-
noted BCSOZ in MCM v3.2), formed fromβ-caryophyllene
ozonolysis, and elucidation of the details of its further oxi-
dation, including whether the products retain the “ozonide”
functionality; (ii) investigation of the impact of NOx on
theβ-caryophyllene ozonolysis mechanism, in particular its
effect on the formation ofβ-caryophyllinic acid (denoted
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C137CO2H in MCM v3.2), and elucidation of its forma-
tion mechanism; (iii) routine independent identification ofβ-
caryophyllinic acid, and its potentially significant isomerβ-
nocaryophyllonic acid (denoted C131CO2H in MCM v3.2);
(iv) more precise quantification of the primary yield of OH
(and other radicals) fromβ-caryophyllene ozonolysis; (v)
quantification of the yields of the first-generation hydroxy ni-
trates (denoted BCANO3, BCBNO3 and BCCNO3 in MCM
v3.2) from the OH-initiated chemistry in the presence of
NOx; and (vi) further studies in general to improve the iden-
tification and quantification of products formed from both
ozonolysis and photo-oxidation, including confirmation of
the simulated formation of multifunctional species contain-
ing hydroperoxide groups, and their important contribution
to SOA under NOx-free conditions.

1 Introduction

It is well established that the degradation of emitted volatile
organic compounds (VOCs) has a major influence on the
chemistry of the troposphere, contributing to the formation
of ozone, secondary organic aerosol (SOA) and other sec-
ondary pollutants (e.g., Haagen-Smit and Fox, 1954; Went,
1960; Andreae and Crutzen, 1997; Jenkin and Clemitshaw,
2000; Hallquist et al., 2009). Approximately 90 % of organic
material emitted globally is estimated to originate from bio-
genic sources, with reactive biogenic VOCs having important
contributions from isoprene (C5H8), and a variety of struc-
turally complex monoterpenes (C10H16) and sesquiterpenes
(C15H24), comprised of two and three isoprene units, respec-
tively (e.g., Guenther et al., 1995; Kanakidou et al., 2005;
Duhl et al., 2008).

Although isoprene and monoterpenes are generally emit-
ted more abundantly, sesquiterpenes have received increas-
ing interest in recent years owing to the exceptionally high
reactivity of some species, particularly towards ozone (e.g.,
Atkinson and Arey, 2003; Jardine et al., 2011), and their gen-
eral high propensity to form SOA upon oxidation (e.g., Hoff-
mann et al., 1997; Jaoui et al., 2004; Lee et al. 2006a, b; Ng et
al., 2007).β-caryophyllene has received particular attention,
being one of the most reactive and abundant sesquiterpenes,
and SOA yields have been reported in a number of ozonolysis
and photo-oxidation studies (Hoffmann et al., 1997; Griffin
et al., 1999; Jaoui et al., 2003; Lee et al. 2006a, b; Winter-
halter et al., 2009; Alfarra et al., 2012). As a result, its atmo-
spheric degradation has been the subject of a number of ex-
perimental and theoretical mechanistic appraisals (Calogirou
et al., 1997; Jaoui et al., 2003; Lee et al., 2006b; Kanawati et
al., 2008; Winterhalter et al., 2009; Nguyen et al., 2009; Zhao
et al., 2010; Li et al., 2011; Chan et al., 2011), and several
established oxidation products have been used in tracer stud-
ies to show thatβ-caryophyllene-derived SOA makes poten-
tially important contributions to ambient fine particulate mat-

ter at a number of locations (Jaoui et al. 2007; Kleindienst et
al. 2007; Parshintsev et al. 2008).

Atmospheric modelling studies in which the oxidation
of β-caryophyllene (and/or other sesquiterpenes) has been
treated, have invariably used highly simplified or parameter-
ized representations of the chemistry (e.g., Lane et al., 2008;
Sakulyanontvittaya et al., 2008; Carlton et al., 2010; Zhang
and Ying, 2011), with SOA formation represented by assign-
ing empirically-derived yields and partitioning coefficients
to notional products, based on the results of chamber stud-
ies. Whilst such approaches are practical and economical, it
is generally acknowledged that the gas phase formation and
evolution of low volatility products of VOC oxidation are
sensitive to the prevailing atmospheric conditions (e.g., level
of NOx, relative humidity), and that it is ideally necessary to
understand and represent the competitive reactions involved
over several generations of oxidation, if SOA formation, and
its dependence on conditions, is to be represented rigorously
(e.g., Kroll and Seinfield, 2008; Hallquist et al., 2009). In
this respect, a degradation mechanism forβ-caryophyllene
has recently been released as part of version 3.2 of the Mas-
ter Chemical Mechanism (MCM v3.2), describing in mod-
erate detail the gas phase chemical processes involved in its
complete atmospheric oxidation, as initiated by reaction with
ozone (O3), OH radicals and NO3 radicals. Although such a
mechanism cannot be used directly in applications requiring
great computational efficiency, it potentially provides a trace-
able link to elementary kinetic and mechanistic studies, and
a reference benchmark mechanism against which to develop
and evaluate reduced chemical mechanisms. In this paper,
a detailed overview of the construction methodology of the
MCM v3.2 β-caryophyllene mechanism is given, within the
context of reported kinetic and mechanistic information.

The performance of the mechanism has been evaluated
in chamber simulations in which the gas phase chemistry
was coupled to a representation of the gas-to-aerosol par-
titioning of 280 multi-functional oxidation products. This
evaluation considered the results of a number of more re-
cently reported chamber studies (Lee et al., 2006b; Li et
al., 2011; Chan et al., 2011), which studied either the
ozonolysis ofβ-caryophyllene, or the photo-oxidation of
β-caryophyllene/NOx mixtures, and the detailed distribu-
tions of oxidation products in the gaseous and condensed
phases are compared with those reported. The most ex-
tensive evaluation made use of the results of a series of
photo-oxidation experiments performed in the University of
Manchester aerosol chamber (also reported here), which in-
cluded a comprehensive characterization of the temporal evo-
lution of the organic product distribution in the gas phase, us-
ing Chemical Ionisation Reaction Time-of-Flight Mass Spec-
trometry (CIR-TOF-MS), in conjunction with measurements
of NOx, O3 and SOA mass loading. The composition and
ageing of SOA in the same series of experiments has also
been characterized, as reported elsewhere (Alfarra et al.,
2012). The results of these evaluation studies are presented
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and discussed, and areas of uncertainty in the mechanistic
understanding are highlighted.

2 Chemistry of β-caryophyllene degradation in MCM
v3.2

The complete degradation chemistry ofβ-caryophyllene, as
represented in MCM v3.2, can be viewed and downloaded
using the subset mechanism assembling facility, available
as part of the MCM website (http://mcm.leeds.ac.uk/MCM).
The general methodology of mechanism construction was
based on the rules described in detail by Jenkin et al. (1997)
and Saunders et al. (2003), with the chemistry adjusted and
augmented (in certain areas substantially) to represent infor-
mation reported in a number of experimental and theoreti-
cal studies ofβ-caryophyllene degradation available at the
time of construction (Shu and Atkinson, 1994; Calogirou
et al., 1997; Atkinson and Arey, 2003; Jaoui et al., 2003;
Lee et al., 2006a, b; Kanawati et al., 2008; Winterhalter et
al., 2009; Nguyen et al., 2009). The complete mechansim
consists of 1626 reactions of 591 closed-shell and radical
species. It is therefore moderately detailed, but necessarily
contains a number of simplification measures, described by
Jenkin et al. (1997) and Saunders et al. (2003), without which
the mechanism could easily contain up to∼1012 species (Au-
mont et al., 2005). The resultant level of simplification tends
to increase with successive generations of oxidation, and it is
unlikely that the mechanism contains all species which might
be detected in experimental studies. However, it is designed
to provide a representation of the most important degradation
routes, and thus provides a basis for the initial simulation of
systems where a representation of chemical detail is required.
The mechanism includes the chemistry initiated by reaction
with O3, OH and NO3. Salient features of the O3 and OH-
initiated chemistry are now summarized, within the context
of information reported in the above studies and in more re-
cent experimental mechanistic studies (Li et al., 2011; Chan
et al., 2011). For the photo-oxidation and ozonolysis condi-
tions considered in the present paper, the systems are insen-
sitive to the NO3-initiated chemistry, which is therefore not
discussed further.

2.1 First-generation chemistry

2.1.1 Reaction with ozone

The main features of the O3-initiated degradation chem-
istry to first-generation products are summarized in Fig. 1.
β-caryophyllene is reported to be highly reactive with O3
(Atkinson and Arey, 2003), such that ozonolysis is likely to
be the major fate under most atmospheric conditions. The
mechanism in MCM v3.2 proceeds exclusively via addition
of O3 to the endocyclic double bond inβ-caryophyllene,
which is reported to be two orders of magnitude more re-
active than the exocyclic double bond (Winterhalter et al.,
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Figure 1. Simplified schematic of the first-generation product distribution from the ozonolysis 3 

of E�caryophyllene, as represented in MCM v3.2. The displayed (molar) product yields 4 

correspond to ozonolysis at 298 K in 760 Torr air at 50 % relative humidity; with cyclohexane 5 

present to scavenge all OH radicals. The further chemistry of BCALAO2, BCALBO2 and 6 

BCALCO2 is shown in Fig. 3. The figure omits to represent additional minor ozonolysis 7 

channels accounting for 1% of the chemistry, which are fully represented in MCM v3.2. 8 

Fig. 1. Simplified schematic of the first-generation product distri-
bution from the ozonolysis ofβ-caryophyllene, as represented in
MCM v3.2. The displayed (molar) product yields correspond to
ozonolysis at 298 K in 760 Torr air at 50 % relative humidity; with
cyclohexane present to scavenge all OH radicals. The further chem-
istry of BCALAO2, BCALBO2 and BCALCO2 is shown in Fig. 3.
The figure omits to represent additional minor ozonolysis channels
accounting for 1% of the chemistry, which are fully represented in
MCM v3.2.

2009). This leads to formation of an (unrepresented) energy
rich primary ozonide, which decomposes rapidly by two ring
opening channels to form a set of isomeric C15 carbonyl-
substituted Criegee intermediates. In MCM v3.2, these are
represented by two pairs of species (BCAOO and BCOOA;
BCBOO and BCOOB), as shown in Fig. 1. In each case, the
pairs essentially represent “excited” and “stabilized” forms
of the same structure, which can participate in a series of uni-
molecular and bimolecular reactions to form the distribution
of products shown in Fig. 1. This distribution is dominated by
a set of closed-shell products, denoted BCSOZ, C141CO2H,
BCAL and BCALBOC, which account for almost 90 % of
the product distribution (see Figs. 1 and 2). The formation of
β-caryophyllon aldehyde (BCAL) and/orβ-caryophyllonic
acid (C141CO2H) has been positively identified in a number
of ozonolysis studies (e.g., Calogirou et al., 1997; Kanawati
et al., 2008; Winterhalter et al., 2009; Li et al., 2011), with re-
spective molar yields of 17.3 % and 13.0 % reported by Jaoui
et al. (2003) at∼80 % relative humidity, in the absence of
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Figure 2. Molar yields of the secondary ozonide (BCSOZ), E�caryophyllonaldehyde (BCAL) 3 

and E�caryophyllonic acid (C141CO2H) as a function of relative humidity for 4 

E�caryophyllene ozonolysis at 298 K in 760 Torr air, with cyclohexane present to scavenge 5 

OH radicals, as calculated with MCM v3.2.  6 

Fig. 2. Molar yields of the secondary ozonide (BCSOZ),β-
caryophyllonaldehyde (BCAL) and β-caryophyllonic acid
(C141CO2H) as a function of relative humidity forβ-caryophyllene
ozonolysis at 298 K in 760 Torr air, with cyclohexane present to
scavenge OH radicals, as calculated with MCM v3.2.

an OH scavenger. The theoretical calculations of Nguyen et
al. (2009) propose an important role for the thermally-stable
secondary ozonide (BCSOZ), formed by ring-closure of the
Criegee intermediates, and suggest it should be the dominant
gas phase ozonolysis product (molar yield≥65 %). The ex-
perimental study of Winterhalter et al. (2009) provided some
qualitative support for BCSOZ formation, and established
that its yield apparently decreases with increasing relative
humidity, consistent with its formation occurring at least par-
tially in competition with the bimolecular reactions of the
Criegee intermediates with water vapour. In the absence of
other gas phase mechanistic information, the representation
in MCM v3.2 is broadly based on this information, although
it is noted that confirmatory studies of BCSOZ formation,
and quantification of its yield, are required. The formation of
the multifunctional ester, BCALBOC, has been reported by
Kanawati et al. (2008) and Winterhalter et al. (2009), and it
was calculated to be a minor ozonolysis product by Nguyen
et al. (2009), consistent with its representation in MCM v3.2.

The ozonolysis ofβ-caryophyllene also generates OH rad-
icals with a relatively low yield of 10 % in MCM v3.2, con-
sistent with the values of (6+3

−2) % and (10.4±2.3) % reported
by Shu and Atkinson (1994) and Winterhalter et al. (2009),
respectively. As shown in Fig. 1, OH is formed in conjunc-
tion with a set ofβ-oxo peroxy radicals, denoted BCALAO2,
BCALBO2 and BCALCO2, which occurs by rearrangement
and decomposition of the Criegee intermediates BCOOA and
BCOOB via the well-established “hydroperoxide” mecha-
nism (e.g., see Winterhalter et al., 2009). The subsequent
conventional chemistry of theseβ-oxo peroxy radicals gen-
erates a large number of species formed in low yield, as
shown in Fig. 3. Detection of many of these species (i.e.,
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Fig. 3. Partial schematic of the product distribution from the fur-
ther chemistry of BCALAO2, BCALBO2 and BCALCO2, formed
from β-caryophyllene ozonolysis in MCM v3.2, as shown in Fig. 1.
The displayed (molar) product yields correspond to ozonolysis at
298 K in 760 Torr air at 50 % relative humidity; with cyclohexane
present to scavenge all OH radicals (the displayed products account
for ≈89 % of the total product carbon from the onward reaction of
these peroxy radicals).

BCALAOH, BCALBOH, BCALCOH, BCALACO, BCAL-
BCO, C141CO and C137CO2H) has been reported in the
experimental studies referred to above, and this chemistry
generally provides plausible routes to their formation. In the
specific case ofβ-caryophyllinic acid (C137CO2H), the for-
mation mechanism from BCALBO2 is more speculative, be-
ing analogous to that proposed for the production of pinic
acid fromα-pinene by Jenkin et al. (2000), involving an acy-
loxy radical isomerisation. Although that mechanism has re-
ceived some experimental support (e.g., Ma et al., 2008), it is
noted that it has been refuted by the theoretical calculations
of Vereecken and Peeters (2009). Nevertheless, the charac-
terisation of analogous diacid formation in a number of ter-
pene systems in the experimental mechanistic studies of Ma
et al. (2008, 2009a, b) suggest that C137CO2H is most likely
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formed from the chemistry of BCALBO2, and the adoption
of the Jenkin et al. (2000) mechanism is regarded as a reason-
able provisional measure until alternative mechanisms are
available.

The relative formation efficiencies of the threeβ-oxo
peroxy radicals, formed as OH co-products, aims to pro-
vide yields of experimentally quantified products which
are consistent with the literature. As a result, the forma-
tion of BCALBO2 from BCOOA is strongly favoured over
BCALAO2 in MCM v3.2, this being in accord with the re-
sults of the calculations of Nguyen et al. (2009). The chem-
istry of BCALBO2 is believed to provide the major route to
first-generation HCHO formation in the system (Winterhal-
ter et al., 2009), and the preferential formation of BCALBO2
allows an HCHO yield of 4.4 % (see Fig. 3), which is con-
sistent with the value of (7.7±4.0) %, reported by Winter-
halter et al. (2009). It also allows C137CO2H to be formed
with a yield of approaching 1 %, which is broadly compa-
rable to the yields of analogous diacids reported for a num-
ber of terpene systems (e.g., Ma et al., 2008, 2009a, b; and
references therein). It is, however, somewhat lower than the
value of 4 % reported specifically forβ-caryophyllinic acid
from β-caryophyllene ozonolysis by Jaoui et al. (2003), with
detection completely in the aerosol phase. This may be in-
dicative of a contribution to this yield resulting from aerosol-
phase chemistry although, as indicated above, further char-
acterisation of potential gas phase formation routes is re-
quired. As shown in Fig. 3, the formation of CO in the first-
generation MCM v3.2 chemistry is due to the chemistry of
BCALCO2, with CO2 being formed from the chemistry of
both BCALAO2 and BCALBO2. This leads to respective
yields of 1.1 % and 5.8 % for CO and CO2, which are also
consistent with the approximate values of (2.0±1.8) % and
(3.8±2.8) % reported by Winterhalter et al. (2009).

The product yields presented in Fig. 3 represent those cal-
culated by MCM v3.2 from ozonolysis in the absence of
NOx. It should be noted that formation of many of the dis-
played products is inhibited in the presence of NOx, when
NO (or possibly NO2 for acyl peroxy radicals) may provide
the major reaction partner for the peroxy radicals. Assuming
exclusive reaction of peroxy radicals with the NOx species,
the majority of products in Fig. 3 (including C137CO2H)
are not formed, the exceptions being C126CHO (1.3 %),
C141CO (2.0 %) and HCHO (6.7–8.0 %). It also provides
the possibility of formation of PAN (CH3C(=O)OONO2)
from the reaction of CH3C(=O)O2 with NO2, and a num-
ber of complex PANs (e.g., C136PAN and C137PAN) from
the reactions of the corresponding acyl peroxy radicals (see
C136CO3 and C137CO3 in Fig. 3) with NO2.

2.1.2 Reaction with OH radicals

The main features of the OH-initiated degradation chem-
istry of β-caryophyllene to first-generation products, as rep-
resented in MCM v3.2, are summarized in Fig. 4. Although
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Figure 4. Simplified schematic of the first-generation product distribution from the OH-3 
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Fig. 4. Simplified schematic of the first-generation product distri-
bution from the OH-initiated degradation ofβ-caryophyllene, as
represented in MCM v3.2. The peroxy radicals, BCAO2, BCBO2
and BCCO2 are formed from the initial sequential addition of OH
and O2 to β-caryophyllene. The displayed (molar) product yields
correspond to 298 K and 760 Torr. Yields in blue are for NOx-free
conditions; yields in red are for conditions when there is sufficient
NO present to provide the exclusive reaction partner for the RO2
radicals (but insufficient to react significantly with RO radicals).

reaction with OH under atmospheric conditions is usually
less significant than ozonolysis, the OH-initiated chemistry
supplementsβ-caryophyllene removal in OH scavenger-free
ozonolysis experiments, and its importance is potentially am-
plified in photo-oxidation experiments when NOx is present.
In contrast to ozonolysis, reaction with OH is expected to oc-
cur significantly by addition to both the exocyclic and endo-
cyclic double bonds (e.g., Kwok and Atkinson, 1995; Jenkin
et al., 1997). The formation of the tertiary and secondary per-
oxy radicals, BCAO2 and BCBO2, thus result from sequen-
tial addition of OH and O2 to either ends of the endocyclic
bond. Addition to the exocylic bond is represented by the sin-
gle isomer, BCCO2, as formation of a tertiary peroxy radical
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is strongly favoured over a primary one (e.g., Peeters et al.,
1994).

The subsequent conventional chemistry of theseβ-
hydroxy peroxy radicals generates the distribution of species
shown in Fig.4. In the absence of NOx, this includes a
set of isomeric hydroxy-hydroperoxides (BCAOOH, BC-
BOOH and BCCOOH; accounting for 30.3 % of the prod-
ucts), formed from the terminating reactions of the peroxy
radicals with HO2; and a set isomeric dihydroxy species
(BCAOH and BCCOH; accounting for 16.0 % of the prod-
ucts) and a hydroxyketone species (BCBCO; accounting for
4.1 % of the products), formed from terminating channels of
the peroxy radical permutation reactions (i.e., reactions with
the available pool of peroxy radicals, denoted “RO2”). The
propagating channels of the peroxy radical permutation reac-
tions lead to the formation of HO2 and the carbonyl products
BCAL (26.8 %), from BCAO2 and BCBO2, and BCKET (β-
nocaryophyllone) and HCHO (13.2 %), from BCCO2. In the
presence of NOx (and assuming the peroxy radicals react ex-
clusively with NO) the respective yields of these carbonyl
products are increased to 47.4 % and 27.9 %, owing to the
greater importance of the propagating channels of these re-
actions. The remaining flux leads to the formation of a set
of isomeric hydroxy-nitrates (BCANO3, BCBNO3 and BC-
CNO3; accounting for 24.7 % of the products), formed from
the terminating channels.

Although the product distribution in Fig. 4 is largely pre-
dicted on the basis of the conventional chemical processes
generally applied in MCM v3.2 (Jenkin et al., 1997; Saun-
ders et al., 2003), there is limited experimental support for
some aspects of the chemistry. Support for the formation of
BCKET from the OH-initiated chemistry has been reported
in OH scavenger-free ozonolysis systems (e.g., Jaoui et al.,
2003) and in photo-oxidation systems designed to elevate the
importance of OH-initiation (Lee et al., 2006b). It has gen-
erally not been reported as a product in ozonolysis exper-
iments with OH radical scavenging, although it may poten-
tially be formed in very low yield from the minor (1 %) attack
of O3 at the exocyclic double bond inβ-caryophyllene (this
not being represented in MCM v3.2). BCAL is believed to
be formed significantly from both the OH and O3-initiated
chemistry, and has therefore generally been identified as a
major product in almost all of the reported studies. Detec-
tion of the dihydroxy species, BCAOH, has been reported in
the OH scavenger-free ozonolysis experiments of Kanawati
et al. (2008). There is currently no reported evidence for pro-
duction of any of the other species in Fig. 4.

2.2 Higher generation chemistry

The presence of a residual double bond in the first-generation
products makes them susceptible to attack from both O3
and OH radicals. Because of the exceptionally high reac-
tivity of the endocyclic double bond inβ-caryophyllene to-
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Fig. 5. Mechanism and selected products of the ozonoly-
sis of the major first-generation product,β-caryophyllonic acid
(C141CO2H). The displayed values indicate the molecular masses
of the products.

wards ozonolysis, the “exocyclic”1 double bond remains in
the majority of the first-generation products. Although this
is two orders of magnitude less reactive than the endocyclic
double bond, it is nonetheless still sufficiently reactive for
ozonolysis to make some contribution to product removal
under many conditions. Fig. 5 shows the main features of
the O3-initiated degradation chemistry for the example major
first-generation productβ-caryophyllonic acid (C141CO2H)
in MCM v3.2, with analogous pathways being represented

1When referring to the residual double bond following oxidation
of theβ-caryophyllene endocyclic double bond, we place the term
“exocyclic” in quotes because the cycle to which the bond was orig-
inally exocyclic inβ-caryophyllene no longer exists in many of the
products. In these cases, the bond is strictly not exocyclic, and the
term is being used as a convenient label.
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Fig. 6.Simplified schematic of ozonolysis conversion routes for se-
lected first-generation products (shown in black) to selected second-
generation products (shown in red). With the exception of BCKET,
all processes represent the partial formation of a second-generation
carbonyl product from ozonolysis of the residual “exocyclic” dou-
ble bond in the corresponding first-generation product. In the case
of BCKET, the schematic shows the formation of the same series of
second-generation products following ozonolysis of the residual en-
docyclic bond. The displayed values indicate the molecular masses
of the products.

for many of the other first-generation products which re-
tain the “exocyclic” double bond. Once again, the mecha-
nism proceeds via production of an (unrepresented) energy
rich primary ozonide, which decomposes by two possible
channels, forming either HCHO and a C14 Criegee inter-
mediate (in nominally “excited” and “stabilized” forms, de-
noted C141OOA and C141OO); orβ-nocaryophyllonic acid
(C131CO2H) and the Criegee intermediate, CH2OO (again
in nominally “excited” and “stabilized” forms). As shown in
Fig. 5, the stabilized Criegee intermediates undergo bimolec-
ular reactions, leading to additional formation of HCHO and
C131CO2H, which are therefore major ozonolysis products.
Similarly, it is anticipated that ozonolysis of many of the first-
generation products in which the “exocyclic” double bond is
retained, also generate HCHO and a corresponding complex
carbonyl product in which the first-generation functionalities
are retained (as discussed, for example, by Winterhalter et
al., 2009).

This is further illustrated in Fig. 6 for ozonolysis
of a series of such first-generation products (BCSOZ,
C141CO2H, BCALBOC, BCAL and C126CHO), show-
ing the corresponding second-generation products (BCK-
SOZ, C131CO2H, BCLKBOC, BCLKET and C116CHO),
as represented in MCM v3.2. Of these, evidence for for-
mation ofβ-nocaryophyllonic acid (C131CO2H) and/orβ-
nocaryophyllone aldehyde (BCLKET) has been reported in
a number of experimental studies where secondary ozonol-
ysis of the first-generation product distribution was likely to
be important (Calogirou et al., 1997; Jaoui et al., 2003; Li

et al., 2011). Because of the importance of the secondary
ozonide, BCSOZ, as a first-generation product in MCM v3.2
(as discussed above and shown in Fig. 2), the corresponding
second-generation product, BCKSOZ, is inevitably predicted
to make a major contribution to the second-generation prod-
uct distribution. This further emphasises the need for stud-
ies to quantify the yield of BCSOZ fromβ-caryophyllene
ozonolysis, and to elucidate the details of its further oxidation
– including whether or not the products retain the “ozonide”
functionality. Secondary ozonolysis of the first-generation
ozonolysis product distribution also produces HCHO with a
molar yield of between 59 % and 63 % (depending on relative
humidity), in good agreement with the value of (60±6) % re-
ported by Winterhalter et al. (2009), and also consistent with
the yield of (76±20) % reported by Lee et al. (2006a) (which
represents the sum of the first- and second-generation HCHO
yields).

As shown in Fig. 5, the ozonolysis of C141CO2H in MCM
v3.2 also partially generates OH radicals in conjunction with
the (multifunctional)β-oxo peroxy radical, C147O2, via the
“hydroperoxide” mechanism operating on C141OOA. This
leads to the formation of a set of C14 products (via terminat-
ing reaction channels), which retain the original acid func-
tionality, of which detection of C147OH has been reported
by Li et al. (2011). It also leads to fragmentation (via propa-
gating reaction channels) to form the smaller acyl peroxy rad-
ical, C1011CO3, in conjunction with loss of the C3 species
HCOCH2C(=O)OH, which retains the original acid function-
ality. In practice, C1011CO3 can also be formed (in con-
junction with HCOCH2CHO) from the analogous chemistry
of BCAL, such that C1011CO3, and its reaction products
shown in Fig. 5, are potentially formed from the ozonoly-
sis of two major first-generation products. Accordingly, Li
et al. (2011) have also reported detection of C1011CO2H,
although its formation was not attributed to precisely this re-
action mechanism.

Under conditions where reaction with OH contributes to
β-caryophyllene removal (e.g., OH scavenger-free ozonol-
ysis systems), some of the first-generation products retain
the endocyclic double bond. Of these,β-nocaryophyllone
(BCKET) is a particularly significant product (see Fig. 4),
and it is likely that ozonolysis is its major fate under
many conditions. In MCM v3.2, its ozonolysis is treated
completely analogously to that ofβ-caryophyllene itself
(e.g., as illustrated in Figs. 1 and 3). Figure 6 shows se-
lected features of the chemistry, which indicate that BCKET
ozonolysis can provide additional routes to the series of
second-generation products described above (i.e., BCKSOZ,
C131CO2H, BCLKBOC, BCLKET and C116CHO). Other
first-generation products that retain the endocyclic double
bond are generally formed in very low yield, and their
ozonolysis chemistry is not currently represented in MCM
v3.2 (consistent with the scheme simplification measures de-
fined in Jenkin et al., 1997). Although this is not expected
to have a major impact on overall mechanism performance
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Figure 7. Schematic of the mechanism and products of the OH-initiated oxidation of a series 2 
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Fig. 7. Schematic of the mechanism and products of the OH-initiated oxidation of a series of first-generation products, shown in the left-
hand column, following attack of OH at the residual “exocyclic” double bond. The details of the mechanism are summarised only for
β-caryophyllonic acid (C141CO2H); but the mechanisms for the other species follow analogous pathways. The displayed values indicate the
molecular masses of the products.

in many applications, it may potentially influence model-
measurement comparisons for the particular species in de-
tailed evaluation studies.

Figure 7 shows the main features of the OH-initiated
degradation chemistry in MCM v3.2, for the same series
of significant first-generation products that retain the “ex-
ocyclic” double bond. In each case, this is represented by
sequential addition of OH and O2 to the double bond to
form a (strongly-favoured) tertiaryβ-hydroxy peroxy radi-
cal. The subsequent conventional chemistry of this set of per-
oxy radicals generates the series of species shown in Fig. 7.

The propagating reaction channels (with NO and RO2) once
again lead to the formation of HCHO and the same set of
second-generation carbonyl-substituted products discussed
above for the ozonolysis chemistry, thereby providing addi-
tional mechanisms for their generation. The terminating re-
action channels (with NO, HO2 and RO2) form a set of high
molecular weight multifunctional hydroxy-nitrates, hydroxy-
hydroperoxides and dihydroxy species that would be ex-
pected to show a high propensity to transfer to the aerosol
phase. In this respect, evidence for the presence of a hy-
drated form of C151NO3 inβ-caryophyllene SOA has been
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Fig. 8. Schematic of the mechanism and selected products of the
OH-initiated oxidation ofβ-caryophyllon aldehyde (BCAL), focus-
ing on the chemistry following abstraction of the aldehydic H atom.
The displayed values indicate the molecular masses of the products.

reported by Chan et al. (2011), their experiments being per-
formed under photo-oxidation conditions with a likely im-
portant contribution from OH-initiated degradation of first-
generation products

Although addition of OH to the double bond is the ma-
jor (or exclusive) reaction channel for the series of first-
generation products in Fig. 7, H atom abstraction channels
are also included in MCM v3.2, where significant. This is
particularly the case for species containing aldehyde groups,
as illustrated for the most important aldehyde product,β-
caryophyllon aldehyde (BCAL) in Fig. 8. This leads to for-
mation routes forβ-caryophyllonic acid (C141CO2H), a cor-
responding percarboxylic acid (C141CO3H) and a complex
PAN (C141PAN); and also routes to breakdown to smaller
second-generation products, includingβ-norcaryophyllone
aldehyde (C141CO), as partially shown in Fig. 8. The supple-
mentary formation of C141CO2H and C141CO in the second
generation of oxidation illustrates that it is not always possi-
ble to label a structure as uniquely a product of a particular
generation, as is even more apparent for smaller breakdown
products such as HCHO.

The further degradation of the product distribution in suc-
cessive generations follows the rules described in detail by

Jenkin et al. (1997) and Saunders et al. (2003), and is de-
veloped until it feeds into the production of smaller species
already present in the MCM database. As part of a general
update in MCM v3.2, the reactions of acyl peroxy radicals
with HO2 throughout the mechanism have been revised to
include propagating channels, as follows:

RC(= O)O2 + HO2 → RC(= O)O+ OH+ O2 (R1)

The IUPAC recommendation for the reaction of CH3C(O)O2
with HO2 (http://www.iupac-kinetic.ch.cam.ac.uk/) has been
adopted for the branching ratio of this reaction channel, this
being based on the experimental determinations of Hasson
et al. (2004), Jenkin et al. (2007) and Dillon and Crowley
(2008).

3 Experimental datasets

The experimental datasets used to evaluate the MCM v3.2
representation ofβ-caryophyllene degradation are summa-
rized in Table 1. In some cases (Jaoui et al., 2003; Win-
terhalter et al., 2009), the reported information contributed
directly to the construction of the mechanism, as described
above, and the evaluation is limited to a comparison of the
observed SOA yields with those simulated for the reported
conditions (see Sect. 4). In other cases, the reported product
distributions and their temporal profiles (where available) are
used to evaluate the chemical detail in the MCM v3.2 chem-
istry for both ozonolysis and photo-oxidation conditions, us-
ing detailed chamber simulations.

The most extensive evaluation makes use of a subset of a
series ofβ-caryophyllene/NOx photo-oxidation experiments
performed as part of the Aerosol Coupling in the Earth Sys-
tem (ACES) project. These experiments are described in de-
tail elsewhere (Alfarra et al., 2012), and only an overview is
therefore provided here.

3.1 Reaction chamber

The experiments were carried out in a collapsible 18 m3

FEP Teflon chamber at the University of Manchester. The
chamber is equipped with a set of halogen lamps and a
6 kW Xenon arc lamp and surrounded by reflective sur-
faces, providing even illumination of the chamber space and
a well-characterized photolysing radiation. This is designed
to mimic the atmospheric actinic spectrum over the wave-
length range 290–800 nm, and has a maximum total ac-
tinic flux of 0.7×1018 photons s−1 m−2 nm−1 over the region
460–500 nm.

The air supply into the chamber was dried and filtered
for gaseous impurities and particles using a series of Purafil
(Purafil Inc., USA), charcoal and HEPA (Donaldson Filtra-
tion) filters, prior to humidification with ultrapure deionised
water.β-caryophyllene was introduced via direct liquid in-
jection into a heated glass bulb, which was flushed into

www.atmos-chem-phys.net/12/5275/2012/ Atmos. Chem. Phys., 12, 5275–5308, 2012
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Table 1.Summary of experimental datasets used to evaluate the MCM v3.2β-caryophyllene scheme.

Reference Experimenta [β-caryophyllene]0 [ozone]0 OH scavenger T Relative humidity [SOA]b

Ozonolysis experiments ppb ppb K % µg m−3

Jaoui et al. (2003) - 601 640 none 288 82.5 2090 (2170)
Winterhalter et al. (2009) BC1210 296 200 cyclohexane 296 36 420 (399)

BC1310 295 200 cyclohexane 296 36 440 (399)
Li et al. (2011)c 1 1.7 50d cyclohexane 298 40 0.5 (0.6)

2 6.7 50d cyclohexane 298 40 3.4 (5.9)
3 13.3 50d cyclohexane 298 40 7.7 (16.2)
4 46.4 50d cyclohexane 298 40 29.1 (79.8)

Reference Experimenta [β-caryophyllene]0 [NO]0 [NO2]0 T Relative humidity [ozone]e [SOA]b

Photo-oxidation experiments ppb ppb ppb K % ppb µg m−3

Lee et al., 2006b – 42 16 16f 295 56 13 (21) 212 (111)
ACES, Alfarra et al. (2012) 30-06-08 31.1 6.9 22.6 297.5 69.8 7.6 (20.7) 45 (98)

03-07-08 42.7 10.6 43.4 297.8 68.6 10.3 (25.6) 66 (144)
04-07-08 48.0 10.9 41.0 297.8 68.1 7.9 (20.8) 61 (147)
10-07-08 48.1 10.9 62.5 297.5 69.5 11.2 (27.0) 66 (166)

a Experiment identified on the basis of assignment in original reference;b maximum observed SOA concentration; figure in brackets is the maximum simulated concentration,
using the base MCM v3.2 scheme; sensitivity tests described in text;c experiments performed with ammonium sulphate seed aerosol;d maintained excess mixing ratio;
e maximum observed O3 mixing ratio; figure in brackets is the maximum simulated mixing ratio, using the base MCM v3.2 scheme; sensitivity tests described in text;
f initial NO2 mixing ratio includes an unspecified contribution from HONO; simulation initialised with 9.6 ppb NO2 and 6.4 ppb HONO (see text).

the chamber with a flow of filtered, high purity N2 (ECD
grade, 99.997 %). NOx was introduced, primarily in the form
of NO2, by injection from a cylinder into the charge line.
Relative humidity and temperature were measured at sev-
eral points throughout the chamber (by dewpoint hygrometer
and a series of cross-calibrated thermocouples and resistance
probes), and were controlled by diverting air through the inlet
humidification circuit and by controlling the air conditioning
set-point, respectively.

3.2 CIR-TOF-MS measurements

The gas phase organic compounds within the chamber (in-
cluding the precursorβ-caryophyllene) were measured us-
ing Chemical Ionisation Reaction Time-of-Flight Mass Spec-
trometry (CIR-TOF-MS), as described in detail by Wyche
et al. (2007). The CIR-TOF-MS instrument comprises a
bespoke, temperature controlled ((40±1)◦C) radioactive
(241Am) ion source/drift tube assembly, coupled via a system
of ion transfer optics to an orthogonal time-of-flight mass
spectrometer (Kore Technology, UK). In order to provide en-
hanced mass resolution, the TOF-MS is equipped with a re-
flectron array (m/1m ∼1500–3000).

During all ACES experiments, proton transfer reaction
ionisation was employed as the chemical ionisation tech-
nique, utilizing hydrated hydronium ions (e.g. H3O+

·(H2O))
as the primary reagent ions. These were generated from a hu-
midified N2 carrier gas (99.9999 % purity), delivered directly
to the ion source. Chamber air containing the analyte organic
compounds was supplied directly to the drift cell reactor at
a continuous flow rate of 230 sccm. Depending on the prop-
erties of the analyte (M) (e.g. proton affinity and dipole mo-

ment), an ion-molecule reaction involving it and the hydrated
hydronium ion can occur at the collision-limited rate to yield
a protonated analyte ion (MH+) (e.g. de Gouw and Warneke,
2007; Blake et al., 2009):

H3O+(H2O) + M → MH+
+ 2H2O (R2)

If the energies involved in Reaction (R2) are sufficiently high
(and particularly if the analyte contains certain functional
groups), the MH+ product may undergo fragmentation to
produce various daughter ions, as described in more detail
in Sects. 6.3.1–6.3.4. In order to limit analyte fragmentation
and hence increase sensitivity and selectivity, the main reac-
tor cell of the drift tube was operated at an electric field/gas
number density (E/N) of∼90 Td. A tuned energy ramp was
applied at the base of the drift cell to facilitate the removal of
unwanted cluster ions (e.g. MH+·H2O) (Wyche et al., 2007).

The CIR-TOF-MS was calibrated for a range of oxy-
genated and non-oxygenated volatile organic compounds us-
ing three different methods: (i) stepwise dilution and mea-
surement of a commercially sourced gas standard (BOC Spe-
cial Gases, UK); (ii) analysis of gas standards generated from
permeation tubes (Eco-Scientific Ltd, UK and Vici Inc., US)
using a commercial calibration and humidification unit (Kin-
tec, model 491); and (iii) analysis of 10 L Teflon sample bags
(SKC Inc. US) following liquid injection of the target or-
ganic compound into a nitrogen matrix. The precursorβ-
caryophyllene was calibrated for using method (iii), which
was validated via cross comparisions with methods (i) and
(ii).

For the major oxidation products ofβ-caryophyllene,
no experimentally-derived calibration sensitivity values are
available for their quantification. For a number of species
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Table 2. Proton affinities (PA), dipole moments (µD), polarizabilities (α) and proton transfer reaction rate coefficients (k) calculated for
β-caryophyllene and selected oxidation products that potentially contribute to the major CIR-TOF-MS product ions,m/z 253 andm/z 237.
Organic reagent masses and reduced reagent molecular masses (µ) are also given.

Ion-Molecule Reaction Mass/g mol−1 µ/kg PA/kJ mol−1 µD/Debye α/Å3 k/cm3 molecule−1 s−1

298 K 313 K

β-caryophyllene + H3O+ 204.188 2.88644×10−26 859.2 0.35 27.52 3.13×10−9* 3.13×10−9

β-caryophyllene + H3O+
·(H2O) 204.188 5.20146×10−26 859.2 0.35 27.52 2.33×10−9* 2.33×10−9

BCAL + H3O+ 236.178 2.92011×10−26 817.1 2.04 28.61 3.78×10−9 3.76×10−9

BCAL + H3O+
·(H2O) 236.178 5.31183×10−26 817.1 2.04 28.61 2.80×10−9 2.79×10−9

BCSOZ + H3O+ 252.173 2.93396×10−26 828.7 1.63 29.05 3.58×10−9 3.57×10−9

BCSOZ + H3O+
·(H2O) 252.173 5.35786×10−26 828.7 1.63 29.05 2.65×10−9 2.64×10−9

BCALBOC + H3O+ 252.173 2.93396×10−26 809.3 2.26 29.17 3.92×10−9 3.90×10−9

BCALBOC + H3O+
·(H2O) 252.173 5.35786×10−26 809.3 2.26 29.17 2.90×10−9 2.88×10−9

C141CO2H + H3O+ 252.173 2.93396×10−26 883.8 1.95 20.90 3.34×10−9 3.32×10−9

C141CO2H + H3O+
·(H2O) 252.173 5.35786×10−26 883.8 1.95 20.90 2.47×10−9 2.46×10−9

* Su and Chesnavich (1982) and Su (1988) reported calculated values ofk = 3.1×10−9 cm3 molecule−1 s−1 for β-caryophyllene + H3O+, andk = 2.3×10−9 cm3 molecule−1 s−1

for β-caryophyllene + H3O+
·(H2O).

(shown in Table 2) that are simulated to contribute to the ma-
jor product ion signals, concentrations were calculated using
the steady state approximation in Eq. (1), which can be de-
rived from Reaction (R2) assuming that the proton transfer
reaction obeys pseudo first-order kinetics (e.g. Hansel et al.,
1995):

[M] =
i(MH+)

i((H3O+ · (H2O))0)

1

kt
(1)

Here,i(MH+) is the normalised, protonated analyte ion sig-
nal, i(H3O+

·(H2O))0 is the normalised reagent ion signal,
[M] is the analyte concentration (molecule cm−3), k is the
proton transfer reaction rate constant (cm3 molecule−1 s−1)
andt is the reaction time (s).

For the species under investigation the analyte proton
affinities were calculated using the computational chem-
istry method MP2(FC)/6-311+G(d,p)//HF/6-31G(d), devel-
oped by Maksic and Kovacevic (1999) when looking at the
proton affinities of amino acids. The method is suitable for
large systems and is computationally cheap. The calculated
proton affinity values are estimated to be within 3 % of the
experimental values.

The values ofk (shown in Table 2) were estimated using
the dipole moments and polarizability values obtained from
a Density Functional Theory calculation at the B3LYP/6-
31G(d,p) level of theory on the non-protonated species. This
level of theory has been previously utilized by Zhao and
Zhang (2004), who looked at 78 hydrocarbon and 58 non-
hydrocarbon compounds and assessed their proton transfer
reaction rates.k values for this work were calculated using
the following expression (Su and Bower, 1973):

k = (2πq/µ0.5)[α0.5
+CµD(2/πkT )0.5

] (2)

whereq is the charge of the ion,µ is the reduced mass of
the reactants,α is the polarizability, andµD is the permanent

dipole moment of the neutral species.C has been parame-
terized to have a value between 0 and 1. Zhao and Zhang
(2004) showed that the calculated proton transfer rate con-
stants were, on average, within±20 % of the experimental
value. The overall CIR-TOF-MS measurement uncertainty
values, considering both instrument precision and calibra-
tion/calculation accuracy (accounting for measurement re-
producibility and known systematic uncertainty), were de-
termined to be of the order of±40 %.

3.3 Additional measurements

NO and NO2 mixing ratios were measured using a chemi-
luminescence gas analyser (Model 42i, Thermo Scientific,
MA, USA). Production of O3 was measured using a UV pho-
tometric gas detector (Model 49C, Thermo Scientific, MA,
USA). The total SOA particle number concentration was
measured using an ultrafine water-based condensation par-
ticle counter (wCPC 3786, TSI, Inc.), with a minimum size
cut-off of 2.5 nm. The size distribution of the generated SOA
particles was measured using a Differential Mobility Parti-
cle Sizer. This consisted of two Differential Mobility Analy-
sers, for particles in the size ranges 3–34 nm and 20–500 nm,
coupled with TSI 3025A and TSI 3010 condensation particle
counters (CPC). Particle numbers and size distributions in
the diameter size range from 3–500 nm were thus obtained
every 10 min. This information was used to determine vol-
umetric concentrations of SOA, which were converted into
mass concentrations using a density of 1.3 g cm−3 (Bahreini
et al., 2005; Varutbangkul et al., 2006).
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4 Model description

Chamber simulations ofβ-caryophyllene degradation were
carried out using the FACSIMILE for Windows kinetics
integration package, v3.5 (MCPA Software). The chamber
model simply represents a well-mixed chamber volume, with
the reagent mixing ratios and experimental conditions ini-
tialised at, or constrained to, the values for the study under
consideration, as given in Table 1.

4.1 Chamber auxiliary mechanism

For simulations of photo-oxidation experiments, a number
of chamber-dependent processes were represented. The rates
of gas phase photolysis processes for application with MCM
v3.2 were calculated using spectral distributions and intensi-
ties for the photolysing radiation, in conjunction with evalu-
ated absorption cross sections and quantum yield data for the
individual species and reactions, as provided on the MCM
website. As indicated in Sect. 3, the photolysing radiation in
the ACES experiments was fully characterized for the cham-
ber. For illustrative simulation of the photo-oxidation experi-
ment in the Caltech chamber, reported by Lee et al. (2006b),
a representative blacklight spectrum emitting over the range
330–400 nm (λmax ≈355 nm) was assumed, and the intensity
was scaled to provide simulated profiles ofβ-caryophyllene,
NOx and ozone that were comparable with those reported.

The impact of chamber wall effects for simulations of the
ACES experiments was represented using the mechanism
characterized for the PSI chamber, as reported by Metzger et
al. (2008), that being an FEP Teflon chamber of similar vol-
ume and light source to the Manchester chamber. The auxil-
iary mechanism includes a conventional description of wall
sources of radicals and the reactivity of background organics,
and adsorption or desorption of oxidised nitrogen species. In
practice, sensitivity tests showed simulations to be very in-
sensitive to inclusion of these processes, as discussed further
in Sect. 6.1. However, it was found to be necessary to opti-
mise an additional decaying source of NO within about the
first hour of each experiment to recreate the precise forms
of the NO profiles. This typically amounted to an addi-
tional 10 % input of NOx, and had a much more subtle (and
unimportant) influence on the temporal profiles simulated for
species other than NO. Partitioning ofβ-caryophyllene oxi-
dation products to the chamber walls was also represented
and optimised, as described below.

Because the NOx measurements in the considered stud-
ies were made using conventional chemiluminescent anal-
ysers, simulations of NO2 mixing ratios were assumed to
include quantitative contributions from HONO and PANs.
Along with NO2, these species are likely to be converted ef-
ficiently to NO in the heated molybdenum converters, and
therefore contribute to the reported NO2 signals (e.g., Winer
et al., 1974; Cox, 1974). For the conditions of the ACES ex-
periments, these interferences are simulated to be relatively

small, contributing≤ 10 % to the measured NO2 signal. For
the illustrative simulation of the photo-oxidation experiment
of Lee et al. (2006b), reagent HONO is inferred to make a
major contribution (40 %) in the early stages of the experi-
ment (see Sect. 6.3.5), with product PANs simulated to con-
tribute up to about 12 % by the end of the experiment.

4.2 Gas-aerosol and gas-wall partitioning

Gas-aerosol partitioning was represented for 280 closed-shell
products ofβ-caryophyllene oxidation, on the basis of the
absorptive partitioning model of Pankow (1994), which has
been widely used to help interpret organic aerosol forma-
tion in chamber studies. Phase-partitioning of a given species
is thus defined by the thermodynamic equilibrium of that
species between the gas phase and absorbed in a condensed
organic phase, with an associated (equilibrium) partitioning
coefficient,Kp, which is given by:

Kp =
7.501× 10−9RT

MWomζp◦

L
(3)

whereR is the ideal gas constant (8.314 J K−1 mol−1), T is
temperature (K), MWom is the mean molecular weight of the
condensed organic material (g mol−1), ζ is the activity coef-
ficient of the given species in the condensed organic phase,
andp◦

L is its (probably sub-cooled) liquid vapour pressure
(Torr). The numerical constant in the numerator is consistent
with units of m3µg−1 for Kp. A unity value was assumed for
ζ , consistent with partitioning of a given oxidation product in
an aerosol droplet composed of a mixture of similar species.

On the basis of the critical appraisal of Barley and Mc-
Figgans (2010), the applied values ofp◦

L were calculated us-
ing the method of Nannoolal et al. (2008), in conjunction
with species boiling temperatures estimated by the method
of Nannoolal et al. (2004). For simplicity, all vapour pres-
sures applied in the current work were calculated for a tem-
perature of 298 K. The value used forp◦

L for a given species
clearly has a critical impact on the calculated value ofKp,
but estimatingp◦

L values for complex multifunctional oxy-
genates remains subject to considerable uncertainty, as very
few quantitative data are available for checking the predicted
values.

The magnitude ofKp determines the extent of gas-aerosol
partitioning of a given species, in accordance with the fol-
lowing equation:

[X]OA/[X]g = Kp·[OA] (4)

where [X]g and [X]OA are its concentrations in the gaseous
and organic aerosol phases, respectively, and [OA] is the
total mass concentration of condensed organic material (in
µg m−3). In the present work, the equilibrium partitioning
was assumed to be achieved instantaneously, and no chem-
ical processes in the aerosol phase were represented.
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An initial assessment of the representation of gas-aerosol
partitioning (in conjunction with the MCM v3.2 gas phase
chemistry) was carried out by simulating conditions repre-
sentative of all the datasets in Table 1. The simulations of
the conditions of the ozonolysis experiments reported by
Jaoui et al. (2003) and Winterhalter et al. (2009) showed
prompt SOA formation and final SOA yields that were in
good agreement with the reported observations. The simula-
tions of the ozonolysis conditions of Li et al. (2011), and of
the final stages of the photo-oxidation experiments of Alfarra
et al. (2012), showed a tendency towards overestimation (by
up to a factor of about 2.5). The simulations of the photo-
oxidation conditions of Lee et al. (2006b), and of the early
stages of the ACES photo-oxidation experiments of Alfarra
et al. (2012), showed a tendency towards underestimation (by
a factor of about 2). In view of the uncertainties in parameter
estimation, these results are regarded as generally acceptable,
although there must clearly be reasons for the variability in
performance for the different conditions of the studies.

For the detailed appraisal of the ACES photo-oxidation ex-
periments, the impact of partitioning of the 280 oxygenated
products into the Teflon walls of the Manchester chamber
was also represented and optimised during the course of this
work, as discussed further in Sect. 6.2. This was represented
on the basis of the results of Matsunaga and Ziemann (2010),
who characterized the partitioning of a series of long-chain
alkanes, alkenes, 2-alcohols and 2-ketones under dry condi-
tions in two Teflon chambers, 1.7 m3 and 5.9 m3 in volume.
Gas-wall equilibrium partitioning was represented to occur
in direct competition with, and analogously to, gas-aerosol
partitioning:

[X]wall/[X]g = Kp·[wall]eff (5)

where [X]wall is the concentration of a given species in the
Teflon wall, and [wall]eff is an effective wall mass concen-
tration. In accordance with the results presented by Mat-
sunaga and Ziemann (2010) for the most strongly absorbed
species considered in their study (high molecular weight 2-
ketones), the optimisation process initially assumed a value
of [wall]eff = 24 mg m−3, with an effective molecular weight
of 200 g mol−1. An associated 1/e time constant (τgw) of
2.7 min was imposed for the gas-wall partitioning process,
which is also consistent with the equilibration time reported
by Matsunaga and Ziemann (2010). The value of [wall]eff
was varied to optimise agreement with the ACES observa-
tions, withτgw varied in inverse proportion.

5 Results and discussion: ozonolysis conditions

Evaluation of the MCM v3.2 scheme under dark ozonoly-
sis conditions focused on the set of experiments reported
recently by Li et al. (2011). Those experiments were car-
ried out in flowing mode, with a characteristic chamber
residence time of 3.6 h, and with O3 maintained at a con-

stant excess mixing ratio. Cyclohexane was present to scav-
enge OH radicals, so that sequential ozonolysis of theβ-
caryophyllene endocyclic double bond, followed by ozonol-
ysis of the “exocyclic” double bonds in the first-generation
products would occur. The present simulations considered a
subset of four experiments with 50 ppb O3, as summarized in
Table 1, with simulations carried out up to the 3.6 h residence
time. The final simulated SOA mass concentrations were
comparable to those observed, albeit showing an increasing
tendency towards overestimation with increasing reagentβ-
caryophyllene mixing ratio (see Table 1).

Figure 9 shows the simulated time evolution of the SOA
mass loading up to the 3.6 h experimental residence time, for
the conditions of “experiment 3” reported by Li et al. (2011).
This logically shows prompt SOA formation with an ini-
tial dominant contribution from first-generation products to
SOA; but with a progressively increasing contribution of
second-generation products. This reflects that the respective
lifetimes of β-caryophyllene and the first generation prod-
ucts with respect to reaction with 50 ppb ozone are about
70 s and 2 h, and that both the first- and second-generation
product distributions are sufficiently condensable for at least
some transfer to the aerosol phase to occur. The simu-
lated SOA composition at 3.6 h is dominated by second-
generation products, with these accounting for 73 % of the
mass loading. This is in broad agreement with the results
of Li et al. (2011), who reported a second-generation con-
tribution of about 90 %. The simulated SOA composition at
3.6 h has an average molecular formula of C13.97H22.11O4.21
(MW = 257.3).

Li et al. (2011) reported detection of 15 ozonolysis prod-
ucts in SOA, of which 11 are represented in the MCM v3.2
scheme. Many of these species were consistently found to
be in the top 20 simulated SOA contributors at 3.6 h, al-
though other species were also simulated to make impor-
tant contributions. The lower panel in Fig. 9 shows the
top 11 simulated contributors at 3.6 h, for the conditions
of “experiment 3”, with these collectively accounting for
about 90 % of the total simulated SOA mass loading. The
first-generation products have important simulated contri-
butions fromβ-caryophyllonic acid (C141CO2H) andβ-
caryophyllinic acid (C137CO2H), in agreement with the re-
sults of Li et al. (2011), and as also reported to be impor-
tant SOA contributors in other studies ofβ-caryophyllene
ozonolysis (Jaoui et al., 2003; Kanawati et al., 2008; Win-
terhalter et al., 2009). The other important simulated first-
generation contributors (C139OOH and BCALBOOH) are
multifunctional hydroperoxides, which have not been de-
tected in any reported study. These are formed (along with
C137CO2H) from the chemistry of the OH co-product,
BCALBO2 (see Fig. 3). This suggests that the simulated con-
tribution of first-generation products to SOA is sensitive to
the yield assigned to OH (and co-radicals) in the mechanism,
by virtue of the associated products generally possessing a
greater degree of multi-functionality than those formed from
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Figure 9. Results of simulations of the conditions of ozonolysis experiment 3 reported by Li et 2 

al. (2011) (see Table 1 for conditions). The upper panel shows the simulated time evolution of 3 

the SOA mass loading up to the 3.6 hour experimental residence time; and the contributions 4 

of first and second-generation products to SOA. The lower panel shows the top 11 simulated 5 
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loading. The displayed values indicate the molecular masses of the products. 7 

Fig. 9. Results of simulations of the conditions of ozonolysis ex-
periment 3 reported by Li et al. (2011) (see Table 1 for conditions).
The upper panel shows the simulated time evolution of the SOA
mass loading up to the 3.6 h experimental residence time; and the
contributions of first and second-generation products to SOA. The
lower panel shows the top 11 simulated contributors at 3.6 h, these
accounting for∼90 % of the total simulated SOA mass loading. The
displayed values indicate the molecular masses of the products.

the non-radical channels. For example, an illustrative reduc-
tion in this yield from 10 % to 6 % led to a reduction in the
simulated first-generation contribution from 27 % to 20 %.

As shown in Fig. 9, a number of second-generation prod-
ucts make important simulated contributions to SOA, with
the majority of these resulting from the ozonolysis ofβ-
caryophyllonic acid (C141CO2H) andβ-caryophyllon alde-
hyde (BCAL). Of these, only C147OH was actually re-
ported by Li et al. (2011), although others (C131CO2H and
C146OH) are structurally similar isomers of species that
were reported. Again, there are important contributions from
a number of multifunctional species containing hydroper-
oxy groups (C146OOH, C147OOH and C1311OOH), which
have not been detected in reported studies. However, such
products are potentially reactive in the condensed phase, and
may therefore be difficult to detect. Indeed, hydroperoxides
have been reported to undergo association reactions with

carbonyls to form high molecular weight peroxyhemiacetals
(e.g., Tobias and Ziemann, 2000). It is also possible that any
subsequent decomposition of the peroxyhemiacetals (within
the course of an experiment or during aerosol analysis) may
potentially produce alternative products (e.g., an acid and
an alcohol - by analogy with the mechanism of the Baeyer-
Villiger oxidation of carbonyls by peroxyacids), such that the
hydroperoxides might act as condensed phase oxidants (e.g.,
see discussion in Jenkin, 2004).

The present calculations predict a particularly important
contribution from β-nocaryophyllonic acid (C131CO2H),
which is simulated to be the most abundant SOA compo-
nent. Although not specifically identified by Li et al. (2011),
C131CO2H has been reported as an SOA phase product by
Jaoui et al. (2003), under conditions when some secondary
ozonolysis of the first-generation product distribution was
likely. As discussed in Sect. 2.2, and shown in Figs. 5 and
6, C131CO2H is a likely major product of the ozonolysis of
β-caryophyllonic acid (C141CO2H), and its vapour pressure
is estimated here to be lower than that of C141CO2H by ap-
proaching an order of magnitude. The present calculations
thus predict C141CO2H to be only partially present (18 %)
in the SOA phase (thereby allowing significant reaction with
O3 in the gas phase), but C131CO2H to be mainly (63 %)
in the SOA phase, for the simulated conditions at the end of
“experiment 3”.

6 Results and discussion: photo-oxidation conditions

Evaluation of the MCM v3.2 scheme under photo-oxidation
conditions initially focused on the set of ACES experiments
summarized in Table 1, and described above in Sect. 3.2.
Figure 10 shows the main features of the MCM v3.2 chem-
istry, appropriate to the early stages of those experiments.
Primary removal ofβ-caryophyllene occurs via ozonolysis,
following the photolysis of the reagent NO2 to form NO and
O3. Because of the high initial [NO2]/[NO] ratios applied in
the ACES experiments, this process occurs efficiently in the
system and is the predominant initiation process. The reac-
tion of O3 with β-caryophyllene leads to the formation of
OH, which also reacts withβ-caryophyllene. Although the
primary yield of OH is comparatively small (10 %), the im-
portance of the OH-initiated chemistry is amplified by the
presence of NO in the system, allowing the (conventional)
OH regenerating, catalytic cycle shown in Fig. 10 to occur,
with this also leading to NO-to-NO2 conversion and subse-
quent O3 formation. The cycle is mainly terminated by the
formation of the hydroxy nitrates (BCANO3, BCBNO3 and
BCCNO3), and the branching ratio assigned to their forma-
tion from the reactions of the corresponding peroxy radi-
cals with NO controls the chain length of the catalytic cy-
cle. The chemistry of the co-radicals, formed with OH fol-
lowingβ-caryophyllene ozonolysis (BCALAO2, BCALBO2
and BCALCO2; denoted “R’O2” in Fig. 10), also potentially
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Fig. 10.Schematic of the main features of MCM v3.2 chemistry ofβ-caryophyllene-NOx photo-oxidation, appropriate to the early stages
of the ACES experiments in the Manchester chamber. Primary removal ofβ-caryophyllene occurs via ozonolysis, following reagent NO2
photolysis, with the importance of the OH-initiated chemistry amplified in the presence of NO (see discussion in text). “RO2” is used to
denote the collective population of BCAO2, BCBO2 and BCCO2; “RO” to denote the collective population of BCAO, BCBO and BCCO;
and “R’O2” to denote the collective population of BCALAO2, BCALBO2 and BCALCO2. The molecular masses of the products are also
shown.

feeds into the catalytic cycle, by virtue of generation of some
HO2 from radical propagation reactions in the presence of
NO. In practice, however, this is comparatively limited be-
cause the radical propagating chemistry of BCALAO2 and
BCALBO2 is likely to be interrupted by the formation of
PAN and complex PANs (C136PAN and C137PAN) as tem-
porary radical reservoirs (see Sect. 2.1.1).

6.1 Evaluation usingβ-caryophyllene, NOx and ozone
data

The general MCM v3.2 reaction framework was ini-
tially evaluated using the gas phase observations ofβ-
caryophyllene, O3 and NOx, as shown in Fig. 11 for the
example of ACES experiment 03-07-08 (broken lines). The
simulations showed the mechanism to perform reasonably
well, but indicated that the system was over-reactive, leading
to a decay ofβ-caryophyllene that was too rapid, and an effi-
ciency of NO-to-NO2 conversion and O3 formation that was
too high. Within the reaction framework outlined in Fig. 10,
this indicates that the efficiency of the OH-initiated chem-
istry is over-estimated. This can be formalised by the follow-
ing equations:
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Figure 11. Time profiles of E�caryophyllene, NO, NO2 and ozone for ACES photo-oxidation 3 

experiment 03-07-08. The observed E�caryophyllene data are shown as open circles, with the 4 
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simulations using the MCM v3.2 scheme, with different yields of OH (and co-radicals) from 6 
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Fig. 11. Time profiles ofβ-caryophyllene, NO, NO2 and ozone
for ACES photo-oxidation experiment 03-07-08. The observedβ-
caryophyllene data are shown as open circles, with the observed
NO, NO2 and ozone data as continuous lines. The smooth lines
show the results of simulations using the MCM v3.2 scheme,
with different yields of OH (and co-radicals) fromβ-caryophyllene
ozonolysis. Broken lines: OH yield = 10 % (i.e., the base MCM
v3.2 run); Heavy continuous lines: OH yield = 6 %; Feint contin-
uous lines: OH yield = 3%.
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YOH = POH · CL (6)

CL = 1/(1− x) (7)

where YOH is the total OH yield, POH is the primary OH
yield, x is the fractional regeneration of OH in each oper-
ation of the catalytic cycle, and CL is the chain length of
the catalytic cycle. The over-efficiency of the OH-initiated
chemistry can therefore by addressed by a reduction in either
POH or CL.

The value of POH is set at 10 % in MCM v3.2 (see
Sect. 2.1.1). As shown in Fig. 10, the value of CL is de-
termined by the branching ratio (or yield) assigned to the
formation of the hydroxy nitrates (BCANO3, BCBNO3 and
BCCNO3) from the reactions of the corresponding RO2 rad-
icals with NO, this branching ratio being (1−x). There have
been no determinations of the branching ratio, and an esti-
mated value of 0.247 is applied in MCM v3.2. This is based
on a reported value of 0.228 for the structurally-similar set
of C10 peroxy radicals in the limonene system (Ruppert et
al., 1999), scaled to account for the increase in carbon num-
ber using the expression recommended by Arey et al. (2001).
This value of (1−x) leads to a value of about 4 for CL, such
that the total OH yield, YOH, is about 40 % in the base MCM
v3.2 simulations.

As shown in Fig. 11, simulations of the system were found
to be very sensitive to the value assigned to POH, and a reduc-
tion from 10 % to about 6 % (i.e., YOH decreased to about
25 %) provided a good description in all the experiments. As
discussed in Sect. 2.1.1, this reduced value of POH remains
consistent with the range of reported determinations. Consis-
tent with Eqs. (6) and (7) above, a similarly improved de-
scription of the system could be achieved by leaving POH
at 10 %, and increasing the branching ratio, (1−x), from
0.247 to about 0.4 (or by using intermediate combinations
of POH and (1−x) within the considered ranges). It is not
possible to determine these parameters independently within
the context of this work, and further studies to reduce the
uncertainty on the primary OH yield, and to quantify the
yields of the hydroxy nitrates from the OH-initiated chem-
istry, would clearly be valuable. However, it is noted that
currently available information suggests that the presence of
a β-hydroxy group has a significant lowering influence on
nitrate yields from RO2 + NO reactions (e.g., O’Brien et
al., 1998; Matsunaga and Ziemann, 2009), such that values
in excess of that applied in MCM v3.2 would seem unrea-
sonble for C15β-hydroxy peroxy radicals. For the remain-
der of the evaluation of the MCM v3.2 chemistry using the
ACES photo-oxidation data, an optimised value of POH of
6% is therefore applied, with (1−x) unchanged from the
value of 0.247 applied in MCM v3.2. With this reduced ef-
ficiency of the OH-initiated chemistry, simulations indicated
that β-caryophyllene removal was about 80 % due to reac-
tion with O3 and about 20 % due to reaction with OH, con-
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Fig. 12. Time profiles of secondary organic aerosol (SOA) mass
concentration for ACES photo-oxidation experiment 03-07-08. The
observed data are shown as points. The lines are results of sim-
ulations using: (i) MCM v3.2 with gas-aerosol partitioning code;
(ii) as (i), but with a 6 % yield of OH (and co-radicals) fromβ-
caryophyllene ozonolysis; (iii) as (ii), but with gas-aerosol parti-
tioning into observationally-constrained SOA mass loading, and
inclusion of wall partitioning with [wall]eff = 1.5 mg m−3; (iv)
as (ii), but with inclusion of (illustrative) transient formation of
α-hydroxyhydroperoxides (see text) and wall partitioning with
[wall]eff = 1.5 mg m−3.

sistent with the reduced, optimised value of YOH of about
25 % and scavenging of OH predominantly by reaction with
β-caryophyllene in the early stages of the experiment. Re-
action with NO3 was simulated to account for 0.2 % ofβ-
caryophyllene removal under the conditions of these experi-
ments.

6.2 Evaluation using SOA mass concentrations

Figure 12 shows the results of a number of simulations of
SOA mass concentrations, compared with the observed tem-
poral profile, for the example of ACES experiment 03-07-08.
The MCM v3.2 chemistry with POH values of either 10 %
(simulation (i)) or 6 % (simulation (ii)), results in a progres-
sive increase in simulated SOA mass concentrations through-
out the duration of the experiment, consistent with the ex-
pected progressive increase in the condensability of the prod-
uct distribution with sequential oxidation of the two double
bonds. In each case, the simulated profile underestimates the
initial accumulation of SOA, but leads to a significant overes-
timation towards the end of the experiment. This overestima-
tion can be addressed by inclusion of competitive gas-wall
partitioning of the oxygenated products (using the represen-
tation described in Sect. 4.2), which results in removal of
material from both the gaseous and SOA phases. As shown
in Fig. 13a (simulation (i)), it was found that use of an ef-
fective wall mass concentration, [wall]eff, of 1.5 mg m−3 (in
conjunction with POH = 6 %) resulted in an SOA mass load-
ing at the end of the experiment which agrees well with that
observed.
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Table 3.Summary of ions detected using CIR-TOF-MS and their species assignmentsa.

m/zb Ion identity Species identity (MCM name)c Molecular mass

271d MH+.(H2O)-(HNO3) C131PAN, C137PAN 315
269 MH+-(HNO3) C151NO3, BCSOZNO3 331
269 MH+.(H2O)-(HNO3) C141PAN 313
255e, {237, 219,
209}f,g

MH +
{MH+-(H2O), MH+-(H2O)2,

MH+-(HCOOH)}
BCKSOZ, C131CO2H, BCLKBOC,
C137CO2Hh

254

253, 235, 217,{207}f ,
177, 153, 139, 127

MH +, MH+-(H2O), MH+-
(H2O)2, {MH+-(HCOOH)}, MH+-
(H2O)2·CH2CCH2

BCSOZ, C141CO2H, BCALBOC 252

239,{220, 209}g, 195 MH +, {MH+-(H2O), MH+-(HCHO)},
MH+-(H2O)·CHCH

BCLKET 238

237, 219,{207}f , 193,
179

MH +, MH+-(H2O), {MH+-(HCHO)},
MH+-(H2O)·CHCH,
MH+-(H2O)·CH2CCH2

BCAL 236

225,{207}f MH +, {MH+-(H2O)} C131CO, C137CO 224
223 MH+ C141CO 222
221, 203i MH+-(HNO3), MH+-(HNO3)·H2O BCANO3, BCBNO3, BCCNO3 283
211, {193}f,g, 175 MH +, MH+-(H2O), MH+-(H2O)2 C116CHOj 210
209c,f, 191, 173k MH +, MH+-(H2O), MH+-(H2O)2 C126CHOl 208
207c,f, 189 MH + BCKET 206
207c,f MH+-(HNO3) C141NO3 269
205, 149, 135, 123,
121, 109, 95, 81

MH +, MH+-C4H8, MH+-C5H10,
MH+-C6H10, MH+-C6H12, MH+-
C7H12, MH+-C8H14, MH+-C9H16

β-caryophyllene (BCARY) 204

197 MH+.(H2O)-(HNO3)(−H2O) C1011PAN 259
133 MH+.(H2O)-(HNO3) C46PAN 177
85 MH+

− (H2O) CHOC2CO2Hm 102
71 MH+

− (H2O) HCOCH2CO2Hn 88

a Unassigned ion signals also detected atm/z 201, 179, 167, 161, 159, 151, 147, 141;b m/z assignments discussed in detail in Sects. 6.3.1–6.3.4;c Species structures
shown in Figs. 1 and 3–8; and/or available athttp://mcm.leeds.ac.uk/MCMusing species search with MCM name;d italic text denotes tentative assignment;e bold text
denotes parent MH+ ion; f potentially coincident with one or more other ions of same nominal mass and of similar abundance;g potentially coincident with one or more
other ions of same nominal mass and of greater abundance;h C137CO2H simulated to make negligible contribution in the presence of NOx (see text);i correlating signal
detected atm/z 165; j possible additional contribution from 4-(3,3-dimethyl-2-propyl-cyclobutyl)-4-oxo-butyraldehyde (see text);k correlating signal detected atm/z 147;
l possible additional contribution from 4-(3,3-dimethyl-2-propyl-cyclobutyl)-pent-4-enal (see text);m CH(=O)CH2CH2C(=O)OH;n CH(=O)CH2C(=O)OH.

Sensitivity tests were carried out to investigate possible
causes of the initial underestimation in SOA accumulation. A
series of uniform reductions in vapour pressure (p◦

L) for all
partitioning species were initially investigated, with reduc-
tions of up to a factor of 20 being considered (see Fig. 13a).
This resulted in increases in the initial simulated produc-
tion rate of SOA which, in combination with progressive
increases in the optimised value of [wall]eff, produced tem-
poral SOA profiles that were increasingly more consistent
with that observed. However, even a factor of 20 reduction
in p◦

L values was insufficient to reproduce the observed ini-
tial SOA formation rate, with simulations of this initial phase
also being relatively insensitive to further reductions inp◦

L .
As shown in Fig. 13b, the considered reductions inp◦

L , and
the associated increases in [wall]eff, also had a significant
(and unsupportable) impact on simulations of the time pro-
files of O3 and the NOx species. Because of the elevated re-
moval of product organic material from the gas phase, the
system becomes less able to promote NO-to-NO2 conver-

sion, and therefore form O3, in the latter stages of the exper-
iment. On the basis of these sensitivity tests, it appears that
the observations cannot support a significant uniform reduc-
tion in p◦

L values, or values of [wall]eff that are significantly
greater than about 1.5 mg m−3. It is noted that this value of
[wall]eff is somewhat lower than the values of 10 mg m−3 and
24 mg m−3, reported by Matsunaga and Ziemann (2010) for
wall partitioning of long-chain 2-alcohols and 2-ketones, re-
spectively, in Teflon chambers (see Sect. 4.2). There are a
number of possible factors which may contribute to this dif-
ference. These include the lower surface-to-volume ratio of
the Manchester chamber, the high relative humidity (∼70 %)
employed in these experiments, compared with the dry con-
ditions employed by Matsunaga and Ziemann (2010), the
presence of illumination, and the greater structural complex-
ity of theβ-caryophyllene oxidation products.

Figure 12 (simulation (iii)) shows the results of a simu-
lation in which the extent of partitioning of the oxygenated

www.atmos-chem-phys.net/12/5275/2012/ Atmos. Chem. Phys., 12, 5275–5308, 2012
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Figure 13. Time profiles of: (a) secondary organic aerosol (SOA) mass concentration; and (b) 2 
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are as in Figs. 11 and 12.  The lines are simulations showing the impact of uniform reductions 4 

in pLq, with the following scaling factors: (i) 1.0; (ii) 0.3; (iii) 0.1 and (iv) 0.05. In each case, 5 

the value of [wall]eff was optimised to recreate the final SOA mass loading, leading to [wall]eff 6 

values of: (i) 1.5 mg m-3; (ii) 3.3 mg m-3; (iii) 6.6 mg m-3; and (iv) 10.3 mg m-3. 7 

Fig. 13. Time profiles of: (a) secondary organic aerosol (SOA)
mass concentration; and(b) NO, NO2 and ozone; for ACES photo-
oxidation experiment 03-07-08. The observed profiles are as in
Figs. 11 and 12. The lines are simulations showing the impact
of uniform reductions inp◦

L , with the following scaling factors:
(i) 1.0; (ii) 0.3; (iii) 0.1 and (iv) 0.05. In each case, the value of
[wall]eff was optimised to recreate the final SOA mass loading,
leading to [wall]eff values of: (i) 1.5 mg m−3; (ii) 3.3 mg m−3; (iii)
6.6 mg m−3; and (iv) 10.3 mg m−3.

products into the SOA phase was constrained to the observed
mass loadings of SOA, and with gas-wall partitioning gov-
erned by a value of 1.5 mg m−3 for [wall]eff, as optimised
above. These results suggest that the species generated by
the mechanism are able to account for about 40 % of the
observed SOA in the early stages of the simulation, with
this fraction progressively increasing throughout the dura-
tion of the experiment. Additional senstivity tests demon-
strated that it was only possible to reconcile this discrepancy
within the model framework by implementing gross (and
generally unsupportable) changes to first-generation product
yields (e.g., complete replacement of BCSOZ formation by
the less volatile C141CO2H), or to first-generation product
properties (e.g., a three order of magnitude suppression in the
p◦

L value for BCSOZ); with these changes invariably worsen-
ing the simulations of the shapes of the temporal profiles of
the gas phase components, as characterized using CIR-TOF-
MS (see Sect. 6.3).

As discussed further below (Sect. 6.3.1), the CIR-TOF-
MS observations of some major first-generation product sig-
nals show a distinct time-lag in their initial detection in the
gas phase, and it seems probable that this missing mate-
rial must account, to some extent, for the initial accumu-

lation of SOA mass loading. Although it is not possible
to determine the precise mechanism responsible for these
observations, they appear characteristic of initial formation
of one or more low volatility species which have a rela-
tively short lifetime prior to further reaction to form the ac-
cepted “first-generation” products. As an illustration of this
type of behaviour, Fig. 12 (simulation (iv)) shows the im-
pact of including initial formation of a pair of transientα-
hydroxyhydroperoxides, formed from the reactions of the
Criegee intermediates, BCAOO and BCBOO, with H2O. As
discussed, for example, by Atkinson et al. (2006: datasheet
II.A6.152), the rearrangement and decomposition of theα-
hydroxyhydroperoxides, leads to formation of either H2O
and an acid product (in this case C141CO2H), or H2O2 and
an aldehyde product (in this case BCAL), as shown in Fig. 1.
The present simulation assumes the same ultimate yields of
C141CO2H and BCAL as in MCM v3.2, but with theα-
hydroxyhydroperoxides possessing an optimised lifetime of
30 s with respect to rearrangement and decomposition in the
gas phase. Theα-hydroxyhydroperoxides are relatively in-
volatile, having estimatedp◦

L values that are factors of 30
and 60 lower than that of C141CO2H, and are therefore sig-
nificantly partitioned into the SOA phase (where they are as-
sumed to be stable with respect to decomposition). As shown
in Fig. 12 (simulation (iv)), this type of mechanism is able
to account for the shortfall in SOA formation in the early
stages of the experiment. It is emphasised, however, that this
is simply an illustration of the type of process required, but
for which there is currently no other supporting evidence.

6.3 Evaluation using CIR-TOF-MS data

An example mass spectrum, recorded using CIR-TOF-MS
during a typical ACESβ-caryophyllene photo-oxidation ex-
periment (03-07-08), is shown in Fig. 14. The data have
been integrated over the entire experiment (about 3 h), back-
ground subtracted, and the major spectral features have
been labelled. For clarity the peaks belonging to the pre-
cursorβ-caryophyllene (see Table 3) have been removed.
The CIR-TOF-MS measurements allowed approximately 45
time-resolved product ion signals to be detected. These
were assigned toβ-caryophyllene photo-oxidation products
on the basis of the product species in MCM v3.2, and
their probable fragmentation patterns following the initial
reagent ion-molecule reaction, as summarised in Table 3.
The chamber simulations provided temporal profiles for all
MCM v3.2 species generated from the photo-oxidation of
β-caryophyllene, and the partitioning of closed-shell prod-
ucts between the gaseous and aerosol phases and the cham-
ber wall. The CIR-TOF-MS data were used to evaluate the
performance of the MCM v3.2 chemistry, through compari-
son with the temporal profiles simulated for the most abun-
dant gaseous components. Although the scheme includes
about 300 closed-shell products, the majority of species were
simulated to be present at very low mixing ratios, owing
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Fig. 14.An example mass spectrum, recorded using CIR-TOF-MS
during ACES photo-oxidation experiment 03-07-08. The data show
the relative abundances of signals integrated over the entire experi-
ment. For clarity, signals due to reagentβ-caryophyllene have been
subtracted.

to a combination of a low intrinsic yield under the exper-
imental conditions, and/or a high propensity to transfer to
the condensed SOA phase or the chamber wall. As a re-
sult, only about 30 species were simulated to exceed 50 ppt
at some point in the series of simulations, thereby provid-
ing a comparatively high level of screening for the model-
measurement comparison. Comparisons of the observed and
simulated temporal profiles are discussed in the following
subsections. In each case, the simulations incorporate parti-
tioning into the observationally-constrained SOA mass load-
ing, and to the chamber walls with a [wall]eff value of
1.5 mg m−3. As indicated in Sect. 3.2, the observed signals
have been calibrated for the major product ion families (cor-
responding to parent ions ofm/z 253 andm/z 237). In other
cases, the data are presented as the measured ion count rate
(normalised counts per second, ncps), and the profile shapes
are compared with those simulated for potentially contribut-
ing products.

6.3.1 First-generation products

Figure 15 shows the model-measurement comparisons for a
number of (mainly or exclusively) first-generation products.
These can be related directly to the major product ion signals
detected by CIR-TOF-MS as follows:

m/z253:As discussed above (Sect. 2), three isomeric first-
generation products of molecular mass 252 are potentially
formed, namely BCSOZ, C141CO2H and BCALBOC. The
estimated proton affinities, polarizabilities and dipole mo-
ments of these compounds (Table 2) confirm that they will
readily undergo ion-molecule reactions with hydronium and
hydrated hydronium ions to produce protonated molecular
ions, MH+ (m/z 253). For the conditions of these experi-
ments, BCSOZ, C141CO2H and BCALBOC are simulated
to be formed in a collectively high yield (approximately
50 %), by virtue of their generation from the O3-initiated
chemistry (see Figs. 1 and 10). Accordingly, them/z 253

peak was observed to be amongst the most abundant prod-
uct ion signals in the CIR-TOF-MS mass spectrum (Fig. 14).

It is well documented that large and complex molecules
such as BCSOZ, C141CO2H and BCALBOC, may undergo
some degree of fragmentation following proton transfer reac-
tion (PTR) ionisation to yield various daughter ions (Blake et
al., 2009). Secondary ozonide species such as BCSOZ have
not been well characterized under PTR conditions, hence
their fragmentation mechanisms are not well known. How-
ever, aldehyde, ketone and acid bearing compounds, such as
C141CO2H and BCALBOC, are known to dehydrate follow-
ing protonation to yield an MH+(-H2O) daughter ion (e.g.
Smith and Spanel, 2005; Blake et al., 2006). Furthermore, it
is possible for multifunctional carbonyl compounds to eject
a second water molecule following protonation, to yield a
daughter ion equivalent to MH+(-H2O)2. Ions of m/z 235
and 217, corresponding to the loss of one and two water
molecules respectively, from a parent ofm/z 253, were ob-
served in all experiments and in each case with temporal
profiles highly correlated with that ofm/z 253. As such,
these ions are believed to constitute daughter fragments of
them/z 253 species. Additionally, ions ofm/z 177, 153, 139
and 127 were observed to have temporal profiles that were
highly correlated with them/z 253 trace and, as such, repre-
sent further potential daughter ions. For example, the ion of
m/z 177 can be explained by the further loss of a section of
the hydrocarbon chain (C3H4), following the ejection of two
water molecules from the parent MH+ ions.

It should also be noted that following PTR ionisation
from the hydronium ion, complex acid bearing molecules
(e.g. C141CO2H) have been observed to fragment via the
loss of formic acid to produce MH+(-HCOOH) ions (Spanel
and Smith, 1998). The equivalent processes for C141CO2H
would yield an ion ofm/z 207 which, as shown in Fig. 15,
does show some degree of correlation with that ofm/z 253.
Owing to the potential for contributions from other ions to
m/z 207, it is discussed separately below.

As shown in Fig. 15, the collective simulated profile for
BCSOZ, C141CO2H and BCALBOC is in reasonable agree-
ment with the observations, although the observations show a
clear time lag in the rise that is not apparent in the simulated
composite profile. The secondary ozonide, BCSOZ, makes
the major contribution to the simulated abundance, owing to
a combination of its high yield and a low propensity to trans-
fer to the aerosol phase or the chamber wall (its estimatedp◦

L
value being over three orders of magnitude higher than that of
β-caryophyllonic acid, C141CO2H). Although significantly
partitioned between the phases, C141CO2H is also simulated
to make a significant contribution to the composite gas phase
profile. The impact of invoking (speculative) transient for-
mation ofα-hydroxyhydroperoxides (as discussed above in
Sect. 6.2) is also illustrated in Fig. 15, confirming that this
leads to a delay in the formation of the simulated composite
signal. However, the effect is comparatively small because,
as represented, it only influences C141CO2H formation. A

www.atmos-chem-phys.net/12/5275/2012/ Atmos. Chem. Phys., 12, 5275–5308, 2012
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Figure 15. Example time profiles simulated for selected first-generation oxygenated products 2 

(lines), compared with those for corresponding product ion signals measured using CIR-TOF-3 

MS (points), during ACES photo-oxidation experiments. Measured signals for a given m/z 4 

incorporate the corresponding daughter ion signals identified in Table 3. Signals for the m/z 5 

253 and m/z 237 families were calibrated as described in the text (see discussion of method 6 

and uncertainties in Sects. 3.2 and 6.3.1). Other signals are uncalibrated and presented as 7 

normalised counts per second (npcs). Comparisons are for experiments 03-07-08 (m/z 253, 8 

237 and 209) and 10-07-08 (m/z 207). Broken lines in the m/z 253 and m/z 237 panels show 9 

the effect of including speculative formation of D-hydroxyhydroperoxides in the mechanism 10 
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Fig. 15.Example time profiles simulated for selected first-generation oxygenated products (lines), compared with those for corresponding
product ion signals measured using CIR-TOF-MS (points), during ACES photo-oxidation experiments. Measured signals for a givenm/z in-
corporate the corresponding daughter ion signals identified in Table 3. Signals for them/z 253 andm/z 237 families were calibrated as
described in the text (see discussion of method and uncertainties in Sects. 3.2 and 6.3.1). Other signals are uncalibrated and presented as
normalised counts per second (npcs). Comparisons are for experiments 03-07-08 (m/z 253, 237 and 209) and 10-07-08 (m/z 207). Broken
lines in them/z 253 andm/z 237 panels show the effect of including speculative formation ofα-hydroxyhydroperoxides in the mechanism
(see text). Broken line inm/z 207 panel is the results of a sensitivity test considering potential interfering signals (see text).

major impact would clearly require a mechanism which de-
lays formation of BCSOZ.

With no calibration material available, the BCSOZ,
C141CO2H and BCALBOC signals were quantified collec-
tively, using the calculation method described in Sect. 3.2.
To a first approximation, BCSOZ, C141CO2H and BCAL-
BOC were assumed to comprise the MH+ ion and all known
potential fragments (discussed above), excludingm/z 207.
The corresponding C13 signals ofm/z 254, 236, 218 and 178
were also included. The resultant profile (Fig. 15), shows a
peak measured mixing ratio of (6.7±2.7) ppb (where the esti-
mated±40 % error limits include all quantifiable uncertain-
ties), compared to the peak mixing ratio of about 14.5 ppb
predicted by the model. There are a number of factors that
could contribute to this discrepancy between the measured
and simulated absolute magnitudes, suggesting that this is
acceptable agreement for such a complex system. These in-
clude:

i. Potential missing contributions from unidentified
daughter ions, such that the measured signal represents
a lower limit. For example, inclusion of them/z 207 po-

tential fragment signal, commented on above, increases
the measured peak mixing ratio by about 0.5 ppb. Fur-
thermore, PTR ionisation of a complex product mixture
is likely to produce certain common daughter ions not
clearly attributable to a specific parent (e.g.m/z 43: de
Gouw and Warneke, 2007; Blake et al., 2006). The in-
clusion of an appropriate fraction of such common frag-
ment signals, when using equation (1) to determine the
analyte concentration, would clearly increase the ulti-
mate quantified signal.

ii. Uncertainty in the magnitude of thep◦

L values for
BCSOZ, C141CO2H and BCALBOC, governing their
transfer from the gas to the aerosol and wall phases,
such that the simulated composite gas phase profile is
an overestimate.

iii. Errors in the relative product yields of BCSOZ,
C141CO2H and BCALBOC, as represented in MCM
v3.2, leading to an over-representation of the more
volatile components.

Atmos. Chem. Phys., 12, 5275–5308, 2012 www.atmos-chem-phys.net/12/5275/2012/
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m/z 237: β-caryophyllon aldehyde (BCAL) is a major
first-generation product ofβ-caryophyllene oxidation. For
the conditions of the ACES experiments, it is simulated to be
produced significantly from both the O3- and OH-initiated
chemistry (as summarised in Fig. 10), with an overall yield
of about 30 %. Accordingly, them/z 237 MH+ ion, produced
from reaction of BCAL with both hydronium and hydrated
hydronium ions (Table 2), is one of the most abundant prod-
uct ion signals in the CIR-TOF-MS mass spectrum (Fig. 14).

A number of ions were observed to have temporal profiles
that showed some degree of correlation with them/z 237
trace, potentially resulting from daughter ions formed fol-
lowing fragmentation of the nascent MH+ ion. Of these the
m/z 219 ion had the strongest signal intensity, and its tempo-
ral profile had the strongest correlation with that ofm/z 237.
Owing to the presence of an aldehyde functional group in the
parent molecule,m/z 219 is assigned to be the dehydrated
daughter ion of protonated BCAL. The temporal profiles of
them/z 193 andm/z 175 ions also exhibited some degree of
correlation with them/z 237 trace, and are potentially BCAL
daughter ions, formed via acetylene (C2H2) loss from the
MH+(-H2O) ion, followed by further fragmentation of the
hydrocarbon chain (loss of C3H4), respectively. It should be
noted here that them/z 193 ion may also contain some contri-
bution from the fragment of a second-generation compound
(albeit one with a significantly lower yield than BCAL); this
will be discussed separately below. Further to this, in all ex-
periments them/z 207 trace was also observed to be well
correlated with that ofm/z 237 (as shown in Fig. 15). A
potential explanation for this could be MH+ fragmentation
via the loss of formaldehyde to produce the MH+(-HCHO)
daughter ion, following a mechanism analogous to HCOOH
loss from protonated carboxylic acids, as identified above for
C141CO2H. Owing to its potential coincidence with other
ions of the same nominal mass, them/z 207 ion will be dis-
cussed in further detail below.

Simulations of the time dependence of BCAL (Fig. 15)
show a profile with a shape which is in good agreement
with the observations, although the observations once again
show a slight time lag in the rise that is not apparent in
the simulated composite profile. In this case, however, in-
corporation of the (speculative) transient formation ofα-
hydroxyhydroperoxides leads to a clear improvement in the
simulation of the initial phase. As with them/z 253 species,
experimental BCAL measurements were quantified using
Eq. (1), assuming BCAL to comprise the MH+ ion, the
potential daughter fragments ofm/z 219 and 175 and the
C13 signals of m/z 238 and 220. As shown in Fig. 15,
the simulated peak BCAL mixing ratio was once again
found to be somewhat higher than that determined from the
measurements. The model predicts a peak mixing ratio of
about 9.5 ppb, whereas the (lower limit) measured value was
(4.5±1.9) ppb, for6 (m/z 238, 237, 220, 219, 175). This is
once again considered to be acceptable agreement, given the
uncertainties in CIR-TOF-MS quantification and those as-

sociated with simulating the gas phase profile (as indicated
above).

m/z 209: The spectral peak observed atm/z 209 may re-
sult from the MH+ ion of MCMv3.2 species C126CHO. As
shown in Figs. 3 and 10, C126CHO is generated from the
O3-initiated chemistry, via formation of the OH co-product,
BCALAO2. The simulated time dependence of C126CHO
(Fig. 15) generally shows a profile with a shape that is in
reasonable agreement with the observations for them/z 209
family (which is taken to include dehydrated daughter ions
at m/z 191 and 173), providing some support for this as-
signment. However, the predicted yield of C126CHO is com-
paratively small (about 1 % for the experimental conditions),
leading to a maximum simulated mixing ratio that is approx-
imately a factor of 40 lower than that of the structurally-
similar species, BCAL. In contrast, them/z 209 family
ion signal is less than a factor of two lower than that of
the corresponding set of ions in them/z 237 family, sug-
gesting either an exceptionally high CIR-TOF-MS sensi-
tivity to C126CHO, or additional contributing species dis-
playing a similar temporal profile. In this respect, Kanawati
et al. (2008) and Winterhalter et al. (2009) have reported
detection of the isobaric species, 4-(3,3-dimethyl-2-propyl-
cyclobutyl)-pent-4-enal (respectively denoted 208-E-C1 and
P3), which is not represented in MCM v3.2. As discussed
by Winterhalter et al. (2009), this species may potentially
be formed from elimination of CO2 from decomposition of
the Criegee intermediate, BCBOO (as shown in Fig. 16),
and may therefore contribute to the stabilised product yield
from the ozonolysis chemistry. Owing to its structural sim-
ilarity to C126CHO, it would be expected to display a sim-
ilar temporal profile. However, it is noted that Winterhalter
et al. (2009) also reported a comparatively low CO2 yield
of (3.8±2.8) % fromβ-caryophyllene ozonolysis, which is
already matched by other processes in the MCM v3.2 chem-
istry (see Sect. 2.1.1). This might therefore seem to place a
limit on the contribution tom/z 209 that can be made by 4-
(3,3-dimethyl-2-propyl-cyclobutyl)-pent-4-enal, unless other
formation mechanisms operate.

It should also be noted that there may be potential for
daughter ions produced from larger molecular mass species
to add some contribution to them/z 209 signal; the most sig-
nificant of which could include ions resulting from HCOOH
loss from C131CO2H (MH+m/z 255) and HCHO loss from
BCLKET (MH+ m/z 239). However, owing to the temporal
evolution of these compounds under the experimental con-
ditions employed, their fragment ions would primarily con-
tribute to them/z 209 signal towards the latter stages of the
experiment, and hence an increasing signal intentsity would
be expected rather than the profile shape that was observed
(see below).

m/z207: The spectral peak atm/z 207 can potentially be
accounted for by the MH+ parent ion ofβ-nocaryophyllone
(BCKET). It is formed from the OH-initiated chemistry
(see Figs. 4 and 10), such that its yield is predicted to be
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Fig. 16. Formation routes for additional products not in MCM
v3.2 that potentially contribute to CIR-TOF-MS signals atm/z 209
andm/z 211. 4-(3,3-dimethyl-2-propyl-cyclobutyl)-pent-4-enal has
been reported as a first-generation ozonolysis product by Kanawati
et al. (2008) (denoted 208-E-C1), and Winterhalter et al. (2009) (de-
noted P3).

approximately 6 % under the experimental conditions. The
simulated time dependence of BCKET is compared with that
observed for them/z 207 family (taken to include a well-
correlated dehydrated daughter ion atm/z 189) in Fig. 15.
The simulated profile reflects that BCKET has a high reac-
tivity towards O3 (by virtue of the retained endocyclic dou-
ble bond), such that its lifetime in the system is comparable
to that of β-caryophyllene. As a result, it reaches a (com-
paratively suppressed) peak mixing ratio of about 1 ppb after
less than 30 min, and decays to a low level by the end of
the experiment. This does not match that observed for the
m/z 207 family, indicating that there are likely to be other
significant contributions to this spectral peak. Such contri-
butions potentially result from either the formation of other
gas phase species of the same molecular mass in the system,
or from the fragmentation of larger ions to produce daughter
ions of this particularm/z ratio.

A number of potential contributors were identified. First,
as indicated in Table 3, the oxygenated species C131CO
and C137CO, both of molecular mass 224, were predicted
to form significantly under the conditions of the ACES ex-
periments. C131CO is a third-generation product formed
from the further oxidation of several second-generation prod-
ucts in MCM v3.2 (e.g., BCLKET), and C137CO is nom-
inally a first-generation product formed from the chemistry
of C137O2 in Fig. 3. However, the production of C137O2
is delayed under the ACES experimental conditions, because
of the temporary formation of C137PAN, such that C137CO
is simulated to accumulate gradually throughout the exper-

iment. Observation of the parent MH+ ion at m/z 225 pro-
vides support for the formation of C131CO and C137CO,
with the dehydrated daughter ions of each contributing to the
m/z 207 signal. In addition to these interferences, the mul-
tifuctional nitrate species C141NO3 (shown in Fig. 8) also
potentially contributes tom/z 207 by means of an MH+(-
HNO3) fragment (formed via the mechanisms discussed for
more abundant nitrates below).

The broken line in them/z 207 panel of Fig. 15 includes a
quantitative contribution to the simulated mixing ratio from
C131CO, C137CO and C141NO3. This confirms that they
are sufficiently abundant to provide some level of contribu-
tion to them/z 207 signal, and can at least partially help to ex-
plain the model-measurement discrepancy. Furthermore, as
discussed above, the nascent MH+ ions formed from proto-
nation of C141CO2H (m/z 253) and BCAL (m/z 237), may
fragment, to some extent, via respective losses of neutral
HCOOH and HCHO, leaving the C14H23O+ daughter ion of
m/z 207. As can be seen in Fig. 15, the ions ofm/z 207,
m/z 253 andm/z 237 possess temporal profiles that are qual-
itatively similar. Consequently, them/z 207 peak may po-
tentially contain contributions from molecular and fragment
ions from a number of different products, and it may there-
fore also represent a missing mass contribution when quanti-
fying the total signals for them/z 253 andm/z 237 families.

6.3.2 Higher or multi-generation products

Model-measurement comparisons for a number of higher- or
multi-generation oxygenated products are shown in Fig. 17.
These can be related directly to the major product ion signals
detected by CIR-TOF-MS, as follows:

m/z255: The set of MCM v3.2 species for which the par-
ent MH+ ion is atm/z 255 potentially has contributions from
several isomeric species, namely BCKSOZ, C131CO2H and
BCLKBOC. These species are simulated to be significant
second-generation products, formed from the O3- and OH-
initiated chemistry of several first-generation products (i.e.,
BCSOZ, C141CO2H, BCALBOC and BCKET: see Figs. 5–
7). A further isomer is the reported first-generation ozonol-
ysis product,β-caryophyllinic acid (C137CO2H). As dis-
cussed in Sect. 2.1.1, its formation by the MCM v3.2 chem-
istry is strongly inhibited in the presence of NOx, and it
makes a negligible simulated contribution (yield<10−8) for
the conditions of these experiments. As shown in Fig. 17,
the individual and collective simulated profiles for BCKSOZ,
C131CO2H and BCLKBOC show a progressive accumu-
lation throughout the experiment, in reasonable agreement
with that observed for the MH+ parent ion ofm/z 255. The
composite profile is dominated by BCKSOZ, which accounts
for over 95 % of the simulated total. This is because of the
high yield of its first-generation precursor, BCSOZ, in MCM
v3.2, and because of its relatively low propensity to transfer
to the aerosol phase or chamber wall.
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Figure 17. Example time profiles simulated for selected higher- or multi-generation 2 

oxygenated products (lines), compared with those for corresponding product ion signals 3 

measured using CIR-TOF-MS (points), during ACES photo-oxidation experiments. Measured 4 
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Fig. 17. Example time profiles simulated for selected higher- or multi-generation oxygenated products (lines), compared with those for
corresponding product ion signals measured using CIR-TOF-MS (points), during ACES photo-oxidation experiments. Measured signals
are presented as normalised counts per second (npcs), and the values for a givenm/z incorporate the corresponding daughter ion signals
identified in Table 3. Comparisons are for experiment 30-06-08 (m/z 223), 03-07-08 (m/z 255), 10-07-08 (m/z 239 and 211). C141CO is
formed partially during the first-generation of oxidation.

Being structurally analogous to them/z 253 species,
it is likely that BCKSOZ, C131CO2H and BCLKBOC
would fragment via similar mechanisms following ionisa-
tion, which could therefore potentially yield MH+(-H2O)
and MH+(-HCOOH) daughter ions (amongst others) of
m/z 237 andm/z 209, respectively, although the abundance
of the latter would be expected to be limited by the small
contribution made by C131CO2H to the composite simulated
profile.

However, it is clear that, compared to that ofm/z 253, the
m/z 255 MH+ signal is very weak (∼6 ncps) for a set of
species (dominated by BCKSOZ) that are simulated to ac-
cumulate to a mixing ratio of several ppb, and which collec-
tively represent the major contribution to second-generation
products ofβ-caryophyllene oxidation. Further to this, there
is no significant evidence that there is any major contribution
from a progressively accumulating compound of significant
gas phase mixing ratio to them/z 237 and 209 mass chan-
nels; both exhibit very different temporal profiles that are not

perturbed in the latter stages of the experiment, as would be
expected if them/z 255 species were contributing.

These findings may therefore indicate that BCKSOZ,
C131CO2H and BCLKBOC have a greater collective
propensity to transfer to the aerosol phase or chamber wall
than is represented here, which could result either from their
vapour pressures being systematically overestimated, or from
an overestimated contribution from the relatively volatile
dominant species BCKSOZ, of which 90 % is simulated to
be in the gas phase.

m/z 239: The MH+ parent ion atm/z 239 can be ac-
counted for byβ-nocaryophyllone aldehyde (BCLKET),
formed from the O3- and OH-initiated oxidation of both
BCAL and BCKET (see Figs. 6 and 7). Once again, the
BCLKET MH+ ion might be expected to fragment follow-
ing PTR ionisation to yield certain daughter ions. Consider-
ing its structure and its similarity to BCAL, BCLKET might
be expected to yield an MH+(-H2O) daughter ion ofm/z 221
and possibly daughter products ofm/z 195 and 181, re-
sulting from fragmentation of the hydrocarbon chain. Any

www.atmos-chem-phys.net/12/5275/2012/ Atmos. Chem. Phys., 12, 5275–5308, 2012



5298 M. E. Jenkin et al.: Development and chamber evaluation of the MCM v3.2 degradation scheme

potential contribution to the observedm/z 221 signal from
the BCLKET dehydrated daughter ion has not been consid-
ered here, owing to a combination of its co-incidence with
those ions discussed below for the major first generation hy-
droxynitrates (BCANO3, BCBNO3 and BCCNO3) and the
relatively small MH+ parent ion signal observed. Similarly,
the potential MH+(-HCHO) daughter ion ofm/z 209, as dis-
cussed above, has also not been considered for the same rea-
son. However, an ion ofm/z 195 was detected in the CIR-
TOF-MS spectra, with a temporal profile well correlated with
that of m/z 239 MH+ parent ion. As shown in Fig. 17, the
simulated profile for BCLKET shows a progressive accumu-
lation throughout the experiment, in agreement with that ob-
served for the sum of them/z 239 andm/z 195 signals (which
has approximately equal contributions from each).

As has been noted, the measured peak signal of the
BCLKET MH+ ion was relatively small (∼ 15 ncps) consid-
ering a simulated peak mixing ratio of∼ 3 ppb, particularly
when compared to the equivalent MH+ signals detected at
m/z 253 andm/z 237 for BCSOZ, C141CO2H and BCAL-
BOC and BCAL, respectively. Assuming that these struc-
turally similar compounds have similar CIR-TOF-MS sensi-
tivities, this finding once again indicates that the model may
be either overestimating the formation of BCLKET to some
extent and/or underestimating its partitioning to the aerosol
phase, or the chamber walls.

m/z223:The parent MH+ ion atm/z 223 can be accounted
for by the species C141CO. As shown in Figs. 3, 8 and 10,
C141CO is formed both as a relatively minor first-generation
ozonolysis product (about 1.5 % yield under the experimental
conditions); and also as a second-generation product from the
OH-initiated oxidation of BCAL (and other routes). The sim-
ulated profile (Fig. 17) thus shows both prompt and sustained
formation of C141CO, which is in good agreement with that
observed for the parentm/z 223 ion. A potential contribu-
tion to the observed signal from a dehydrated daughter ion at
m/z 205 (MH+(-H2O)) has not been considered here, owing
to its co-incidence with that of the reagentβ-caryophyllene.

m/z 211: The parent MH+ ion at m/z 211 can be re-
lated to the species C116CHO in MCM v3.2. As shown in
Figs. 6 and 7, C116CHO is formed from the O3- and/or
OH-initiated oxidation of both C126CHO and BCKET. The
simulated time dependence of C116CHO (Fig. 14) shows a
profile that is in good agreement with the observations for
the m/z 211 ion. Following the PTR fragmentation mecha-
nisms detailed above for other species, the multifunctional
C116CHO could be expected to fragment via dehydration
channels to produce MH+(-H2O) and MH+(-H2O)2 ions of
m/z 193 and 175, respectively. As has been discussed, the
m/z 193 channel may also be occupied by a fragment of
BCAL, which is present in significantly greater abundance
than C116CHO. Consequently, them/z 193 signal has not
been included in the analysis and evaluation ofm/z 211 and
C116CHO. However, a signal ofm/z 175 with a temporal
profile well correlated with that ofm/z 211 was measured,

providing some support for this assignment. Similarly to the
comparison of simulated C126CHO mixing ratios with the
m/z 209 family, discussed above, the simulated mixing ra-
tios of C116CHO appear to be consistently too small to ac-
count for the observedm/z 211 family signals, again sug-
gesting either a high sensitivity to C116CHO, or additional
contributing species displaying a similar temporal profile.
By analogy with the above discussion, the species 4-(3,3-
dimethyl-2-propyl-cyclobutyl)-4-oxo-butyraldehyde (shown
in Fig. 16), is isobaric with C116CHO, and may be formed
from the ozonolysis of BCKET or from further oxidation
of the first-generation product, 4-(3,3-dimethyl-2-propyl-
cyclobutyl)-pent-4-enal, detected by Kanawati et al. (2008)
and Winterhalter et al. (2009).

6.3.3 Oxidised nitrogen products

Simulations using the MCM v3.2 scheme also logically pre-
dict formation of a large number of multi-functional species
containing oxidised nitrogen groups, specifically PAN (-
C(=O)OONO2) and nitrate (-ONO2) groups, from the photo-
oxidation of β-caryophyllene/NOx mixtures. Although not
the most abundant, these multi-functional species neverthe-
less account for 12 of the top 30 gas phase species in the cur-
rent simulations, and would therefore be expected to make
a contribution to the major ion signals detected with CIR-
TOF-MS. A number of tentative assignments were made,
as summarised in Table 2, allowing some previously unas-
signed ion signals to be accounted for. For species containing
PAN groups, these assignments were based on the following
ion-molecule reaction sequence, characterized by Hansel and
Wisthaler (2000),

RC(= O)OONO2 + H3O+
→ RC(= O)OONO2 · H+

+ H2O (R3)

RC(= O)OONO2 · H+
+ H2O → RC(O)OOH· H+

+ HNO3 (R4)

such that the PAN species are essentially detected as the
corresponding protonated peracids (RC(O)OOH.H+). For
species containing nitrate groups, Aoki et al. (2007) found
that the product ion distribution for larger alkyl nitrates was
dominated by production of the corresponding carbenium ion
(R+), as follows:

RONO2 + H3O+
→ RONO2 · H+

+ H2O (R5)

RONO2 · H+
→ R+

+ HNO3 (R6)

Model-measurement comparisons for a number of multi-
functional oxidised nitrogen species are shown in Fig. 18,
using assignments based on the above reasoning:

m/z 271: This ion signal can be attributed to the
MH+

·(H2O)(-HNO3) ion of the isomeric PANs, C131PAN
and C137PAN, as shown in Fig. 18. C137PAN is formed
as a first-generation product from the reaction of NO2 with
the acyl peroxy radical, C137CO3, shown in Fig. 3, whereas
C131PAN is formed as a third-generation product from the
OH-initiated oxidation of BCLKET. The resultant composite
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Fig. 18.Example time profiles simulated for multi-functional products containing oxygenated nitrogen groups (lines), compared with those
for corresponding product ion signals measured using CIR-TOF-MS (points), during ACES photo-oxidation experiments. Measured signals
are presented as normalised counts per second (npcs), for the daughter ions identified in Table 3. Comparisons are for experiments 04-07-08
(m/z 271 and 133) and 10-07-08 (m/z 269 and 221). “BCNO3 isomers” is used to denote the collective population of BCANO3, BCBNO3
and BCCNO3.

time profile (Fig. 18) shows a progressive increase, gener-
ally dominated by C137PAN, but with C131PAN contribut-
ing towards the end of the experiment. Although scattered,
the observed weakm/z 271 ion signal corresponding to the
MH+

·(H2O)(-HNO3) ion, is broadly consistent with the sim-
ulated behaviour.

m/z269:This ion signal potentially has contributions from
the MH+

·(H2O)(-HNO3) fragment ion of C141PAN, and
the MH+(-HNO3) fragment ions of the hydroxynitrates BC-
SOZNO3 and C151NO3. As shown in Figs. 7 and 8, these
species are formed as second-generation products from the
OH-initiated oxidation of BCAL, BCSOZ and C141CO2H,
respectively. In practice, C151NO3 makes a negligible con-
tribution to the composite time profile (Fig. 18), as it is sim-
ulated to be essentially exclusively in the condensed SOA
phase. Although BCSOZNO3 is also simulated to be mainly
(60 %) in the SOA phase, and significantly (up to 25 %) in the
wall phase, it has a generally high abundance in all phases
because of the major contribution made by its precursor, BC-
SOZ, to the first-generation product distribution. Once again,

the observedm/z 269 profile is broadly consistent with the
simulated behaviour.

m/z 221: This ion signal potentially has a contribution
from MH+(-HNO3) fragment ions of the first-generation hy-
droxynitrates, BCANO3, BCBNO3 and BCCNO3. As dis-
cussed above, and shown in Figs. 4 and 10, these species are
formed from the OH-initiatedβ-caryophyllene chemistry in
conjunction with radical termination. Their estimated over-
all yield for the conditions of these experiments is about
5 %. The observed profile for them/z 221 family (shown
in Fig. 18) is taken to include a (well-correlated) contribu-
tion from a dehydrated daughter ion ofm/z 203, the forma-
tion of which is assumed to be facilitated by the presence
of the adjacent -OH groups in the carbenium ions. The sim-
ulated composite time dependence of BCANO3, BCBNO3
and BCCNO3 shows a profile with a shape that is in fair
agreement with the observations, providing some support for
the assignment. However, in comparison with the signals for
the major ions discussed above, the simulated peak mixing
ratio of the hydroxynitrates (0.8 ppb) is possibly too small
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to account fully for the observedm/z 221 family ion signal.
As discussed above, BCLKET may potentially fragment fol-
lowing ionisation to produce a daughter ion ofm/z 221. It
was noted above that the intensity of the BCLKET MH+

signal (m/z 239) was relatively low compared with those
of structurally similar species in the MCMv3.2 scheme, and
any contribution from the daughter fragment to them/z 221
channel is therefore expected to be very small under the ex-
perimental conditions employed. Furthermore, them/z 221
temporal profile is not consistent with having any signifi-
cant contribution from a continually accumulating product
signal, as is expected for BCLKET. A further potential con-
tribution might arise from the formation ofβ-caryophyllene
oxide (C15H24O) as a first generation product in the sys-
tem, this currently not being represented in MCM v3.2.β-
caryophyllene oxide would likely form a parent MH+ ion of
m/z 221 and, as a relatively volatile product with a residual
exocyclic double bond, would be expected to display a tem-
poral profile similar to that simulated for BCSOZ (Fig. 15),
and therefore reasonably similar to them/z 221 trace. Calo-
girou et al. (1997) and Jaoui et al. (2003) reported evidence
for β-caryophyllene oxide formation as aβ-caryophyllene
ozonolysis product, with the latter study reporting a yield of
1 %. However, it was apparently not detected in the more re-
cent studies of Kanawati et al. (2008) and Winterhalter et
al. (2009).

m/z 133: This ion signal potentially has a contribution
from C46PAN. This is a C5 PAN, formed as a relatively
minor product in several generations, e.g., from the further
chemistry of C137O2 in Fig. 3., and from the further chem-
istry of C142O2 in Fig. 8. The simulated profile (Fig. 18) thus
shows evidence of prompt and sustained formation, which is
broadly consistent with the observed profile for the relatively
weak ion signal.

6.3.4 Other products

Model-measurement comparisons for some further tenta-
tive assignments are shown in Fig. 19, which allow other-
wise unassigned ions detected by CIR-TOF-MS to be re-
lated to gas phase species simulated to be in the top 30. The
two bifunctional acids (CHOC2CO2H and HCOCH2CO2H)
are assumed to be detected as dehydrated parent MH+

ions, and the C11 PAN species, C1011PAN, is assumed
to be detected following dehydration of the corresponding
RC(=O)OOHH+ ion. As shown in Fig. 19, the simulated
profiles are not inconsistent with the observations, within
the observed level of scatter. The tentative observation of
C1011PAN and HCOCH2CO2H, provides some support for
their related formation from the ozonolysis of C141CO2H,
as shown in Fig. 5 (C1011PAN also being produced from
analogous chemistry of BCAL). CHOC2CO2H is formed as
a minor first-generation product from the further chemistry
of C137O2 (in Fig. 3), and also via an analogous reaction
sequence following the ozonolysis of BCKET.

 72 

0.00

0.02

0.04

0.06

0 1 2 3
Time (hours)

H
C

O
C

H
2C

O
2H

 (p
pb

)

0

20

40

60

nc
ps

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3
Time (hours)

C
H

O
C

2C
O

2H
 (p

pb
)

0

10

20

30

40

nc
ps

0.00

0.04

0.08

0.12

0 1 2 3
Time (hours)

C
10

11
P

A
N

 (p
pb

)

0

10

20

30

40

50

nc
ps

m/z 197

m/z 71

m/z 85

C1011PAN 
(mass 259)

CHOC2CO2H 
(mass 102)

HCOCH2CO2H 
(mass 88)

O

OH

O

 1 

Figure 19. Example time profiles for additional products simulated to be relatively abundant 2 

in the gas phase (lines), compared with tentative product ion signals measured using CIR-3 

TOF-MS (points), during ACES photo-oxidation experiments. Measured signals are presented 4 

as normalised counts per second (npcs), for the daughter ions identified in Table 3. 5 

Comparisons are for experiments 04-07-08 (m/z 197), 10-07-08 (m/z 85) and 03-07-08 (m/z 6 

71). Structures for C1011PAN and HCOCH2CO2H shown in Fig. 5. 7 

Fig. 19. Example time profiles for additional products simulated
to be relatively abundant in the gas phase (lines), compared with
tentative product ion signals measured using CIR-TOF-MS (points),
during ACES photo-oxidation experiments. Measured signals are
presented as normalised counts per second (npcs), for the daughter
ions identified in Table 3. Comparisons are for experiments 04-07-
08 (m/z 197), 10-07-08 (m/z 85) and 03-07-08 (m/z 71). Structures
for C1011PAN and HCOCH2CO2H shown in Fig. 5.

6.3.5 Other studies

The chamber photo-oxidation ofβ-caryophyllene/NOx has
also previously been studied by Lee et al. (2006b). They re-
ported detection of a number of product ions using PTR-MS,
and presented examples of their temporal dependences, in-
cluding many of the product ions discussed above and listed
in Table 3 (i.e.,m/z 253, 235, 223, 219, 211, 209, 207 and
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Figure 20. Simulations designed to be indicative of the conditions of the photo-oxidation 2 

experiment reported in Figs. 1 and 3 of Lee et al. (2006b); with initial mixing ratios of 42 ppb 3 

E�caryophyllene, 16 ppb NO, 9.6 ppb NO2 and 6.4 ppb HONO. Simulated profiles for NO2 4 

and NOx are assumed to include quantitative contributions from HONO and PANs (see Sect. 5 

4.1). Product profiles can be compared with m/z data in Fig. 3 of Lee et al. (2006b), as 6 

follows: BCKET with m/z 207, 189; C116CHO with m/z 211; C141CO with m/z 223; BCAL 7 

with m/z 219; and sum of mass 252 with m/z 253, 235. Broken line in BCKET panel is the 8 

result of a senstivity test considering potential interfering signals (see text).  9 

Fig. 20. Simulations designed to be indicative of the conditions of the photo-oxidation experiment reported in Figs. 1 and 3 of Lee et
al. (2006b); with initial mixing ratios of 42 ppbβ-caryophyllene, 16 ppb NO, 9.6 ppb NO2 and 6.4 ppb HONO. Simulated profiles for NO2
and NOx are assumed to include quantitative contributions from HONO and PANs (see Sect. 4.1). Product profiles can be compared with
m/z data in Fig. 3 of Lee et al. (2006b), as follows: BCKET withm/z 207, 189; C116CHO withm/z 211; C141CO withm/z 223; BCAL
with m/z 219; and sum of mass 252 withm/z 253, 235. Broken line in BCKET panel is the result of a senstivity test considering potential
interfering signals (see text).

189). An illustrative simulation of their experimental con-
ditions was therefore carried out, using the chamber model
with some variations as described above in Sect. 4.1. Lee et
al. (2006b) included an unspecified mixing ratio of reagent
HONO as a photolytic source of OH radicals to initiate the

chemistry in the system. HONO was reported to contribute to
the measured NO2 signal, and the results of sensitivity tests
carried out here imply that it needed to account for about
40 % of the NO2 signal at the start of the experiment to allow
simulation ofβ-caryophyllene, NOx and O3 profiles that are
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Figure 21. Simulated SOA composition for ACES photo-oxidation experiment 03-07-08, 2 

using the MCM v3.2 scheme, with a 6% yield of OH (and co-radicals) from E�caryophyllene 3 

ozonolysis. The upper panel shows the simulated time dependence of the contributions of first 4 

and higher generation products to SOA. The lower panel shows the contributions of the top 13 5 

simulated contributors, averaged over the experiment, these accounting for a 92% of the total 6 

simulated SOA mass loading. N.B.: C143NO3, C133NO3, C1310NO3, C133CO and 7 

C143CO have minor first-generation contributions, but are formed predominantly as higher 8 

generation products. The displayed figures indicate the molecular masses of the products. 9 

Fig. 21. Simulated SOA composition for ACES photo-oxidation experiment 03-07-08, using the MCM v3.2 scheme, with a 6 % yield of
OH (and co-radicals) fromβ-caryophyllene ozonolysis. The upper panel shows the simulated time dependence of the contributions of
first and higher generation products to SOA. The lower panel shows the contributions of the top 13 simulated contributors, averaged over
the experiment, these accounting for∼92 % of the total simulated SOA mass loading. N.B.: C143NO3, C133NO3, C1310NO3, C133CO
and C143CO have minor first-generation contributions, but are formed predominantly as higher generation products. The displayed values
indicate the molecular masses of the products.

broadly comparable with those observed (see Fig. 20). The
simulations showed a reduced sensitivity to the primary OH
yield from the reaction of O3 with β-caryophyllene (POH),
owing to the use of reagent HONO as a primary source of OH
radicals. However, for consistency with the appraisal of the
ACES experiments above, these simulations were also car-
ried out with a value of 6 % for POH. Under these conditions,
β-caryophyllene removal was simulated to be 62 % due to re-

action with O3 and 38 % due to reaction with OH (compared
with 60 % and 40 %, respectively, with POH = 10 %).

Figure 20 shows the simulated profiles for a series of
MCM v3.2 species, which were assigned above to the same
set of product ions as detected by Lee et al. (2006b). A simu-
lated profile for HCHO is also shown. The shapes of these
profiles are all entirely consistent with those presented in
Fig. 3 of Lee et al. (2006b), providing additional support for
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the series of assignments discussed above. In contrast to the
ACES comparisons above, the shape of the simulated pro-
file for β-nocaryophyllone (BCKET) is in good agreement
with that reported form/z 207 and 189 by Lee et al. (2006b),
showing a peak mixing ratio about 30 minutes into the exper-
iment, followed by a rapid decay comparable to that observed
for β-caryophyllene. As discussed above, the lifetimes of
these species are expected to be similar, owing to the re-
tention of the reactive endocyclic double bond in BCKET
and its associated high reactivity towards O3. To account
for this rapid decay, the present simulations suggest that a
few ppb of O3 must be present in the early stages of the ex-
periment for bothβ-caryophyllene and BCKET to be sig-
nificantly shorter-lived than the other detected products in
the system (as was observed); and indeed it is not possible
to suppress simulated O3 formation with significant opera-
tion of the OH-initiated chemistry in the presence of NOx.
It is noted, however, that the O3 profile reported by Lee et
al. (2006b) shows it to be completely suppressed for the first
90 minutes of the experiment. This one aspect of the results
could not be recreated or explained by the present simula-
tions.

The differences in the shapes of them/z 207 temporal
profile reported by Lee et al. (2006b) and that observed in
the ACES experiments (Fig. 15) suggest that the potentially
interfering contributions discussed above in Sect. 6.3.1 are
less important for the experimental conditions employed by
Lee et al. (2006b). Because of the significant formation of
C141CO2H and BCAL under both sets of chamber experi-
mental conditions, the differences in any interferences from
the respective fragment ions, MH+(-HCOOH) and MH+(-
HCHO), can only be attributed to differences in the PTR-
MS operating conditions, leading to less significant forma-
tion of these fragments in the Lee et al. (2006b) study.
However, the potentially interfering contributions from the
species C131CO, C137CO and C141NO3 (as shown for the
ACES experiments in Fig. 15), are reduced to some extent
under the chamber experimental conditions employed by Lee
et al. (2006b), as shown in the BCKET panel of Fig. 20.
Noting that BCKET is formed exclusively from the OH-
initiated chemistry, and these interfering species at least par-
tially from the O3-initiated chemistry, this can be explained
partially by the greater importance of the OH-initiated chem-
istry under the conditions employed by Lee et al. (2006b),
compared with those in the ACES experiments. However,
the generally higher NO2/NO ratios throughout the Lee et
al. (2006b) experiment also tend to inhibit the formation of
C131CO C137CO and C141NO3, through favouring the for-
mation of the related PAN species, C131PAN, C137PAN and
C141PAN and extending their lifetimes (e.g., as shown for
C141PAN in relation to C141NO3 in Fig. 8).

6.4 Simulated composition of SOA

Figure 21 shows the time evolution of the simulated charac-
terizable SOA mass loading for the example of ACES photo-
oxidation experiment 03-07-08, with the collective contribu-
tions made by first- and higher-generation products identi-
fied. Consistent with the above appraisal of the gas phase
components using ACES CIR-TOF-MS data, this simulation
assumes that POH = 6 %, [wall]eff = 1.5 mg m−3 and that par-
titioning into the SOA phase is constrained by the observed
mass loadings (i.e., as in Fig. 12, simulation (iii)). The re-
sults logically show an initial dominant contribution from
first-generation products, but with a progressively increas-
ing contribution from higher-generation products, which are
simulated to account for over 80 % of the SOA by the end
of the experiment. The SOA composition becomes gradu-
ally more oxidised, with an average molecular formula of
C14.74H23.65O3.84N0.31 (MW = 266.6) after 30 minutes, and
C14.21H22.90O5.64N0.62 (MW = 292.7) by the end of the sim-
ulation.

The top 13 simulated contributors, averaged over the sim-
ulation, are also shown in Fig. 21, with these collectively ac-
counting for 92 % of the total SOA mass loading. Similarly
to the dark ozonolysis conditions considered above (Sect. 5),
two of the most abundant simulated contributors under these
photo-oxidation conditions are the first-generation prod-
uct, β-caryophyllonic acid (C141CO2H), and the second-
generation product,β-nocaryophyllonic acid (C131CO2H),
which collectively account for just over 40 % of the aver-
aged SOA composition. C141CO2H has been reported to be
an important SOA contributor under photo-oxidation condi-
tions by Chan et al. (2011) and recently, for the same series of
ACES experiments considered here, by Alfarra et al. (2012).
These studies also reported detection of C131CO2H and/or
its isomeric first-generation product,β-caryophyllinic acid
(C137CO2H). As discussed in Sect. 2.1.1, formation of
C137CO2H is strongly-inhibited in the presence of NOx in
the MCM v3.2 chemistry, and it makes a negligible simulated
contribution for the conditions of these experiments.

The present simulations also predict a number of multi-
functional carbonyls or hydroxycarbonyls to be in the top 20
SOA contributors (with a total contribution of about 6 %).
These include the doubly ring-opened species C133CO and
C143CO (shown in Fig. 21), and alsoβ-nocaryophyllon
aldehyde (BCLKET) andβ-caryophyllon aldehyde (BCAL).
These species thus show some overlap with those reported by
Chan et al. (2011) and Alfarra et al. (2012), or are isomeric
to or isobaric with species reported in those studies.

The remaining significant SOA contributors are simulated
to be multifunctional species containing oxidised nitrogen
groups, with these species accounting for just over 50 % of
the averaged SOA composition. Their abundance increases
throughout the simulation, with the oxidised nitrogen groups
themselves contributing 7.6 % to the SOA mass after 30
minutes, and 13.6 % by the end of the simulation (average
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10.9 %). This includes contributions from nitrate (-ONO2)
and peroxynitrate (-OONO2) groups, which account for av-
erages of 8.7 % and 2.2 % of the SOA mass, respectively. It
is noted that this level of contribution of nitrate groups is
comparable with the range 6–15 % reported by Rollins et
al. (2010) for SOA formed from the photo-oxidation ofα-
pinene, 3-carene, limonene and tridecane in the presence of
NOx. The most important simulated oxidised nitrogen con-
tributors are shown in Fig. 21. These show some structural
similarities to the series of species reported recently by Chan
et al. (2011), but generally lie in a lower range of molec-
ular weight, possibly due in part to the role of condensed
phase reactions (as described by Chan et al., 2011). How-
ever, evidence for the formation of C151NO3 (and/or pos-
sibly its isomer BCSOZNO3) was reported, with a hydrated
form of C151NO3 making a notable contribution at lower
aerosol acidity (Chan et al., 2011).

7 Summary and conclusions

A degradation mechanism forβ-caryophyllene has recently
been released as part of version 3.2 of the Master Chem-
ical Mechanism (MCM v3.2), describing in moderate de-
tail the gas phase chemical processes involved in its com-
plete atmospheric oxidation, as initiated by reaction with O3,
OH radicals and NO3 radicals. The complete mechanism
consists of 1626 reactions of 591 closed-shell and radical
species, and incorporates kinetic and mechanistic informa-
tion reported in a number of experimental and theoretical
studies ofβ-caryophyllene degradation (see Sect. 2). This
information was supplemented by the rules summarised in
the MCM construction protocols (Jenkin et al., 1997; Saun-
ders et al., 2003), and the mechanism necessarily contains a
number of associated simplification measures to help limit
its size. The mechanism can be viewed, and downloaded in
a variety of formats, at the MCM website (http://mcm.leeds.
ac.uk/MCM).

The performance of the mechanism has been evaluated
in chamber simulations in which the gas phase chemistry
was coupled to a representation of the gas-to-aerosol parti-
tioning of 280 multi-functional oxidation products. This ex-
ercise considered data from a number of chamber studies
of either the ozonolysis ofβ-caryophyllene, or the photo-
oxidation of β-caryophyllene/NOx mixtures, in which de-
tailed product distributions have been reported. The most ex-
tensive evaluation made use of the results of a recent series
of photo-oxidation experiments performed in the University
of Manchester aerosol chamber, also reported here, in which
a comprehensive characterization of the temporal evolution
of the organic product distribution in the gas phase was car-
ried out, using CIR-TOF-MS, in conjunction with measure-
ments of NOx, O3 and SOA mass loading. The CIR-TOF-
MS measurements allowed approximately 45 time-resolved
product ion signals to be detected, which were assigned on

the basis of the simulated temporal profiles of the more
abundant MCM v3.2 species, and their probable fragmen-
tation patterns. The evaluation studies demonstrate that the
MCM v3.2 mechanism provides an acceptable description
of β-caryophyllene degradation under the chamber condi-
tions considered, with the temporal evolution of the observ-
ables identified above generally being recreated within the
uncertainty bounds of key parameters within the mechanism.
They also illustrate that the mechanism is necessarily not
exhaustive, such that the chemistry may need to be supple-
mented with additional processes to explain the formation of
all species that may be observed in experimental studies, or
to recreate their precise temporal dependences.

This work has highlighted a number of areas of uncertainty
or discrepancy, where further experimental and/or theoretical
investigation would be valuable to help interpret the results
of chamber studies and improve mechanistic understanding.
These include the following specific areas:

– Quantification of the yield and stability of the secondary
ozonide (BCSOZ), formed fromβ-caryophyllene
ozonolysis, and elucidation of the details of its fur-
ther oxidation, including whether the products retain
the “ozonide” functionality. Because of the importance
assigned to BCSOZ formation in the first-generation
chemistry, and the relative volatility of species contain-
ing the ozonide functionality, these species were simu-
lated to dominate the gas-phase profiles corresponding
to a number of detected CIR-TOF-MS ion signals. Their
yield and persistence therefore also influences the SOA
forming potential ofβ-caryophyllene. It is noted that,
if the high rate coefficients reported very recently for
the reactions of CH2OO with NO2 and (possibly) H2O
(Welz et al., 2012), also apply to the Criegee interme-
diates, BCAOO and BCBOO, the formation of BCSOZ
would be more inhibited than simulated here using the
rate coefficients currently applied in MCM v3.2;

– Investigation of the impact of NOx on the β-
caryophyllene ozonolysis mechanism, in particular
its effect on the formation ofβ-caryophyllinic acid
(C137CO2H), and elucidation of the details of its for-
mation mechanism. The provisional gas phase mech-
anism applied in MCM v3.2 predicts inhibition of
C137CO2H formation in the presence of NOx, because
it requires significant operation of peroxy radical per-
mutation reactions and/or reactions of peroxy radicals
with HO2;

– Routine independent identification ofβ-caryophyllinic
acid (C137CO2H), and its potentially significant iso-
merβ-nocaryophyllonic acid (C131CO2H). The simu-
lations presented above predict C131CO2H to be an im-
portant second-generation product under both ozonoly-
sis and photo-oxidation conditions, and a major SOA
component.
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– More precise quantification of the primary yield of
OH, and the co-radicals BCALAO2, BCALBO2 and
BCALCO2, formed fromβ-caryophyllene ozonolysis.
OH formation leads to secondaryβ-caryophyllene re-
moval in chamber systems. This is amplified in the pres-
ence of NO, such that the chemistry in photo-oxidation
systems is potentially very sensitive to the primary
OH yield. The chemistry of the co-radicals generates
a number of multifunctional products, some of which
were simulated to make important contributions to first-
generation SOA.

– Quantification of the yields of the first-generation hy-
droxy nitrates (BCANO3, BCBNO3 and BCCNO3)
from the OH-initiated chemistry in the presence of NOx.
The formation of these species controls the chain-length
of the OH-initiated chemistry, which influences the tem-
poral development of photo-oxidation systems. The hy-
droxy nitrates were also simulated to be important com-
ponents of SOA.

In addition, further studies in general that improve the iden-
tification and quantification of products formed from both
ozonolysis and photo-oxidation would be valuable, including
confirmation of the simulated formation of multifunctional
species containing hydroperoxide groups, and their impor-
tant contribution to SOA under NOx-free conditions.
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