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Abstract. This study estimates the emission fluxes of a range
of aerosol species and one aerosol precursor at the global
scale. These fluxes are estimated by assimilating daily to-
tal and fine mode aerosol optical depth (AOD) at 550 nm
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) into a global aerosol model of intermediate com-
plexity. Monthly emissions are fitted homogenously for each
species over a set of predefined regions. The performance
of the assimilation is evaluated by comparing the AOD af-
ter assimilation against the MODIS observations and against
independent observations. The system is effective in forc-
ing the model towards the observations, for both total and
fine mode AOD. Significant improvements for the root mean
square error and correlation coefficient against both the as-
similated and independent datasets are observed as well as
a significant decrease in the mean bias against the assimi-
lated observations. These improvements are larger over land
than over ocean. The impact of the assimilation of fine mode
AOD over ocean demonstrates potential for further improve-
ment by including fine mode AOD observations over conti-
nents. The Angström exponent is also improved in African,
European and dusty stations. The estimated emission flux for
black carbon is 15 Tg yr−1, 119 Tg yr−1 for particulate or-
ganic matter, 17 Pg yr−1 for sea salt, 83 TgS yr−1 for SO2 and
1383 Tg yr−1 for desert dust. They represent a difference of
+45 %, +40 %, +26 %, +13 % and−39 % respectively, with
respect to the a priori values. The initial errors attributed to
the emission fluxes are reduced for all estimated species.

1 Introduction

Accurate knowledge on the spatial and temporal distribution
of aerosol emissions is needed to quantify their impact on cli-
mate and air quality. Uncertainties in emissions contribute to
the uncertainties associated with the aerosol radiative forcing
(e.g., Forster et al., 2007). Many of the numerous studies that
estimate the emissions of individual aerosol species focus on
anthropogenic emissions while limited effort has been ded-
icated to estimate the emissions of natural aerosols, such as
desert dust (DD) and sea salt (SS) at the global scale.

Emissions of natural DD and SS aerosols are either pre-
scribed in global models or interactively calculated as a func-
tion of wind speed and other local variables. For instance
DD emissions are usually parameterised as a function of soil
properties such as soil particle size distribution, vegetation
cover and soil moisture (e.g. Tegen et al., 2002). Actual mea-
surements characterizing emission processes remain limited
(e.g. Sow et al., 2009; Alfaro et al., 2004; Rajot et al., 2003;
O’Dowd et al., 1997) and model emissions are therefore val-
idated indirectly through assessment of the model perfor-
mance in simulating atmospheric concentrations, surface de-
position fluxes or aerosol optical depth (Ginoux et al., 2001;
Tegen et al., 2002; Huneeus et al., 2011). Global models
present a large diversity in simulating DD emissions mainly
due to the different parameterisations and input data to these
parameterisations whereas the diversity in SS emissions is
mainly due to differences in the simulated particle size (Tex-
tor et al., 2006).

For black carbon (BC), particulate organic matter (POM)
and sulphate (SU) aerosols and/or their precursors, emissions
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are prescribed using global inventories exclusively based
on bottom-up techniques which integrate source information
across different economical sectors. We observe a smaller di-
versity among global models due to the use of similar data
sets (Textor et al., 2006). For BC and POM some of the most
commonly used inventories in global models are Cooke et
al. (1999) and Bond et al. (2004). These inventories describe
the aerosol fluxes based on emission factors relating the emit-
ted amount to a particular economical sector. The inventory
from the Emission Database for Global Atmospheric Re-
search (EDGAR) presents fluxes for sulphur dioxide (SO2)
among other gases by country and sector based on emis-
sion factors (Olivier et al., 2002). Dentener et al. (2006) pre-
pared an emission inventory for primary aerosols and precur-
sor gases by combining pre-existing inventories. Lamarque
et al. (2010) document the new emission inventories which
have been prepared for the Climate Model Intercomparison
Program #5 (CMIP5) exercise.

Some emission estimates have been generated by com-
bining existing bottom-up inventories with satellite data.
Streets et al. (2003) used the Advanced Very High Res-
olution Radiometer (AVHRR) fire count and Total Ozone
Mapping Spectrometer (TOMS) aerosol index (AI) to in-
troduce spatial and temporal variability in a bottom-up ap-
proach to estimate biomass burning emissions in Asia. Gen-
eroso et al. (2003) generated a new emission inventory of car-
bonaceous aerosols by redistributing in space and time pre-
existing estimates based on satellite fire products. Vermote et
al. (2009) estimate global biomass burning emissions based
on emission coefficients obtained from combining satellite
derived fire radiative energy and existing emission estimates.
Ito and Penner (2005) generated emission estimates for the
year 2000 for biomass and fossil fuel burning by combining
existing emission inventories and scaled them back in time
based on TOMS AI till 1979 and on methane emission from
Stern and Kaufmann (1996) beyond that.

In the last decade, top-down techniques have been de-
veloped to estimate aerosol emission fluxes based on the
combination of satellite data and numerical models. Hoelze-
mann et al. (2004) estimated the wildland fire emissions
for the year 2000 with the Global Wildland Fire Emission
Model (GWEM) based on the burned area from the Global
Burnt Scar satellite product (GLOBSCAR). An important
technique for this purpose is data assimilation, which con-
sists in estimating a statistically-optimal state by finding the
best compromise between a priori (or first-guess) informa-
tion and observations. Zhang et al. (2005) estimated the
biomass burning emissions for 1997 by assimilating TOMS
AI. Hakami et al. (2005) used the variational data assimila-
tion approach to estimate BC emissions and their initial con-
dition over eastern Asia by assimilating concentration mea-
surements. Yumimoto et al. (2007, 2008) applied the same
approach to estimate dust emissions for dust events by as-
similating lidar observations. Dubovik et al. (2008) estimated
the emissions of fine and coarse mode aerosols for a period

of two weeks in August 2000 by assimilating Moderate Res-
olution Imaging Spectroradiometer (MODIS) aerosol optical
depth (AOD) at 550 nm in the GOCART aerosol model.

This is the first study to estimate simultaneously the global
emissions for multiple aerosol species and one gaseous pre-
cursor (namely DD, SS, BC, POM and SO2). These aerosol
fluxes are estimated in a consistent and coherent manner by
assimilating daily total and fine mode AOD at 550 nm from
MODIS into an aerosol model of intermediate complexity
(Huneeus et al., 2009). We describe the data and methodol-
ogy used to derive the emission estimates in Sect. 2. In Sect. 3
we present the results of the inversion both in terms of AOD
and emission fluxes. In Sect. 4 the uncertainties of the esti-
mated fluxes are discussed. Finally Sect. 5 presents the con-
clusion of this work.

2 Data and methodology

2.1 Assimilation method

In this study, we seek statistically-optimal aerosol emission
fluxes that represent the best compromise between the ob-
servationsy and the a priori informationxb. We follow here
and throughout the text the notation of Ide et al. (1997). In a
Bayesian framework this optimal state vectorxa , also known
as analysis, is found by minimizing a scalar cost functionJ .
This cost function is defined as the sum of the departures of
a potential solutionx and the corresponding simulated obser-
vations to the a priori informationxb and the given observa-
tionsy:

J (x) = 1/2(x − xb)T B−1(x − xb) + 1/2(H(x) − y)T R−1(H(x) − y) (1)

whereH is the non-linear observation operator that computes
the equivalent of the observationsy for a given state vectorx,
R is the covariance matrix of the error statistics of the obser-
vations andB is the covariance matrix of the error statistics
of the a priori information.

Different approaches allow finding the minimum of the
above cost function (e.g. Rodgers, 2000). In the linear case,
the analysisxa can be computed through either analytical for-
mulations

xa
= xb

− (HT R−1H + B−1)−1HT R−1(Hxb
− y) (2)

or

xa
= xb

− BHT (HBHT
+ R)−1(Hxb

− y) (3)

whereH is the linear operator ofH . It is possible to loop on
Eqs. (2) and (3) to account for a non-linear operator.

Alternatively, one can use an equivalent variational for-
mulation of the Bayesian estimation problem. In this case,
the analysisxa is obtained by finding the minimum of the
cost function in an iterative way through a descent algorithm
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(e.g., Chevallier et al., 2005). The descent direction is given
at each iteration by the gradient of the cost functionJ with
respect to the control variablex.

The methods described by Eqs. (2) and (3) and the vari-
ational approach are equivalent and practical considerations
determine the approach chosen to minimize the cost function
J of Eq. (1) and obtain the analysisxa . The two analytical
formulations (Eqs. 2 and 3) differ in the size of the matrix to
be inverted. The relative size of the state vector and the mea-
surement vector guide the choice of formulation. When the
size of the state vector is small andR is easy to invert (e.g.,R
is diagonal), Eq. (2) is more appropriate. Conversely, Eq. (3)
is more convenient if the size ofR is small and all elements
of H are directly known. In both approaches the analysis is
computed based on the departures or differences between the
simulated (Hxb) and observed (y) values, the sensitivities of
the observation operator (H) and the relative weights of the
R andB matrix. At any given grid box, the difference be-
tween the model and observations (weighted byR and B)
is reduced by adjusting the elements of the state vector pre-
senting the highest sensitivity to the perturbations in that grid
box. For cases with large state vector and observation vector,
the variational approach is the most appropriate one. In the
present study, we use Eq. (2) to minimize the cost functionJ

in view of the size of our state vector (Sect. 2.3) and the way
R is defined (Sect. 2.5). The assumption of linearity in this
approach will be addressed in Sect. 2.6.

2.2 Observation operator

The observation operator used in this work is the simplified
aerosol model (hereafter SPLA) which has been documented
in Huneeus et al. (2009). This model computes the fine mode
and total AOD at three wavelengths, 550, 670 and 865 nm. It
was derived from the general circulation model of the Labo-
ratoire de Ḿet́eorologie Dynamique (LMDZ) (Reddy et al.,
2005). The SPLA model groups the 24 original tracers sim-
ulated in LMDZ into 4 tracers, namely the gaseous precur-
sors, the fine mode aerosols, the coarse sea salt aerosols and
the coarse desert dust aerosols. The gaseous aerosol precur-
sor groups together dimethylsulfide (DMS), sulphur dioxide
(SO2) and hydrogen sulfide (H2S). The aerosol fine mode
includes sulphate (SU), black carbon (BC), particulate or-
ganic matter (POM), desert dust (DD) with radius between
0.03 and 0.5 µm and sea salt (SS) aerosols with radii smaller
than 0.5 µm. The SS coarse mode groups together the par-
ticles with radii between 0.5 and 20 µm whereas the coarse
DD mode corresponds to particles with radii between 0.5
and 10 µm. We keep the original emission configuration for
each aerosol species and gaseous precursor. These emissions
are grouped into the four tracers only after emission and are
treated as such from that point on. Consequently with the re-
duction in the number of tracers, new values of deposition
velocities, mass median diameter and mass extinction effi-
ciencies were recomputed according to the new tracers. Fur-

thermore, the sulphur chemistry was reduced to an oxidation
mechanism as a function of latitude and no distinction be-
tween hydrophilic and hydrophobic OM and BC was done.
Both models are equivalent in all other aspects. The model is
driven by 6-hourly reanalysis data from the European Centre
for Medium-Range Weather Forecasts (ECMWF).

As shown by Huneeus et al. (2009), the SPLA model suc-
cessfully reproduces the main features of the LMDZ aerosol
burdens for each one of the aerosol species. The main dif-
ferences between these models are on one hand caused by
differences in the deposition and sedimentation fluxes asso-
ciated to new deposition and sedimentation velocities and on
the other hand caused by the simplification of the sulphur
chemistry to a simple oxidation of sulphur to sulphate. The
largest differences in AOD in terms of monthly mean, with
both LMDZ and AERONET, are observed over sites with
strong DD influence. The model has a better performance in
reproducing the monthly variability of AOD in LMDZ than
the daily one. When comparing to AERONET daily AOD,
SPLA reproduces the baseline but has difficulties in repro-
ducing the daily variability associated with episodic changes
in the aerosol load. In this case the largest differences are
observed in stations dominated by industrial aerosols.

The first-guess or a priori aerosol emission fluxes used
in the inversion system are the ones used in Reddy et
al. (2005). The sulphur emissions from fossil fuel combus-
tion and industrial processes are taken from the EDGAR ver-
sion 3.0 database (Olivier and Berdowski, 2001), from which
a fixed 5 % from combustion sources is assumed to be emit-
ted directly as sulphate. For the natural emissions we take
the same sulphur emissions as those described in Boucher et
al. (2002). Organic carbon (OC) is always associated with
oxygen, hydrogen and other chemical species and the result-
ing aerosol is called particulate organic matter (POM). This
POM emissions are derived from the organic carbon (OC)
ones considering a conversion rate of 1.4 and 1.6 for fos-
sil fuel and biomass combustion, respectively (Reddy et al.,
2004). The OC emissions from biomass burning are calcu-
lated considering an OC to BC ratio of 7 (Reddy et al., 2004).
The emissions of BC due to biomass burning are taken from
Cooke and Wilson (1996), whereas the emissions of both BC
and OC from fossil fuel combustion are taken from Cooke
et al. (1999). We follow Reddy et al. (2004) and include the
production of OC from the condensation of volatile organic
compounds (VOCs, represented as terpenes in the model)
through a constant production rate of 11 % from the emis-
sion of terpenes. Terpene emissions are taken from Guen-
ther et al. (1995). Dust emissions follow Schulz et al. (1998)
and Guelle et al. (2000) and are pre-calculated off-line at a
higher resolution (1.125◦×1.125◦) using the 6-hourly hor-
izontal 10-m wind speeds analyzed at ECMWF. They are
then re-gridded to the LMDZ resolution (3.75◦

×2.5◦) while
conserving the global mass flux. Finally, sea salt emissions
are calculated with the source formulation of Monahan et
al. (1986) according to the wind speed at 10 m.
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Figure 2. 

 
 

Fig. 1. Defined regions within the control vector for the emissions of desert dust(a), the emissions of anthropogenic fossil fuel and SO2 (b)
and biomass burning(c).

We point out that the emission fluxes described above and
used in this work correspond to inventories representative of
emissions from approximately a decade ago. Newer and up-
dated emission inventories have been produced since, in par-
ticular for aerosol produced by anthropogenic activity and
biomass burning (e.g., Bond et al., 2004; Lamarque et al.,
2010; Smith et al., 2011). Practical considerations guided our
choice of emissions and their impact in the final results will
be discussed in Sect. 4.

2.3 State vector

Previous studies estimating aerosol emissions through as-
similation of aerosol variables have either estimated regional
emissions per model grid box of a particular aerosol species
(e.g., Hakami et al., 2005; Yumimoto et al., 2007, 2008),
global emissions of a particular aerosol species in pre-defined
regions (Zhang et al., 2005) or emissions at the global scale
per model grid box but only for fine and coarse mode aerosols
(Dubovik et al., 2008). This is the first study to estimate
simultaneously the global emissions for multiple aerosol
species and one gaseous precursor. However, to achieve this
goal at an affordable computational cost, a compromise had
to be found between the size of the state vector and the in-
formation content of the assimilated observations. Two steps
were taken: (i) the number of aerosol tracers was reduced
and (ii) emission regions were defined for each one of the
tracers in the state vector. For the former, the SPLA model
was designed by reducing the number of aerosol tracers
from 24 in the original model to 4 (Sect. 2.2). For the lat-
ter, emission regions were defined so that the main emis-
sion processes were isolated from each other and sources
with opposite seasonality do not belong to the same region.
For each desert dust aerosol mode, fine and coarse, eleven
dust regions were defined separating the main global deserts
(Fig. 1a). Eight regions were defined for anthropogenic SO2
emissions (Fig. 1b). For the BC and POM emissions the re-
gions were defined according to the process responsible for
the emissions, i.e. either biomass burning (BB) or fossil fuel

(FF) combustion. For the former nine regions were defined
(Fig. 1c) whereas for the latter the same eight regions de-
fined for SO2 are used. Finally for fine and coarse SS a sin-
gle global region was defined as this source term stems from
a physical mechanism that should be the same everywhere.
The relatively minor sources of DMS and biogenic VOC are
not adjusted. The result of our data assimilation system is to
homogeneously increase or decrease the emissions of each
aerosol species within a given region. The state vector there-
fore contains scaling parameters of DD, SS, BC, POM and
the precursor gas SO2 for the above mentioned regions. It
has a total of 49 elements (2×11+ 8+ 9+ 8+ 2).

2.4 Observations

We assimilate the daily total AOD over land and ocean and
daily fine mode AOD over ocean only, all of these at 550 nm.
The fine mode AOD is obtained from the product of the total
AOD and the fine mode fraction over ocean. Specifically, we
use the “corrected optical depth over land” and the “effec-
tive optical depth average ocean” as recommended in Remer
et al. (2005). In what follows the AOD refers to the one at
550 nm unless otherwise stated. The fine mode fraction is
also provided over land but we chose not to use it since it
has not yet been fully validated (Remer et al., 2005). We use
data from the MODIS instrument onboard the Terra satellite:
the daily level 3 aerosol products (MOD08) from the second
generation (collection 5, C005) (Hubanks et al., 2008). They
have been proven to be more accurate than the first gener-
ation in particular over land (Levy et al., 2007). To derive
the aerosol products over land and over ocean, two differ-
ent algorithms are used. Both methods are described in de-
tail in Kaufman et al. (1997) and Tanré et al. (1997). Re-
mer et al. (2005) present a general description of the MODIS
aerosol retrieval algorithm, Levy et al. (2003) provide a de-
scription of the retrieval algorithm over ocean and Levy et
al. (2007) describe the new algorithm over land. The level 3
data are averaged to a 1◦

×1◦ grid and are produced every day
(MOD08 D3). This daily product is used in our assimilation
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Table 1.Emission fluxes or flux ranges [Tg yr−1] for different aerosol species in the literature.

Reference Year BC POM SO2 DD

Biomass Burning Fossil Fuel Combined Biomass Burning Fossil Fuel Combined
Bond et al. (2004)2,3 1996 3.36 3.04 6.40 46.18 3.83 50.01
Andreae and Merlet (2001)2 Late 90’s 4.8 36.1
Ito and Penner (2005) 2000 5.4 2.8 8.2 45 3.1 48.1
Generoso et al. (2003)2 2000 3.36 46.64
Lavoúe et al. (2000) 1960-1970 5.70–6.17 45.51–55.2
Zhang et al. (2005) 1997 5.68–6.87
Dentener et al. (2006) 2000 3.04 3.04 6.08 34.7 3.2 37.9 1425

Novakov et al. (2003) 2000 5.6
Bond et al. (2007)3 2000 3.4 4.2
Textor et al. (2006)4 2000 11.9 96 1840
RCP1,2 2005 7.91–8.24 50.93–59.84 54.13–58.066

Huneeus et al. (2011) 2000 500–4000

1 From the Representative Concentration Pathways emission inventory.2 A conversion factor of 1.6 for Biomass Burning POM/OC is used.3 A conversion factor of 1.4 for Fossil
Fuel POM/OC is used.4 The average emission flux of the global models considered in the study is given.5 Units are in terms of SO2, i.e. Tg SO2 yr−1 6 Units are in terms of
S, i.e. Tg S yr−1

procedure and thus the time of the measurement within the
day is not used.

Zhang and Reid (2006) and Zhang et al. (2008) have
shown that even relatively accurate aerosol retrieval algo-
rithms over oceans need additional data screening to remove
noisy data and correct biases before using their products for
aerosol data assimilation purposes. MODIS AOD retrievals
present systematic biases over water related to near-surface
wind speed, cloud fraction, cloud contamination and aerosol
type (Zhang and Reid, 2006). A careful data screening pro-
cess is needed to ensure that only the best quality data are
used in the assimilation.

The production of Level 3 AOD used in this study already
includes a series of quality checks. They are weighted by the
quality of each individual retrieval preventing the poor re-
trievals from affecting the calculated statistics (Remer et al.,
2005; King et al., 2003, Hubanks et al., 2008). However, we
conduct additional data screening over ocean and land to re-
move outliers and correct biases. We base our data screen-
ing on the method described in Zhang et al. (2008) and we
apply the method to total and fine mode AOD. We remove
retrievals with AOD larger than 3 over ocean and we use
only pixels with cloud fractions less than 80 %. In contrast
to Zhang et al. (2008) we apply the cloud fraction threshold
also over land. Through these two steps, 30 % of the original
MODIS Level 3 data are eliminated without any major im-
pact on the AOD spatial pattern of the AOD (not shown).
In addition we remove all pixels south of 40◦ S to ensure
that the known overestimation of AOD over the Southern
Hemisphere oceans over 40◦S does not impact the assim-
ilation system negatively (Zhang and Reid, 2006). Finally,
the MODIS data, which are an input to Eq. (2), are thinned
from their original resolution to the coarser model resolution
(3.25◦×2.5◦).

2.5 Error covariance matrices R and B

The matricesB andR presented in Sect. 2.1 are key elements
in the inversion of AOD. They describe the error statistics of
the emission fluxes and of the observations, respectively, and
their relative magnitude determines the weight given to the a
priori information and to the observations. Each one of these
matrices contains diagonal terms representing error variances
and non-diagonal terms corresponding to error covariances.
For a given month the diagonal elements inB represent the
errors in monthly emissions for each species and each region
while the non-diagonal terms reflect the error dependence be-
tween two species within the same regions or between two
species from different regions. Considering the size of our
regions it is safe to assume that the emission errors between
two regions are independent from each other. Yet error cor-
relations might exist between two species within the same
region (e.g. emission errors between fine and coarse dust
aerosols or between BC and OC might be correlated). Out
of convenience and as first order approximation we decide
to neglect these terms. We therefore defineB as a diagonal
matrix. With respect toR, non-diagonal terms represent cor-
related errors in time and space between two pixels. Due to
the high computational cost of including these non-diagonal
terms we neglect possible correlation errors and also defineR
as diagonal as is usually the case in data assimilation studies
applied to atmospheric tracers (e.g., Benedetti et al., 2009).
Hereafter the errors are presented in terms of one standard
deviation except when stated otherwise.

Estimates of the emission fluxes (Table 1) and their er-
rors (Granier et al., 2011; Bond et al., 2004; Smith et al.,
2011) vary largely from study to study. Multiple factors in-
fluence this diversity besides the different years they repre-
sent. Some of these factors are the different emission factors
used, the definition of the burned area for biomass burning,
uncertainty of collected data across sectors for “bottom up”
inventories and aerosol model used in “top down” estimates.

www.atmos-chem-phys.net/12/4585/2012/ Atmos. Chem. Phys., 12, 4585–4606, 2012



4590 N. Huneeus et al.: Estimating aerosol emissions by assimilating observed aerosol optical depth

Only a limited number of studies estimated the uncertain-
ties on emission fluxes. Based on expert judgment Smith et
al. (2011) estimated the global uncertainty in SO2 emissions
for the 20th century to be between 8 and 14 % but estimated
that the regional uncertainty ranged up to 30 %. Granier et
al. (2011) compared multiple inventories of global and re-
gional anthropogenic and biomass burning emissions for the
period 1980 to 2010 and estimated the range in SO2 emis-
sions among the global inventories reached 42 % in 2000
while the range in BC emissions reached 22 %. Bond et
al. (2004) estimated the global emissions of BC and OC from
combustion process. These authors estimated the uncertainty
range for contained combustion and open biomass burning
of BC to be within−30 % to 120 % and−50 % to 200 % of
the central values, respectively. For OC the uncertainty range
for contained combustion and open biomass burning were
within −40 % to 100 % and−50 % to 130 % of the central
values, respectively. We define the uncertainties for BC and
POM as the upper limit of the above presented uncertainty
ranges assuming that the causes for uncertainties have been
under-sampled. We choose the global uncertainty for SO2
to be within the range of uncertainties defined by a lower
bound corresponding to the global uncertainty of 14 % given
in Smith et al. (2011) and the upper bound equal to a global
uncertainty computed from a regional one of 30 % (Smith et
al., 2011) without cancellation of errors between the regions.
To our knowledge, the uncertainties associated to the SS and
DD emissions have not been documented. However, studies
exist that present the range of emissions (or diversity) among
global models for SS (Textor et al., 2006) and DD (Zender et
al., 2004; Textor et al., 2006; Huneeus et al., 2011). We de-
fine the uncertainty of SS and DD emissions from the model
diversities in Textor et al. (2006) and Huneeus et al. (2011),
respectively. The uncertainties in the regional emission fluxes
are combined to provide an uncertainty on the global emis-
sion flux which can be used in comparison with other results.
Based on the above the global annual uncertainties used are
200 % for SS, 30 % for SO2, 100 % for BC and POM and
300 % for DD.

The diagonal terms in theR matrix correspond to er-
rors of the observations. They combine measurement errors,
model errors and representation errors. The error associ-
ated to MODIS AOD products over land is estimated to be
±0.05±0.15·AOD whereas over ocean the accuracy is higher
and the error is±0.03±0.05*AOD (Remer et al., 2005).
Both, Zhang et al. (2008) within the Naval Research Lab-
oratory Aerosol Analysis and Prediction System (NAAPS)
and Benedetti et al. (2009), within the Global and regional
Earth-system Monitoring using Satellite and in-situ data
(GEMS) project, assimilate MODIS AOD products and de-
fine their observational errors as presented above. Benedetti
et al. (2009) showed that the assimilation system is more ef-
ficient in increasing low AOD than decreasing high values
since the observational errors were defined in a linear way
that penalizes large values of AOD. This bias in the assim-

ilation system was corrected in the follow-up of the GEMS
project by defining constant observational errors. At present
errors of 0.05 in AOD over ocean and 0.1 in AOD over land
are assigned (A. Benedetti, personal communication, 2010).
Experiments were conducted using both error definitions pre-
sented above (i.e. linearly dependent on AOD and constant
errors). As in Benedetti et al. (2009), defining the errors in a
linear way allows the system to increase low AOD more effi-
ciently than decreasing high ones. The use of constant errors
however, not only reduces this bias but also presents larger
improvement in simulating the AOD than the case when lin-
ear errors are used (not shown). We therefore define the mea-
surement errors as the above-described constant values. We
also include the model and representation errors in theR ma-
trix. These errors are associated with the assumptions made
in the aerosol model and to the space-time resolution of the
inversion system. We make the difference however between
the errors associated to the original aerosol model (LMDZ)
used to derive SPLA and the ones corresponding to the sim-
plifications introduced to obtain SPLA. The former corre-
spond for instance to the use of optical properties to convert
aerosol mass into AOD, the state of mixture of aerosols (ei-
ther internally or externally mixed) and choice of size distri-
bution while the latter corresponds to the changes introduced
in the optical as well as physical properties given the fact that
the fine mode aerosols were grouped into one tracer. A brief
description of these modifications is given in Sect. 2.2 and a
more detailed one can be found in Huneeus et al. (2009). We
make the hypothesis that the model error is dominated by the
simplifications introduced in SPLA and consequently neglect
the errors of the original model. The model error is defined
as the discrepancy in terms of globally averaged annual to-
tal AOD at 550 nm between SPLA and the original aerosol
model that SPLA mimics (LMDZ, see Sect. 2.2) and is set to
0.02 in AOD. The impact of this hypothesis on the inverted
emissions is evaluated in Sect. 3.4 by sensitivity tests. Finally
the observation error is assigned by quadratically summing
these measurement errors and the model error.

2.6 Experimental setup

We apply the inversion system to the year 2002 in order to
evaluate it over a full seasonal cycle. A two-month assimi-
lation window is defined in order to make the results inde-
pendent of the initial state of the atmosphere, which is not
optimized here. The state vector is integrated over the assim-
ilation window and the result is considered to represent the
emissions of the last month. Since the assimilation window is
two months long, we define large errors in the error covari-
ance matricesR for the first month to reduce its impact on
the final results and define the errors of the second month as
described in Sect. 2.5. Observationally-constrained monthly
mean fluxes are generated for each one of the species and
regions considered in the state vector.
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The observations used correspond to the spatially- and
temporally-distributed daily total and fine mode AOD at
550 nm product (Sect. 2.4) while the state vector (Sect 2.3)
is defined by scaling parameters perturbing the main aerosol
species (i.e., DD, SS, BC and POM) and SO2 in a number of
regions. As discussed previously, a compromise was found
between the number of regions (and thus their area) and the
size of the state vector. Considering the small size of our state
vector (Sect. 2.3) and thatR is defined as a diagonal ma-
trix (Sect. 2.5) and is thus easy to invert, we use Eq. (2) to
minimize the cost functionJ . Huneeus et al. (2009) showed
that the model (transport, mixing, scavenging) behaves rela-
tively linearly when perturbing the emissions of the differ-
ent aerosol species and SO2. Non-linearities appear when
perturbing directly the sulphur chemistry. Since the sulphur
chemistry is not considered within the state vector (Sect. 2.3)
the assumption of linearity in Eq. (2) is justified.

2.7 Validation method

The performance of the data assimilation system is examined
first by comparing the first guess (or a priori) and the ana-
lyzed AOD to the assimilated MODIS AOD (both total and
fine mode) (Sect. 3.1). This evaluation indicates under which
conditions the system manages to adjust the emissions for
specific aerosols. It also shows the conditions or cases where
improvement is needed. In a second step, the AOD of the
analysis and the first guess are compared to an independent
dataset of AOD (Sect. 3.2). This last test allows assessing
the performance of the assimilation system and explores the
general validity of the results. In both comparisons the dif-
ference of the model with respect to the observations will be
quantified via the root mean square error (RMS), mean bias
and Pearson correlation coefficient (R).

Measurements from the AErosol RObotic NETwork
(AERONET) are used as an independent dataset. This is a
global network of more than 300 photometers that moni-
tor AOD and aerosol properties under various different at-
mospheric aerosol loads (Holben et al., 1998, 2001). The
AERONET data have not only been used in the last decade in
numerous model validation studies (e.g. Reddy et al., 2005;
Koch et al., 2009; Morcrette et al., 2008), they have also
served to validate several satellite retrieval products (e.g. Re-
mer et al., 2005; Kahn et al., 2007; Levy et al., 2007). In ad-
dition of using the total and fine mode AOD at 550 nm from
AERONET we also use the Angström exponent (AE). The
AE delivers information about the dominant aerosol size in
the atmospheric column and thus reveals the qualitative im-
pact of assimilating fine mode AOD on the simulated aerosol
size distribution.

Although AERONET also provides instantaneous and
daily-averaged data of the above-mentioned parameters, we
shall focus on the monthly mean in accordance with the
output of the assimilation system. Model monthly averages
are constructed from daily means by selecting those days
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Fig. 2. Location of AERONET stations used in the validation.
Red squares correspond to AERONET stations dominated by dust
aerosols. Regions used in the validation with respect to MODIS
data are also illustrated. AERONET stations are grouped geograph-
ically into North America (brown), South America (orange), Eu-
rope (pink), Africa (blue), Asia (green), Middle East (yellow) and
Australia (purple). Oceanic AERONET stations are illustrated with
black circles.

when AERONET data are available. We use available sta-
tions with measurements for the year 2002. Stations above
1000 meters above sea level (m a.s.l.) are excluded since we
do not correct the model AOD for the station altitude. A total
of 125 stations were selected.

In order to evaluate the models with respect to individual
aerosol species only and with the exception of desert dust
aerosols, we define regions with different aerosol character-
istics. For desert dust aerosol we identify dust-dominated
stations by applying the method described in Huneeus et
al. (2011) based on the AE and total AOD. We refer hereafter
to these stations as “dust stations”. In addition, we analyze in
more detail the impact of assimilating total and fine mode
AOD on the model performance by comparing the a priori
AOD (or first guess) and analysis to the AERONET data
at individual stations known to measure a particular aerosol
species (Fig. 2).

The validation with respect to the MODIS AOD is con-
ducted first on a few summer and winter months where the
impact of the assimilation during some of the peaks in the
aerosol seasonal cycle is assessed. Then a quantitative anal-
ysis of the difference between the first guess and analysis
to the observations is performed through the computation of
the statistics mentioned above. In a similar way, the valida-
tion with respect to AERONET stations is done first through
a qualitative analysis where the model AOD (both first guess
and analysis) is compared to the AOD at individual stations
and then a quantitative assessment of these differences is
done using a larger number of stations. In both cases and
unless stated otherwise, the quantitative analysis throughout
the text are based on the full seasonal cycle of the year 2002.
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Figure 3. 

 
Fig. 3. Total AOD from MODIS (left), first guess (centre) and analysis (right) for the months of July (upper row), August (middle row) and
September (lower row) of 2002. White colour corresponds to regions without data. Red colours indicate relatively high values while blue
colours indicate relatively low values.

3 Results

For the following analysis we make use of the tools de-
veloped at the Laboratoire des Sciences du Climat et de
l’Environnement (LSCE) in the framework of the AeroCom
project. This initiative is a platform for detailed evaluation
of aerosol simulation in global models (http://nansen.ipsl.
jussieu.fr/AEROCOM/).

3.1 Comparison with MODIS

We compare the assimilated MODIS AOD (total and fine
mode at 550 nm at model resolution) to the simulated AOD
resulting from the estimated aerosol fluxes (analysis) and the
a priori ones (first guess). We focus on July to September,
Northern Hemisphere (NH) summer, and January to March,
NH winter. These periods allow assessing the impact of the
assimilation during some of the peaks in the aerosol seasonal

cycle; biomass burning in the NH with their peak from De-
cember to April and in the Southern Hemisphere (SH) from
August to October (Duncan et al., 2003), dust in the Middle
East with its maximum from June to September (Huneeus et
al., 2011) and the Saharan dust transport across the Atlantic
peaking in June–July (Prospero and Lamb, 2003). We start
with the analysis of the total and fine mode AOD for the sum-
mer months (Figs. 3 and 4, respectively) and continue with
the analysis of the winter months (Figs. 5 and 6).

Throughout the summer months large AOD are seen in
Eastern Asia associated with anthropogenic emissions of
SO2 and fossil fuel combustion. Over Central Africa, South
America and Indonesia these large AOD are associated with
biomass burning while in central Asia and Middle East they
are related to dust emissions and in Northern India to a mix-
ture of dust emissions and biomass burning. In addition,
Eastern North America, Eastern Europe and Northeast Asia
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Figure 4. 

 
Fig. 4.Same as Fig. 3 but for fine mode AOD.

also present important AOD. In general, the AOD decreases
from July to September except for Eastern Europe, South
America and Indonesia (Fig. 3).

The first guess (FG) underestimates the AOD throughout
the summer months almost everywhere except for regions
where the AOD is dominated by desert dust emissions such
as the Sahara and Central Asia. Even though no observations
exist over the Sahara, emissions in this region are constrained
by the total AOD in the surrounding areas both over land and
ocean (Fig. 3) and additionally by observations of fine mode
AOD over ocean (Fig. 4). The assimilation succeeds in re-
ducing the AOD in both of these regions for the whole period
by reducing the dust emissions of both fine and coarse mode.
The absence of data over the Sahara prevents us from vali-
dating the changes in AOD over this region. The assimilation
also increases the AOD over East Asia by increasing the an-
thropogenic emissions (carbonaceous aerosols and SO2) dur-
ing the three months. In central Africa, the biomass burning
emissions are increased throughout the three months over-

estimating the AOD in July and August suggesting that the
emissions have been overestimated by the analysis. In spite
of the large underestimation of AOD in Indonesia during Au-
gust and September, the emissions are only slightly increased
during this period. Over eastern North America, the underes-
timation is reduced by increasing the anthropogenic emission
(carbonaceous aerosols and SO2) in July and August, which
are months with large departures of the FG to the observa-
tions. In September in contrast, the AOD over this region re-
mains mainly constant since the departure of the first guess
to the observations is small. The system succeeds in increas-
ing the AOD over South America in September but does not
manage to do so in August; it even reduces the emissions in
this region. Furthermore, the system has difficulties repro-
ducing the AOD over central and eastern Europe and no in-
crease in emissions are observed over northeast Asia in July
and August where the AOD is underestimated. Differences
between the FG and the analysis (AN) with the total and fine
mode MODIS AOD (Figs. 3 and 4, respectively) reveals that
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Figure 5. 

 
Fig. 5.Total AOD from MODIS (left), first guess (centre) and analysis (right) for the months of January (upper row), February (middle row)
and March (lower row) of 2002. White colour corresponds to regions without data. Red colours indicate relatively high values while blue
colours indicate relatively low values.

the system underestimates the emissions of coarse mode sea
salt over most of the Pacific Ocean, whereas over the Indian
Ocean, southern Atlantic and the southern Ocean the sys-
tem underestimates both fine mode and coarse mode sea salt
aerosol emissions. Difficulties to correct AOD associated to
SS are explained by the fact that sea salt emissions can only
be corrected consistently over all oceanic regions.

In general, the departures, or differences, of the first guess
to the observations in winter are smaller than during the sum-
mer and they increase from January to March. During this pe-
riod the observations present large AODs south of the Sahara
associated with biomass burning. Large AODs are also ob-
served in eastern Asia due to anthropogenic emissions. In ad-
dition, scattered points of large AOD are present over central
Asia and the Middle East. Increasing AODs are seen in west-
ern South America in February and March. The first guess
underestimates the AOD throughout the globe in January and

continues to do so in South America, Indonesia, Southeast
Asia, most of central Asia, northern India and western North
America in February and March (Fig. 5). The AOD is over-
estimated in these two months over central Africa, central
and East Asia, where they are associated with biomass burn-
ing, desert dust and anthropogenic emissions, respectively.
The system reduces the difference with respect to the obser-
vations over Central Africa by increasing the biomass burn-
ing emissions in January and decreasing them in February
and March. In the same way, desert dust emissions over cen-
tral Asia are reduced in February and March. The assim-
ilation has no major impact over the west coast of North
America where the underestimation of AOD is not improved
throughout the winter months. Over western South Amer-
ica the assimilation reduces the underestimation from Febru-
ary to March by increasing the biomass burning emissions.
The system increases the emissions of sea salt aerosols in
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Fig. 6.Same as Fig. 5 but for fine mode AOD.

February and March over most of the global oceans in or-
der to reduce the underestimation of the AOD, in particular
over the SH. The comparison of the analysis of total and fine
mode AOD to the respective MODIS AOD reveals that the
increase in emissions mainly concerns fine aerosols (Fig. 6).

We quantify now the differences between both model out-
puts, first guess and analysis, and MODIS AOD by comput-
ing the root mean square error (RMS), mean bias and correla-
tion coefficient (R). The statistics are computed first at global
scale and considering the full annual cycle (Table 2). The as-
similation is effective in bringing the model AOD closer to
observations, for both the total and fine mode AOD. Larger
impacts are seen in the total AOD than in the fine mode in
terms of RMS and correlation whereas a larger impact in the
mean bias is seen for the fine mode AOD. Furthermore, the
assimilation of total and fine mode AOD drives the model
AOD towards the observations throughout the year (Fig. 7).
For total and fine mode AOD the RMS and bias are reduced
throughout the year. For the correlation coefficient on the

Table 2. Statistics quantifying the difference between first guess
(FG) or analysis (AN) and MODIS AOD. The statistics are com-
puted at the global scale, considering the full annual cycle and all
pixels with observations. The total number of pixels used in the
computation of the statistics is given in the first row.

Total AOD Fine Mode AOD

FG AN FG AN
N◦ of pixels 48 119 48 119 32 441 32441
RMS 0.177 0.106 0.051 0.044
Mean Bias −0.068 −0.052 −0.016 −0.003
Correlation 0.442 0.651 0.548 0.621

contrary, both variables present months with larger correla-
tions in the first guess than the analysis. The reduction (in-
crease) in RMS (correlation coefficient) is larger in the total
AOD for most of the months whereas the bias reduction is
larger in the fine mode AOD for all months.
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Figure 7. 

 Fig. 7.Total (left) and fine mode AOD (right) change in root mean square error (black dotted), mean bias (black continuous) and correlation
coefficient (black dashed) between analysis and MODIS AOD and between first guess and MODIS AOD. In addition, bias for first guess (red
diamond) and analysis (red square) with respect to MODIS AOD are illustrated.

Over oceans the assimilation is more efficient in improv-
ing the RMS for the total AOD than for the fine mode AOD
but more efficient in reducing the bias for the fine mode than
for the total AOD. Finally, the correlation coefficient is im-
proved for the fine mode AOD but not for the total AOD.
In spite of the additional observations over ocean, the assim-
ilation produces a larger reduction (increase) in RMS (cor-
relation) over land than over ocean, yet it does not improve
the bias. In Sect. 4 the reasons for this behaviour will be dis-
cussed. While the RMS is reduced in all regions (see Fig. 2
for the definition of regions) for total and fine mode AOD, a
few regions exist where either the bias or correlation are not
improved (not shown).

3.2 Comparison with AERONET

We repeat the above analysis comparing the first guess and
analysis to independent observations from the AERONET
network. We first conduct the analysis at the individual sta-
tions that are known to be dominated by a particular aerosol
species and then at regional scale (Sect. 2.7). We select a to-
tal of 12 stations spread around the globe (Fig. 2) sounding
air masses dominated by anthropogenic emissions of fossil
fuel combustion and sulphate, biomass burning, desert dust
aerosols and sea salt emissions (Fig. 8). Most of these sta-
tions have already been used either to study aerosol prop-
erties or to evaluate model performance with respect to the
given aerosol (e.g., Dubovik et al., 2002; Generoso et al.,
2003; Chin et al., 2009; Huneeus et al., 2009).

The impact of assimilating AOD on anthropogenic
sources, both industrial and fossil fuel, is explored through
the stations of the Goddard Space Flight Centre (GSFC;
38.99◦ N, 76.84◦ W), Lille (50.61◦ N, 3.14◦ E) and Beijing
(39.98◦ N, 116.38◦ E). These stations measure urban and pol-
luted air in eastern US, northern France and China, respec-
tively. In general the analysis (black line) is closer to the
AERONET AOD (blue line) than the first guess (red line),

with the exception of April in Lille and the months of April,
September and October in Beijing. In both cases the depar-
ture of the analysis to the observations is larger than the one
of the first guess. In general the system manages to increase
emissions when AOD is underestimated and decrease them
when the AOD is overestimated. At Lille and Beijing large
differences between MODIS (green line) and AERONET
AOD exist that explain the difference between the analysis
and AERONET.

At the biomass burning stations of Mongu (South Africa;
15.25◦ S, 23.15◦ E), Abracos Hill (South America; 10.76◦ S,
62.36◦ W) and Jabiru (Australia; 12.66◦ S, 132.89◦ E) the
first guess underestimates the AOD throughout the year and
MODIS AOD agrees in general with the AERONET one.
The assimilation of AOD reduces the underestimation in pe-
riods of maximum AOD between August and November cor-
responding to the peak of biomass burning activity (Duncan
et al., 2003). The system is efficient in increasing emissions
and reproducing the AERONET AOD (Jabiru) but has dif-
ficulties in correcting the seasonal cycle when it is out of
phase with respect to the observations as seen in Abracos
Hill. Furthermore, the assimilation has little or no impact in
increasing the AOD at the period of maximum AOD between
January and April at Mongu and Jabiru as well as outside
the period of maximum biomass burning activity at all three
stations. The AOD improvement in Mongu remains limited
compared to the one in Abracos Hill and Jabiru.

The dust stations of Cape Verde (16.73◦ N, 22.93◦ W) and
Banizoumbou (Africa; 13.54◦ N, 2.66◦ E) present contrast-
ing results. While the assimilation improves the performance
in the first semester at the off shore station of Cape Verde,
it reduces the underestimation at the inland station of Ban-
izoumbou mainly from July to November. Over Solar Vil-
lage (Middle East; 24.91◦ N, 46.4◦ E) and due to the absence
of observations, the emissions (and thus the AOD) are only
constrained by observations in the surrounding regions.
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Fig. 8.AOD at 550 nm at selected AERONET stations. Model AOD with initial emissions or first guess (FG, red line) and with final emissions
or analysis (AN, black line) are illustrated as well as the MODIS AOD (green) and the AERONET AOD (blue). Stations representative of
anthropogenic emissions of fossil fuel and sulphate are Goddard Space Flight Centre (38.99◦ N, 76.84◦ W), Lille (50.61◦ N, 3.14◦ E) and
Beijing (39.98◦ N, 116.38◦ E). For biomass burning the selected stations are Mongu (15.25◦ S, 23.15◦ E), Abracos Hill (10.76◦ S, 62.36◦ W)
and Jabiru (12.66◦ S, 132.89◦ E) whereas for desert dust the stations are Cape Verde (16.73◦ N, 22.93◦ W), Banizoumbou (13.54◦ N, 2.66◦ E)
and Solar Village (24.91◦N, 46.4◦ E). Finally, the stations dominated by sea salt aerosols are Ascension Island (7.98◦ S, 14.41◦ W), Coconut
Island (21.43◦ N, 157.79◦ W) and Mauna Loa (19.54◦ N, 155.58◦ W).

Unlike the previous analyzed stations, the marine sta-
tions of Ascension Island (7.98◦ S, 14.41◦ W), Coconut
Island (21.43◦ N, 157.79◦ W) and Mauna Loa (19.54◦ N,
155.58◦ W) are not only constrained by the assimilation of
total AOD but also of the fine mode AOD. The assimilation
of both of these variables largely reduces the initial underes-
timation throughout the year. In addition, the smaller AOD
values at these stations illustrate that the system corrects the
emissions even at low AOD values. These stations together
with anthropogenic stations are the ones with largest differ-
ence between MODIS and AERONET among the analyzed
ones.

The statistics quantifying the difference with respect to
125 selected AERONET stations (Sect. 2.7) are given in Ta-
ble 3. They are computed considering the entire year 2002
and using the closest model grid point to each site. Only days
with observations are considered in the model monthly aver-
age. The assimilation is successful in reducing the RMS and
bias and increasing the correlation between simulated and
AERONET AOD for both the total and the fine mode.

The same statistics have been calculated grouping the sta-
tions into the regions illustrated in Fig. 2. The assimila-

Table 3.Same as Table 2 but with statistics computed with respect
to AERONET. Selected stations are illustrated in Fig. 2. Statistics
are computed considering the closest model pixel to the AERONET
stations and monthly average is computed using only days with
AERONET observations. The number of monthly means used to
compute the statistics is given in the first row while the number of
stations used is given in parenthesis.

Total AOD Fine mode AOD

FG AN FG AN
N◦ obs 979 (125) 979 (125)
RMS 0.136 0.119 0.118 0.108
Bias −0.065 −0.048 −0.0082 0.0079
Corr 0.702 0.756 0.599 0.680

tion is more efficient over land than over ocean as seen
in the comparison with MODIS AOD (Sect. 3.1); all three
statistics (RMS, bias and correlation) are improved over
land whereas over ocean only the bias is reduced while
the RMS/correlation is increased/decreased (not shown).
For the fine mode however, the assimilation shows larger
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Table 4.Same as Table 3 but with statistics computed with respect
to MODIS AOD. Statistics are computed considering as observation
the closest MODIS pixel to the AERONET stations. Monthly aver-
ages are computed using only days with AERONET observations.

Total AOD Fine mode AOD

FG AN FG AN
N◦ obs 926 (125) 251 (125)
RMS 0.137 0.119 0.087 0.068
Bias −0.070 −0.052 −0.002 0.011
Corr 0.613 0.691 0.560 0.736

improvement over ocean than over land for RMS andR.
Yet the absolute bias is reduced over land but increased over
ocean.

The statistics in Table 2 are based on a gridbox-by-gridbox
intercomparison whereas in Table 3 they are based on a
station-by-station one and are therefore not comparable. In
order to make them comparable we re-compute the statis-
tics between both model runs and MODIS data by defining
as reference the closest MODIS pixel to each AERONET
station (Table 4). The bias and the RMS of the total AOD,
present no major differences whether they are computed with
AERONET data or with the closest MODIS grid point to
each AERONET station. For the fine mode AOD on the con-
trary, the reduction in RMS is larger when the model outputs
are compared to MODIS than to AERONET whereas the bias
is reduced with respect to AERONET but increased with re-
spect to MODIS.

To evaluate the impact of the assimilation on the aerosol
size distribution, the model̊Angstr̈om exponent (AE) is com-
puted from the AOD at 550 and 865 nm. The statistics are
then computed measuring the difference with respect to the
AERONET AE. As for AOD, the closest model grid point to
each site was used and only days with observations are con-
sidered in the model monthly average. The statistics were
computed for all regions illustrated in Fig. 2 and an im-
provement in the performance to reproduce size distribu-
tion in terms of reduction of RMS errors and bias is seen
in African and European stations as well as in dusty stations
(not shown).

3.3 Emission fluxes

The new estimated aerosol emission fluxes are 15 Tg yr−1

for BC, 119 Tg yr−1 for POM, 1383 Tg yr−1 for DD and
17 Pg yr−1 for SS (Table 5). The estimated emission flux for
SO2 is 83 TgS yr−1. These new fluxes represent an increase
with respect to the first guess of 45 % for BC, 40 % for POM,
13 % for SO2 and 26 % for SS. The only species where the
emissions are reduced is DD, where the new emissions rep-
resent 61 % of the original ones.

Desert dust emissions are reduced throughout the global
desert regions for the coarse mode but certain regions, such

Table 5.Total emission fluxes of first guess (FG) and analysis (AN)
for the year 2002 of black carbon (BC), particulate organic matter
(POM), desert dust (DD), sea salt (SS) and sulphur dioxide (SO2).
Fluxes and errors are given in Tg yr−1 and the latter correspond to
one standard deviation. The fluxes for SO2 are given in TgS yr−1.
The emission fluxes presented in Lamarque et al. (2010) are referred
as L10. To ease the comparison we have converted organic carbon
(OC) emissions given in Lamarque et al. (2010) to POM as used in
this study. We use a conversion factor of 1.4 between both species.

FG AN L10

BC 10± 9.9 15± 13.5 8
POM 85± 84.0 119± 111 50
SO2 73± 21.5 83± 25.5 54
DD 2256± 6598 1383± 2916 –
SS 13 810± 27 739 17 371± 1926 –

as South and northwest America, India, Australia and Saudi
Arabia, present an increase of emissions in the fine mode
(Fig. 9). Yet, in spite of this increase in fine mode dust emis-
sions, the total dust emissions are decreased in all dust re-
gions due to the mass dominance of the coarse mode.

The total annual emissions of BC, POM and SO2 are
decreased over Europe while they are increased elsewhere
(Fig. 10). The largest of these increases are seen in North
America and Asia for BC and POM, mainly from April to
August for the former while for the latter the increase over
North America is from April to June and the one in Asia
is from April to June and from August to October. For SO2
the largest increase is seen over North America from May
to August and in North Africa in April and May. The reduc-
tion observed over Europe corresponds to a decrease in fos-
sil fuel emissions throughout most of the year except for the
months of April and June. An additional region with an an-
nual reduction of fossil fuel emissions is seen in South Africa
where the system reduces the emissions from June to Octo-
ber. However, this decrease does not offset the increase in
biomass burning emissions in that region (not shown).

3.4 Uncertainty analysis

We analyze the impact on the assimilation of the uncertain-
ties associated to the model errors before studying the uncer-
tainties of the estimated aerosol fluxes. To analyze the impact
of the model error on the results we conducted two exper-
iments only differing by the magnitude of the model error.
We define the model error to be equivalent to the observa-
tion error over land (i.e. model error equal to 0.1 in AOD)
in the first experiment and increase it further to 0.15 in the
second experiment instead of 0.02 in our initial setup (Ta-
ble 6). The performance of the assimilation decreases as the
model error increases reflected by larger RMS errors and bi-
ases and smaller correlation coefficients with respect to the
initial setup. Yet both experiments perform better than the
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Fig. 9. Annual emissions of coarse mode, fine mode and total desert dust in North West America (NWAm), South America (SAm), West
Sahara (WSa), Saudi Arabia (SauAr), Africa Sub Sahara (SubSa), Australia (Au), East Asia (EAs), North East America (NEAm), India (Ind),
West Asia (WAs) and East Sahara (ESa). Emission fluxes of the first guess (FG, red) and analysis (AN, black) are illustrated. Vertical bars
correspond to the uncertainties in the emissions and represent one standard deviation. Regions correspond to the ones illustrated in Fig. 1.

 
Figure 8. 

 

 
Figure 9. 

 

 
Figure 10. 

 Fig. 10.Same as Fig. 9 but for black carbon, organic matter and sulphur dioxide for North America (NAm), South America (SAm), Europe
(EU), North Africa (NAf), South Africa (SAf), Asia (As) and Australia (Aus). Emission fluxes of the first guess (FG, red) and analysis (AN,
black) are illustrated as well as the emission fluxes presented in Lamarque et al. (2010) and referred as L10. To ease the comparison we have
converted organic carbon (OC) emissions given in Lamarque et al. (2010) to POM as used in this study. We use a conversion factor of 1.4
between both species and therefore consider the POM flux in L10 to represent a lower boundary.

first guess in all statistics and for both total and fine mode
AOD; they present smaller RMS and bias and larger correla-
tion coefficient than the first guess (Table 6). Even when the
model error is increased to 0.5 in AOD in a third experiment,
the analysis continues to present smaller RMS errors and bias
than the first guess for both total and fine mode AOD. In
terms of correlation coefficient, only the fine mode presents
a decrease compared to the first guess (Table 6).

The analysis error covariance matrix (A) can be computed
as follows:

A = (HT R−1H + B−1)−1 (4)

The elements of this matrix correspond to the errors of the
estimated variable or analysis and can be used to assess the
impact of the assimilation on the errors of the estimated emis-
sion fluxes. The analysis errors combine the observation and
model errors inR, weighted by the sensitivities of the AOD
to the emissions, with the a priori errorsB. The a priori an-
nual emission errors (standard deviationσ) for each region
used to define theB matrix (Sect. 2.5) are 30 % for SO2,
100 % for BC and POM, 300 % for DD and 200 % for SS.

The annual errors (σ ) of the estimated emissions are 30 %
for SO2, 90 % for BC and POM, 200 % for DD and 10 % for
SS. Therefore the assimilation of total and fine mode AOD
reduces the errors for all species and all regions throughout
the year except for SO2 where the reduction is marginal.

The assimilation reduces the errors for all species and all
regions throughout the year with the largest reductions for
both fine and coarse DD and SS (Fig. 11a). The SS and
SO2 estimated fluxes present almost constant errors through-
out the year and regions (Fig. 11b). The errors associated to
BB emissions present larger values in South America and
Africa, especially in periods of maximum emissions from
June to December, while the ones corresponding to FF emis-
sions present smaller magnitudes over Europe and Asia. Fine
mode DD emissions present smaller errors over the Sahara
and Saudi Arabia throughout most of the year, whereas er-
rors over Asia and the Indian subcontinent present larger er-
rors mainly from March to October. Finally, for coarse mode
DD the errors over Asia present larger errors from April
to October, the ones of Indian subcontinent present larger
errors from May to August and those over West Sahara from
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Figure 11. 

 
Fig. 11. (a)Difference in monthly mean errors (Analysis – First Guess) with the model error defined as 0.02. The monthly mean analysis
error [%] for the estimated emission fluxes when the model error is defined as(b) 0.02, (c) 0.1 and(d) 0.15. The number of rows in the
figure corresponds to the number of elements in the control vector. Each row corresponds to the seasonal cycle of analysis error of a given
emission flux and region. The rows between different species are separated by black discontinuous lines. The red/blue colors in(a) indicate
positive/negative differences whereas in(b), (c) and(d) they indicate relatively high/low values.

Table 6.Same as Table 2 but for assimilations with varying model error (ME).

Total AOD Fine mode AOD

FG AN AN AN AN FG AN AN AN AN

ME = 0.02 ME = 0.1 ME = 0.15 ME = 0.5 ME = 0.02 ME = 0.1 ME = 0.15 ME = 0.5
RMS 0.177 0.106 0.108 0.109 0.114 0.051 0.044 0.047 0.047 0.046
Bias −0.068 −0.052 −0.055 −0.056 −0.06 −0.016 −0.003 −0.002 −0.001 −0.005
Corr 0.442 0.651 0.64 0.629 0.60 0.548 0.621 0.573 0.556 0.540

April to August. The larger model errors usually increase the
magnitude of the uncertainties for all species and all regions
(Fig. 11c to d). In addition, these uncertainties are homoge-
nized for each species among the regions and the differences
in uncertainty between anthropogenic and dust aerosols is
also increased.

4 Discussion

An inversion method has been developed that estimates the
emissions of the main aerosol species and one gaseous pre-

cursor (namely DD, SS, BC, POM and SO2) by assimilating
daily total and fine mode MODIS AOD at 550 nm into an
aerosol model with intermediate complexity. In spite of the
additional constraint from the assimilated fine mode AOD
over ocean, the total AOD presents a larger improvement
over land than over ocean (with respect to MODIS) in terms
of RMS error andR. This is due to the larger departures
of the simulated AOD to the observed one over land than
over ocean. Consistent with the above, when compared to
AERONET, the total AOD also performs better over land
than over ocean. However, contrary to the total AOD, a larger
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improvement in RMS errors andR is seen over ocean than
over land for the fine mode AOD. The contribution of assim-
ilating fine mode AOD over ocean and not over land might
explain this performance and reveals the prospect of imple-
menting the assimilation with fine mode AOD over land.

The inspection of individual AERONET stations reveals
an important mismatch between MODIS and AERONET
AOD, especially at oceanic stations and those dominated
by anthropogenic emissions. In addition, the comparison
of statistics with respect to AERONET and the equivalent
MODIS AOD suggests a representation error of continen-
tal AERONET stations to capture the impact of assimilat-
ing total and fine mode MODIS AOD. This mismatch and
representation error could be the result of our thinning of
the MODIS data necessary for their use in the assimila-
tion; the loss of resolution introduces errors in the MODIS
value corresponding to each AERONET station. However,
a systematic bias in the MODIS fine mode AOD relative to
AERONET values cannot be excluded.

The analysis error includes a coarse estimation of the
model error through theR matrix. This estimation consid-
ers the error introduced through grouping different aerosol
species into a few tracers, a simplified chemistry, neglecting
the aging of aerosols and the corresponding modification of
their physical and chemical properties. A more accurate rep-
resentation of the model error is a topic for a future effort,
however experiments conducted varying this model error re-
veal that the assimilation continues to improve the perfor-
mance (in terms of RMS errors and bias) to reproduce total
and fine mode AOD with model errors of 0.5 or less in AOD.

The absence of a reference emission data set prevents
us from validating the estimated emission fluxes directly
and concluding on the final value of our results. Instead,
the FG and AN emissions were compared to existing esti-
mates and emission inventories. The new annual total desert
dust emission of 1383 Tg yr−1 is within the range of emis-
sions used in global models (Textor et al., 2006; Huneeus
et al., 2011) and within the range of emissions given in
Zender et al. (2004) and Cakmur et al. (2006). The former
authors give an emission range of 1000 and 2150 Tg yr−1

whereas the latter estimate the emissions to be between
1500 and 2600 Tg yr−1, although emissions between 1000
and 3000 Tg yr−1 are presented as a plausible estimates. In
addition, the emissions for North Africa (879 Tg yr−1) and
the Middle East (39 Tg yr−1) are within the range of emis-
sion given in Huneeus et al. (2011) for these regions (400–
2200 Tg yr−1 and 26–526 Tg yr−1, respectively). The Mid-
dle East emissions are also within the range of emissions
(23–132 Tg yr−1) presented in Cakmur et al. (2006) whereas
the emissions in Northern Africa are lower than the plausible
emissions (964–1803 Tg yr−1) for that region given in Cak-
mur et al. (2006).

The first guess (FG) and estimated (AN) emissions of BC,
POM and SO2 have been compared to a newer and updated
emission inventory presented in Lamarque et al. (2010), here-

after referred as L10 (Table 5). This new inventory corre-
sponds to an update of previous inventories and was cre-
ated to provide consistent and gridded emissions of reactive
gases and aerosol for use in chemistry model simulations and
to support the Intergovernmental Panel on Climate Change
(IPCC) Fifth Assessment Report (AR5) (Lamarque et al.,
2010). We note that the aerosol emissions in L10 actually un-
derestimate the AOD peak values when used in a Chemical
Transport Model (Lamarque et al., 2010) and might there-
fore underestimate the real emissions. The FG emissions are
larger than the L10 emissions throughout most regions ex-
cept over Europe for SO2 and over Asia for BC, POM and
SO2. The larger FG emissions are consistent with a possible
underestimation of the L10 emissions mentioned above. It
has also been suggested that emissions inventories may un-
derestimate anthropogenic BC and POM emissions in Africa
because they neglect some categories of sources and fuels
(Liousse et al., 2010). In general the AN presents even larger
emissions compared to L10 than the FG. Larger increase of
emissions is seen for BC and POM than for SO2. The AN
emissions for these three species are reduced over Europe
with respect to the FG. This is consistent with the fact that
we are using somewhat outdated emission inventories and
emissions are known to have decreased in Europe because of
air quality policies. The biomass burning emissions have a
large inter-annual variability (Granier et al., 2011) and have
been increasing from the 1960s to the 1990s, at a global scale
but especially over Africa and South America (Schultz et al.,
2008). Therefore the increase of AN emissions of BC and
POM over South America and Africa is consistent with the
fact that we use as FG an estimate corresponding to periods
with smaller biomass burning emissions than at present. The
emissions in L10 are not within the uncertainty (σ ) of the
estimated fluxes, with the exception of the emissions of BC
and POM in Europe and Asia and the SO2 emissions in North
and South Africa.

The general validity of the resulting emission fluxes
strongly depends on the simplifications introduced in the
aerosol model. Differences in processes such as sulphur
chemistry and aerosol deposition as well as the definition of
optical properties can influence the simulated AOD for the
same emission flux. Therefore, in order to explore the general
validity of the emission intensities obtained with an aerosol
model with intermediate complexity, these fluxes need to be
used in models with higher complexity and their simulated
AOD be compared to the assimilated observations as well as
independent datasets. The posterior validation of the simu-
lated AOD could reveal weaknesses in the simplification that
need improvement.
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5 Conclusions

Uncertainties in aerosol emissions introduce large uncertain-
ties in the aerosol impact on climate. Numerous efforts have
been dedicated to estimate aerosol emissions. Traditionally
these estimations were conducted by bottom-up approaches
where source information across sectors is integrated. In the
last few years the use of methods that exploit the combination
of satellite data and numerical models, also known as top-
down approaches, have contributed to the production of im-
proved emission inventories. All these studies however have
concentrated on a single aerosol species.

We have presented here the first attempt to simultane-
ously estimate emissions of the main aerosol species and one
gaseous precursor (namely DD, SS, BC, POM and SO2) on
a global scale with a top-down approach. These emission
fluxes were estimated by assimilating daily total and fine
mode MODIS AOD at 550 nm into an aerosol model with
intermediate complexity. Aerosols emissions are increased
or decreased homogenously for each aerosol species and
gaseous precursor over a set of predefined regions. The fluxes
are computed as a function of the departure of the obser-
vations to the ones corresponding to the a priori emission
fluxes. These departures are weighed by the sensitivities of
the AOD to the emissions of each one of the aerosol species
and gaseous precursor and by the error characterization of the
a priori information and the observations. The method was
applied to one year’s worth of data and monthly mean fluxes
are generated for each one of the species above mentioned.
The results were validated by comparing both model AOD
outputs (first guess and analysis) to the MODIS AOD first
and then to an independent data set from the AERONET net-
work. In addition, sets of statistics (root mean square error,
mean bias and correlation coefficient) were computed quan-
tifying the difference between model outputs and reference
AOD (MODIS and AERONET).

The assimilation successfully forces the model AOD to-
wards the MODIS observations, for both total and fine mode
AOD, on a global scale and considering the full annual cycle.
Larger improvements in RMS and correlation coefficient are
seen in the total AOD than in the fine mode whereas a larger
improvement in the mean bias is seen in the fine mode AOD.
In general, over oceans the assimilation has a larger impact
on the fine mode AOD in terms of bias and correlation than
on the total AOD. On the contrary, the reduction of RMS is
larger for the total AOD than for the fine mode AOD. For the
total AOD the assimilation produces a larger reduction (in-
crease) in the RMS (correlation) over land than over ocean,
yet it does not improve the bias over land. This impact over
land on the total AOD varies from region to region depending
on the dominant aerosol type. The impact on fine mode AOD
varies according to the region depending on the contribution
of continental aerosol.

The performance of the assimilation system is maintained
when comparing the outputs to independent AERONET

AOD. The assimilation improves all statistics on all as-
pects except for the mean bias of the fine mode AOD that
shows an increase from first guess to analysis. Looking at
statistics against the closest MODIS AOD pixel to each
AERONET station suggests a representation error of conti-
nental AERONET stations to capture the impact of assim-
ilating total and fine mode AOD or a systematic bias in
the MODIS fine mode AOD relative to AERONET values.
Oceanic stations illustrate the impact of assimilating fine
mode AOD and reveal the potential for further improvement
of including fine mode AOD observations over continents. In
addition to improving the performance to reproduce the to-
tal and fine mode AOD, the assimilation also improves the
size distribution, as measured by theÅngstr̈om coefficient,
at African, European and dusty stations.

The assimilation continues to force the simulated AOD to
the MODIS observations when the model error is increased
to values comparable to the observation error. Even if the
model error is defined as large as 0.5 in AOD the perfor-
mance is improved in terms of RMS and bias.

In general, the system increases the desert dust and
biomass burning emissions in regions where the MODIS
AOD is underestimated by the first guess and decreases them
where the AOD is overestimated. More difficulties are ob-
served in adjusting the emissions to reproduce AOD associ-
ated to anthropogenic emissions of SO2 and fossil fuel com-
bustion. The estimated emission fluxes are 14.5 Tg yr−1 for
BC, 119 Tg yr−1 for POM, 17 Pg yr−1 for SS, 82.7 TgS yr−1

for SO2 and 1383 Tg yr−1 for DD. They represent a differ-
ence of 45 %, 40 %, 26 %, 13 %,−39 % respectively, with re-
spect to the a priori values. These results suggest that our ini-
tial desert dust emission inventory strongly overestimates the
coarse mode emissions throughout the globe whereas for the
fine mode, regions exist where the emission are actually un-
derestimated. With respect to the BC, POM and SO2, the re-
sults suggest that the emissions are underestimated through-
out the globe except over Europe where the fossil fuel emis-
sions are overestimated. Furthermore, the initial errors at-
tributed to the emission fluxes are largely reduced by the as-
similation for all aerosol species and sulphur dioxide. The
errors of the estimated fluxes are 10 % for SS, 30 % for SO2,
90 % for BC and POM and 200 % for DD. While we have
shown that the adjusted aerosol emissions improve the sim-
ulated fine mode and total AOD in our simplified model, the
potential of the method to improve aerosol models of higher
complexity and constrain aerosol emission inventories in an
absolute sense remain to be explored.

We recall that the system only estimates the sub-
continental or continental emission intensity while not
changing their regional distribution. Therefore the system
does not necessarily reproduce the horizontal distribution of
AOD present in the observations since it is constrained to
fit the observations with the existing source patterns. How-
ever, this first estimate serves as baseline in the future to as-
sess the impact of introducing changes in the method and has
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the advantage of delivering the uncertainties of the estimated
fluxes.
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C., Platnick, S., Ackerman, S. A., Remer, L. A., Pincus, R., and
Hubanks, P. A.: Cloud and aerosol properties, precipitable water,
and profiles of temperature and water vapor from MODIS, IEEE
Trans. Geosci. Remote Sensing, 41, 442-458, 2003.

Koch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J.
R., Balkanski, Y., Bauer, S., Berntsen, T., Bond, T. C., Boucher,
O., Chin, M., Clarke, A., De Luca, N., Dentener, F., Diehl, T.,
Dubovik, O., Easter, R., Fahey, D. W., Feichter, J., Fillmore,
D., Freitag, S., Ghan, S., Ginoux, P., Gong, S., Horowitz, L.,
Iversen, T., Kirkev̊ag, A., Klimont, Z., Kondo, Y., Krol, M., Liu,
X., Miller, R., Montanaro, V., Moteki, N., Myhre, G., Penner,
J. E., Perlwitz, J., Pitari, G., Reddy, S., Sahu, L., Sakamoto, H.,
Schuster, G., Schwarz, J. P., Seland, Ø., Stier, P., Takegawa, N.,
Takemura, T., Textor, C., van Aardenne, J. A., and Zhao, Y.: Eval-
uation of black carbon estimations in global aerosol models, At-
mos. Chem. Phys., 9, 9001–9026,doi:10.5194/acp-9-9001-2009,
2009.
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Liousse, C., Guillaume, B., Grégoire, J. M., Mallet, M., Galy, C.,
Pont, V., Akpo, A., Bedou, M., Castéra, P., Dungall, L., Gardrat,
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