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Abstract. The relationship between precipitation rate precipitation rate to aerosol concentration or cloud droplet
and accumulation mode aerosol concentration in marineoncentration do not capture this observed behavior.
stratocumulus-topped boundary layers is investigated by ap-
plying the precipitation susceptibility metric to aircraft data
obtained during the VOCALS Regional Experiment. A new
method to calculate the precipitation susceptibility that in-1  Introduction

corporates non-precipitating clouds is introduced. The mean

precipitation rateR over a segment of the data is expressedD”ZZ|e with wide ranging intensities and areal extent is a
as the product of a drizzle fractiofi and a drizzle inten- common feature in stratocumulus-topped boundary layers,
sity I (mean rate for drizzling columns). The susceptibility €SPecially in remote marine environmersdst et al, 1982

S, is then defined as the fractional decrease in precipitatiorNicholls and Leighton198§ Frisch et al. 1995 Vali et al,
variable x=(R, f,I} per fractional increase in the concen- 1998 Yuter et al, 200Q Pawlowska and Brenguie003
tration of aerosols with dry diameter0.1 pm, with cloud  Bretherton et a].2004 Comstock et a].2004 vanZanten et
thicknessh held fixed. The precipitation susceptibilittg ~ &l» 2003 Leon et al, 2008 Kubar et al, 2009. Over parts

is calculated using data from both precipitating and non-Of the eastern subtropical/tropical oceans dominated by stra-
precipitating cloudy columns to quantify how aerosol con- tocumulus, including the southeastern Pacific, the intensity
centrations affect the mean precipitation rate of all clouds of2nd frequency of drizzle tends to increase westwards from
a givenh range and not just the mean precipitation of cloudsthe coast l(eon et al, 2008 Kubar et al. 2009 Brether-

that are precipitatingSg systematically decreases with in- ton et al, 2010. The westward increase in drizzle coincides
creasingh, and this is largely becaus® decreases witth with changes in both aerosol concentrations and macrophys-
while S, is approximately independent @f In a general ical properties of the stratocumulus deck (e@eorge and
senseS; can be thought of as the effect of aerosols on theWood 201G Bretherton et a).201Q Allen et al, 2011,
probability of precipitation, whiles; can be thought of as thereby raising the question: to what extent does the west-
the effect of aerosols on the intensity of precipitation. Sinceward increase in drizzle reflect changes in cloud macrophys-
thicker clouds are likely to precipitate regardless of ambientic@l properties, changes in cloud microphysical properties,
aerosol concentration, we expefgto decrease with increas- and changes in aerosol (e.@/ood et al. 2009?

ing h. The results are broadly insensitive to the choice of Of the drizzle falling from stratocumulus, a significant
horizontal averaging scale. Similar susceptibilities are foundffaction evaporates before reaching the surfaCengstock

for both cloud base and near-surface drizzle rates. The analyet @l 2004 vanZanten et al2005 Wood 2003. Whether

sis is repeated with cloud liquid water path held fixed insteagévaporating or not, drizzle can substantially change the

of cloud thickness. Simple power law relationships relatingPoundary layer characteristics by vertically redistributing
energy and water. Therefore, to improve the simulated
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structural and radiative properties of stratocumulus in gen-properties could potentially cause non-zero precipitation sus-
eral circulation models, we need a better understanding of theeptibility even if the aerosols are not responsible for the
macrophysical and microphysical properties that determineprecipitation changes. In previous studies that used satel-
the frequency and intensity of drizzld/yant et al, 2007). lite measurements to estimate the susceptibility, Xqein
Aerosol indirect effects (AIEs), broadly defined here as theEq. (1) was replaced with a cloud condensation nuclei proxy
effect of aerosols on the cloud albedo, are strongly sensitivex (Sorooshian et 812009 Duong et al.2011). In the satellite
to the amount of drizzle falling from warm cloudRdtstayn  studies, the aerosol index, which is the product of the aerosol
and Liu 2005 and to the amount evaporating below cloud optical depth and th&ngstrom exponent and is an indicator
(Wood, 2007, Chen et al.2017). The AIEs have been diffi- of column integrated CCN concentratior&ofooshian et al.
cult to quantify, in part because different cloud types respond?009 Duong et al.2011), was used in place @f. This study
differently to perturbations in aerosol concentratidwcKer- uses the ambient accumulation mode aerosol concentration
man 2004 Stevens and Feingal@009. A key effect that  to obtain susceptibility estimates in placewmfto calculate
aerosols can have on clouds is the suppression of warm raithe susceptibility.
which forms the basis of the second AIE (Albrecht, 1989). Precipitation susceptibility estimates for marine stratocu-
Part of the difficulty in quantifying the magnitude of the sec- mulus can be obtained from previous field studies. Field
ond AIE is that warm rain responses to perturbed aerosoktudies of precipitating stratocumulus (e Bawlowska and
concentrations are poorly understood. Brenguier 2003 Comstock et a).2004 vanZanten et al.
Accumulation mode aerosols, which often are good prox-2005 identified that simple power law relationships display
ies for cloud condensation nuclé¥értin et al, 1994, have  some skill in relating the cloud base precipitation r&igs
a typical size range of 0.1 to 1 unS€infeld and Pandis to cloud thickness: (or, alternatively, LWP) and to cloud
2006. In many marine environments where accumulationdroplet number concentratiavy (Geoffroy et al,2008. The
mode aerosol concentrations are typica#00 cni3, in- relationships take the form
creasing the accumulation mode aerosol number concentras _
tion increases the cloud droplet number concentrafign s = AR Ng~". @
in similar proportion Ramanathan et al2007). In warm For clouds with the same thicknessthe exponeng is iden-
clouds, the increase iNg reduces the average cloud droplet tical to the susceptibilitysp in Eq. (1). The 8 values reported
size, reduces the collision coalescence efficiency, and sugn previous field studies range from 1 to 1. Ggffroy et al,
presses precipitation formatiodlprecht 1989 inter alia).  2008. Variations ing with cloud thickness, however, have
This effect of accumulation mode aerosols on precipitation isnot been reported in these studies. This may be primarily due
different from the effect that larger giant cloud condensationto sampling constraints in the previous studies, but it is im-
nuclei (GCCN) have on the precipitation. Studies of GCCN portant to point out that in fitting a single power law to the
show that in certain situations, increases in the concentrationlata, one implicitly assumes that the precipitation suscepti-
of GCCN leads to more precipitatiofr€ingold et al.1999 bility does not vary with cloud thickness. Recent satellite ob-
L'Ecuyer et al, 2009 Hudson et a.2011), though the over-  servationsKubar et al, 2009 and simple theoretical model
all impacts remain inconclusiveGerber and Frick2012). results Wood et al, 2009 provide observational evidence
However, it has been difficult to assess the extent of this supand theoretical justification that the precipitation susceptibil-
pression in observational datasets, because aerosol concety decreases as the cloud thickness increases in marine stra-
trations tend to correlate well with meteorological factors, tocumulus. Studies of warm cumulus clou@fooshian et
making it difficult to separate the aerosol effects from simul- al., 2010 Duong et al.2011J), on the other hand, report that
taneous macrophysical driverM@uger and Norris2007, the susceptibility peaks at intermediate values of cloud LWP
George and Woqd2010. (~600-1300 g m?2). Reconciling these various relationships
The precipitation susceptibility metri§p quantifies the into a coherent framework to explain precipitation suscepti-
suppression of precipitation by aerosols, while minimiz- bility in warm clouds is likely to be a formidable challenge.

ing the confounding effects of macrophysi¢®ingold and In this study we investigate the factors controlling precipi-
Sieberf 2009. It is defined as tation susceptibility in warm, stratiform clouds using aircraft
dINR observations of precipitating and non-precipitating marine
0= (— ) , (1) stratocumulus observed in the southeastern Pacific during the
dINNg / macro

VOCALS Regional Experiment (RExVood et al, 2011H.
where R represents the precipitation rate (at some altitude)The susceptibility metric is used to determine the extent to
and Ny represents the cloud droplet number concentratiorwhich precipitation susceptibility depends upon cloud thick-
(Feingold and Sieber£009. The subscript “macro” indi- ness/LWP. The manuscript is organized as follows. Se@&ion
cates that the susceptibility is calculated with fixed cloud describes the data used in the analysis and the methods used
macrophysical properties, e.g., fixed cloud thickness or lig-to calculate the susceptibilities. Secti®neports the suscep-

uid water path (LWP). This is critical because significant tibilities that are calculated and their associated sensitivities
correlations between the microphysical and meteorologicato the averaging length, to the height of the drizzle, and to
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the different methods of calculating the susceptibility. How 2.2  Precipitation rate estimates

the results fit in with the existing literature and the precau-

tions that need to be taken when interpreting the susceptibilnless otherwise noted, precipitation ratesare obtained
ity metric are discussed in Sedt.In AppendixA, suscepti- from radar reflectivitiesZ at cloud base using thg — R
bilities are calculated on synthetic datasets with a prescribedelationshipR (mmday ) = 2.012°%77, proposed byCom-
dependence ak on N to compare the method that we use in stock et al(2004). A reflectivity threshold of-15 dBZ, cor-
this study, tercile log-differencing (TLD), with other meth- responding to a drizzle rate of 0.14 mm ddyis used to dis-
ods that can also be used to estimate the susceptibility. tinguish between drizzling and non-drizzling clouds. Cloud
base precipitation rates are used, because this is the most
energetically-relevant level for stratocumulus drizzle and to
facilitate comparison with previous studies of stratocumu-

We use a combination of in-situ and remotely sensed obserl—us drizzle Pawlowska and Brenguiep003 Comstock et

: . ﬁ\l., 2004 vanZanten et al2005 Wood 2005. Though us-
vations of aerosol and cloud properties from eleven research  y.eorant 7 — R relationshins has little effect on our re-
flights of the NSF/NCAR C-130 aircraft during VOCALS 9 P

REXx, which was conducted in the southeast Pacific duringrsglgii’ofssrhtrefg:e;ﬂgfleonrreactiesit:ttiozr??rrgé\év;;zigh; I;
October and November 2008Vpod et al, 2011h. Since P precip '

$2004), R (mmday 1) = 0.612°%9 (consistent witBrether-

2 Data and methods

aerosol measurements are missing from RF03 and clou L
: L on et al, 2010. For the precipitation rate at 500 m, we use
thickness measurements are missing from RF01 and RFO . :
he sameZ — R relationship used to calculate the cloud base

data from only eleven of the total fourteen research flights L . ) X
are used. The data used in this study are all analyzed at 1 H recipitation rate (consistent withiood et al, 20113. Dif

. . . . : erentZ — R relationships for cloud base precipitation rates
time resolution, which translates to a spatial resolution of ap- T .

. and surface precipitation rates are obtainedCioynstock et
proximately 100 m.

al. (2009, because subcloud evaporation increases the mean
drizzle drop radius with distance below cloud base (see also
vanZanten et al2005.

Cloud macrophysical properties (thickness and LWP), driz-

zle properties (rates at cloud base and below cloud), an@-3 Aerosols

aerosol properties below cloud are obtained simultaneously

from straight and level flight legs flown below the cloud at Aerosol concentrations in the subcloud layer are ob-
approximately 150 m altitude (subcloud legs). Cloud thick- tained from the Passive Cavity Aerosol Spectrometer Probe
ness, precipitation rate, and cloud LWP are estimated fror{fPCASP), which measures aerosol number concentrations
measurements obtained from the Wyoming Cloud Lidarin the diameter range of 0.1-3 pm. In the marine boundary
(WCL), the Wyoming Cloud Radar (WCR), and the G-band layer, this range captures most of the accumulation mode
Vapor Radiometer (GVR). The cloud base height is deter-aerosols{artin et al, 1994 Ramanathan et al2001). The
mined from the column maximum vertical gradient in the relationship between the PCASP aerosol concentration at
lidar backscatter. The cloud top height is determined from150m altitude and the cloud droplet concentratidi, as

the maximum height at which the power return and the vari-measured by the Cloud Droplet Probe (CDP, size range of
ance of the WCR Doppler velocity exceed threshold values 152 um) is analyzed using the data from profile legs flown
An overview of cloud properties observed during VOCALS during the research flights. Profile legs are flight legs flown
REx can be found iBretherton et al(2010. Details of the ~ from below 400 m to above the inversion or vice versa (with
LWP retrievals from the GVR can be found Fuidema et @ rate of ascent/decent typically around 300 mmi)nFrom

al. (2012. Cloud thicknesses are available from 51 % of all 90 profiles, we compare mean PCASP aerosol concentra-
clouds detected with the WCL, because cloud top heights aréons, N, from below 220 m with mean in-clout/y to es-

not retrievable for clouds with low radar reflectivity; cloud tablish the relationship between them.

thicknesses are available from 80 % of samples in which

the column maximum reflectivity exceed20dBZ. Onthe 2.4 Averaging scale

other hand, the cloud LWP measurements are available from

the GVR for 69 % of all clouds and 86 % of clouds with max- Though we test the sensitivity of the susceptibility estimates
imum reflectivity greater than 20 dBZ. If cloud thickness or ~ t0 the averaging length, we choose to average the data over
LWP retrievals are missing over portions of a flight segment, 10 km segments (100s of data) in the bulk of our analyses,
those portions are not included in the calculation of segmenbecause drizzle has been found to vary at this scala-(

averaged precipitation rafeor other precipitation variables, Zanten et al.2003, and the dominant scale of variability in
i.e. fandl. marine stratocumulus clouds is usually that associated with

mesoscale cellular structures with scales of this ordérad
and Hartmann2006. We find ane-folding length of 1.6 km

2.1 Cloud macrophysical properties
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for the cloud base precipitation rate field, suggesting that for 10km—averaged data
the dataset as a whole, the shortest averaging length scal 1200 — 10
for independent data segmenit®ith, 1973 is 3.2 km. Sim- ' ele
ilarly, the e-folding length for the cloud thickness is 1.7 km. ®5 1000 o P
A given 10km segment (100s of data) from the subcloud & T
leg is used in the analysis if estimates of cloud thickness (or = 800 TR
cloud LWP) and aerosol concentration are available for some -2 A
or for the entire segment. Means of precipitation and cloud £ 600 :.',1. l 0.1 mm/day
thickness are averaged over only the regions of the 10 km § f:‘".l o
segments where cloud thickness measurements are obtaine § 400 oo :'... o |
Since cloud thickness measurements could not be obtainec 2 PN P IO .
for the thinnest of clouds, our analysis is restricted to the § 200 \&f . ‘.: .
. H S ) N
thicker clouds that were sampled by the research flights. e . o 3.",‘ oty _”‘:’}o~,... s .

0 200 400 600 800
Cloud thickness (m)

The 10km segment-averaged cloud thicknéssPCASP g 1 pistribution of 10 km-averaged aerosol concentration and
aerosol concentratio®V, and precipitation rat& are plot-  ¢joud thickness measurements taken during twelve research flights.
ted in Fig.1. Along the x-axis towards thicker cloud®,in-  Colors indicate cloud base precipitation rates derived from the cloud
creases substantially. To a lesser extent, towards high&  base reflectivities that were measured by the Wyoming Cloud Radar.
decreases. The aim of this study is to quantify this decreas®otted lines indicate the boundaries of the cloud thickness bins de-
in R with increasingV. scribed in the text.

The high resolution aircraft data also allow us to deter-
mine the fraction and intensity of the drizzle in each segment
Segment-mean precipitation raté&sfrom the 10km seg-
ments are partitioned into the fraction of the cloudy columns
that are drizzlingf, and the mean drizzle rate in those
columns, here termed drizzle intensity This relation can
be written as

2.5 Susceptibility estimation

ity only in regions determined to be precipitating, using
some cutoff to distinguish precipitating and non-precipitating
clouds, we examine the drizzle susceptibility of all clouds,
precipitating or not, by investigating how aerosols affect both
the frequency and the intensity of drizzle in clouds of a given
thickness. Thus, this analysis attempts to quantify the effect
R=fI. 3) of aerosols on the mean precipitation rates of all clouds of
a given thickness, which is different from quantifying the
A data point in this study consists of estimates of the meareffect of aerosols on the mean precipitation rates of only
cloud thickness: (or mean cloud LWP), the mean PCASP precipitating clouds of a given thickness. This approach is
concentrationV, and the three precipitation variabl®&s f, appropriate in terms of understanding, because we include
and/. In non-drizzling segments, wheke=0andf =0, / clouds for which precipitation is completely suppressed due
is considered undefined. Hence, only drizzling segments aréo high ambient aerosol concentrations. We account for how
used to calculate the susceptibility fér This is to reduce increased aerosol concentrations can decrease the likelihood
the covariance between the susceptibilities of drizzle fractiorthat a cloud precipitates, which is important for weakly-
and intensity when we calculate the total susceptibility.. precipitating clouds. By incorporating non-drizzling clouds,
We examine the susceptibility f&t, f, and/ separately, we can address two questions in our susceptibility estimates:
referring to these susceptibilities &g, S;, and S| respec-  (a) to what extent do aerosols perturb existing drizzle rates,
tively. The susceptibility is derived from the observational and (b) to what extent do aerosol perturbations affect the like-
dataset for four bins of increasing cloud thicknésseach  lihood or fraction of drizzle?
with the same number of data points (percentiles 0-25%, Susceptibilities of each precipitation variable
25-50%, 50-75 %, 75-100 % bf. Therange ok ineachof  x ={R, f,I} are estimated for each of the four cloud
the i bins are 14-207 m, 208—-294 m, 294-379 m, and 381-thickness bins using the form,
792 m. By dividing the data into four bins and estimating In(x. /x_)
the susceptibility separately for each bin, we (a) minimize S, = S ¥ it
the macrophysical effects that can be detrimental to our sus- IN(N/N-)
ceptibility estimates and (b) estimate how the susceptibilitywhere the plus and minus subscripts indicate ensemble
changes wittk. The correlations betweenandN withinthe ~ means of a particular variable over the population corre-
four bins from thinnest to thickegt are 0.3, 0.0,-0.1, and  sponding to the top and bottom 33 % Mfrespectively. We
—0.3 respectively. term this approach of calculating the susceptibility tercile
In contrast to previous studies (e.diang et al. 201Q log-differencing (TLD). The uncertainty i, is calculated
Duong et al. 2011 that examined the drizzle susceptibil- using bootstrap resamplingfron and Gongl983. For each

4
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Table 1.Mean values of cloud thickneas PCASP aerosol concen- mated from the convective velocity and depth of the bound-
tration N, and precipitation rat® in the four cloud thickness bins  ary layer, is approximately one hour, we do not expect the
(h1, h2, h3, hg from bin with thinnest to thickest clouds). Total # gerosol concentrations to decrease substantially before pre-
indicates the total number of points (10 km averages) in each bingipitation rates adjust to the changes in aerosol concentra-
and drizzling # indicates the number of those points whete0.  iong Therefore, we expect that wet scavenging would not
x— andx. indicate the mean values ofin the population with top gy avistically bias our susceptibility estimates. In making this
and bottom 33 % values & in each bin. .
argument we assume that the cloud thickness and aerosol

hy hy hs ha concentration are the main controls of precipitation, and we

cannot rule out the possibility of another control on precipi-

E?itifng 4 fi’ gg’ gg gg’ tation th_at enhances precipitation and hence_ leads to an anti-
meank (mmday'l)  0.04 0.12 0.30 3.69 correlation betweev and R through cumulative wet scav-
mean/ (m) 153 248 335 505 enging events. However, given the nature of our dataset, we
Min/maxh (m) 14/207  208/294  294/379  381/792 cannot test this issue, and hence, we do not filter the data for
N- (cm3) 69 85 77 39 potential wet scavenging effects.

N, (cm™3) 357 419 411 266

R_ (mmday1) 0.12 0.28 0.52 7.1

Ry (mmday 1) 0.00068  0.049 0.1 17 3 Results

Drizzling #— 10 21 29 30

Drizzling # 3 12 23 29

3.1 Aerosol vs. cloud droplet number concentration

The physical argument that increased aerosol concentrations

leads to reduced precipitation is dependent on the assump-

cloud thickness bin, the data are resampled with replacemenf,, that PCASP aerosol concentratigvisat 150 m correlate

and the resulting susceptibility is calculated 10000 times to,q with cloud droplet concentrationSg in the overlying
obtain a distribution of susceptibility estimates for that cloud .|5,d. To test this assumption, we takeand Ny from the

thickness bin. The middle 95th percentile (25 %, 97.5 %) Ofprofile Iegs and plOt the data in F@_ Each point represents

this distribution is used to denote the 95 % confidence inter,aan aerosol and cloud droplet concentrations from one pro-

val of S,. We only report susceptibilities in bins where pre- ¢ The square of the linear correlatior?) betweenv and

cipitation is detected in at least 10 % of the segments. Wey, is 0.74. As in previous studiesicComiskey and Fein-
examine the ability of this method to capture the underly—go|d 2008 Duong et al, 2011, a power law relationship

ing precipitation dependence on aerosol concentration in APy the form Ng= AN? is used to characterize the relation-

pendixA. . . ) ship between cloud droplet and aerosol number concentra-
Mean properties ofV, 4, and R in the four cloud thick- o The exponenb, referred to as AG in the literature
ness bins are summarized in TalileOne of the noticeable (McComiskey and Feingol®008, can be thought of as the

changes across the bins is the marked increase in IRéan (o,q droplet concentration susceptibility: the fractional in-
Another is that the range a¥ observed differs across the crease in cloud droplet concentration in response to the frac-

bins. Since in the VOCALS region the thickest clouds areyjon g increase in accumulation mode aerosol concentration.
found west of 80 W, where aerosol concentrations are typi- 14 gptain theb value, is increased from 0 to 1.5 in incre-

cally below 200 cm® (Allen et al, 2011, this dataset does ments of 0.05 and the squared correlatio) 6f Ng andN®
not include data points with high aerosol concentrations andg jculated at each increment. The highéstalue of 0.80
high cloud thlck_nesses. o __is found forb = 0.55. Theb value that we obtain lies within
Wet scavenging of aerosols by precipitation has been iny,e range of previously reported values (0.26-0.85 fkdea
ferred byDuong et al(201]) to negatively bias the suscep- Comiskey and Feingol®008. A study in the same marine
tibility values that they calculated from satellite measure- gratocumulus region in the southeast Pacific that Déges-

ments. Giv_en the boundary layer conditions that were ob+;mated from MODIS retrievals andl from ship-based mea-
served during VOCALS REXx, we expect that wet scaveng-grements of accumulation mode aerosols fouhdalue of

ing would have a small effect on our susceptibility estimates,; gg (Painemal and Zuidem&010. This agreement is sur-
because the time scales for wet scavenging of aerosol arising, given that this simple relationship only uses aerosol

substantially longer than the time scales for drizzle forma-.,ncentrations in a single size range and does not take into
tion and boundary layer mixing. Using the parameterizationgccqynt the aerosol size distribution, aerosol hygroscopic-

from WOO? (2009 with a cloud base precipitation rate of v orincloud supersaturation. Thevalue will be necessary
1mm dagr and a cloud droplet number concentration of \yhen comparing thé values in this study, which quantify
100cnT™, we calculate a wet scavenging rate of approxi- precipitation responses to aerosol, with previously repgsted

3 -1 . . . . .
mately 3cnm>h™*. Given that the typical lifetime of driz- 5,65 from Eq.2), which quantify precipitation responses
zle cells in the region is approximately two hou@ofnstock 1, ¢joud droplets (as in Se@.2).

et al, 2005 and that the mixing of the boundary layer, esti-

www.atmos-chem-phys.net/12/4567/2012/ Atmos. Chem. Phys., 12, 45%B3 2012
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N and Ny from 90 profiles 3.2 Drizzle susceptibility

350 . !
° The susceptibilitys, of each of the three cloud base precipi-

tation variablesc = {R, f, I} for each of the cloud thickness
bins ¢ bins) is shown in Fig3. The susceptibilitySr of the
mean drizzle rate is clearly positive for @llbins. For each
bin there is lower than a 2.5% chance tBfat< 0. This is
consistent with the hypothesis that increasing aerosols de-
creases precipitation, as has been noted in numerous previous
studies Pawlowska and Brenguie2003 Comstock et aJ.
2004 vanZanten et al2005. The new finding in this study
is that Sr decreases strongly with increasing cloud thick-
ness. The:r-dependence is quite marked, witlkh decreas-
ing monotonically by a factor of four from approximately

0 o0 200 300 400 500 600 700 800 3 for.theh bin with thmnes} clquds (me_aln% 150 m) to ap-

N (cm3) proximately 0.75 for thé bin with the thickest clouds (mean
_ h ~ 500m).
Fig. 2. PCASP measured aerosol concentratiomnd CDP mea- Further, we find that the susceptibilisy of drizzle fraction
sured cloud droplet concentratiavy from 90 profiles.N is the  anq sysceptibilitys; of drizzle intensity exhibit very differ-
mean PCASP concentration at altitudes below 220 mépi the ent dependences upon cloud thickness (BjigTo first order
mean CDP concentration (filtered for incloud). The gray line in- _. . - !

. ) ) ) . . sinceR is a product off and/, S; andsS) add linearly to give
dicates the line of best fit, determined by the method described in s e
Sect3.1 the mean precipitation rate susceptibility, i.8,= S + Si.
More explicitly, if we expand our susceptibility estimate in
Eq. @), then Sr reduces to the sum betweép S), and a
covariance term

300 |

250

200

Ny (cm3)

150

100

501

Adiabatic LWP (g m2)

1040 90 160 250 360 In[l+ i] —In [1+ i}
SrR=Si+8 — ks i (5)
4 . 1 In[Ny/N_]
—~3 ¢ o z'f wherel’ f' is the covariance betwednand f in each popu-
= lation of 4 bin. We find that the covariance term is small in
2 | our dataset such that we can approximate SgatS; + S.
@2 1 Like Sr, Sf decreases with increasirigand explains the
2 monotonic decrease ifir with #. Much of this trend can
2 , + | be attributed to the preponderance of non-drizzling segments
o . (85 % are non-drizzling) in the bin with thinnest clouds, com-
pared to the near absence of non-drizzling segments (4 % are
ot ‘ ‘ ‘ 2 ] non-drizzling) in the bin with thickest clouds. Aerosols ap-
100 200 300 400 500 600 . S )
Cloud thickness (m) pear, therefore, to have a larger effect in determining the driz-

_ o o ~ zlefraction in thinner clouds, than they do in thicker clouds.
Fig. 3. The precipitation susceptibility (blue), the susceptibility  On the other hand, we find that the susceptibiitgf driz-

(green) are calculated in each of the four equally weighted CIOUchoud thickness and has a near-constant value 0.6. Di-

thickness bins. Error bars on the precipitation susceptibility 'nd'cateviding Sk between thes; ands; and comparing their relative

the 959% confidence interval calculated using bootstrap resanr“O"mil:ontributions demonstrates that drizzle fraction is important

technique. The dotted lines exist only to identify points that lie on id h lculati ibility in thi
top of each other. The precipitation susceptibility (blue) is approx- to consider when calculating susceptibility in thinner stra-

imately the sum of the susceptibility of drizzle fraction (green) and tocumulus clouds. Finally, we note that the mesgnof the

the susceptibility of drizzle intensity (red). The adiabatic liquid wa- four 2 bins is 1.6, which is in the upper part of the ranggof

ter path axis on the top is estimated from cloud thickness values, usexponents (EqR) found in previous studies3eoffroy et al,

ing the relationship LWR= § C, h2, whereCy, = 2x10-®kgm™  2008. We are, however, examining the relationship between

(Pawlowska and Brenguig2003. ambient aerosol concentration and precipitation, while pre-
vious studies examined the relationship between the cloud
droplet concentration and precipitation. Based onithialue
of 0.55 that we report in SecB.1, we expect that ther

Atmos. Chem. Phys., 12, 4564583 2012 www.atmos-chem-phys.net/12/4567/2012/
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107 ‘ ‘ ‘ ‘ To examine whether the behavior of susceptibility is sen-
a sitive to the choice of the number of cloud thickness bins, we
i calculate the susceptibility after binning the data into greater
number of bins (up to ten). The susceptibility values do not
show a general increase or decrease with increasing number
. + of bins (not shown for cloud thickness). We do observe an
] increase in the uncertainty (95 % confidence intervals) of the
i susceptibility estimates, expected due to the increase in sam-
,4 pling error with the reduced number of degrees of freedom
] per bin. While we observe the same monotonic decrease in
susceptibility when we bin the data into five bins, when we
10° ‘ ‘ ‘ ‘ bin the data into more bins, a peak in the susceptibility value
100 200 300 400 500 600 is found in the second cloud thickness bin from which there is
Cloud thickness (m) a monotonic decrease in susceptibility with increasing cloud
‘ ‘ ‘ ‘ thickness. While there may be a physical explanation for the
b | peak value in the second bin, given the large uncertainty for
the susceptibility of the bin with the thinnest clouds in Rg.
— -dInR/dInN we cannot establish this with high confidence. The main con-
— ~(N/R)(dR/dN) | clusion that we can make is that the susceptibility value of
the thinnest clouds is the least robust to changes in the bin-
ning procedure. There is a relatively low number of drizzling
clouds, and the inclusion or exclusion of the data points has
a large impact on the derived susceptibility.

-dR/dN

w

Susceptibility

—_
——
—_—

3.3 —dR/dN

100 200 300 200 500 600 While the susceptibility metric provides one way of quan-
Cloud thickness (m) tifying the decrease in precipitatioR due to an increase

in aerosol concentratio, we can also calculate the lin-

ear change oR due to a change iV, i.e., —dR/dN, us-

ing a similar tercile averaging method of E4).(This may

be a more useful metric to quantify the effect of aerosols on

precipitation if the interest is in the absolute suppression of

precipitation due to an increase in ambient aerosol concen-

tration. In Fig.4a, we can see that unliki&r, —dR/dN in-

would give an underestimate of the relationship between th&€ases with increasing cloud thickness and that the increase

cloud droplet concentration and precipitation, but we are unS @most fifty fold from the bin with the thinnest clouds to

able to confirm this from our dataset. the bin with the thickest clouds. This is the same order of
The susceptibility estimates are only useful indicators of Magnitude increase as the increase in meaieross the four

the role that aerosols play in modulating precipitation, pro-Pins (see Tablé). _ .

vided that cloud macrophysical and meteorological proper- Furthermore, we can estimate the susceptibsigyfrom

ties are held constant. Even when we bin the data by cloud@R/dN by approximating that

thickness, correlations between macrophysics and micro- N dR

physics exist. The correlations betweeand N in the four  Sp~ ———, (6)

cloud thickness bins from thinnest to thickest bin are 0.3, RdN

0.0, —0.1, and—0.3. We argue, however, that the decrease,

in correlation betweetV andh with increasing cloud thick-

ness is not the reason why we observe the decreasg in initial susceptibility estimate is plotted with this new esti-

W'th increasing cloud th|ckpgss in Fig. .On the contrary, .. mate, the two estimates are consistent with each other within
since there is a strong positive correlation between precipi-

) . i the sampling uncertainty (Figib). This demonstrates that
tat|ozn a?d CI?Udl ;rggkngfs E)QWl?V;/.Ska in%Breljgu':fZOOtS ¢ the susceptibilitySg can be used to estimate both absolute
vanzanten et al.c 91 correfations had a signiicant € 4 factional changes in precipitation in response to in-
fect on the behavior of the susceptibility, we would expect :

oo . . . . reases imv.
the susceptibility to increase with cloud thickness, instead ofC
decrease with cloud thickness.

Fig. 4. (a)—dR/dN calculated in the four cloud thickness bins, as
described in the Se@.3. (b) The susceptibility calculated using the
original formulation of susceptibility (blue) and the susceptibility
calculated using the formulation in E@)((magenta).

whereR is the bin-mean precipitation rate andis the bin-
mean PCASP aerosol concentration in eadfin. When the
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Fig. 5. The precipitation susceptibilities of drizzle at cloud base £ig g The precipitation susceptibility are calculated in four equally

(blue), at 500 m (red), and at 250 m (green) are calculated. Precipitaggighted cloud thickness bins for three different averaging length
tion rates are averaged over 10 km segments. While the Zarme scales: 10 km (blue), 20 km (red), 5km (green).

relationship £ = 0.4 R1-3) from Comstock et al(2004) is used for

cloud base precipitation rates and 500 m precipitation rates, a dif-

ferentZ — R relationship £ = 1.7 R11) is used for the 250 m pre-

cipitation rates. those bins. From Fig, there is no evidence that the suscep-
tibility is a strong function of the height below cloud base.
Therefore, use of cloud base vs. surface precipitation rates

ity estimate. Since we do not have a clear physical justifica-

We now examine whether the precipitation susceptibility istion for why the susceptibility should_remain constant with
sensitive to the altitude at which drizzle is measured (i.e.,n€ight below cloud base, further studies are needed to estab-
whether drizzle is measured at cloud base, at the surface, ¢ish whether there is indeed a physical explanation for what
in an intermediate altitude). Evaporation-sedimentation modS observed. . N
els and observations have shown that in a number of cases of We find that our results are insensitive to the- R re-
drizzling marine stratocumulus, much of the drizzle evapo-lationship that is used (see Segt2). Switching between
rates within 250 m of the cloud basa/¢od, 2005 and that  the two Z — R relationships has less than a 15% effect on
the fraction evaporating by a given level below cloud basethe susceptibility. Smce_the susc_eptlblhty takes the form
is highly sensitive to the mean drizzle drop size. Studies—4INR/dInN, from the difference in theZ dependence of
of southeastern Pacific stratocumulus have found that mosk @lone, we would expect a difference of 18 % in the suscep-
of the drizzle evaporates before reaching the surf@meri-  tibility.
stock et al. 2004 Bretherton et a).2010. Since the de-
gree of evaporation is important for understanding precipi-3.5 Susceptibility for different averaging length
tation impacts on marine stratocumulus (eWgqod, 2007,
Savic-Jovcic and Steveng008, it is important to establish  An averaging length of 10 km is used for the preceding anal-
whether the precipitation susceptibility is markedly different yses, but now we explore whether different averaging lengths
at the surface from that at the cloud base. For example, thigffect the susceptibility estimatd3uong et al(2011) found
might be the case i were to be strongly correlated with the that when the averaging area of the LES model output
size of drizzle drops. was decreased, the susceptibility maximum shifted to higher
We use precipitation rate estimates from the WCR at al-LWP values. To address this possible issue in the data, in
titudes of 500m and 250 m (see Se2t?). Radar-derived Fig. 6 we examine the extent to which the precipitation sus-
drizzle rates at the surface are not estimable from the subeeptibility is changed by changing the averaging length (i.e.,
cloud runs used here, but since the 250 m altitude is considthe segment length). The general result tBatdecreases
erably lower than the typical cloud base height~df0O00m  with cloud thickness holds for all different averaging lengths
(Bretherton et a).2010, the 250 m level is somewhat repre- examined here (5—-20 km). The greatest spread is found for
sentative of conditions near the surface. The susceptibility ashe # bin with thinnest clouds, but here the sensitivity to
a function of height is shown in Fi§. Quantitative measures averaging length is not monotonic, so the spread is likely
of susceptibility of the precipitation at 500 m and 250 m are sampling noise. The susceptibility of drizzle fractigincon-
not obtained in the lower cloud thickness bins, because pretributes to the decreasing trend for all three averaging length
cipitation is detected in less than 10% of the segments irscales, while the susceptibility of drizzle intensify also
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remains relatively constant with for the three averaging

length scales and lies between 0.2 and 0.9. 4r
— 10km

— 20 km

3.6 Susceptibility when binned by cloud liquid water 3l — Skm

path

So far we have addressed the effect of cloud thickness on
the susceptibility. While some studies have examined the
effect of cloud thickness on precipitatioPdwlowska and ,
Brenguier 2003 vanZanten et gl.2009, others have ex- + &
amined cloud liquid water path (LWP) as the macrophysical
control of precipitation Comstock et aJ.2004 Sorooshian ‘ ‘ ‘ ‘ ‘ ‘
et al, 2009. The reason for this has been largely driven 0 50 100 150 200 250 300 350
by the availability of instrumentation. However, in the VO- LWP (g m—z)
CALS dataset we have estimates of both cloud thickness and
LWP. Cloud thickness is typically well correlated with cloud Fig. 7. The precipitation susceptibility is calculated in four equally
LWP for marine stratocumulus, where the assumption of adiWweighted cloud liquid water path (LWP) bins for three different av-
abatic LWP is a good approximatioalprecht et al, 1999 eraging length scales: 10 km (blue), 20 km (red), 5 km (green).
Zuidema et aJ.2005 2012. In some areas where there is
scud (cumulus humulis under stratocumulus), the assump-
tion of adiabatic LWP breaks down. A breakdown is also crease inSg. To investigate the robustness of the maximum
observed for the thick, strongly precipitating stratocumulusin Sg in the third LWP bin, we explore the sensitivity of the
clouds with high values of LWP, although precisely how 5km averaged LWP data to the number of bins (BjgSince
thick the clouds need to be before this occurs appears to difthe number of data points used for each susceptibility esti-
fer between studies and likely depends upon the vigor of themate decreases as the number of bins is increased, we use
turbulent water resupplyWfood, 2005. This motivates our lighter shading for estimates with more bins. The suscepti-
examination of whether susceptibility trends are different if bility generally decreases with increasing LWP, but there is
we bin the data by cloud LWP instead of cloud thickness. Thea recognizable dip in susceptibility at 50 g The dip in
GVR obtained cloud LWP for a greater percentage of cloudssusceptibility at 50 g m? appears to be what causes the sec-
(69 %), compared to the WCR and WCL, which obtained ond LWP bin to have a low susceptibility value, resulting in
cloud thickness values for 51 % of all clouds. Therefore, everthe susceptibility maximum in the third LWP bin when the
if the clouds measured in this region are completely adia-data is binned into four bins. Since we have no prior reason
batic, we can expect differences in the susceptibilities fromto expect a dip in susceptibility at 50 grh we expect this
the different sampling. dip to not be due to a change in microphysical processes (in-
The susceptibilities estimated when we bin by cloud LWP deed, the large sampling errors are suggestive of statistical
are shown in Fig7. As in previous sections, the LWP data frailty in this result), but further studies with other datasets
are divided into four bins. However, only three susceptibility are necessary to establish whether this dip has a physical ex-
estimates are shown for each of the three averaging lengthglanation.
because in the bin with the lowest LWP (mean LWP of ap-
proximately 15 g m?) precipitation is detected in less than 3.7 Susceptibility with integrated cloud thickness data
10% of the segments. The lack of data in the bin with the
lowest quartile of LWP value shows again the difficulty in One of the main points of this paper is to stress the impor-
calculating the susceptibility for the thinnest clouds. tance of including all clouds when estimating the precipita-
Susceptibilities binned by LWP (Figl) are similar to  tion susceptibility. Using the Wyoming Cloud Lidar (WCL)
those by cloud thickness (Fi§), but the decrease with in- and the Wyoming Cloud Radar (WCR) retrievals, we are only
creasing LWP is not as marked as it is with cloud thickness,able to retrieve cloud thickness measurements for 51 % of
and the trend is dependent upon the averaging length. Specithe clouds. Thus, our susceptibility estimates are based on
ically, when the data are averaged over 5km segments, ththose 51 % of the clouds. When we use the LWP data, we
susceptibilitySr increases from the second to the third LWP calculate the precipitation susceptibility estimates based on
bin. This increase irsg from the second to the third LWP 69 % of the clouds. If we combine the LWP and the cloud
bin is due to an increase i§}, which counteracts decreases thickness, we would expect to incorporate a larger fraction of
in S; from the second to third LWP bin (not shown). Note clouds to calculate the precipitation susceptibility. We, there-
that Sg from the first bin is not shown for lack of precipi- fore, supplement the WCR and WCL-derived cloud thick-
tating cloudssS) also increases from the third to fourth LWP ness measurements with LWP-derived cloud thickness esti-
bin, but the decrease i is larger, which leads to the de- mates to create an integrated cloud thickness dataset. When

Susceptibility

= —=
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Jtation is stronger in clouds that produce only weak precip-

cloud thickness dataset, the precipitation susceptibility are calcu
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estimate the cloud thicknedgsvalues from the cloud LWP
values using the expression

(

where Cy, is a weak function of temperature and pres-
sure, her&y, = 2x10°6 kg m—* (Pawlowska and Brenguier
2003. With the combined cloud thickness measurements, we
can estimate cloud thickness values for 75% of all clouds
detected by the WCL. When we calculate the susceptibility
for averaging lengths of 10, 20, and 5 km, and plot it along-
side the previous estimates, as in Figwe note that in gen-
eral, the mean susceptibility values are similar to those calcu-
lated using the cloud thickness measurements from just the
WCL and WCR. The uncertainty in the susceptibility esti-
mates, however, substantially increases in the seaolic

for this dataset, when compared to the susceptibility esti-
mates in Fig6. This demonstrates the difficulty in constrain-
ing the susceptibility values using observations. Nonetheless,
our overall conclusion that the susceptibility decreases with
increasing cloud thickness still holds.

= )

2% LWP\ 2
C ’

4 Discussion and conclusions

We find that the precipitation susceptibility in marine stra-
tocumulus clouds decreases with increasing cloud thickness.
The susceptibility of the mean precipitation rate at cloud base
is found to decrease by approximately a factor of two to four
from the thinnest to the thickest clouds. Because precipita-
tion rate increases strongly with cloud thickness, this result
is particularly pertinent to our understanding of aerosol indi-
rect effects. It confirms the findings from both satellite data
and simple heuristic model&gbar et al, 2009 Wood et al,
2009 showing that the ability of aerosols to suppress precip-

Itation. The decrease df with increasing cloud thickness

lated in four equally weighted cloud thickness bins for three differ- IS @IS0 consistent with results fromEcuyer et al.(2009,
ent averaging length scales: 10 km (blue), 20 km (red), 5 km (green)hamely Fig. 3b that shows larger fractional changes in the
The original precipitation susceptibility using cloud thickness mea- probability of precipitation due to changes in aerosol con-

surements derived from the WCL/WCR is shown in gray for com-

parison.

centrations at lower cloud LWP. On the other hand, it is im-
portant to note that with the exception of a couple cases,
the precipitation susceptibilityr, as derived in this study,

is significantly positive even in the quartile with the thick-

both cloud thickness and LWP measurements are availablesst clouds. Since the clouds in our dataset span the range of
the cloud thickness measurements from the WCR and WClcloud thicknesses typically found in marine stratocumulus,

are used.
To convert the LWP retrievals into cloud thickness val-

this perhaps indicates a role for aerosols to suppress precip-
itation in most marine stratocumulus, albeit to a degree that

ues we must assume that the cloud liquid water profiles fol-weakens considerably for the thickest clouds.

low the moist adiabat. This assumption is typically valid in
marine stratocumulus{brecht et al, 1990 Zuidema et al.

This result is qualitatively consistent with an analysis of
satellite data (Fig. 12 frorKubar et al, 2009, which found

2005 2012, and the approximation is especially good for the that the frequency of drizzle decreases dramatically with a

thinner, non-precipitating clouds for which the WCR is un-
able to detect a cloud top heigtduidema et al.2005. We

Atmos. Chem. Phys., 12, 4564583 2012

decrease in effective cloud droplet number concentration for
clouds with low liquid water path, while there is less of
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a decrease in the frequency for clouds with higher liquid For much of this study, we have worked under the simple
water path. In their study of precipitating cumulus clouds, framework for understanding the effect of aerosols on pre-
Sorooshian et ali2009 found little change in susceptibil- cipitation that follows the model of Eg2). The actual de-

ity at liquid water paths comparable to the liquid water path pendence oR on N may not be as simple. Regardless of the
of the stratocumulus in our study. We attribute the differ- actual functional dependence &fon N, the utility of the
ence to whether or not non-precipitating clouds are includedSr, we find, is in how it distinguishes the effect that aerosol
in calculating the susceptibility, though another explanationconcentrations have on the intensity of precipitation and the
for the difference may be that the precipitation susceptibil-effect that they have on the fraction of precipitation.

ity behaves differently with cloud LWP in different thermo-  Care must be taken, however, if we consider the absolute
dynamic environments and cloud regimes. When we repeasuppression of precipitation in stratocumulus, since the pre-
our analysis, but remove all of the segments with mean drizcipitation susceptibility quantifies only the fractional change
zle rates less than 0.01 mm ddy we find that there is little  in precipitation due to a change in aerosols. Although higher
change in the susceptibility with increasing cloud thickness.susceptibilities are reported at lower cloud thicknesses, more
This difference in behavior is related to results frdimng et  precipitation is not necessarily suppressed by aerosols at the
al. (2010 andDuong et al(2011) that found that susceptibil- lower cloud thicknesses. The mean precipitation rate at cloud
ity values are sensitive to the minimum threshold for precipi- base of the quartile with thinnest clouds and the quartile with
tation. The precipitation susceptibility estimates in this studythickest clouds are 0.04 mm day and 3.69 mmday' re-

are generally higher than previous airborne studies of marinepectively. A factor of four decrease of the susceptibility is
stratocumulus clouds, such as thosd.afet al. (2009. In actually quite small compared to the more than ninety fold
their study, they found susceptibility estimates of 0.46 fromincrease in mean precipitation rate.

MASE | and 0.63 from MASE II, based on their separately It should also be noted that while this analysis may en-
measured sensitivities of precipitation to cloud droplet num-compass the range of cloud thicknesses commonly observed
ber concentration and of cloud droplet number concentratiorin marine stratocumulus, it has only explored a particular
to aerosol concentration. subspace of cloud thicknesses and aerosol concentrations oc-

Another key finding in this study is that the decreasSgn  curring in other marine boundary layer clouds. In particular,
with increasing cloud thickness is due to a decrease in theéhese results do not inform us about deeper marine bound-
susceptibilitySs of drizzle fraction rather than the suscepti- ary layer clouds such as precipitating trade wind cumuli, nor
bility S) of intensity. In other wordsSg decreases, because do they help with clouds that are substantially more polluted
for thicker clouds aerosol concentrations have a smaller imthan the drizzling clouds observed over the southeast Pacific.
pact on whether clouds drizzle. However, sinceShis pos-  As noted earlier, this study also excludes more than 20 % of
itive in all cloud thickness bins§g remains positive even for the thinnest clouds for which cloud liquid water path or cloud
the thickest of clouds. Regardless of cloud thickness, increasthickness estimates could not be obtained. Satellite observa-
ing aerosol concentrations has the same effect in decreasingns from Kubar et al.(2009 also imply that the precip-
the relative intensity of drizzle. Sensitivity tests show that al- itation susceptibility is a function not only of cloud thick-
though the averaging lengths used to calculate average drizzess, but also of the aerosol concentration. Exploring these
Zle rates change the absolute values of the susceptibility, theselationships across different datasets in future studies will
do not systematically change the response of the susceptibikelp us further constrain the effect of aerosols on precipita-
ity with cloud thickness. tion susceptibility.

The method by which we calculate the susceptibility Finally, we stress that the precipitation susceptibility con-
(Eq. 4) is different from previous studies that only incor- struct is a correlative rather than a causal one. Establish-
porate precipitating clouds. One concern with our methoding the causal nature of the observed susceptibilities is crit-
would be that we are incorporating clouds wRh=0in cal- ical for their credibility as evidence of aerosol influence on
culating a metric that takes the logarithmmfthe logarithm  precipitation. Model results such as thoseHsingold and
of zero is undefined. However, as long as there are precipitatSiebert (2009, Sorooshian et al(2009, and Wood et al.
ing clouds in the highV range, the susceptibility introduced (2009 are helping to do just that, but there remain significant
in this study captures the effect of aerosols in changing thaifferences in the magnitudes of the precipitation suscepti-
mean precipitation rate of clouds of a given thickness in thebilities found in these studies. Further, there are still major
framework of the precipitation susceptibility. We provide a gaps in our understanding about what these measurements
detailed analysis of the method that we use and its limita-are telling us about how precipitation susceptibility changes
tions in AppendixA. We find that susceptibility estimates with cloud macrophysical properties. Most notably, studies
from Eq. @) are sensitive to the number of non-precipitating of relatively thick cumulus clouds (liquid water paths greater
clouds that are used to calculate the susceptibility. We alsdhan 500 g m?) such as those bgorooshian et al(2009
find that confidence intervals of susceptibilities calculatedandJiang et al(2010 show increases in susceptibility, while
using Eq. 4) span the true value of the susceptibility, while this study of much thinner stratocumulus clouds appears to
those from other methods do not (see Ag). show a monotonic decrease. For thinner clouds, the reduction
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in precipitation susceptibility with increasing cloud thick- Uniform distribution
ness can be understood as a transition from autoconversion ‘ ‘ ‘ ‘ ‘
dominated precipitation to accretion-dominated precipitation
(Wood et al, 2009. As Jiang et al(2010 point out, liquid
water path is a useful proxy for the ratio of accretibg.to
autoconversiom gy However, while the results here sup-
port the theoretical arguments Wlood et al.(2009 imply- ] 15 2 25 3 35 4
ing that precipitation susceptibility should decrease mono- Susceptibility

tonically with Aacd Aaute the cloud resolving model results Normal distribution

by Jiang et al(2010 show a maximum in susceptibility at
intermediate values ofacd Aauto SUggeSsting that this ratiois
not a unique predictor of precipitation susceptibility and that §
other factors, such as thermodynamic environment and clouc®
type, may play a roleSeifert and Stever(2010 suggest that

Counts

the cloud lifetime (i.e., the time allowed for precipitation to 1 15 2 Susce 2t-i5bmt 3 35 4
dtevde_lop) may be one such factor, but we leave this to future Lognormalpdistrigution
studies. 80 ; ; ‘
60
£ 40
- S
Appendix A 20

1 15 2 2.5 3 35 4

Tercile log-differencing Susceptibility

We use the tercile log-differencing (TLD) method to cal- Fig. Al. Histogram of susceptibility estimates using TLD for three
culate the precipitation susceptibility in this study so that different distributions of data: uniform (top), normal (middle), and
non-precipitating clouds can be included in an analysis thatognormal (bottom). The histograms are based on 100 estimates cal-
tries to quantify the effect of aerosols on precipitation Sup_C_ulated from 10_0 different samples of the same underlying d_istribu-
pression. Since none of the methods that calculate the sudon- The gray line 321'25 shows the valuefofn the underlying
ceptibility using regression in log-space incorporate non-relat'onSh'pR =aN=>.
precipitating clouds, they neglect the cases where increased
aerosols completely suppress precipitation. In this section,
we take a critical look at the TLD method and explore how the nature of this distribution has an important impact upon
data distribution, noise, and thresholds can affect the susceow effective TLD is in estimating.
tibilities obtained by TLD. To study this we create a sample dataset of 100 ransiom
To test how accurately the TLD method estimates a givenyalues, whereV is distributed uniformly, normally, or log-
underlying dependence of precipitation on aerosol concennormally. A sample size of 100 is chosen, because the sam-
tration, we create multiple synthetic sample datasets with thge size in each of the cloud thickness bins in the VOCALS
relationshipR = a N~ and use each of these to estimte  data is approximately 100. CorrespondiRgralues are cal-
The synthetic model may not exactly capture the true physculated using the relationship = aN~#, whereg = 1.25;
ical dependence of precipitation on aerosol concentrationthis lies between the mean susceptibility that we estimate for
However, it is desirable that an analysis method can accuthe VOCALS data and the susceptibilities estimated in pre-
rately estimate the value Qﬂ: In addition to using TLD, we vious studies. We set = 50125' but the results for this par-
estimateg using a standard least-squares regression in logticular analysis are insensitive to the choice:oTo generate
space and a linear regression fit in log-space based on mirg distribution of susceptibility estimates from the three meth-
imizing the perpendicular distance between the fit and thepds (TLD, linear regression, and minimum distance), we re-
data, as discussed big¢ed 1992. Each data pointis equally sample the set 100 times from the same underlying distri-

weighted in all cases. bution and calculate the susceptibility in each case, giving
us 100 susceptibility estimates. Whahis distributed either
Al Distribution of the data uniformly or normally, the susceptibilities from TLD over-

estimateB, as can be seen in Fig\l. In these cases, the
Many variables in the atmosphere are distributed normally;concentration of points in log-scale is skewed towards higher
many are not. Depending on the spatial and temporal extend, resulting in the overestimate gf WhenN is distributed
of the datasety, our controlling (independent) variable, can lognormally, the concentration of points is not skewed in log-
in principle be distributed in a number of ways. We find that space, and the value gfis more accurately captured by the
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Fig. A2. Histogram of 10 km-averaged PCASP aerosol concentrafibtizat are used in the susceptibility analysis. Each panel shows the
distribution of N in the four cloud thickness bins. The red line shows the probability density function of a theoretical lognormal distribution,
based on the arithmetic mean and standard deviatidhiafeach of the bins.

susceptibility. In this case, we note that the susceptibilitieswith an arithmetic mean of 150 and standard deviation of 75
from the linear regression and minimum distance methodsand calculatek as before. The standard deviationfobefore
accurately capturg as one would expect for a dependence adding the noise is typically 0.22. To tiRevalue we then add
of R on N that is simply a power law unburdened with noise noise taken from a normal distribution with a mean of zero
that is introduced by both measurement uncertainties and adand standard deviatianise If R is negative after adding the
ditional controlling variables. noise, thenR is set to zero, sinc® represents a precipita-
Importantly, the 10 km-averaged PCASP aerosol concention rate. We then calculate the susceptibility using the three
tration N (the primary independent aerosol variable used inmethods as above, and repeat the process 100 times to obtain
this study) for each of the four cloud thickness bikg,(  a distribution of susceptibilities for each method and for four
ho, h3, and hy) is distributed approximately lognormally different noise levelsofpise=0.02, 0.1, 0.2, and 0.3).
(Fig. A2). Neither a uniform nor a normal distribution de-  The sensitivity to noise (FigA3) shows that all three
scribes the data well. This gives us confidence that the susnethods accurately estimate the underlythgalue for low
ceptibility from the TLD method is not likely to be a strongly noise, but agmeiseincreases, the minimum distance method

biased estimator g for our observed data. increasingly overestimates tifevalue, while both TLD and
the standard linear regression method capture the underlying
A2 Noise level B value with minimal bias. The standard linear regression

most likely outperforms the minimum distance method, be-
In reality, we rarely expect observational data to perfectly fit cause noise is only added & and one of the main assump-
a model relationship. Instead, we expect there to be noise itions of the standard linear regression is that errot§ iare
the data, representing measurement uncertainties and addiero or negligible. The minimum distance method assumes
tional unknown controlling variables. To study the impact of that errors exist in botlR and N. We have not carried out a
noise on the different methods for estimatjfigve take 100  test where we add noise 19.
random samples a¥, taken from a lognormal distribution
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Fig. A3. Susceptibility estimates from TLD (blue), linear regression F_|g. Ad. Suscept!b!llty estl_mates from TLD_(bI_ue), Im_ear regres-
sion (red), and minimum distance (green) with increasing threshold

(red), and minimum distance (green) with increasing noise level. | Dot t tibility f 100 estimat d
Dots represent mean susceptibilities based on 100 estimates, arjﬁve - DOIS represent mean susceptibiity from estima‘es an
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between the standard deviation of the distribution from which the 2 Ween the threshold va l.Je an € mea, of K & e_r applying
the threshold. The dotted line represents the underlgiaglue.

noise is takengneise and the standard deviation &f oR, after the
noise has been added. The dotted line represents the undeslying
value. 35
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Previous studies of precipitation susceptibility have imposed
different threshold precipitation rates to differentiate precip-
itating and non-precipitating clouds. Some of the differences
are due to instrument sensitivities, others due to the authors’
choices. In this study, we choose thel5dBZ threshold, s
because precipitation rates above 0.14 mntddshe corre- i -
sponding precipitation rate) begin to have substantial effects >0 02 04 06 08 1
(>4 W m~2) on the energetics of the boundary layer. Fraction of non—precipitating

We test how accurately the three estimators are able to CaF]fig. A5. Susceptibility estimates from TLD as a function of the

ture § when we apply a minimum threshold #©. We use  ymper of non-precipitating points that went into calculating the
the same underlying lognormal distribution as in the previ- sysceptibility. Colors indicate different levels of the thresholds: 0.01
ous test to obtain 100 random samples\gfand the same  (blue), 0.2 (green), 0.4 (red), and 0.6 (cyan). The dotted line repre-
relationship betwee® and N. We maintain the noise level sents the underlying value.
at ongise= 0.3 and vary the minimum threshold & such
that values ofR less than the threshold are set to zero. We
chooseoppise= 0.3, because this gives @iset0-oRr ratio TLD, on the other hand, overestimat@swith increasing
that is similar to those found in the VOCALS observations. threshold value. The susceptibility estimate positively corre-
The mean value oR following the addition of noise, but lates with the fraction of non-precipitating points in each set
before the threshold is applied, is typically 0.37. The four (Fig. A5). In general, higher susceptibility values are found
thresholdR values we use are 0.01, 0.2, 0.4, and 0.6. with increasing fraction of non-precipitating points. From
Susceptibility estimates from all three methods (Ag) this analysis alone, however, we cannot determine what non-
are sensitive to the threshold value. The linear regressiomrecipitating fraction would always give an unbiased esti-
method increasingly underestimates the underlyingalue  mate ofg.
as the threshold increases. This result is consistent with that If we split the susceptibilitySg of the TLD method into
of Jiang et al.(2010 and Duong et al.(2011), who both  S; and S, as done in the body of the manuscript, we find
found that increasing the minimum threshold for precipita- thatS; increases with increasing fraction of non-precipitating
tion decreased the susceptibility estimate. Though the minpoints and provides the vast majority of the trendSi
imum distance method overestimag@svhen the threshold (Fig. A6). On the other hand§, decreases with increasing
is near zero, it also follows the same trend of decreasindraction of non-precipitating points, much like the standard
susceptibility estimates with increasing threshold value. Thdinear regression in FigA4. No method consistently gives

Susceptibility
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357 ‘ ‘ ‘ ‘ ™ each other, where the difference between the two is that the
S = | meanR increases along the abscissa in Bignd the thresh-
— S old increases along the abscissa in FA@. Sr increases
250 S ] with the increasing fraction of non-precipitating poinsg,

in both cases, determines the trendSgf S), on the other
hand, display different behaviors in the two figurés.in
157 . Fig. A6 distinctly increases with decreasing fraction of non-
precipitating pointss; in Fig. 3 does not display such a clear
increase. This suggests that the mechanism causing the be-
05T + ] havior of the susceptibility in Fig3 is not quite identical to

1‘ | that in Fig.A6, though a large part may be due to it.

0 02 04 06 08 1 From the above analysis alone, we cannot disregard the
Fraction of non—precipitating possibility that in Fig.3, the underlying dependence be-
Fig. A6. The precipitation susceptibilit§ig (blue), susceptibility of ~ \WEEN aerosols and precipitation is constant and the decreas-

drizzle intensitysS) (red), and susceptibility of drizzle fractio$t ing trend of_the _susceptlblllt_y IS solely_because the fraction
(green) with increasing threshold value, calculated using the TLDOf non-precipitating clouds is decreasing. Whereas none of
method. Instead of the ratio between the threshold and mean prdhe three methods above always give an unbiased estimate
cipitation rate, the average fraction of non-precipitating points atof 8, the utility of Sg, as calculated using TLD, is most ev-
each threshold is used for the abscissa. The dotted line represenident whensSg is taken as the sum of its parfg and S;. It
the underlyings value. informs us about how both the rate and the frequency of pre-
cipitation depend upon aerosol concentratiSp.which is
more akin to the susceptibilities reported in previous studies,
an unbiased estimate of the underlyifign cases where a quantifies the effect of aerosols on how intense a cloud pre-
substantial number of data values are determined to be nortipitates.S;, on the other hand, is a metric that quantifies the

N

Susceptibility

precipitating. effect of aerosols on the drizzle fraction, which is identical
to the probability of precipitation when we inclugé= 0.
A4 Discussion L'Ecuyer et al.(2009 found that higher values of aerosol in-

dex, which serves as a proxy for columnar concentration of

We now attempt to put the data from VOCALS REXx in con- CCN-sized aerosold\N@kajima et al. 2001), tended to de-
text of the above analyses. We can see from Riy.and  crease the probability of precipitation. They also found that
A6 that susceptibility estimates from TLD increase with the there is no unique liquid water path threshold above which
fraction of non-precipitating points. Examining the fraction a cloud can be assumed to be precipitating. This interesting
of non-precipitating clouds will give us an indication of the finding runs counter to the idea that there is a threshold cloud
effect of the threshold on our susceptibility results. The frac-liquid water path above which all clouds precipitafgin this
tion of non-precipitating segments is 0.85, 0.46, 0.14, andstudy attempts to quantify that same effect of aerosol concen-
0.04 in the four cloud thickness bins of the 10 km-averagedtrations on the probability of precipitation from the aircraft
VOCALS data (11 t0 h4). data from VOCALS.SR in this study attempts to combine

Estimating the “noise” in the data is more difficult. To ob- the effect of aerosol concentrations in determining both the
tain some estimate of the noise level in the data, we can takentensity and the probability of precipitation.
the mean susceptibility values that we obtain in each cloud
thickness bin and estimate the noise as the difference be:
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tant role in our dataset. The precipitation variations within

each cloud thickness bin are dominated by noise, unexEditedby: G. Feingold
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In such cases, linear regression underestimateg tredue.

FiguresA5 and A6 show that whether TLD method accu-
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