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Abstract. The relationship between precipitation rate
and accumulation mode aerosol concentration in marine
stratocumulus-topped boundary layers is investigated by ap-
plying the precipitation susceptibility metric to aircraft data
obtained during the VOCALS Regional Experiment. A new
method to calculate the precipitation susceptibility that in-
corporates non-precipitating clouds is introduced. The mean
precipitation rateR over a segment of the data is expressed
as the product of a drizzle fractionf and a drizzle inten-
sity I (mean rate for drizzling columns). The susceptibility
Sx is then defined as the fractional decrease in precipitation
variablex={R,f ,I } per fractional increase in the concen-
tration of aerosols with dry diameter>0.1 µm, with cloud
thicknessh held fixed. The precipitation susceptibilitySR
is calculated using data from both precipitating and non-
precipitating cloudy columns to quantify how aerosol con-
centrations affect the mean precipitation rate of all clouds of
a givenh range and not just the mean precipitation of clouds
that are precipitating.SR systematically decreases with in-
creasingh, and this is largely becauseSf decreases withh
while SI is approximately independent ofh. In a general
sense,Sf can be thought of as the effect of aerosols on the
probability of precipitation, whileSI can be thought of as
the effect of aerosols on the intensity of precipitation. Since
thicker clouds are likely to precipitate regardless of ambient
aerosol concentration, we expectSf to decrease with increas-
ing h. The results are broadly insensitive to the choice of
horizontal averaging scale. Similar susceptibilities are found
for both cloud base and near-surface drizzle rates. The analy-
sis is repeated with cloud liquid water path held fixed instead
of cloud thickness. Simple power law relationships relating

precipitation rate to aerosol concentration or cloud droplet
concentration do not capture this observed behavior.

1 Introduction

Drizzle with wide ranging intensities and areal extent is a
common feature in stratocumulus-topped boundary layers,
especially in remote marine environments (Brost et al., 1982;
Nicholls and Leighton, 1986; Frisch et al., 1995; Vali et al.,
1998; Yuter et al., 2000; Pawlowska and Brenguier, 2003;
Bretherton et al., 2004; Comstock et al., 2004; vanZanten et
al., 2005; Leon et al., 2008; Kubar et al., 2009). Over parts
of the eastern subtropical/tropical oceans dominated by stra-
tocumulus, including the southeastern Pacific, the intensity
and frequency of drizzle tends to increase westwards from
the coast (Leon et al., 2008; Kubar et al., 2009; Brether-
ton et al., 2010). The westward increase in drizzle coincides
with changes in both aerosol concentrations and macrophys-
ical properties of the stratocumulus deck (e.g.,George and
Wood, 2010; Bretherton et al., 2010; Allen et al., 2011),
thereby raising the question: to what extent does the west-
ward increase in drizzle reflect changes in cloud macrophys-
ical properties, changes in cloud microphysical properties,
and changes in aerosol (e.g.,Wood et al., 2009)?

Of the drizzle falling from stratocumulus, a significant
fraction evaporates before reaching the surface (Comstock
et al., 2004; vanZanten et al., 2005; Wood, 2005). Whether
evaporating or not, drizzle can substantially change the
boundary layer characteristics by vertically redistributing
energy and water. Therefore, to improve the simulated
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structural and radiative properties of stratocumulus in gen-
eral circulation models, we need a better understanding of the
macrophysical and microphysical properties that determine
the frequency and intensity of drizzle (Wyant et al., 2007).

Aerosol indirect effects (AIEs), broadly defined here as the
effect of aerosols on the cloud albedo, are strongly sensitive
to the amount of drizzle falling from warm clouds (Rotstayn
and Liu, 2005) and to the amount evaporating below cloud
(Wood, 2007; Chen et al., 2011). The AIEs have been diffi-
cult to quantify, in part because different cloud types respond
differently to perturbations in aerosol concentration (Acker-
man, 2004; Stevens and Feingold, 2009). A key effect that
aerosols can have on clouds is the suppression of warm rain,
which forms the basis of the second AIE (Albrecht, 1989).
Part of the difficulty in quantifying the magnitude of the sec-
ond AIE is that warm rain responses to perturbed aerosol
concentrations are poorly understood.

Accumulation mode aerosols, which often are good prox-
ies for cloud condensation nuclei (Martin et al., 1994), have
a typical size range of 0.1 to 1 µm (Seinfeld and Pandis,
2006). In many marine environments where accumulation
mode aerosol concentrations are typically<200 cm−3, in-
creasing the accumulation mode aerosol number concentra-
tion increases the cloud droplet number concentrationNd
in similar proportion (Ramanathan et al., 2001). In warm
clouds, the increase inNd reduces the average cloud droplet
size, reduces the collision coalescence efficiency, and sup-
presses precipitation formation (Albrecht, 1989, inter alia).
This effect of accumulation mode aerosols on precipitation is
different from the effect that larger giant cloud condensation
nuclei (GCCN) have on the precipitation. Studies of GCCN
show that in certain situations, increases in the concentration
of GCCN leads to more precipitation (Feingold et al., 1999;
L’Ecuyer et al., 2009; Hudson et al., 2011), though the over-
all impacts remain inconclusive (Gerber and Frick, 2012).
However, it has been difficult to assess the extent of this sup-
pression in observational datasets, because aerosol concen-
trations tend to correlate well with meteorological factors,
making it difficult to separate the aerosol effects from simul-
taneous macrophysical drivers (Mauger and Norris, 2007;
George and Wood, 2010).

The precipitation susceptibility metricS0 quantifies the
suppression of precipitation by aerosols, while minimiz-
ing the confounding effects of macrophysics (Feingold and
Siebert, 2009). It is defined as

S0 =

(
−

d lnR

d lnNd

)
macro

, (1)

whereR represents the precipitation rate (at some altitude)
and Nd represents the cloud droplet number concentration
(Feingold and Siebert, 2009). The subscript “macro” indi-
cates that the susceptibility is calculated with fixed cloud
macrophysical properties, e.g., fixed cloud thickness or liq-
uid water path (LWP). This is critical because significant
correlations between the microphysical and meteorological

properties could potentially cause non-zero precipitation sus-
ceptibility even if the aerosols are not responsible for the
precipitation changes. In previous studies that used satel-
lite measurements to estimate the susceptibility, theNd in
Eq. (1) was replaced with a cloud condensation nuclei proxy
α (Sorooshian et al., 2009; Duong et al., 2011). In the satellite
studies, the aerosol index, which is the product of the aerosol
optical depth and the̊Angstrom exponent and is an indicator
of column integrated CCN concentrations (Sorooshian et al.,
2009; Duong et al., 2011), was used in place ofα. This study
uses the ambient accumulation mode aerosol concentration
to obtain susceptibility estimates in place ofα to calculate
the susceptibility.

Precipitation susceptibility estimates for marine stratocu-
mulus can be obtained from previous field studies. Field
studies of precipitating stratocumulus (e.g.,Pawlowska and
Brenguier, 2003; Comstock et al., 2004; vanZanten et al.,
2005) identified that simple power law relationships display
some skill in relating the cloud base precipitation rateRCB
to cloud thicknessh (or, alternatively, LWP) and to cloud
droplet number concentrationNd (Geoffroy et al., 2008). The
relationships take the form

RCB = Ahγ Nd
−β . (2)

For clouds with the same thicknessh, the exponentβ is iden-
tical to the susceptibilityS0 in Eq. (1). Theβ values reported
in previous field studies range from 1 to 1.75 (Geoffroy et al.,
2008). Variations inβ with cloud thickness, however, have
not been reported in these studies. This may be primarily due
to sampling constraints in the previous studies, but it is im-
portant to point out that in fitting a single power law to the
data, one implicitly assumes that the precipitation suscepti-
bility does not vary with cloud thickness. Recent satellite ob-
servations (Kubar et al., 2009) and simple theoretical model
results (Wood et al., 2009) provide observational evidence
and theoretical justification that the precipitation susceptibil-
ity decreases as the cloud thickness increases in marine stra-
tocumulus. Studies of warm cumulus clouds (Sorooshian et
al., 2010; Duong et al., 2011), on the other hand, report that
the susceptibility peaks at intermediate values of cloud LWP
(∼600–1300 g m−2). Reconciling these various relationships
into a coherent framework to explain precipitation suscepti-
bility in warm clouds is likely to be a formidable challenge.

In this study we investigate the factors controlling precipi-
tation susceptibility in warm, stratiform clouds using aircraft
observations of precipitating and non-precipitating marine
stratocumulus observed in the southeastern Pacific during the
VOCALS Regional Experiment (REx,Wood et al., 2011b).
The susceptibility metric is used to determine the extent to
which precipitation susceptibility depends upon cloud thick-
ness/LWP. The manuscript is organized as follows. Section2
describes the data used in the analysis and the methods used
to calculate the susceptibilities. Section3 reports the suscep-
tibilities that are calculated and their associated sensitivities
to the averaging length, to the height of the drizzle, and to
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the different methods of calculating the susceptibility. How
the results fit in with the existing literature and the precau-
tions that need to be taken when interpreting the susceptibil-
ity metric are discussed in Sect.4. In AppendixA, suscepti-
bilities are calculated on synthetic datasets with a prescribed
dependence ofR onN to compare the method that we use in
this study, tercile log-differencing (TLD), with other meth-
ods that can also be used to estimate the susceptibility.

2 Data and methods

We use a combination of in-situ and remotely sensed obser-
vations of aerosol and cloud properties from eleven research
flights of the NSF/NCAR C-130 aircraft during VOCALS
REx, which was conducted in the southeast Pacific during
October and November 2008 (Wood et al., 2011b). Since
aerosol measurements are missing from RF03 and cloud
thickness measurements are missing from RF01 and RF09,
data from only eleven of the total fourteen research flights
are used. The data used in this study are all analyzed at 1 Hz
time resolution, which translates to a spatial resolution of ap-
proximately 100 m.

2.1 Cloud macrophysical properties

Cloud macrophysical properties (thickness and LWP), driz-
zle properties (rates at cloud base and below cloud), and
aerosol properties below cloud are obtained simultaneously
from straight and level flight legs flown below the cloud at
approximately 150 m altitude (subcloud legs). Cloud thick-
ness, precipitation rate, and cloud LWP are estimated from
measurements obtained from the Wyoming Cloud Lidar
(WCL), the Wyoming Cloud Radar (WCR), and the G-band
Vapor Radiometer (GVR). The cloud base height is deter-
mined from the column maximum vertical gradient in the
lidar backscatter. The cloud top height is determined from
the maximum height at which the power return and the vari-
ance of the WCR Doppler velocity exceed threshold values.
An overview of cloud properties observed during VOCALS
REx can be found inBretherton et al.(2010). Details of the
LWP retrievals from the GVR can be found inZuidema et
al. (2012). Cloud thicknesses are available from 51 % of all
clouds detected with the WCL, because cloud top heights are
not retrievable for clouds with low radar reflectivity; cloud
thicknesses are available from 80 % of samples in which
the column maximum reflectivity exceeds−20 dBZ. On the
other hand, the cloud LWP measurements are available from
the GVR for 69 % of all clouds and 86 % of clouds with max-
imum reflectivity greater than−20 dBZ. If cloud thickness or
LWP retrievals are missing over portions of a flight segment,
those portions are not included in the calculation of segment
averaged precipitation rateR or other precipitation variables,
i.e.f andI .

2.2 Precipitation rate estimates

Unless otherwise noted, precipitation ratesR are obtained
from radar reflectivitiesZ at cloud base using theZ − R

relationshipR (mm day−1) = 2.01Z0.77, proposed byCom-
stock et al.(2004). A reflectivity threshold of−15 dBZ, cor-
responding to a drizzle rate of 0.14 mm day−1, is used to dis-
tinguish between drizzling and non-drizzling clouds. Cloud
base precipitation rates are used, because this is the most
energetically-relevant level for stratocumulus drizzle and to
facilitate comparison with previous studies of stratocumu-
lus drizzle (Pawlowska and Brenguier, 2003; Comstock et
al., 2004; vanZanten et al., 2005; Wood, 2005). Though us-
ing differentZ − R relationships has little effect on our re-
sults, for the precipitation rates at 250 m, we use theZ − R

relationship for surface precipitation fromComstock et al.
(2004), R (mm day−1) = 0.61Z0.91 (consistent withBrether-
ton et al., 2010). For the precipitation rate at 500 m, we use
the sameZ −R relationship used to calculate the cloud base
precipitation rate (consistent withWood et al., 2011a). Dif-
ferentZ − R relationships for cloud base precipitation rates
and surface precipitation rates are obtained byComstock et
al. (2004), because subcloud evaporation increases the mean
drizzle drop radius with distance below cloud base (see also
vanZanten et al., 2005).

2.3 Aerosols

Aerosol concentrations in the subcloud layer are ob-
tained from the Passive Cavity Aerosol Spectrometer Probe
(PCASP), which measures aerosol number concentrations
in the diameter range of 0.1–3 µm. In the marine boundary
layer, this range captures most of the accumulation mode
aerosols (Martin et al., 1994; Ramanathan et al., 2001). The
relationship between the PCASP aerosol concentration at
150 m altitude and the cloud droplet concentration,Nd, as
measured by the Cloud Droplet Probe (CDP, size range of
1–52 µm) is analyzed using the data from profile legs flown
during the research flights. Profile legs are flight legs flown
from below 400 m to above the inversion or vice versa (with
a rate of ascent/decent typically around 300 m min−1). From
90 profiles, we compare mean PCASP aerosol concentra-
tions, N , from below 220 m with mean in-cloudNd to es-
tablish the relationship between them.

2.4 Averaging scale

Though we test the sensitivity of the susceptibility estimates
to the averaging length, we choose to average the data over
10 km segments (100 s of data) in the bulk of our analyses,
because drizzle has been found to vary at this scale (van-
Zanten et al., 2005), and the dominant scale of variability in
marine stratocumulus clouds is usually that associated with
mesoscale cellular structures with scales of this order (Wood
and Hartmann, 2006). We find ane-folding length of 1.6 km
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for the cloud base precipitation rate field, suggesting that for
the dataset as a whole, the shortest averaging length scale
for independent data segments (Leith, 1973) is 3.2 km. Sim-
ilarly, the e-folding length for the cloud thickness is 1.7 km.
A given 10 km segment (100 s of data) from the subcloud
leg is used in the analysis if estimates of cloud thickness (or
cloud LWP) and aerosol concentration are available for some
or for the entire segment. Means of precipitation and cloud
thickness are averaged over only the regions of the 10 km
segments where cloud thickness measurements are obtained.
Since cloud thickness measurements could not be obtained
for the thinnest of clouds, our analysis is restricted to the
thicker clouds that were sampled by the research flights.

2.5 Susceptibility estimation

The 10 km segment-averaged cloud thicknessh, PCASP
aerosol concentrationN , and precipitation rateR are plot-
ted in Fig.1. Along the x-axis towards thicker clouds,R in-
creases substantially. To a lesser extent, towards higherN , R
decreases. The aim of this study is to quantify this decrease
in R with increasingN .

The high resolution aircraft data also allow us to deter-
mine the fraction and intensity of the drizzle in each segment.
Segment-mean precipitation ratesR from the 10 km seg-
ments are partitioned into the fraction of the cloudy columns
that are drizzlingf , and the mean drizzle rate in those
columns, here termed drizzle intensityI . This relation can
be written as

R = f I. (3)

A data point in this study consists of estimates of the mean
cloud thicknessh (or mean cloud LWP), the mean PCASP
concentrationN , and the three precipitation variablesR, f ,
andI . In non-drizzling segments, whereR = 0 andf = 0, I
is considered undefined. Hence, only drizzling segments are
used to calculate the susceptibility forI . This is to reduce
the covariance between the susceptibilities of drizzle fraction
and intensity when we calculate the total susceptibility..

We examine the susceptibility forR, f , andI separately,
referring to these susceptibilities asSR, Sf , andSI respec-
tively. The susceptibility is derived from the observational
dataset for four bins of increasing cloud thicknessh, each
with the same number of data points (percentiles 0–25 %,
25–50 %, 50–75 %, 75–100 % ofh). The range ofh in each of
theh bins are 14–207 m, 208–294 m, 294–379 m, and 381–
792 m. By dividing the data into four bins and estimating
the susceptibility separately for each bin, we (a) minimize
the macrophysical effects that can be detrimental to our sus-
ceptibility estimates and (b) estimate how the susceptibility
changes withh. The correlations betweenh andN within the
four bins from thinnest to thickesth are 0.3, 0.0,−0.1, and
−0.3 respectively.

In contrast to previous studies (e.g.,Jiang et al., 2010;
Duong et al., 2011) that examined the drizzle susceptibil-
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Fig. 1. Distribution of 10 km-averaged aerosol concentration and
cloud thickness measurements taken during twelve research flights.
Colors indicate cloud base precipitation rates derived from the cloud
base reflectivities that were measured by the Wyoming Cloud Radar.
Dotted lines indicate the boundaries of the cloud thickness bins de-
scribed in the text.

ity only in regions determined to be precipitating, using
some cutoff to distinguish precipitating and non-precipitating
clouds, we examine the drizzle susceptibility of all clouds,
precipitating or not, by investigating how aerosols affect both
the frequency and the intensity of drizzle in clouds of a given
thickness. Thus, this analysis attempts to quantify the effect
of aerosols on the mean precipitation rates of all clouds of
a given thickness, which is different from quantifying the
effect of aerosols on the mean precipitation rates of only
precipitating clouds of a given thickness. This approach is
appropriate in terms of understanding, because we include
clouds for which precipitation is completely suppressed due
to high ambient aerosol concentrations. We account for how
increased aerosol concentrations can decrease the likelihood
that a cloud precipitates, which is important for weakly-
precipitating clouds. By incorporating non-drizzling clouds,
we can address two questions in our susceptibility estimates:
(a) to what extent do aerosols perturb existing drizzle rates,
and (b) to what extent do aerosol perturbations affect the like-
lihood or fraction of drizzle?

Susceptibilities of each precipitation variable
x = {R,f,I } are estimated for each of the four cloud
thickness bins using the form,

Sx = −
ln(x+/x−)

ln(N+/N−)
, (4)

where the plus and minus subscripts indicate ensemble
means of a particular variable over the population corre-
sponding to the top and bottom 33 % ofN respectively. We
term this approach of calculating the susceptibility tercile
log-differencing (TLD). The uncertainty inSx is calculated
using bootstrap resampling (Efron and Gong, 1983). For each
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Table 1.Mean values of cloud thicknessh, PCASP aerosol concen-
trationN , and precipitation rateR in the four cloud thickness bins
(h1, h2, h3, h4 from bin with thinnest to thickest clouds). Total #
indicates the total number of points (10 km averages) in each bin,
and drizzling # indicates the number of those points wheref > 0.
x− andx+ indicate the mean values ofx in the population with top
and bottom 33 % values ofN in each bin.

h1 h2 h3 h4

Total # 93 93 94 93
Drizzling # 14 50 80 89
meanR (mm day−1) 0.04 0.12 0.30 3.69
meanh (m) 153 248 335 505
Min/maxh (m) 14/207 208/294 294/379 381/792
N− (cm−3) 69 85 77 39
N+ (cm−3) 357 419 411 266
R− (mm day−1) 0.12 0.28 0.52 7.1
R+ (mm day−1) 0.00068 0.049 0.11 1.7
Drizzling #− 10 21 29 30
Drizzling #+ 3 12 23 29

cloud thickness bin, the data are resampled with replacement
and the resulting susceptibility is calculated 10 000 times to
obtain a distribution of susceptibility estimates for that cloud
thickness bin. The middle 95th percentile (2.5 %, 97.5 %) of
this distribution is used to denote the 95 % confidence inter-
val of Sx . We only report susceptibilities in bins where pre-
cipitation is detected in at least 10 % of the segments. We
examine the ability of this method to capture the underly-
ing precipitation dependence on aerosol concentration in Ap-
pendixA.

Mean properties ofN , h, andR in the four cloud thick-
ness bins are summarized in Table1. One of the noticeable
changes across the bins is the marked increase in meanR.
Another is that the range ofN observed differs across the
bins. Since in the VOCALS region the thickest clouds are
found west of 80 W, where aerosol concentrations are typi-
cally below 200 cm−3 (Allen et al., 2011), this dataset does
not include data points with high aerosol concentrations and
high cloud thicknesses.

Wet scavenging of aerosols by precipitation has been in-
ferred byDuong et al.(2011) to negatively bias the suscep-
tibility values that they calculated from satellite measure-
ments. Given the boundary layer conditions that were ob-
served during VOCALS REx, we expect that wet scaveng-
ing would have a small effect on our susceptibility estimates,
because the time scales for wet scavenging of aerosol are
substantially longer than the time scales for drizzle forma-
tion and boundary layer mixing. Using the parameterization
from Wood (2006) with a cloud base precipitation rate of
1 mm day−1 and a cloud droplet number concentration of
100 cm−3, we calculate a wet scavenging rate of approxi-
mately 3 cm−3 h−1. Given that the typical lifetime of driz-
zle cells in the region is approximately two hours (Comstock
et al., 2005) and that the mixing of the boundary layer, esti-

mated from the convective velocity and depth of the bound-
ary layer, is approximately one hour, we do not expect the
aerosol concentrations to decrease substantially before pre-
cipitation rates adjust to the changes in aerosol concentra-
tions. Therefore, we expect that wet scavenging would not
statistically bias our susceptibility estimates. In making this
argument we assume that the cloud thickness and aerosol
concentration are the main controls of precipitation, and we
cannot rule out the possibility of another control on precipi-
tation that enhances precipitation and hence leads to an anti-
correlation betweenN andR through cumulative wet scav-
enging events. However, given the nature of our dataset, we
cannot test this issue, and hence, we do not filter the data for
potential wet scavenging effects.

3 Results

3.1 Aerosol vs. cloud droplet number concentration

The physical argument that increased aerosol concentrations
leads to reduced precipitation is dependent on the assump-
tion that PCASP aerosol concentrationsN at 150 m correlate
well with cloud droplet concentrationsNd in the overlying
cloud. To test this assumption, we takeN andNd from the
profile legs and plot the data in Fig.2. Each point represents
mean aerosol and cloud droplet concentrations from one pro-
file. The square of the linear correlation (r2) betweenN and
Nd is 0.74. As in previous studies (McComiskey and Fein-
gold, 2008; Duong et al., 2011), a power law relationship
of the formNd = ANb is used to characterize the relation-
ship between cloud droplet and aerosol number concentra-
tion. The exponentb, referred to as ACIN in the literature
(McComiskey and Feingold, 2008), can be thought of as the
cloud droplet concentration susceptibility: the fractional in-
crease in cloud droplet concentration in response to the frac-
tional increase in accumulation mode aerosol concentration.

To obtain theb value,b is increased from 0 to 1.5 in incre-
ments of 0.05 and the squared correlation (r2) of Nd andNb

is calculated at each increment. The highestr2 value of 0.80
is found forb = 0.55. Theb value that we obtain lies within
the range of previously reported values (0.26–0.85 fromMc-
Comiskey and Feingold, 2008). A study in the same marine
stratocumulus region in the southeast Pacific that usedNd es-
timated from MODIS retrievals andN from ship-based mea-
surements of accumulation mode aerosols found ab value of
0.56 (Painemal and Zuidema, 2010). This agreement is sur-
prising, given that this simple relationship only uses aerosol
concentrations in a single size range and does not take into
account the aerosol size distribution, aerosol hygroscopic-
ity, or incloud supersaturation. Theb value will be necessary
when comparing theSR values in this study, which quantify
precipitation responses to aerosol, with previously reportedβ

values from Eq. (2), which quantify precipitation responses
to cloud droplets (as in Sect.3.2).
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2 Cw h2, whereCw = 2×10−6 kg m−4

(Pawlowska and Brenguier, 2003).

3.2 Drizzle susceptibility

The susceptibilitySx of each of the three cloud base precipi-
tation variablesx = {R,f,I } for each of the cloud thickness
bins (h bins) is shown in Fig.3. The susceptibilitySR of the
mean drizzle rate is clearly positive for allh bins. For each
bin there is lower than a 2.5 % chance thatSR < 0. This is
consistent with the hypothesis that increasing aerosols de-
creases precipitation, as has been noted in numerous previous
studies (Pawlowska and Brenguier, 2003; Comstock et al.,
2004; vanZanten et al., 2005). The new finding in this study
is that SR decreases strongly with increasing cloud thick-
ness. Theh-dependence is quite marked, withSR decreas-
ing monotonically by a factor of four from approximately
3 for theh bin with thinnest clouds (meanh ≈ 150 m) to ap-
proximately 0.75 for theh bin with the thickest clouds (mean
h ≈ 500 m).

Further, we find that the susceptibilitySf of drizzle fraction
and susceptibilitySI of drizzle intensity exhibit very differ-
ent dependences upon cloud thickness (Fig.3). To first order,
sinceR is a product off andI , Sf andSI add linearly to give
the mean precipitation rate susceptibility, i.e.,SR = Sf + SI .
More explicitly, if we expand our susceptibility estimate in
Eq. (4), thenSR reduces to the sum betweenSf , SI , and a
covariance term

SR = Sf + SI −

ln

[
1+

I ′
+f ′

+

I+ f+

]
− ln

[
1+

I ′
−f ′

−

I− f−

]
ln

[
N+/N−

] , (5)

whereI ′f ′ is the covariance betweenI andf in each popu-
lation of h bin. We find that the covariance term is small in
our dataset such that we can approximate thatSR≈Sf + SI .

Like SR, Sf decreases with increasingh and explains the
monotonic decrease inSR with h. Much of this trend can
be attributed to the preponderance of non-drizzling segments
(85 % are non-drizzling) in the bin with thinnest clouds, com-
pared to the near absence of non-drizzling segments (4 % are
non-drizzling) in the bin with thickest clouds. Aerosols ap-
pear, therefore, to have a larger effect in determining the driz-
zle fraction in thinner clouds, than they do in thicker clouds.

On the other hand, we find that the susceptibilitySI of driz-
zle intensity does not significantly change with increasing
cloud thickness and has a near-constant valueSI ≈ 0.6. Di-
viding SR between theSf andSI and comparing their relative
contributions demonstrates that drizzle fraction is important
to consider when calculating susceptibility in thinner stra-
tocumulus clouds. Finally, we note that the meanSR of the
four h bins is 1.6, which is in the upper part of the range ofβ

exponents (Eq.2) found in previous studies (Geoffroy et al.,
2008). We are, however, examining the relationship between
ambient aerosol concentration and precipitation, while pre-
vious studies examined the relationship between the cloud
droplet concentration and precipitation. Based on theb value
of 0.55 that we report in Sect.3.1, we expect that theSR
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Fig. 4. (a)−dR/dN calculated in the four cloud thickness bins, as
described in the Sect.3.3. (b) The susceptibility calculated using the
original formulation of susceptibility (blue) and the susceptibility
calculated using the formulation in Eq. (6) (magenta).

would give an underestimate of the relationship between the
cloud droplet concentration and precipitation, but we are un-
able to confirm this from our dataset.

The susceptibility estimates are only useful indicators of
the role that aerosols play in modulating precipitation, pro-
vided that cloud macrophysical and meteorological proper-
ties are held constant. Even when we bin the data by cloud
thickness, correlations between macrophysics and micro-
physics exist. The correlations betweenh andN in the four
cloud thickness bins from thinnest to thickest bin are 0.3,
0.0, −0.1, and−0.3. We argue, however, that the decrease
in correlation betweenN andh with increasing cloud thick-
ness is not the reason why we observe the decrease inSR
with increasing cloud thickness in Fig.3. On the contrary,
since there is a strong positive correlation between precipi-
tation and cloud thickness (Pawlowska and Brenguier, 2003;
vanZanten et al., 2005), if correlations had a significant ef-
fect on the behavior of the susceptibility, we would expect
the susceptibility to increase with cloud thickness, instead of
decrease with cloud thickness.

To examine whether the behavior of susceptibility is sen-
sitive to the choice of the number of cloud thickness bins, we
calculate the susceptibility after binning the data into greater
number of bins (up to ten). The susceptibility values do not
show a general increase or decrease with increasing number
of bins (not shown for cloud thickness). We do observe an
increase in the uncertainty (95 % confidence intervals) of the
susceptibility estimates, expected due to the increase in sam-
pling error with the reduced number of degrees of freedom
per bin. While we observe the same monotonic decrease in
susceptibility when we bin the data into five bins, when we
bin the data into more bins, a peak in the susceptibility value
is found in the second cloud thickness bin from which there is
a monotonic decrease in susceptibility with increasing cloud
thickness. While there may be a physical explanation for the
peak value in the second bin, given the large uncertainty for
the susceptibility of the bin with the thinnest clouds in Fig.3,
we cannot establish this with high confidence. The main con-
clusion that we can make is that the susceptibility value of
the thinnest clouds is the least robust to changes in the bin-
ning procedure. There is a relatively low number of drizzling
clouds, and the inclusion or exclusion of the data points has
a large impact on the derived susceptibility.

3.3 −dR/dN

While the susceptibility metric provides one way of quan-
tifying the decrease in precipitationR due to an increase
in aerosol concentrationN , we can also calculate the lin-
ear change ofR due to a change inN , i.e., −dR/dN , us-
ing a similar tercile averaging method of Eq. (4). This may
be a more useful metric to quantify the effect of aerosols on
precipitation if the interest is in the absolute suppression of
precipitation due to an increase in ambient aerosol concen-
tration. In Fig.4a, we can see that unlikeSR, −dR/dN in-
creases with increasing cloud thickness and that the increase
is almost fifty fold from the bin with the thinnest clouds to
the bin with the thickest clouds. This is the same order of
magnitude increase as the increase in meanR across the four
bins (see Table1).

Furthermore, we can estimate the susceptibilitySR from
−dR/dN by approximating that

SR ≈ −
N

R

dR

dN
, (6)

whereR is the bin-mean precipitation rate andN is the bin-
mean PCASP aerosol concentration in eachh bin. When the
initial susceptibility estimate is plotted with this new esti-
mate, the two estimates are consistent with each other within
the sampling uncertainty (Fig.4b). This demonstrates that
the susceptibilitySR can be used to estimate both absolute
and fractional changes in precipitation in response to in-
creases inN .
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Fig. 5. The precipitation susceptibilities of drizzle at cloud base
(blue), at 500 m (red), and at 250 m (green) are calculated. Precipita-
tion rates are averaged over 10 km segments. While the sameZ−R

relationship (Z = 0.4R1.3) from Comstock et al.(2004) is used for
cloud base precipitation rates and 500 m precipitation rates, a dif-
ferentZ − R relationship (Z = 1.7R1.1) is used for the 250 m pre-
cipitation rates.

3.4 Susceptibility of drizzle at varying heights

We now examine whether the precipitation susceptibility is
sensitive to the altitude at which drizzle is measured (i.e.,
whether drizzle is measured at cloud base, at the surface, or
in an intermediate altitude). Evaporation-sedimentation mod-
els and observations have shown that in a number of cases of
drizzling marine stratocumulus, much of the drizzle evapo-
rates within 250 m of the cloud base (Wood, 2005) and that
the fraction evaporating by a given level below cloud base
is highly sensitive to the mean drizzle drop size. Studies
of southeastern Pacific stratocumulus have found that most
of the drizzle evaporates before reaching the surface (Com-
stock et al., 2004; Bretherton et al., 2010). Since the de-
gree of evaporation is important for understanding precipi-
tation impacts on marine stratocumulus (e.g.,Wood, 2007;
Savic-Jovcic and Stevens, 2008), it is important to establish
whether the precipitation susceptibility is markedly different
at the surface from that at the cloud base. For example, this
might be the case ifN were to be strongly correlated with the
size of drizzle drops.

We use precipitation rate estimates from the WCR at al-
titudes of 500 m and 250 m (see Sect.2.2). Radar-derived
drizzle rates at the surface are not estimable from the sub-
cloud runs used here, but since the 250 m altitude is consid-
erably lower than the typical cloud base height of∼1000 m
(Bretherton et al., 2010), the 250 m level is somewhat repre-
sentative of conditions near the surface. The susceptibility as
a function of height is shown in Fig.5. Quantitative measures
of susceptibility of the precipitation at 500 m and 250 m are
not obtained in the lower cloud thickness bins, because pre-
cipitation is detected in less than 10 % of the segments in
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Fig. 6.The precipitation susceptibility are calculated in four equally
weighted cloud thickness bins for three different averaging length
scales: 10 km (blue), 20 km (red), 5 km (green).

those bins. From Fig.5, there is no evidence that the suscep-
tibility is a strong function of the height below cloud base.
Therefore, use of cloud base vs. surface precipitation rates
is unlikely to result in significant changes in the susceptibil-
ity estimate. Since we do not have a clear physical justifica-
tion for why the susceptibility should remain constant with
height below cloud base, further studies are needed to estab-
lish whether there is indeed a physical explanation for what
is observed.

We find that our results are insensitive to theZ − R re-
lationship that is used (see Sect.2.2). Switching between
the twoZ − R relationships has less than a 15 % effect on
the susceptibility. Since the susceptibility takes the form
−d lnR/d lnN , from the difference in theZ dependence of
R alone, we would expect a difference of 18 % in the suscep-
tibility.

3.5 Susceptibility for different averaging length

An averaging length of 10 km is used for the preceding anal-
yses, but now we explore whether different averaging lengths
affect the susceptibility estimates.Duong et al.(2011) found
that when the averaging area of the LES model output
was decreased, the susceptibility maximum shifted to higher
LWP values. To address this possible issue in the data, in
Fig. 6 we examine the extent to which the precipitation sus-
ceptibility is changed by changing the averaging length (i.e.,
the segment length). The general result thatSR decreases
with cloud thickness holds for all different averaging lengths
examined here (5–20 km). The greatest spread is found for
the h bin with thinnest clouds, but here the sensitivity to
averaging length is not monotonic, so the spread is likely
sampling noise. The susceptibility of drizzle fractionSf con-
tributes to the decreasing trend for all three averaging length
scales, while the susceptibility of drizzle intensitySI also
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remains relatively constant withh for the three averaging
length scales and lies between 0.2 and 0.9.

3.6 Susceptibility when binned by cloud liquid water
path

So far we have addressed the effect of cloud thickness on
the susceptibility. While some studies have examined the
effect of cloud thickness on precipitation (Pawlowska and
Brenguier, 2003; vanZanten et al., 2005), others have ex-
amined cloud liquid water path (LWP) as the macrophysical
control of precipitation (Comstock et al., 2004; Sorooshian
et al., 2009). The reason for this has been largely driven
by the availability of instrumentation. However, in the VO-
CALS dataset we have estimates of both cloud thickness and
LWP. Cloud thickness is typically well correlated with cloud
LWP for marine stratocumulus, where the assumption of adi-
abatic LWP is a good approximation (Albrecht et al., 1990;
Zuidema et al., 2005, 2012). In some areas where there is
scud (cumulus humulis under stratocumulus), the assump-
tion of adiabatic LWP breaks down. A breakdown is also
observed for the thick, strongly precipitating stratocumulus
clouds with high values of LWP, although precisely how
thick the clouds need to be before this occurs appears to dif-
fer between studies and likely depends upon the vigor of the
turbulent water resupply (Wood, 2005). This motivates our
examination of whether susceptibility trends are different if
we bin the data by cloud LWP instead of cloud thickness. The
GVR obtained cloud LWP for a greater percentage of clouds
(69 %), compared to the WCR and WCL, which obtained
cloud thickness values for 51 % of all clouds. Therefore, even
if the clouds measured in this region are completely adia-
batic, we can expect differences in the susceptibilities from
the different sampling.

The susceptibilities estimated when we bin by cloud LWP
are shown in Fig.7. As in previous sections, the LWP data
are divided into four bins. However, only three susceptibility
estimates are shown for each of the three averaging lengths,
because in the bin with the lowest LWP (mean LWP of ap-
proximately 15 g m−2) precipitation is detected in less than
10 % of the segments. The lack of data in the bin with the
lowest quartile of LWP value shows again the difficulty in
calculating the susceptibility for the thinnest clouds.

Susceptibilities binned by LWP (Fig.7) are similar to
those by cloud thickness (Fig.6), but the decrease with in-
creasing LWP is not as marked as it is with cloud thickness,
and the trend is dependent upon the averaging length. Specif-
ically, when the data are averaged over 5 km segments, the
susceptibilitySR increases from the second to the third LWP
bin. This increase inSR from the second to the third LWP
bin is due to an increase inSI , which counteracts decreases
in Sf from the second to third LWP bin (not shown). Note
that SR from the first bin is not shown for lack of precipi-
tating clouds.SI also increases from the third to fourth LWP
bin, but the decrease inSf is larger, which leads to the de-
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Fig. 7. The precipitation susceptibility is calculated in four equally
weighted cloud liquid water path (LWP) bins for three different av-
eraging length scales: 10 km (blue), 20 km (red), 5 km (green).

crease inSR. To investigate the robustness of the maximum
in SR in the third LWP bin, we explore the sensitivity of the
5 km averaged LWP data to the number of bins (Fig.8). Since
the number of data points used for each susceptibility esti-
mate decreases as the number of bins is increased, we use
lighter shading for estimates with more bins. The suscepti-
bility generally decreases with increasing LWP, but there is
a recognizable dip in susceptibility at 50 g m−2. The dip in
susceptibility at 50 g m−2 appears to be what causes the sec-
ond LWP bin to have a low susceptibility value, resulting in
the susceptibility maximum in the third LWP bin when the
data is binned into four bins. Since we have no prior reason
to expect a dip in susceptibility at 50 g m−2, we expect this
dip to not be due to a change in microphysical processes (in-
deed, the large sampling errors are suggestive of statistical
frailty in this result), but further studies with other datasets
are necessary to establish whether this dip has a physical ex-
planation.

3.7 Susceptibility with integrated cloud thickness data

One of the main points of this paper is to stress the impor-
tance of including all clouds when estimating the precipita-
tion susceptibility. Using the Wyoming Cloud Lidar (WCL)
and the Wyoming Cloud Radar (WCR) retrievals, we are only
able to retrieve cloud thickness measurements for 51 % of
the clouds. Thus, our susceptibility estimates are based on
those 51 % of the clouds. When we use the LWP data, we
calculate the precipitation susceptibility estimates based on
69 % of the clouds. If we combine the LWP and the cloud
thickness, we would expect to incorporate a larger fraction of
clouds to calculate the precipitation susceptibility. We, there-
fore, supplement the WCR and WCL-derived cloud thick-
ness measurements with LWP-derived cloud thickness esti-
mates to create an integrated cloud thickness dataset. When
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Fig. 8. The precipitation susceptibility is calculated in equally
weighted cloud liquid water path (LWP) bins when the data are av-
eraged over 5 km segments. Different shades denote the number of
bins.
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Fig. 9.After combining LWP retrievals from the GVR and the cloud
thickness measurements from the WCL and WCR into an integrated
cloud thickness dataset, the precipitation susceptibility are calcu-
lated in four equally weighted cloud thickness bins for three differ-
ent averaging length scales: 10 km (blue), 20 km (red), 5 km (green).
The original precipitation susceptibility using cloud thickness mea-
surements derived from the WCL/WCR is shown in gray for com-
parison.

both cloud thickness and LWP measurements are available,
the cloud thickness measurements from the WCR and WCL
are used.

To convert the LWP retrievals into cloud thickness val-
ues we must assume that the cloud liquid water profiles fol-
low the moist adiabat. This assumption is typically valid in
marine stratocumulus (Albrecht et al., 1990; Zuidema et al.,
2005, 2012), and the approximation is especially good for the
thinner, non-precipitating clouds for which the WCR is un-
able to detect a cloud top height (Zuidema et al., 2005). We

estimate the cloud thicknessh values from the cloud LWP
values using the expression

h =

(
2× LWP

Cw

) 1
2

, (7)

where Cw is a weak function of temperature and pres-
sure, hereCw = 2×10−6 kg m−4 (Pawlowska and Brenguier,
2003). With the combined cloud thickness measurements, we
can estimate cloud thickness values for 75 % of all clouds
detected by the WCL. When we calculate the susceptibility
for averaging lengths of 10, 20, and 5 km, and plot it along-
side the previous estimates, as in Fig.9, we note that in gen-
eral, the mean susceptibility values are similar to those calcu-
lated using the cloud thickness measurements from just the
WCL and WCR. The uncertainty in the susceptibility esti-
mates, however, substantially increases in the secondh bin
for this dataset, when compared to the susceptibility esti-
mates in Fig.6. This demonstrates the difficulty in constrain-
ing the susceptibility values using observations. Nonetheless,
our overall conclusion that the susceptibility decreases with
increasing cloud thickness still holds.

4 Discussion and conclusions

We find that the precipitation susceptibility in marine stra-
tocumulus clouds decreases with increasing cloud thickness.
The susceptibility of the mean precipitation rate at cloud base
is found to decrease by approximately a factor of two to four
from the thinnest to the thickest clouds. Because precipita-
tion rate increases strongly with cloud thickness, this result
is particularly pertinent to our understanding of aerosol indi-
rect effects. It confirms the findings from both satellite data
and simple heuristic models (Kubar et al., 2009; Wood et al.,
2009) showing that the ability of aerosols to suppress precip-
itation is stronger in clouds that produce only weak precip-
itation. The decrease ofSf with increasing cloud thickness
is also consistent with results fromL’Ecuyer et al.(2009),
namely Fig. 3b that shows larger fractional changes in the
probability of precipitation due to changes in aerosol con-
centrations at lower cloud LWP. On the other hand, it is im-
portant to note that with the exception of a couple cases,
the precipitation susceptibilitySR, as derived in this study,
is significantly positive even in the quartile with the thick-
est clouds. Since the clouds in our dataset span the range of
cloud thicknesses typically found in marine stratocumulus,
this perhaps indicates a role for aerosols to suppress precip-
itation in most marine stratocumulus, albeit to a degree that
weakens considerably for the thickest clouds.

This result is qualitatively consistent with an analysis of
satellite data (Fig. 12 fromKubar et al., 2009), which found
that the frequency of drizzle decreases dramatically with a
decrease in effective cloud droplet number concentration for
clouds with low liquid water path, while there is less of
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a decrease in the frequency for clouds with higher liquid
water path. In their study of precipitating cumulus clouds,
Sorooshian et al.(2009) found little change in susceptibil-
ity at liquid water paths comparable to the liquid water path
of the stratocumulus in our study. We attribute the differ-
ence to whether or not non-precipitating clouds are included
in calculating the susceptibility, though another explanation
for the difference may be that the precipitation susceptibil-
ity behaves differently with cloud LWP in different thermo-
dynamic environments and cloud regimes. When we repeat
our analysis, but remove all of the segments with mean driz-
zle rates less than 0.01 mm day−1, we find that there is little
change in the susceptibility with increasing cloud thickness.
This difference in behavior is related to results fromJiang et
al. (2010) andDuong et al.(2011) that found that susceptibil-
ity values are sensitive to the minimum threshold for precipi-
tation. The precipitation susceptibility estimates in this study
are generally higher than previous airborne studies of marine
stratocumulus clouds, such as those ofLu et al. (2009). In
their study, they found susceptibility estimates of 0.46 from
MASE I and 0.63 from MASE II, based on their separately
measured sensitivities of precipitation to cloud droplet num-
ber concentration and of cloud droplet number concentration
to aerosol concentration.

Another key finding in this study is that the decrease inSR
with increasing cloud thickness is due to a decrease in the
susceptibilitySf of drizzle fraction rather than the suscepti-
bility SI of intensity. In other words,SR decreases, because
for thicker clouds aerosol concentrations have a smaller im-
pact on whether clouds drizzle. However, since theSI is pos-
itive in all cloud thickness bins,SR remains positive even for
the thickest of clouds. Regardless of cloud thickness, increas-
ing aerosol concentrations has the same effect in decreasing
the relative intensity of drizzle. Sensitivity tests show that al-
though the averaging lengths used to calculate average driz-
zle rates change the absolute values of the susceptibility, they
do not systematically change the response of the susceptibil-
ity with cloud thickness.

The method by which we calculate the susceptibility
(Eq. 4) is different from previous studies that only incor-
porate precipitating clouds. One concern with our method
would be that we are incorporating clouds withR = 0 in cal-
culating a metric that takes the logarithm ofR; the logarithm
of zero is undefined. However, as long as there are precipitat-
ing clouds in the highN range, the susceptibility introduced
in this study captures the effect of aerosols in changing the
mean precipitation rate of clouds of a given thickness in the
framework of the precipitation susceptibility. We provide a
detailed analysis of the method that we use and its limita-
tions in AppendixA. We find that susceptibility estimates
from Eq. (4) are sensitive to the number of non-precipitating
clouds that are used to calculate the susceptibility. We also
find that confidence intervals of susceptibilities calculated
using Eq. (4) span the true value of the susceptibility, while
those from other methods do not (see Fig.A4).

For much of this study, we have worked under the simple
framework for understanding the effect of aerosols on pre-
cipitation that follows the model of Eq. (2). The actual de-
pendence ofR onN may not be as simple. Regardless of the
actual functional dependence ofR on N , the utility of the
SR, we find, is in how it distinguishes the effect that aerosol
concentrations have on the intensity of precipitation and the
effect that they have on the fraction of precipitation.

Care must be taken, however, if we consider the absolute
suppression of precipitation in stratocumulus, since the pre-
cipitation susceptibility quantifies only the fractional change
in precipitation due to a change in aerosols. Although higher
susceptibilities are reported at lower cloud thicknesses, more
precipitation is not necessarily suppressed by aerosols at the
lower cloud thicknesses. The mean precipitation rate at cloud
base of the quartile with thinnest clouds and the quartile with
thickest clouds are 0.04 mm day−1 and 3.69 mm day−1 re-
spectively. A factor of four decrease of the susceptibility is
actually quite small compared to the more than ninety fold
increase in mean precipitation rate.

It should also be noted that while this analysis may en-
compass the range of cloud thicknesses commonly observed
in marine stratocumulus, it has only explored a particular
subspace of cloud thicknesses and aerosol concentrations oc-
curring in other marine boundary layer clouds. In particular,
these results do not inform us about deeper marine bound-
ary layer clouds such as precipitating trade wind cumuli, nor
do they help with clouds that are substantially more polluted
than the drizzling clouds observed over the southeast Pacific.
As noted earlier, this study also excludes more than 20 % of
the thinnest clouds for which cloud liquid water path or cloud
thickness estimates could not be obtained. Satellite observa-
tions from Kubar et al.(2009) also imply that the precip-
itation susceptibility is a function not only of cloud thick-
ness, but also of the aerosol concentration. Exploring these
relationships across different datasets in future studies will
help us further constrain the effect of aerosols on precipita-
tion susceptibility.

Finally, we stress that the precipitation susceptibility con-
struct is a correlative rather than a causal one. Establish-
ing the causal nature of the observed susceptibilities is crit-
ical for their credibility as evidence of aerosol influence on
precipitation. Model results such as those byFeingold and
Siebert(2009), Sorooshian et al.(2009), and Wood et al.
(2009) are helping to do just that, but there remain significant
differences in the magnitudes of the precipitation suscepti-
bilities found in these studies. Further, there are still major
gaps in our understanding about what these measurements
are telling us about how precipitation susceptibility changes
with cloud macrophysical properties. Most notably, studies
of relatively thick cumulus clouds (liquid water paths greater
than 500 g m−2) such as those bySorooshian et al.(2009)
andJiang et al.(2010) show increases in susceptibility, while
this study of much thinner stratocumulus clouds appears to
show a monotonic decrease. For thinner clouds, the reduction
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in precipitation susceptibility with increasing cloud thick-
ness can be understood as a transition from autoconversion-
dominated precipitation to accretion-dominated precipitation
(Wood et al., 2009). As Jiang et al.(2010) point out, liquid
water path is a useful proxy for the ratio of accretionAacc to
autoconversionAauto. However, while the results here sup-
port the theoretical arguments ofWood et al.(2009) imply-
ing that precipitation susceptibility should decrease mono-
tonically with Aacc/Aauto, the cloud resolving model results
by Jiang et al.(2010) show a maximum in susceptibility at
intermediate values ofAacc/Aautosuggesting that this ratio is
not a unique predictor of precipitation susceptibility and that
other factors, such as thermodynamic environment and cloud
type, may play a role.Seifert and Stevens(2010) suggest that
the cloud lifetime (i.e., the time allowed for precipitation to
develop) may be one such factor, but we leave this to future
studies.

Appendix A

Tercile log-differencing

We use the tercile log-differencing (TLD) method to cal-
culate the precipitation susceptibility in this study so that
non-precipitating clouds can be included in an analysis that
tries to quantify the effect of aerosols on precipitation sup-
pression. Since none of the methods that calculate the sus-
ceptibility using regression in log-space incorporate non-
precipitating clouds, they neglect the cases where increased
aerosols completely suppress precipitation. In this section,
we take a critical look at the TLD method and explore how
data distribution, noise, and thresholds can affect the suscep-
tibilities obtained by TLD.

To test how accurately the TLD method estimates a given
underlying dependence of precipitation on aerosol concen-
tration, we create multiple synthetic sample datasets with the
relationshipR = aN−β and use each of these to estimateβ.
The synthetic model may not exactly capture the true phys-
ical dependence of precipitation on aerosol concentration.
However, it is desirable that an analysis method can accu-
rately estimate the value ofβ. In addition to using TLD, we
estimateβ using a standard least-squares regression in log-
space and a linear regression fit in log-space based on min-
imizing the perpendicular distance between the fit and the
data, as discussed by (Reed, 1992). Each data point is equally
weighted in all cases.

A1 Distribution of the data

Many variables in the atmosphere are distributed normally;
many are not. Depending on the spatial and temporal extent
of the dataset,N , our controlling (independent) variable, can
in principle be distributed in a number of ways. We find that
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Fig. A1. Histogram of susceptibility estimates using TLD for three
different distributions of data: uniform (top), normal (middle), and
lognormal (bottom). The histograms are based on 100 estimates cal-
culated from 100 different samples of the same underlying distribu-
tion. The gray line at 1.25 shows the value ofβ in the underlying
relationshipR = aN−β .

the nature of this distribution has an important impact upon
how effective TLD is in estimatingβ.

To study this we create a sample dataset of 100 randomN

values, whereN is distributed uniformly, normally, or log-
normally. A sample size of 100 is chosen, because the sam-
ple size in each of the cloud thickness bins in the VOCALS
data is approximately 100. CorrespondingR values are cal-
culated using the relationshipR = aN−β , whereβ = 1.25;
this lies between the mean susceptibility that we estimate for
the VOCALS data and the susceptibilities estimated in pre-
vious studies. We seta = 501.25, but the results for this par-
ticular analysis are insensitive to the choice ofa. To generate
a distribution of susceptibility estimates from the three meth-
ods (TLD, linear regression, and minimum distance), we re-
sample the set 100 times from the same underlying distri-
bution and calculate the susceptibility in each case, giving
us 100 susceptibility estimates. WhenN is distributed either
uniformly or normally, the susceptibilities from TLD over-
estimateβ, as can be seen in Fig.A1. In these cases, the
concentration of points in log-scale is skewed towards higher
N , resulting in the overestimate ofβ. WhenN is distributed
lognormally, the concentration of points is not skewed in log-
space, and the value ofβ is more accurately captured by the
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Fig. A2. Histogram of 10 km-averaged PCASP aerosol concentrationsN that are used in the susceptibility analysis. Each panel shows the
distribution ofN in the four cloud thickness bins. The red line shows the probability density function of a theoretical lognormal distribution,
based on the arithmetic mean and standard deviation ofN in each of the bins.

susceptibility. In this case, we note that the susceptibilities
from the linear regression and minimum distance methods
accurately captureβ as one would expect for a dependence
of R onN that is simply a power law unburdened with noise
that is introduced by both measurement uncertainties and ad-
ditional controlling variables.

Importantly, the 10 km-averaged PCASP aerosol concen-
trationN (the primary independent aerosol variable used in
this study) for each of the four cloud thickness bins (h1,
h2, h3, and h4) is distributed approximately lognormally
(Fig. A2). Neither a uniform nor a normal distribution de-
scribes the data well. This gives us confidence that the sus-
ceptibility from the TLD method is not likely to be a strongly
biased estimator ofβ for our observed data.

A2 Noise level

In reality, we rarely expect observational data to perfectly fit
a model relationship. Instead, we expect there to be noise in
the data, representing measurement uncertainties and addi-
tional unknown controlling variables. To study the impact of
noise on the different methods for estimatingβ, we take 100
random samples ofN , taken from a lognormal distribution

with an arithmetic mean of 150 and standard deviation of 75
and calculateR as before. The standard deviation ofR before
adding the noise is typically 0.22. To theR value we then add
noise taken from a normal distribution with a mean of zero
and standard deviationσnoise. If R is negative after adding the
noise, thenR is set to zero, sinceR represents a precipita-
tion rate. We then calculate the susceptibility using the three
methods as above, and repeat the process 100 times to obtain
a distribution of susceptibilities for each method and for four
different noise levels (σnoise= 0.02, 0.1, 0.2, and 0.3).

The sensitivity to noise (Fig.A3) shows that all three
methods accurately estimate the underlyingβ value for low
noise, but asσnoise increases, the minimum distance method
increasingly overestimates theβ value, while both TLD and
the standard linear regression method capture the underlying
β value with minimal bias. The standard linear regression
most likely outperforms the minimum distance method, be-
cause noise is only added toR, and one of the main assump-
tions of the standard linear regression is that errors inN are
zero or negligible. The minimum distance method assumes
that errors exist in bothR andN . We have not carried out a
test where we add noise toN .
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Fig. A3. Susceptibility estimates from TLD (blue), linear regression
(red), and minimum distance (green) with increasing noise level.
Dots represent mean susceptibilities based on 100 estimates, and
the lines show middle 95 % interval. The abscissa shows the ratio
between the standard deviation of the distribution from which the
noise is taken,σnoise, and the standard deviation ofR, σR, after the
noise has been added. The dotted line represents the underlyingβ

value.

A3 Threshold

Previous studies of precipitation susceptibility have imposed
different threshold precipitation rates to differentiate precip-
itating and non-precipitating clouds. Some of the differences
are due to instrument sensitivities, others due to the authors’
choices. In this study, we choose the−15 dBZ threshold,
because precipitation rates above 0.14 mm day−1 (the corre-
sponding precipitation rate) begin to have substantial effects
(>4 W m−2) on the energetics of the boundary layer.

We test how accurately the three estimators are able to cap-
ture β when we apply a minimum threshold toR. We use
the same underlying lognormal distribution as in the previ-
ous test to obtain 100 random samples ofN , and the same
relationship betweenR andN . We maintain the noise level
at σnoise= 0.3 and vary the minimum threshold ofR such
that values ofR less than the threshold are set to zero. We
chooseσnoise= 0.3, because this gives aσnoise-to-σR ratio
that is similar to those found in the VOCALS observations.
The mean value ofR following the addition of noise, but
before the threshold is applied, is typically 0.37. The four
thresholdR values we use are 0.01, 0.2, 0.4, and 0.6.

Susceptibility estimates from all three methods (Fig.A4)
are sensitive to the threshold value. The linear regression
method increasingly underestimates the underlyingβ value
as the threshold increases. This result is consistent with that
of Jiang et al.(2010) and Duong et al.(2011), who both
found that increasing the minimum threshold for precipita-
tion decreased the susceptibility estimate. Though the min-
imum distance method overestimatesβ when the threshold
is near zero, it also follows the same trend of decreasing
susceptibility estimates with increasing threshold value. The
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Fig. A4. Susceptibility estimates from TLD (blue), linear regres-
sion (red), and minimum distance (green) with increasing threshold
level. Dots represent mean susceptibility from 100 estimates and
the lines show middle 95 % interval. The abscissa shows the ratio
between the threshold value and the mean,µR, of R after applying
the threshold. The dotted line represents the underlyingβ value.
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number of non-precipitating points that went into calculating the
susceptibility. Colors indicate different levels of the thresholds: 0.01
(blue), 0.2 (green), 0.4 (red), and 0.6 (cyan). The dotted line repre-
sents the underlyingβ value.

TLD, on the other hand, overestimatesβ with increasing
threshold value. The susceptibility estimate positively corre-
lates with the fraction of non-precipitating points in each set
(Fig. A5). In general, higher susceptibility values are found
with increasing fraction of non-precipitating points. From
this analysis alone, however, we cannot determine what non-
precipitating fraction would always give an unbiased esti-
mate ofβ.

If we split the susceptibilitySR of the TLD method into
Sf and SI , as done in the body of the manuscript, we find
thatSf increases with increasing fraction of non-precipitating
points and provides the vast majority of the trend inSR
(Fig. A6). On the other hand,SI decreases with increasing
fraction of non-precipitating points, much like the standard
linear regression in Fig.A4. No method consistently gives
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Fig. A6. The precipitation susceptibilitySR (blue), susceptibility of
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(green) with increasing threshold value, calculated using the TLD
method. Instead of the ratio between the threshold and mean pre-
cipitation rate, the average fraction of non-precipitating points at
each threshold is used for the abscissa. The dotted line represents
the underlyingβ value.

an unbiased estimate of the underlyingβ in cases where a
substantial number of data values are determined to be non-
precipitating.

A4 Discussion

We now attempt to put the data from VOCALS REx in con-
text of the above analyses. We can see from Fig.A5 and
A6 that susceptibility estimates from TLD increase with the
fraction of non-precipitating points. Examining the fraction
of non-precipitating clouds will give us an indication of the
effect of the threshold on our susceptibility results. The frac-
tion of non-precipitating segments is 0.85, 0.46, 0.14, and
0.04 in the four cloud thickness bins of the 10 km-averaged
VOCALS data (h1 to h4).

Estimating the “noise” in the data is more difficult. To ob-
tain some estimate of the noise level in the data, we can take
the mean susceptibility values that we obtain in each cloud
thickness bin and estimate the noise as the difference be-
tween the actualR and theR explained by the susceptibility.
This crude estimate of the noise gives usσnoise-to-σR ratios
of 0.93, 0.91, 0.72, and 0.95 in the four cloud thickness bins
(h1 to h4). This is not surprising, given that the magnitude
of the correlations betweenN andR are relatively modest in
each of the bins:−0.22,−0.28,−0.42, and−0.26 (h1 to h4).

We conclude that both threshold and noise play an impor-
tant role in our dataset. The precipitation variations within
each cloud thickness bin are dominated by noise, unex-
plained by the concentration of aerosol concentrations alone.
In such cases, linear regression underestimates theβ value.
FiguresA5 and A6 show that whether TLD method accu-
rately estimates theβ value is dependent on the threshold.
We also note that Fig.A6 and Fig.3 are mirror-images of

each other, where the difference between the two is that the
meanR increases along the abscissa in Fig.3 and the thresh-
old increases along the abscissa in Fig.A6. SR increases
with the increasing fraction of non-precipitating points.Sf ,
in both cases, determines the trend ofSR. SI , on the other
hand, display different behaviors in the two figures.SI in
Fig. A6 distinctly increases with decreasing fraction of non-
precipitating points;SI in Fig. 3 does not display such a clear
increase. This suggests that the mechanism causing the be-
havior of the susceptibility in Fig.3 is not quite identical to
that in Fig.A6, though a large part may be due to it.

From the above analysis alone, we cannot disregard the
possibility that in Fig.3, the underlying dependence be-
tween aerosols and precipitation is constant and the decreas-
ing trend of the susceptibility is solely because the fraction
of non-precipitating clouds is decreasing. Whereas none of
the three methods above always give an unbiased estimate
of β, the utility of SR, as calculated using TLD, is most ev-
ident whenSR is taken as the sum of its partsSf andSI . It
informs us about how both the rate and the frequency of pre-
cipitation depend upon aerosol concentration.SI , which is
more akin to the susceptibilities reported in previous studies,
quantifies the effect of aerosols on how intense a cloud pre-
cipitates.Sf , on the other hand, is a metric that quantifies the
effect of aerosols on the drizzle fraction, which is identical
to the probability of precipitation when we includef = 0.
L’Ecuyer et al.(2009) found that higher values of aerosol in-
dex, which serves as a proxy for columnar concentration of
CCN-sized aerosols (Nakajima et al., 2001), tended to de-
crease the probability of precipitation. They also found that
there is no unique liquid water path threshold above which
a cloud can be assumed to be precipitating. This interesting
finding runs counter to the idea that there is a threshold cloud
liquid water path above which all clouds precipitate.Sf in this
study attempts to quantify that same effect of aerosol concen-
trations on the probability of precipitation from the aircraft
data from VOCALS.SR in this study attempts to combine
the effect of aerosol concentrations in determining both the
intensity and the probability of precipitation.
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