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Abstract. Gas-phase ethene ozonolysis experiments were
conducted at room temperature to determine formic acid
yields as a function of relative humidity (RH) using the
integrated EXTreme RAnge chamber-Chemical Ionisation
Mass Spectrometry technique, employing a CH3I ionisation
scheme. RHs studied were<1, 11, 21, 27, 30 % and formic
acid yields of (0.07±0.01) and (0.41±0.07) were determined
at <1 % RH and 30 % RH respectively, showing a strong
water dependence. It has been possible to estimate the ra-
tio of the rate coefficient for the reaction of the Criegee bi-
radical, CH2OO with water compared with decomposition.
This analysis suggests that the rate of reaction with water
ranges between 1×10−12–1×10−15 cm3 molecule−1 s−1 and
will therefore dominate its loss with respect to bimolecular
processes in the atmosphere. Global model integrations sug-
gest that this reaction between CH2OO and water may dom-
inate the production of HC(O)OH in the atmosphere.

1 Introduction

Organic acids are ubiquitous in the gas and aerosol phase,
and are common constituents of global precipitation (Keene
and Galloway, 1983). Organic acids have been measured in
urban, rural, marine and remote areas (Talbot et al., 1988;
Chebbi and Carlier, 1996; Kawamura et al., 2001). The con-
tribution of organic acids to the acidity of precipitation and
subsequent effects on aquatic and terrestrial ecosystems has
been documented by Keene and Galloway (1986). Formic
and acetic acid can dominate free acidity of precipitation
thereby having an influence on pH-dependent chemical reac-
tions and even OH cloud chemistry (Jacob et al., 1986). Low
molecular weight organic salts – presumably the product of
organic acid dissolution – are present in the fine fraction of
aerosols, whose physical properties, namely hygroscopicity,
possess relatively low critical supersaturations, allowing the
activation of cloud droplets and subsequently affecting total
indirect radiative forcing (Yu, 2000).

Sources of carboxylic acids include biogenic and an-
thropogenic primary emissions, biomass burning and
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hydrocarbon oxidation, though their relative fluxes are
poorly constrained (Chebbi and Carlier, 1996; Paulot et al.,
2011). The major sinks of carboxylic acids are dry and wet
deposition as a result of their low reactivity towards OH and
NO3. However, the chemical loss via reaction with OH is
poorly constrained resulting from the uncertainty in the re-
ported rate coefficient (Atkinson et al., 2006). The modelled
atmospheric lifetime of formic acid has been calculated to be
3.2 days (Paulot et al., 2011).

Global models under predict formic acid concentrations
(von Kuhlmann et al., 2003; Rinsland et al., 2004; Paulot
et al., 2011) especially in the marine boundary layer where
[HC(O)OH] can be underestimated by a factor of 10–50, this
discrepancy has been attributed to missing sources such as
higher biogenic emissions during the growing season (Rins-
land et al., 2004) and ageing of organic aerosols (Paulot et al.,
2011). Also, the oxidation of VOC precursors leading to the
production of formic acid has been suggested to be a signif-
icant source (Arlander et al., 1990), for instance the ozonol-
ysis of ethene. Ethene emissions have been estimated to be
about 15 Tg yr−1 (EDGAR, 1996) with about 162 Gmol yr−1

from the oceans (Paulot et al., 2011), and the presence of a
major formic acid-producing reaction channel would there-
fore be of major importance to atmospheric chemical mod-
elling.

This study focuses on the production of formic acid from
ethene ozonolysis. Intuitively, monitoring the products of
this reaction ought to be easier than many ozonolysis re-
actions since the first-generation products possess a carbon
number of one and are likely to be of maximum volatil-
ity. However, there still remain considerable inconsisten-
cies in formic acid yields reported in the literature (Neeb
et al., 1997; Wolff et al., 1997; Orzechowska and Paulson,
2005). Ozonolysis proceeds via a 1,3-cycloaddition across
the olefinic bond to produce a primary ozonide, the decom-
position of which forms a carbonyl moiety and a Criegee bi-
radical each with unit yield (Scheme 1).

It is the fate of the Criegee biradical that determines the
end product yield and this has provoked much attention in the
atmospheric chemistry community (Johnson and Marston,
2008 and references therein). Here the mechanisms high-
lighted shall focus on acid production pathways. It was first
suggested by O’Neal and Blumstein (1973) that the Criegee
biradical may isomerise to form a dioxirane intermediate,
leading to the formation of carboxylic acids, as detailed by
Orzechowska and Paulson (2005), this hypothesis is sup-
ported by the theoretical calculations of Cremer et al. (1998)
(Scheme 2).

Formic acid may also be produced from bimolecular re-
actions. Calvert et al. (1978) suggested that in the pres-
ence of water, acid production can be significantly enhanced
via reaction of the stabilised Criegee radical with water
(Scheme 3). The formation of HC(O)OH via Scheme 3
has been further supported by the theoretical results of
Hatakeyama et al. (1981), Crehuet et al. (2001) and Anglada
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Scheme 1. A schematic diagram of the reaction mechanism of
ozonolysis of alkenes.
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Scheme 2. A schematic diagram of the formation of HC(O)OH un-
der dry conditions.

et al. (2002). Minor pathways such as cross reactions of reac-
tive intermediates can form secondary ozonides, for instance
reaction between Criegee biradicals and carbonyls, which
have been suggested to lead to the formation of acids (Neeb
et al., 1996).

Despite the importance of these formic acid-producing
channels, there have been relatively few experimental deter-
minations of HC(O)OH yields from the ozonolysis of ethene.
Wolff et al. (1997) and Orzechowska and Paulson (2005)
report high formic acid yields (0.36) for ethene ozonolysis
conducted in dry conditions compared with that of Neeb et
al. (1997) (0.01) (see Table 1). Discrepancies in yields re-
ported under humid conditions also exist as Neeb and co-
workers obtain 0.42 at 65 % RH yet Orzechowska and Paul-
son report 0.33 at 65 % RH. Wolff et al. (1997) and Orze-
chowska and Paulson (2005) both use indirect analytical
techniques to quantify acid yields, whereas Neeb et al. (1997)
use FTIR. All the techniques have the potential for signifi-
cant errors as a result of sampling efficiency, spectral overlap
and low sensitivity. This study aims to resolve the discrep-
ancy by quantifying acid yields using the highly selective and
sensitive technique, Chemical Ionisation Mass Spectrometry
(CIMS).

2 Experimental

Experiments were conducted in the dark in the 123 L
Teflon®-coated EXTRA chamber, described in detail else-
where (Leather et al., 2010, 2011 and McGillen et al., 2011),
and shown in Fig. 1. FVMQ o-ring seals within the end
flanges ensured that the chamber was leak tight, whilst re-
inforcement ribs afford maximum pressures of 3750 Torr.
Seven sample ports are incorporated into the end flanges,
to enable simultaneous sampling by a range of analytical
techniques. The EXTRA chamber can be operated over
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Table 1. Formic acid yields previously reported, to the best of our
knowledge.

RH % HC(O)OH yield

0 0.36±0.05 Wolff et al. (1997)
0.36±0.07 Orzechowska and Paulson (2005)
0.01 Neeb et al. (1997)

20 0.4±0.13 Wolff et al. (1997)
65 0.42 Neeb et al. (1997)
65 0.33±0.06 Orzechowska and Paulson (2005)

the temperature range 193–473 K and pressure range 1–
3750 Torr. Temperature control also allowed two day bake
out cleaning procedures to be performed between experi-
ments. Despite the volume of EXTRA being modest (sur-
face:volume = 0.12) a combination of 100 % Teflon® sur-
faces, and temperature and pressure control results in a sys-
tem of minimal wall losses with respect to oxidants and con-
densable hydrocarbons.

Quantitative ozone decay measurements were taken at 10 s
time intervals, after allowing 5 min mixing time. Absolute
ozone concentrations were measured using a Monitor Labs
Inc. Ozone Analyzer (model 8810) through UV absorp-
tion at 254 nm (supplied from a mercury discharge lamp).
Ozone was produced by flowing purified compressed air or
oxygen (BOC, zero grade) through a UVP ozone generator
(97-0067-02) into the chamber containing an atmosphere of
nitrogen (BOC, oxygen free). The first-order decay rate of
ozone with respect to walls and thermal decomposition us-
ing this continuous sampling configuration was found to be
6.94×10−6 s−1 and thus were considered negligible with re-
spect to the timescale of the experiments.

Quantitative concentration-time profiles of HC(O)OH
were determined using CIMS. The CIMS was coupled to the
EXTRA chamber through a sample port via 70 cm of 1/8′′

o.d. PFA tubing. CIMS sampled through a critical orifice at a
flow rate of 0.8 SLM at 760 Torr and∼296 K with a residence
time of 0.1 s in the sample line preceding the ion molecule
region.

HC(O)OH was detected using I− as the reagent ion. I−

was generated by combining a 1.5 STP l min−1 flow of N2
and a 1 sccm flow of 0.5 % CH3I/H2O/N2 gas mixture and
passing it through a Po(210) Nuclecel ionizer (NRD Inc.).
HC(O)OH was ionised by I− via an adduct reaction,

I− ·H2On +HC(O)OH→ HC(O)OH· I− ·H2On (1)

which enabled formic acid to be detected selectively at
m/z = 171.65 (Slusher et al., 2004).

Ions were detected with a quadrupole mass spectrometer
in a three-stage differentially pumped vacuum chamber, as
shown in Fig. 2. A sample of the ion molecule gas flow
containing reactant ions is drawn into the collision dissoci-
ation chamber through a 0.38 mm aperture which was held at
a potential of−0.17 V to focus charged reactant molecules.
The collision dissociation chamber was pumped by a molec-
ular drag pump (Alcatel MDP-5011) backed by a scroll pump
(ULVAC DISL-100) and held at approximately 20 Torr. The
ions were further focused by an octopole ion guide, stainless
steel with a 1.00 mm aperture held at−0.36 V and passed
into a second chamber containing the further octopole ion
guide and passed into the rear chamber via a stainless steel
plate with a 1.00 mm aperture held at−0.48 V which con-
tained the quadrupole mass filter (ABB Extrel, Merlin). This
second and rear chamber were each pumped by a turbo-
molecular pump (Varian 81-M) backed by the molecular drag
pump (Alcatel MDP-5011). Under typical operating con-
ditions the rear chamber was held at a pressure of approxi-
mately 9×10−6 Torr. Ions were detected using a channeltron
(Dtech 402A-H) via negative ion counting.

Gaseous reagents were added to the chamber at a known
flow rate and duration using calibrated 1179 MKS mass flow
controllers. The chamber contained an atmosphere of nitro-
gen preceding the addition of reagent gases. Ethene was in-
troduced from a dilute ethene/nitrogen gas mixture. Ozone
was produced by flowing oxygen through a UVP ozone gen-
erator (97-0067-02).

For the addition of water or formic acid, known vol-
umes were injected into a Pyrex impinger, becoming
volatilised by exposure to the evacuated chamber, assisted
by an additional nitrogen carrier gas purge. The ini-
tial reactant concentrations were varied as follows; [O3]
= 2.46×1012

−9.84×1013 molecule cm−3, H2O≤1–30 % RH
and C2H4 = 4.92×1013–2.23×1015 molecule cm−3.

3 Materials

Ethene (Sigma Aldrich, 99.54 %) was purified by repeated
freezepumpthaw cycles. N2, O2 (99.6 %) were used as sup-
plied. Formic acid (Fisher Scientific UK, 98/100 %) was
used without further purification. Purified water (≥15.0 M�

cm) was obtained from a PURELAB Option-S 7/15 (ELGA).
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Figure 2: A schematic diagram of the CIMS system 
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3.1 Global model description

The Global Chemistry Transport model CRI-STOCHEM has
been used to assess the mass of products formed in the atmo-
sphere using data from this study. CRI-STOCHEM is de-
scribed in detail in (Utembe et al., 2010 and Archibald et al.,
2010). The model used is an updated version of the UK Me-
teorological Office tropospheric chemistry transport model
(STOCHEM) described by Collins et al. (1997), with updates
reported in detail in the recent paper of Utembe et al. (2010).
STOCHEM is a global 3-dimensional CTM which uses a
Lagrangian approach to advect 50 000 air parcels using a
4th-order Runge-Kutta scheme with advection time steps of
3 hours. The transport and radiation models are driven by
archived meteorological data, generated by the Met office
numerical weather prediction models as analysis fields with

a resolution of 1.25◦ longitude and 0.83◦ latitude and on 12
vertical levels extending to 100 hPa. Full details of the model
version employed are given in Derwent et al. (2008).

The common representative intermediates mechanism
(CRIv2-R5) (Jenkin et al., 2008; Watson et al., 2008; Utembe
et al., 2009), which represents the chemistry of methane
and 22 emitted non-methane hydrocarbons was employed in
the model. Each parcel contains the concentrations of 219
species involved in 618 photolytic, gas-phase and heteroge-
neous chemical reactions, with a 5 min time step. The forma-
tion of secondary organic aerosol (SOA) is represented using
14 species, which are derived from the oxidation of aromatic
hydrocarbons, monoterpenes, and isoprene (see Utembe et
al., 2011).

The surface emissions (man-made, biomass burning, veg-
etation, oceans, soil and “other” surface emissions) are

Atmos. Chem. Phys., 12, 469–479, 2012 www.atmos-chem-phys.net/12/469/2012/
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distributed using two-dimensional source maps. Emissions
totals for the base case run for CO, NOx and non-methane hy-
drocarbons are taken from the Precursor of Ozone and their
Effects in the Troposphere (POET) inventory (Granier, et al.,
2005) for the year 1998. The emission of aromatic species
ortho-xylene, benzene and toluene were taken from Henze et
al. (2008). Biomass burning emission of ethyne, formalde-
hyde and acetic acid are produced using scaling factors from
Andreae and Merlet (2001) per mole of CO emitted. NASA
inventories are used for aircraft NOx emissions for 1992
taken from Penner et al. (1999). The lightning and aircraft
NOx emissions are monthly averages and are 3-dimensional
in distribution.

4 Results and discussion

4.1 Assessment of instrument sensitivity.

Dilute mixtures of HC(O)OH in deionized water were in-
jected into the Chamber with no other gases present and the
HC(O)OH.I− signal was monitored. From a linear plot of
[HC(O)OH] vs. HC(O)OH·I− signal it is estimated that the
sensitivity for HC(O)OH was 2.39×107 molecule cm−3 for a
signal to noise ratio of one and a time constant of 1 s.

4.2 Rate coefficient determination

The gas-phase rate coefficient of the reaction of ethene with
ozone was determined using the absolute method. The rate
equation is shown in Eq. (2);

−d ln[O3]/dt=k′[ethene] (2)

wherek′ is the pseudo-first order rate coefficient given by
k′ = k [O3]. For each experiment, the slopek′ was obtained
using the linear regression of ln[O3] vs. time for a broad
range of alkene concentrations. First-order plots exhibited
linear decays, (Fig. 3) having typicalR2 of 0.99, indicat-
ing first-order kinetic behaviour. The plot ofk′ vs. ini-
tial [ethene] also exhibited a strong linear relationship, from
which the gradientk, the bimolecular rate coefficient for
the reaction was determined (Fig. 4). The rate was found
to be (1.62±0.14)×10−18 cm3 molecule−1 s−1, in excellent
agreement with the literature recommendation (Atkinson et
al., 2000).

4.3 Product yields

Product yields were determined in excess ethene conditions,
in excess typically by a factor of 300–400. Initial compari-
son of HC(O)OH signal shows that [HC(O)OH] at RH 30 %
exceeds that of RH<1 % by more than a factor of 7, in the
initial stages during ethene ozonolysis, which suggests that
reaction Scheme 3 dominates in the presence of water. Fig-
ure 5 shows two temporal profiles of the formic acid pro-
duced. The curve passing through the [HC(O)OH] exper-

 

Figure 3: Temporal plot of ozone decay to yield k′, with an initial [ethene] of 10.5 ppm. 
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Figure 4: Second-order plot of  k′ vs. [ethene].  
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Figure 5:  Retrieved experimental values of [HC(O)OH] and kinetically derived modelled trend 
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imentally determined values utilises the literature retrieved
rate coefficient of 1.58×10−18 cm3 molecule−1 s−1 (Atkin-
son et al., 2000) and the line of best fit is obtained by vary-
ing the branching ratio to HC(O)OH formation. [HC(O)OH]
yields were quantified as a function of relative humdity (RH),
as summarised in Table 2.

In Fig. 6 it is clear to see that the formic acid yield in-
creases from RH<1–30 %, in keeping with the work of Neeb
et al. (1997) but in disagreement with the work of Orze-
chowska and Paulson (2005). Between 20–30 % RH the in-
crease is less pronounced but still apparent. There are several
possible explanations for the observed behaviour and each
will be discussed in the next section. Previous studies of the
ozonolysis of alkenes have chosen to refer to Criegee biradi-
cals formed during ozonolysis as either stabilised or unsta-
bilised (e.g. Kroll et al., 2001a, b; Johnson and Marston,
2008). In the ozonolysis reaction, ozone reacts with the
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Figure 6: A comparison of the experimentally determined HC(O)OH yields as a function of RH 

 

 

0.5

0.4

0.3

0.2

0.1

HC
OO

H 
yi

el
d

6050403020100
RH

 this work
 Wolff et al.,
 Orzechowska and Paulson
 Neeb et al.,

 
 

 

 

 

 

 

 

 

 

 

Fig. 6. A comparison of the experimentally determined HC(O)OH
yields as a function of RH.

olefinic bond of an alkene through a 1,3-cycloaddition form-
ing a primary ozonide, which decomposes to form a Criegee
biradical and a carbonyl coproduct. This nascent Criegee bi-
radical may possess a range of (vibrational) energies and de-
pending on energy barriers, a certain fraction will be able
to isomerise or decompose (unstabilised), with the remain-
der being below these energy barriers (stabilised), affording
a long enough lifetime to be able to undergo bimolecular re-
actions. As pressure is increased more Criegee biradicals will
be “stabilised’ as a result of collisional quenching. The re-
sults of the HC(O)OH yield as a function of RH can be anal-
ysed using two possible scenarios:

4.4 Scenario 1

In a scenario where all Criegee biradicals are in a stabilised
form in this system then it is possible to model the HC(O)OH
yield as a function of RH. It is assumed that the Criegee
radical has one of two fates, reaction with H2O to form
HC(O)OH (Reaction R3) or decomposition (possibly wall

Table 2. A summary of the experimentally determined HC(O)OH
yield obtained in this study, errors quoted are at the 1σ level of
sensitivity calibrations.

RH % HC(O)OH Yield

<1 0.07±0.01
11 0.18±0.03
21 0.36±0.05
27 0.40±0.06
30 0.41±0.06

loss) independent of H2O. This model can be summarised
by the two reactions

CH2OO+H2O→ HC(O)OH+H2O (R1)

CH2OO→ products (R2)

A simple model encapsulating these two Reactions (R3)
and (R4) is compared with measurement data in Fig. 7. Here,
the yield of HC(O)OH is defined as

HCOOHyield =
k3[H2O]

k3[H2O]+k4
(3)

Clearly it is not possible to obtain a unique fit to the exper-
imental data as there are no direct measurements of the rate
of reaction of the Criegee radical with water (k3). Indeed,
estimates for the reaction rate of the Criegee radical with
water range over three orders of magnitude (Calvert et al.,
2000). However, a ratio betweenk3 andk4 emerges, where
k4/k3 is 3.3×1017 molecule cm−3 to obtain an excellent fit
to the measurement data. Assuming thatk3 has a maxi-
mum value of around 1.5×10−10 cm3 molecule−1 s−1 (gas
kinetic limit) this puts an upper limit on the decomposition
rate of the stabilised Criegee biradical of 5×107 s−1, simi-
larly, if k3 is around 1.5×10−17 cm3 molecule−1 s−1 as sug-
gested by indirect measurements thenk4 is only 5 s−1, much
lower than theoretical (e.g. Ryzhkov and Ariya, 2004) esti-
mates. Indeed, the work of Ryzhkov and Ariya (2004) sug-
gest a value ofk4 between 5×105 s−1 and 5×102 s−1, which
provides a range fork3 of 1.5×10−12 cm3 molecule−1 s−1–
1.5×10−15 cm3 molecule−1 s−1.

4.5 Scenario 2

Alternatively, in a scenario where all Criegee biradicals are
in an unstabilised form in this system then it is also possible
to model the HC(O)OH yield as a function of RH. Following
the work of Kroll et al. (2001a, b), we note that for unsta-
bilised CH2OO biradicals, the dominant fate is to isomerise
to dioxirane which can then rearrange to form HC(O)OH in
a vibrationally excited state, the so called “hot acid” channel.
This hot acid can either be stabilised (here by water as well
as the bath gas) or decompose to form OH. A similar model
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Figure 7: Modelled HC(O)OH yields as a function of RH %. 
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Fig. 7. Modelled HC(O)OH yields as a function of RH %.
Figure 8: The annual mean surface formic acid derived from the base case model run. 

 
 

Fig. 8. The annual mean surface formic acid derived from the base
case model run.

analysis can be proposed where Reaction (R3) involves sta-
bilisation of the hot acid and Reaction (R4) its decomposition

HC(O)OH∗
+H2O→ HC(O)OH+H2O (R3)

HC(O)OH∗
→ products (R4)

Which results in a similar expression for the yield of
HC(O)OH

HCOOHyield =
k6[H2O]

k6[H2O]+k7
(4)

Once again it is not possible to obtain a unique fit to the ex-
perimental data as there are no direct measurements of ei-
ther k6 or k7. However, a ratio betweenk6 and k7 as in
scenario 1 means thatk7/k6 is 3.3×1017 molecule cm−3 to
obtain an excellent fit to the measurement data. Sincek6
represents a collision rate it is reasonable to estimate it to
be around 1.5×10−10 cm3 molecule−1 s−1 (gas kinetic limit)

which provides a value for the decomposition rate of the un-
stabilised Criegee bi-radical of approximately 5×107 s−1.

A variety of experiments and theoretical investigations
suggest that between 35 %–54 % (Alam et al., 2011) of the
CH2OO formed are stabilised and it is assumed that the rest
must be unstabilised. The production of OH, believed to arise
predominantly (exclusively) from unstabilised CH2OO is re-
ported to be between 0–22 % of all Criegee biradicals formed
(Alam et al., 2011). Data from this work suggests that the
yield of HC(O)OH is at least 40 % and indeed is still increas-
ing at the highest water vapour investigated. Hence, if the
lower estimates for the fraction of stabilised CH2OO are cor-
rect (∼35–40 %), then HC(O)OH must also be formed from
unstabilised CH2OO, presumably via quenching of the “hot
acid”.

Hence, current research suggests that scenario1 could
represent up to about 54 % of CH2OO formed. If it is as-
sumed that all the observed HC(O)OH is from this chan-
nel only and that the maximum yield is 0.54, thenk4/k3 is
∼1×1017 molecule cm−3 and the value fork3 is larger still
than estimated in scenario 1, although this study cannot pro-
vide a unique value. Can scenario 2 exist? If the lowest
evaluations of the amount of stabilised CH2OO are correct,
then it would appear that stabilisation is occurring at atmo-
spheric pressure with the increasing relative humidity. In-
deed, at high pressures stabilisation must occur, although
there is considerable debate as to the value required to ap-
proach this high pressure limit. This is further supported by
the results of Alam et al. (2011) who report a decrease in rad-
ical yield with increased RH, i.e. the stabilised Criegee radi-
cal is being removed via reaction with water. In an analogous
system, the ozonolysis of alpha pinene, Tillmann et al. (2010)
report an increase in the yield of pinonaldhyde with RH as a
result of the increased titration of the SCI with water. The
result of Tillmann et al. (2010) would suggest the reaction of
SCI with water is a ubiquitous phenomenon with far reaching
implications for tropospheric chemistry.

In order to further investigate this system and obtain ex-
perimental evidence to validate the production of hydrox-
ymethylhydroperoxide (HMHP) during ethene ozonolysis,
HMHP was synthesized according to accepted synthesis de-
scribed by Marklund et al. (1971) and Neeb et al. (1997).
The existence of HMHP was confirmed by the appearance
of an absorption band at 950–1075 cm−1 (Bauerle, 1999;
Minkoff, 1954). However, using I− chemistry, the CIMS in-
strument was not sensitive to the detection of HMHP, though
this does not rule out HMHP production and the detection
of HMHP could be achieved using an alternative ionisa-
tion scheme or an additional analytical technique. Wolff et
al. (1997) did not observe enhancement of HMHP in humid
conditions and so do not accept scheme 3 to be responsible
for acid production as a result of alkene ozonolysis. How-
ever, Neeb et al. (1997) detect high HMHP yields during
ethene ozonolysis though they suggest that secondary chem-
istry through heterogeneous processes led to acid formation.
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Recent theoretical work (Anglada et al., 2002) suggests that
HC(O)OH is produced via the formation of HMHP through
a Criegee intermediate water complex, and HC(O)OH yields
increase as a result of increasing relative humidity, which
supports the observation of this study.

The formic acid product yields obtained in this study are in
good agreement with Neeb et al. (1997) across the range of
RH studied. However, this work disagrees with dry yields re-
ported by Wolff et al. (1997) and by Orzechowska and Paul-
son (2005). Both studies utilise an indirect method of de-
tection of HC(O)OH, which involves a sampling step. Orze-
chowska and Paulson suggest that formic acid is not a ma-
jor product of ethene ozonolysis and attribute acid produc-
tion to the decomposition of HMHP on the solid-phase mi-
croextraction (SPME) fibre sampling system. This explana-
tion is somewhat paradoxical, since if HMHP decomposi-
tion caused spuriously high acid yields in dry conditions, it
is uncertain why HMHP was present in the system in the first
place given that its formation is dependent on the presence of
water (see Scheme 3). Wolff et al. (1997) also observe large
formic acid yields at low RH. However, the formic acid yield
that they observe is the sum of primary formic, formic anhy-
dride and HPMF, which could explain the discrepancy under
dry conditions.

CIMS is the most sensitive technique to date used to probe
the production of HC(O)OH in the ethene + O3 system.
Whilst CIMS is selective to HC(O)OH there still remains the
possibility that formic acid production is enhanced by hetero-
geneous processes during ethene ozonolysis. Temperature
and pressure control allow this system to be baked out during
cleanout procedures, producing a small measuredkw (wall
loss rate coefficient) with respect to ozone and HC(O)OH
and so one can expect little impact on HC(O)OH yields from
heterogeneous losses. The first-order decay rate of ozone
and HC(O)OH with respect to walls were determined to be
6.94×10−6 s−1 and 5.46×10−7 s−1 respectively. Although
studies by Neeb et al. (1997) report a time lag between
d[HC(O)OH]/dt and −d[O3]/dt indicating secondary het-
erogeneous HC(O)OH production, this is not apparent here
and so is not concordant with this study.

4.6 Loss of CH2OO

The dominant loss process for the reaction of the simplest
Criegee bi-radical, CH2OO (e.g. Taatjes et al., 2008), in the
atmosphere on the one hand is not straightforward because
of the lack of definitive rate coefficient data. However, it
emerges from global model fields that with a rate coeffi-
cient of around 1×10−17 cm3 molecule−1 s−1 reaction with
H2O should dominate its loss globally. Reaction with NO2,
NO and SO2 all compete with water at around the 5 ppbv
level (urban environment) if one assumes a rate coefficient of
1×10−12 cm3 molecule−1 s−1 for these species with CH2OO
in each case. However, if our estimate is correct, a value of
1×10−17 cm3 molecule−1 s−1 is probably too small, leading

to the conclusion that reaction with water dominates non-
decompositional loss in the background atmosphere. Tak-
ing the initial analysis at face value and assuming that the
production curve (be it considered scenario 1, scenario 2,
or some combination) is correct, this study places an up-
per limit of about 65 % for the yield of HC(O)OH from the
decomposition of CH2OO formed in the atmosphere (from
ethene ozonolysis). The 65 % corresponds to a typical wa-
ter vapour levels encountered where ethene oxidation occurs
in the model. If it is assumed that HC(O)OH can only be
formed from stabilised CH2OO then the maximum is 54 %
(Alam et al., 2011), which is reached assuming a water con-
centration of around 6×1017 molecule cm−3.

5 Model results

Data from this study for the ratio of decomposition of
CH2OO with reaction with water to produce HC(O)OH has
been used in the base case global model integration. In
the model there are two photochemical sources of CH2OO,
ozonolysis of ethene and ozonolysis of isoprene. The base
case integration produces 1.0 or 0.8 Tg yr−1 HC(O)OH as-
suming either 0.65 or 0.52 as the yield from the ozonoly-
sis of ethene. For the ozonolysis of isoprene, it is assumed
that the yield of CH2OO is ∼ 0.6, where the biradical is a
product partner on formation of either methylvinyl ketone
or methacrolein. If we assume that HC(O)OH can only be
formed from stabilised CH2OO and that this is limited to
0.52, the formation of HC(O)OH from CH2OO formed from
the ozonolysis of isoprene we arrive at a yield of 9.5 Tg yr−1.
Effectively this a total yield of about 0.3 and is consis-
tent with Neeb et al. (1996). However, if we assume that
the yield of formic acid increases with water vapour ac-
cording to relationship established in Fig. 6, the tempera-
tures and relative humidities encountered where isoprene is
present in the model (i.e. tropics) produces yields of be-
tween 0.65 to 0.8 leading to a yield of 11.5 to 14.5 Tg yr−1.
In addition reaction of OH with acetylene (ethyne) yields
3.7 Tg yr−1 and from direct emissions, 5.5 Tg yr−1 biomass
burning and 1.8 Tg yr−1 anthropogenic sources (combustion)
giving a total source of 21.3 to 26.5 Tg yr−1. Hence the base
case produces 14 to 19.2 Tg yr−1 from photochemical and
7.3 Tg yr−1 from direct emissions compared with a recent es-
timate of 48.6 Tg yr−1 from photochemical and 8.1 Tg/year
from direct emissions (Paulot et al., 2011). It is clear that
the combined production of HC(O)OH from the ozonolysis
of ethene and isoprene is very important in the model stud-
ies here and all of this arises from the reaction of CH2OO
(formed from ozonolysis) with H2O. Such an assertion is
in agreement with other studies such as von Kuhlmann et
al. (2003). Loss processes include reaction with OH (9 %),
wet deposition (50 %) and dry deposition (41 %), balancing
the production processes. Figure 8 shows the surface level
yearly average HC(O)OH from the base case integration.
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The CRI-STOCHEM model has one of the most detailed
chemistry schemes for a global model, but there will be other
sources of CH2OO that are not included in this model (e.g.
the multitude of short-lived alkenes that are not included) and
therefore the reaction of CH2OO with H2O would appear to
dominate the in situ formation of HC(O)OH (as suggested
by Paulot et al. (2011)). Models underestimate HC(O)OH
measurements, especially over the oceans, where in-situ pro-
duction following the reaction of CH2OO with water will be
at its peak.

5.1 Possible sources of CH2OO missing from the global
model

Stable products from isoprene oxidation, methyl vinyl ketone
and methacrolein are included but in the simplified chemi-
cal scheme, ozonolysis does not yield HC(O)OH. Using the
yields of CH2OO from the work of Aschmann et al. (1996)
and Grosjean et al. (1993), the yield of CH2OO is between
0.85–0.95 and even assuming that the fraction that produces
HC(O)OH is 0.52 yields around 4.3 Tg yr−1, and assuming a
fraction of up to 0.8 yields around 6.7 Tg yr−1.

Monoterpenes are included in the model but assumed to
react as eitherα-pinene orβ-pinene and in the simplified
mechanism used do not form CH2OO. Lee et al. (2006) have
measured the yield of HC(O)OH from ozonolysis of a series
of monoterpenes and found that forα-pinene (RH = 4.1 %)
the yield was 7.5 % and forβ-pinene (RH = 6.3 %) the yield
was 4 %. We recognise that the structure of the monoter-
pene will of course dictate whether CH2OO is formed from
ozonolysis and that onlyβ-pinene has a structure that can
produce CH2OO. If we assume thatβ-pinene represents
all the monoterpene emission (∼127 Tg yr−1) and that the
yield of nopinone (the co-product to CH2OO formation)
from β-pinene ozonolysis is around 20 % (Lee et al., 2006)
we can invoke the 0.52 yield to produce an estimate of
about 1 Tg yr−1, if the yield is 0.8 then this rises to about
1.5 Tg yr−1. Larsen et al. (2001) report HC(O)OH yields
from ozonolysis ofβ-pinene (38 %), using these data pro-
duces 3.5 Tg yr−1. Adding the monoterpene, methyl vinyl
ketone and methacrolein yields (up to∼10 Tg yr−1) with
the base case estimate produces a photochemical yield from
∼25–30 Tg yr−1, closer to the biogenic estimate of Paulot et
al. (2011).

Furthermore, all 1-alkenes (Johnson and Marston, 2008)
can undergo ozonolysis to yield CH2OO and subsequently
HC(O)OH. Hence there are myriad small sources of
HC(O)OH that will contribute to global HC(O)OH.

6 Conclusions

This study has confirmed that the yield of HC(O)OH from
the ozonolysis of ethene has a strong water dependence, ris-
ing rapidly with additional water. Assuming a simple two

channel model for the fate of the CH2OO radical it has been
possible to estimate the ratio of the rate coefficient for the
reaction with water compared (k3) with decomposition (k4).
Such an analysis suggests thatk3 probably ranges between
1×10−12–1×10−15 cm3 molecule−1 s−1 and as such will in-
deed be the dominant loss process, other than decomposition,
for this radical in the atmosphere. Global model integrations
confirm that this reaction between CH2OO with water is re-
sponsible for over half the production of HC(O)OH. How-
ever, HC(O)OH is still underestimated by the model. Unless
there are missing biological sources, one is tempted to con-
clude that the myriad missing short-lived alkenes that could
all contribute to CH2OO production could provide the miss-
ing source, particularly in the marine boundary layer where
Reaction (R3) will be at its highest rate. Further analy-
sis shows that monoterpene oxidation and the ozonolysis of
methyl vinyl ketone and methacrolein could contribute up to
10 Tg yr−1 to the HC(O)OH budget.
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