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Abstract. The stochastic Plant-Craig scheme for deep con-
vection was implemented in the COSMO mesoscale model
and used for ensemble forecasting. Ensembles consisting of
100 48-h forecasts at 7 km horizontal resolution were gener-
ated for a 2000×2000 km domain covering central Europe.
Forecasts were made for seven case studies characterized by
different large-scale meteorological environments. Each 100
member ensemble consisted of 10 groups of 10 members,
with each group driven by boundary and initial conditions
from a selected member from the global ECMWF Ensemble
Prediction System. The precipitation variability within and
among these groups of members was computed, and it was
found that the relative contribution to the ensemble variance
introduced by the stochastic convection scheme was substan-
tial, amounting to as much as 76 % of the total variance in
the ensemble in one of the studied cases. The impact of the
scheme was not confined to the grid scale, and typically con-
tributed 25–50 % of the total variance even after the precipi-
tation fields had been smoothed to a resolution of 35 km. The
variability of precipitation introduced by the scheme was ap-
proximately proportional to the total amount of convection
that occurred, while the variability due to large-scale condi-
tions changed from case to case, being highest in cases ex-
hibiting strong mid-tropospheric flow and pronounced meso-
to synoptic scale vorticity extrema. The stochastic scheme
was thus found to be an important source of variability in
precipitation cases of weak large-scale flow lacking strong
vorticity extrema, but high convective activity.

1 Introduction

A given state of the atmosphere cannot be represented per-
fectly in a numerical model for at least two reasons. The first
reason is that for practical reasons the atmospheric state can-
not be known with infinite accuracy at every location. The
second reason is that a numerical model resolves the real
state only up to a given level of detail, limited by the grid-
spacing or spectral truncation of the model, and by the time
step of the simulation (Palmer, 2001). Both of these imper-
fections lead to errors, some of which may grow quickly over
time because of the chaotic nature of the atmosphere (Lorenz,
1963). In order to obtain information on the possible future
states of the atmosphere, ensemble forecasting techniques are
used: multiple integrations of the model that, by introducing
small perturbations, try to account for these imperfections.

First, uncertainties in the initial state of the model
are accounted for by starting the model integrations with
slightly modified initial conditions (Toth and Kalnay, 1993;
Houtekamer and Derome, 1995; Molteni et al., 1996). Sec-
ond, the problem of the error caused by the limited resolu-
tion can be addressed by using stochastic parametrizations.
Parametrizations, in the context of numerical weather pre-
diction (NWP), are algorithms that represent the effects of
unresolved processes such as radiation, boundary-layer pro-
cesses and convection. In contrast to traditional determin-
istic parametrizations, the fundamental idea of stochastic
parametrizations is that the small-scale processes that they
represent are not uniquely determined by the resolved flow,
but are also affected by unresolved processes that are inher-
ently unknown but can be modelled in a stochastic manner
(Palmer, 2001).
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Several approaches to stochastic parametrization have
been taken, typically with the aim to address sources of un-
certainty, that, when taken into account, can allow ensem-
ble spread to grow without sacrificing accuracy. An impor-
tant advantage of stochastic schemes is that they introduce
variability throughout the integration, which helps to gener-
ate sufficient ensemble spread later in the simulation without
having to introduce unrealistically large perturbations to the
initial state. Buizza et al. (1999) introduced randomness by
multiplying the effects of all parametrized processes by a fac-
tor between 0.5 and 1.5, and have shown that this increased
the spread of the ensemble, and improved the skill of the
probabilistic prediction of weather parameters such as pre-
cipitation. Shutts (2005) introduced stochastic perturbations
to backscatter a portion of the kinetic energy that is normally
dissipated by parametrized processes, resulting in an im-
provement of probabilistic measures of forecast skill. Other
parametrizations based on this concept have been tested by
Bowler et al. (2009), Berner et al. (2009) and Tennant et
al. (2011). Berner et al. (2009) found that stochastic kinetic
energy backscatter leads to improved rainfall forecasts in the
ECMWF ensemble forecast system, and Bowler (2009) and
Tennant et al. (2011) reported an improvement of the growth
rate of the ensemble spread of some variables, and an im-
proved forecast skill at short lead times.

Many stochastic parametrizations have focused on cumu-
lus convection, which shows substantial variability on scales
close to the truncation limit of current numerical models.
Lin and Neelin (2003) developed two stochastic schemes for
deep convection, one by making the closure time-scale (the
time in which destabilization is compensated by convective
processes) stochastic, the other by adding stochastic pertur-
bations to the vertical distribution of the temperature tenden-
cies produced by the scheme. These helped to increase vari-
ability, and excite low wavenumber and -frequency distur-
bances, repectively. Bright and Mullen (2002) developed a
stochastic version of the Kain-Fritsch convective scheme by
adding a stochastic component to its trigger function, result-
ing in a slight increase in skill and ensemble spread. Teix-
eira and Reynolds (2008) added stochastic variability to a
cumulus parameterization under the assumption that the stan-
dard deviation of the fluctuations was proportional to the ten-
dency, and found that it produced substantial variability, par-
ticularly in the tropics, leading to increased ensemble spread
both in the tropics and extra-tropics.

In each of these studies, the spatial and/or temporal au-
tocorrelation of the perturbations were controlled by param-
eters that could be adjusted to produce a desired increase in
ensemble spread. In contrast, Berner et al. (2008) employed a
cellular automaton to generate patterns of spatial variability,
while Khouider et al. (2003) showed how a birth-death model
of convective initiation could be used to formally derive a
stochastic parametrization for larger scales. In the scheme
developed by Plant and Craig (2008, hereafter PC08), used
in this study, the convective variability is constrained by an

underlying physical theory, which is based on equilibrium
statistics (Craig and Cohen, 2006). In this study we report on
the use of the PC08 scheme, previously developed and tested
only in a single-column mode, in a limited area model.

If the goal of using a stochastic parametrization scheme,
like the PC08 scheme, the variability it produces must be
quantified and compared with other sources of variability,
such as perturbations in the initial conditions. If the stochas-
tic scheme is to have a sizeable effect on the ensemble spread,
the amount of introduced variability must not be negligible in
comparison to those other sources. One may anticipate that
the relative importance of the stochastic variability is depen-
dent on the meteorological situation, because both the overall
magnitude and the degree of randomness of the parametriza-
tion are likely to be weather dependent (Craig and Cohen,
2006).

The variability that a stochastic parametrization scheme
introduces can be split into two parts: a direct and an indirect
component. The direct component is the variability that de-
velops instantaneously because of different stochastic micro-
scopic realizations in the same resolved (macroscopic) flow.
This component has the same spatial and temporal scales as
the tendencies provided by the stochastic scheme. In con-
trast, the indirect component is variability of the resolved
flow that develops because of upscale growth of the direct
variability (Tan et al., 2004; Zhang et al., 2007). This dif-
ference is of importance, because the direct component of
variability and the corresponding probabilistic information
may alternatively be arrived at by statistical post-processing
of a deterministic forecast, as done by e.g. Applequist et
al. (2002), Bremnes (2003) or Theis et al. (2005). In contrast,
such post-processing cannot account for the impact of small-
scale variability on the large-scale flow, so that the stochastic
parametrization approach has the potential to be qualitatively
superior to such techniques.

Based on the above considerations, our evaluation of the
performance of the PC08 parametrization is directed towards
the following questions:

1. How large is the impact of the stochastic variability in-
troduced by the convective scheme compared with that
introduced by varying initial and boundary conditions?

2. How much of the variability can be considered a differ-
ent realization of the same resolved flow, and how much
is due to changes of the resolved flow due to upscale er-
ror growth?

3. How does the variability depend on the weather pattern?

This article is structured as follows. Section 2 describes the
implementation of the Plant-Craig scheme in the limited-area
model. In Sect. 3, the set-up of the ensemble forecasting sys-
tem is presented. The results are presented and discussed in
Sect. 4, and we formulate our conclusions in Sect. 5.
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2 Implementation of the Plant-Craig scheme in the
COSMO model

For the current study, the PC-scheme (PC08) was integrated
into the COSMO (Consortium for Small-scale Modelling)
model (Scḧattler et al., 2007), version 4.8. This model is de-
veloped and used by the Consortium for Small Scale Mod-
elling (COSMO), and is both non-hydrostatic and fully com-
pressible. It is used, for example, at the German Weather
Service (Deutscher Wetterdienst, DWD) in daily forecasting
operations, and for mesoscale meteorological studies. The
model uses a terrain-following coordinate system. Its com-
putational grid is an Arakawa C-grid with vertical Lorenz
grid staggering.

The PC-scheme produces small-scale variability while
maintaining quasi-equilibrium on a large scale. Large-scale
fields are obtained by applying spatial or spatio-temporal av-
eraging, and a CAPE-based closure is assumed. To obtain
the small-scale variability, the scheme draws convective ele-
ments, herein interchangeably called plumes or clouds, from
a probability density function (Craig and Cohen, 2006), nor-
malized with this closure. The feedback of each plume on
the resolved flow is calculated with an adapted version of the
Kain-Fritsch plume model (Kain and Fritsch, 1990). For a
comprehensive description of the PC-scheme, the reader is
referred to Plant and Craig (2008). In what follows, we will
recall its main features and describe a number of modifica-
tions that were made upon its implementation in the COSMO
model.

The PC-scheme is called from the model for each (x, y)
grid cell everyconvective time step, to provide the convective
feedback. In the current study the convective time step was
set to 10 model time steps (5 minutes and 30 s, respectively).

Figure 1 summarizes the different steps carried out during
a single call of the scheme. First, plumes that were activated
in earlier call to the scheme and have exceeded their lifetime
are removed (Fig. 1). As in PC08, the lifetime was set to
45 minutes regardless of plume properties. Next, the scheme
evaluates whether any layers could act as source layers for
new convective plumes, and calculates the closure mass flux
(Fig. 1). To do so, the PC-scheme uses vertical profiles of
temperature and humidity that represent an averaged atmo-
spheric state. This averaging must be over a sufficient area
(or time period) to contain a large number of clouds, to en-
sure that the near-equilibrium statistics on which the scheme
is based are valid.

Ideally, as in PC08, the determination of the size of this
area would consist of an iterative process, whereby (i) an ar-
bitrary initial cloud spacing is chosen, (ii) an averaging of
the atmospheric state over an area containing many clouds
is performed, and (iii) a cloud density is computed by the
scheme and used to give a better estimate of the cloud spac-
ing for the next iteration. However, it is not evident that such
a procedure would always converge, and it is computation-
ally expensive. Therefore, we have chosen to use a fixed av-

Fig. 1. Flowchart displaying the tasks performed in the Plant-Craig
convection scheme.

eraging area of about 1200 km2 or 25 grid points which was
the largest area that could be implemented given the techni-
cal constraints of the model. Since about 10 to 100 clouds
typically occur within an area of this size in regions of active
convection, the prerequisite that the mass flux be balanced
“over a large ensemble of clouds” was only marginally met.

Using the averaged profile, the scheme attempts to launch
plumes from a series of layers (as described in PC08, their
Sect 3.2), evaluating whether a lifted parcel would be pos-
itively buoyant, thereby initiating a convective plume. In
PC08 the temperature of each lifted parcel was initially in-
creased by 0.2 K and, if it did not become buoyant, increased
several times by 0.1 K. To reduce computational cost, we
have instead applied a single 1.0 K perturbation. If a parcel
with this perturbation would not become buoyant, the layer
was discarded as a potential source for convection.

If a buoyant parcel is found (right panels of Fig. 1), a clo-
sure mass flux< M > is calculated, that produces the sta-
bilization required to offset 90 % of the CAPE with a fixed
closure timescaleτ c. For this calculation, the plume model
of the Kain-Fritsch scheme (Kain and Fritsch, 1990; Kain,
2004) is used. Using this value, a probability density function
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Table 1.List of selected cases.

Case Initial date and time Domain-averaged 48 h Description
(yyyy mm dd hh) convective precipitation (mm)

S1 2005 01 06 12 0.12 Winter Storm Erwin/Gudrun
W1 2006 07 11 12 1.84 PRINCE field campaign, Groenemeijer et al. (2009)
M1 2007 07 19 12 1.16 COPS field campaign IOP 9c, Corsmeier et al. (2011)
M2 2008 06 24 12 1.08 Strong squall line in central parts of Europe,

Púčik et al. (2011); Simon et al. (2011)
M3 2008 09 11 12 1.09 Mediterranean cyclone case, Grams et al. (2011)
W2 2009 06 30 12 2.09 Diurnally-driven convection case
W3 2010 06 26 12 0.48 Summer day with little convective activity

(PDF) is defined that expresses the chance that a cloud with
a certain radiusr,which is assumed to be related to the mass
flux m according tom = (< m >/< r2 >)r2, is launched
within the time intervalδt between two calls of the convec-
tion scheme. Angle brackets denote an average over the the-
oretical ensemble of convective clouds. This PDF may be
expressed as

p(r)dr =
2r〈
r2
〉exp

(
−r2〈
r2
〉 )dr

The scheme considers a range ofr values from 0 to 3<
r2 >1/2 and, for each radius, determines, whether a cloud
will be launched by comparing a pseudo-random number
against the value ofp(r) for that radius.

During test simulations, it was found that with the values
of mass flux, mean cloud radius and closure timescale used
in PC08, too little convective precipitation was produced in
the simulations. A combination of the following adjustments
enabled the scheme to produce amounts of convective precip-
itation comparable to the non-stochastic Kain-Fritsch (1990)
and Tiedtke (1989) schemes, and are explained in detail be-
low:

1. the root mean squared cloud radius< r2 >1/2 was in-
creased from 450 m to 1200 m

2. the closure time scaleτ c was fixed and set to 600 s, or
10 min.

3. the mean mass flux per cloud,< m >, was reduced from
2×107 kg s−1 to 1×107 kg s−1

The increase of the mean squared cloud radius increased the
convective activity very strongly. This can be understood
since PC08 calibrated their values to produce results sim-
ilar to that of a cloud-resolving simulation over a tropical
ocean, where it is known that the boundary layer is typically
shallower than in mid-latitudes with which we are concerned
here, leading to correspondingly narrower updraughts. More-
over, entrainment is probably stronger and more inhibiting
for small convective plumes in the mid-latitude troposphere

than it is in the tropics. A refinement of the scheme in future
work could be to vary the mean cloud radius depending on
boundary layer height or the lifting condensation level, per-
haps among other predictors of cloud radius. After chang-
ing the mean cloud radius, it was still found that a very large
fraction of the rainfall produced in the simulations originated
from the grid-scale rather than the PC convective scheme. It
appeared that the parametrized convection was not able to
reduce the CAPE rapidly enough to prevent grid-scale con-
vection from developing. We hypothesize that this is the case
because the gravity waves that communicate the stabiliza-
tion in the real atmosphere (Bretherton and Smolarkiewicz,
1989) are strongly damped by numerical diffusion, so that
temperature perturbations are overly confined to the grid cell
where a plume occurs. A solution to this problem would be
to parametrize the feedback of the scheme in such a way
that the stabilization occurs not only in the grid cell where
the convection occurs, but also in neighbouring grid cells. A
quicker solution, which we have chosen, was to reduce the
closure time-scaleτ c, making convection more intense and
more likely to set in before explicit convection sets in. The
final adjustment of reducing< m > by 50 % also increased
the tendency for the scheme to produce convection, since this
favours larger numbers of plumes.

After launching a new plume, the temperature and mois-
ture tendencies that it produces are calculated. Finally, for
all plumes, both newly launched and pre-existing, the sum of
their effects on the vertical temperature and moisture profiles
is computed and returned to the model.

3 Ensemble forecasting experiments

The ensemble experiment was structured as follows. We
used the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Ensemble Prediction System (EPS), con-
sisting of 50 members per forecast. These forecasts were
re-run from ECMWF operational analyses out to 48 h. 10
members of the ensemble forecast were selected using the
RM (representative member) selection algorithm developed
by Molteni et al. (2001). This algorithm involves a cluster
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Fig. 2.500 hPa relative vorticity (s−1, shaded), and geopotential height (m, in black contours) for selected cases.

analysis followed by the selection of a representative mem-
ber from each of the clusters. These representative members
were used as initial and boundary conditions for the simu-
lations with the COSMO model. For each EPS member 10
COSMO simulations were carried out, using different ran-
dom seeds for the stochastic parametrization, resulting in a
100 member ensemble of COSMO forecasts for each case.

The COSMO model was set up following the COSMO-EU
configuration used by the German Weather Service to sup-
port operational weather forecasting (DWD, 2011), the only
differences being the use of the PC-scheme for convection
instead of the Tiedtke scheme, and the use of a different do-
main. The domain of the simulations for our study stretched
across central Europe (Fig. 2) and had a size of approxi-
mately 2100×2100 km. For one case (M3) the domain was
shifted southwards to better capture the Mediterranean cy-
clone that was responsible for most of the precipitation The

grid-spacing was 0.0625◦ (∼7 km) and the simulations were
run out to 48 h.

Seven cases were selected for this study (see Table 1) in
an attempt to represent situations with different amounts of
large-scale forcing and convective activity. Moreover, five of
the cases have been the subject of prior scientific studies. As
an indication of large-scale forcing the presence of a large-
scale trough, characterized by a local maximum of vortic-
ity at 500 hPa, was used. Each of the cases was subjectively
assigned to one of three categories: W (weakly-forced), M
(moderately-forced), or S (strongly-forced).

As an example of a strongly-forced case, Fig. 2 (left
top) shows the relative vorticity and geopotential of case
S1, which features a maximum of relative vorticity over
the northwestern part of the domain which is embedded in
a strong southwesterly-flow, indicative of strong advection
of cyclonic vorticity. According to quasi-geostrophic the-
ory, this implies forcing for upward vertical motion. Cases
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Fig. 3. Comparison of precipitation rates of the Tiedtke(a), Plant-
Craig (b) and Kain-Fritsch(d) convective schemes, and the radar-
derived rates(c) 16 h after initialization.

categorized as moderately-forced (M1, M2, and M3) feature
local maxima of relative vorticity as well (for example, for
case M1, a feature stretching over eastern France), but those
are weaker and embedded within a weaker steering flow. It
must be noted that strong small-scale maxima and minima
of vorticity coinciding with convective activity can be seen
in all but the S1 case. These, however, have been ignored
for the categorization of the cases, as they are much smaller
than the Rossby radius of deformation and hence have lit-
tle meaning in the context of quasi-geostrophic dynamics.
Finally, for cases categorized as weakly forced, large-scale
vorticity maxima were absent (W2, W3) or very weak (W1).

4 Results and discussion

4.1 Structure of the PC-scheme precipitation field

The stochastic nature of the PC-scheme is reflected in the
spatial distribution of precipitation that the scheme produces.
Figure 3. shows snapshots of the precipitation rate that illus-
trate the differences between the Tiedtke (a), Plant-Craig (b),
and Kain-Fritsch (c) convective schemes. Additionally, al-
though validation of the stochastic Plant-Craig scheme with
regard to observations is not part of this study, a radar-derived
estimate of the precipitation rate is provided for reference (d).

The spottiness of the PC-scheme reflects its tendency to-
wards creating convective clouds within certain grid cells,
while neighboring grid cells may not contain any convective
clouds. For the grid cell size used here, there is a significant
chance that the random process will produce no convection

in a cell in which forcing is present. In contrast, the Tiedtke
scheme (Fig. 3a) appears to have a much smoother precipi-
tation field, with weaker maxima, which is probably in part
the result of the scheme compensating the forcing directly
and immediately. The Kain-Fritsch scheme is also somewhat
smoother than the PC-scheme, but the maximum rain rates
are as intense. This combination results in a positive bias of
the precipitation rate of the scheme. It is unclear what causes
this behavior in this particular snapshot, and is not typical of
all forecast hours (not shown).

4.2 Differences among stochastic realizations

Now we turn to differences between various runs of the PC-
scheme, which we will refer to asstochastic realizations. An
example given in Fig. 4 displays the accumulated 48 h pre-
cipitation of four simulations of the W1 case. Panels (a), (b),
and (c) were run with initial and boundary conditions of a
particular EPS member (number 1), while Panel (d) used a
different EPS member (number 2). Among the simulations
driven by the same EPS member 1, the rainfall distribu-
tion differs, for example within the area marked by square
“1”. The difference manifests itself primarily on very small
scales, i.e. scales much smaller than the square (which has
a size of 150 km by 150 km), and is a direct consequence of
the stochastic nature of the PC-scheme. Each of the simula-
tions (a), (b) and (c), however, contain comparable amounts
of accumulated precipitation when averaged over the entire
square. This can be explained by the fact that the simula-
tions are merely different realizations of a convective ensem-
ble with similar macroscopic properties, including the CAPE
field. The distribution of precipitation produced by simula-
tion (d) within the square, however, is a realization of a dif-
ferent convective ensemble. In this particular example, the
forcing for convection, as conveyed by the ensemble mean
mass flux< M >, was much smaller in simulation (d) than
in (a), (b) and (c), resulting in much less precipitation.

In contrast to the accumulations within square “1”, some
evidence can be found that simulations driven by the same
initial and boundary conditions can occasionally develop
variability on scales of the size of a convective ensemble
(35 km by 35 km) or larger. Within the squares labelled “2”
in Fig. 4, one can see that simulations (a), (b), and (c) not
only differ on scales much smaller than the square: square
“2” in simulation (a) contains more precipitation (average:
12.2 mm) than in simulations (b) and (c) (7.8 and 10.4 mm,
respectively). Closer inspection reveals that this was the re-
sult of an area of non-convective precipitation being larger
and more intense. This area of precipitation has a spatial
extent smaller than the square, but much larger than the
35×35 km area supposed to constitute a convective ensem-
ble. This indicates that the stochastic parametrization has had
an upscale influence through interaction with the grid-scale
cloud scheme
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Fig. 4. 48-h accumulated rainfall of four realizations of the PC-scheme across part of the domain centered on the western Alps. Panels(a),
(b) and(c) are simulations run with intial and boundary conditions provided by the same EPS ensemble member (1), panel(d) is a simulation
driven by another member (2). Squares 1 and 2 denote regions discussed in the text.

4.3 Relative impact of the stochastic perturbations

A primary objective of the current study is to compare the
variability produced by the initial and boundary conditions
with that produced by the stochastic convective parametriza-
tion. In order to do this, the variance among all members is
calculated for a given quantity, and compared with the aver-
age variance among members driven by the same EPS mem-
ber. The latter represents the variability owing to the stochas-
tic scheme, whereas the total variance represents variability
introduced by all sources. Formally this can be written down
as follows.

For a domain withN gridpoints, we definerij (x,y) to de-
note the value ofr (for example, the hourly rainfall accumu-
lation) at a grid point (x, y) of stochastic realizationi driven
by EPS memberj , wherei andj each range from 1 to 10.
Then the meanr averaged over all 10 stochastic realizations
of driving memberj is given by

rj (x,y) =
1

10

10∑
i=1

rij (x,y) ,

and the meanr averaged over all simulations by

r (x,y) =
1

100

10∑
j=1

10∑
i=1

rij (x,y) .

The sample variance over all stochastic realizations of driv-
ing memberj is then

s2
j =

1

10N

10∑
i=1

∑
x,y

(
rij (x,y) − r̄j (x,y)

)2
.

The variance due to the stochastic scheme, which we will call
internal variance, can be expressed as

s2
int =

1

10

10∑
j=1

s2
j =

1

100N

10∑
i=1

10∑
j=1

∑
x,y

(
rij (x,y) − r̄j (x,y)

)2
and the total variance as

s2
tot =

1

100N

10∑
i=1

10∑
j=1

∑
x,y

(
rij (x,y) − rj (x,y)

)2
.

Figure 5 shows an example of the total and internal vari-
ances, takingr to be 1-hourly rainfall accumulations, for
one case (W1), with values shown for times at six hour in-
tervals throughout the forecast. For this weakly forced case,
the internal variability associated with the stochastic convec-
tion scheme accounts for the major part of the variance at all
times. One-hour accumulated precipitation (convective and
total) is also plotted in Fig. 5, and shows a clear diurnal
cycle. The forecast hours 6, 24, 30, and 48, at which vari-
ability is greatest, correspond to times at which diurnally-
driven convection is most intense, i.e. 18:00, 12:00, 18:00
and 12:00 UTC, respectively (12:00 UTC is just after local
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Fig. 5. Variance of 1-hourly precipitation accumulations among members driven by the same initial and boundary conditions (s2
int, internal

variance; dark grey bars), and the variance among all simulations (s2
tot, total variance; complete bars), and the spatially averaged 1-hourly

accumulated convective (dotted line) and total (continuous line) precipitation at 8 different forecast times for case W1. The accumulations
are over the hour preceding the respective forecast time.

Fig. 6.As for Fig. 5 but after smoothing the precipitation field (see Text).

noon and 18:00 UTC is in the early evening). These times
also show the greatest total and internal variance in the
precipitation. The fraction of the total variance accounted
for by the internal variance remains approximately uniform
throughout the diurnal cycle, 0.74 on average.

The spotty nature of the precipitation fields produced by
the PC-scheme (Fig. 3) suggests that much of the internal
variance occurs on spatial scales close to the model grid
length. This is confirmed in Fig. 6, which shows the total and
internal variances computed from precipitation fields that
have been filtered using the same 25-point (35 km×35 km)
smoothing kernel that was used to calculate the convective
forcing within the PC-scheme. The total variance in the en-
semble of smoothed fields is about an order of magnitude
less than that of the unsmoothed fields (Fig. 5). It is signifi-
cant however that even after smoothing, the internal variance
is still about half as large as the total variance, showing that

the PC-scheme is still a major source of ensemble spread,
even on scales substantially larger than those directly forced
by the stochastic variability. It is also apparent in Fig. 6 that
the total and internal variances follow the diurnal cycle in
precipitation, as was the case for the unsmoothed fields.

A relationship between the variance introduced by the
stochastic convection and the amount of convective precip-
itation is expected from the design of the PC08-scheme. The
equilibrium distribution function for convective mass flux
corresponds to a marked Poisson process (Craig and Cohen,
2006), and has the property that the variance is proportional
to the mean convective mass flux〈M〉, i.e.

〈
(M − 〈M〉)2〉

=

2〈M〉 〈m〉 (Cohen, 2001). If we assume that precipitationr in
a grid box is proportional to the convective mass fluxM, then
a similar proportionality will hold betweenr and its mean. To
verify this, Fig. 7 shows the internal variabilitys2

int, plotted
as a function of 1-hourly convective precipitation at six hour
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Fig. 7. The mean internal sample variance of the precipitation ac-
cumulations2

int as a function of the mean convective precipitation
accumulationRconv, over the hour preceding the 6, 12, 18, 24, 30,
36, 42 and 48 h forecast times for all cases listed in Table 1.

Fig. 8.Total s2
tot (open triangles), and internals2

int (closed triangles)
sample variance of the smoothed precipitation accumulations over
the hour preceding the 6, 12, 18, 24, 30, 36, 42, and 48 h forecast
time, as a function of the ensemble average accumulated precipita-
tion over the 48 h forecast periodR.

intervals for all 7 cases. The relationship is indeed approxi-
mately linear, although with some scatter, which may reflect
a different proportionality between mass flux and precipita-
tion in different weather regimes.

The relationships between the total precipitation and total
and internal variances are explored in Fig. 8. For clarity, the
variances computed at 6-hourly intervals are averaged over
the two day period of each forecast and plotted against the
48 h accumulated convective precipitation. For all case stud-
ies the internal variance (closed triangles) is roughly pro-
portional to the amount of convective precipitation. The to-
tal variance however shows no such relationship. Instead it
would appear that the ratio of internal to total variance de-
pends upon the meteorological environment (Fig. 9). The
cases that were subjectively categorized as weakly forced
(W1, W2, W3) have ratios of internal to total variance of

Fig. 9. Ratio of internal (s2
int) to total (s2

tot) sample variance of the
smoothed precipitation accumulations over the hour preceding the
6, 12, 18, 24, 30, 36, 42, and 48 h forecast time as a function of the
ensemble average accumulated precipitation over the 48 h forecast
periodR.

about 0.5 (0.39, 0.42 and 0.55 respectively) after smoothing.
Those that had moderate forcing (M1, M2, M3) have ratios
much lower than that (0.24, 0.26, and 0.31 respectively). The
strongly-forced winter storm case (S1) has a ratio of 0.02.
These results indicate that the stochastic scheme has a rela-
tively high impact when external forcing is weak, less impact
when convection is more strongly constrained by the large-
scale flow, and negligible impact for the winter storm case
where precipitation was mainly non-convective. This result
is in agreement with that of Stensrud et al. (2000), who, in
a comparison of model physics ensembles with initial con-
dition ensembles, found that model physics ensembles were
more skillful when large scale forcing of upward motion is
weak, and initial condition ensembles more skillful when
large scale forcing of upward motion is strong. It was found
that the influence of the stochastic scheme on two other vari-
ables, the 500 hPa geopotential height and the 850 hPa tem-
perature, was much smaller than that on precipitation. The
percentage of variance attributable to the stochastic scheme
ranges from 0.042 % (case S1) to 1.6 % (case W2) after 48 h
of simulation. The temperature at 850 hPa is somewhat more
sensitive to the stochastic scheme, with the percentage rang-
ing from 0.59 % (case S1) to 10.5 % (case W2).

5 Conclusions

The impact of a stochastic convective parametrization has
been investigated by running a large 100 member ensemble
consisting of 10 stochastic realizations of a simulation initi-
ated with 10 members from the ECMWF EPS, for seven in-
dividual weather situations that differ in the amount of forc-
ing and convective activity. Based on an evaluation of the
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precipitation fields produced by the simulations, we can an-
swer the questions posed in the introduction.

First, regarding the relative impact of the stochastic
scheme we can conclude that it is, compared with the effects
of varying initial and boundary conditions, relatively strong
when considering hourly precipitation accumulations at the
model grid scale. The fraction of sample variance attributable
to the stochastic scheme varies between 1.7 % (case S1) and
76.3 % (case W2) of the total variance depending on the
weather pattern. The variability introduced by the stochas-
tic scheme appears to be approximately proportional to the
total amount of convective precipitation.

Second, concerning the impacts of the stochastic scheme
on the resolved flow, we find that smoothing the precipita-
tion reduces the variability considerably, but a large impact
due to the stochastic scheme remains in all of the simulated
weather patterns (viz. dark grey bars in Fig. 6), except for the
winter storm (S1). This implies that at least some of the con-
vective variability still has an effect on larger scales. Visual
inspection of selected precipitation fields (e.g. Fig. 3) shows
indications of such upscale error growth, but these signals
are very subtle. We assume that, given a long enough simu-
lation, such errors will grow further upscale. To investigate
this, a global simulation is needed rather than a regional one
as in the present study.

Last, regarding the dependency of the importance of
stochastic perturbations on the weather type, we conclude
that in weather patterns that are weakly-(strongly-)forced
the relative impact of the stochastic scheme is high (low).
This can be explained by the fact that the total variance in
weakly-forced weather patterns tended to be smaller than in
the strongly-forced patterns, while the variance contributed
by the stochastic scheme is proportional to the amount of
convective rainfall. The relative importance of the stochastic
scheme, is thus larger in the weakly-forced cases.

The results of this first study show that a physically-based
stochastic parametrization of convective variability can pro-
vide a significant source of variance for ensemble forecast-
ing of convective precipitation. In ensemble systems that em-
ploy cycling (e.g. ensemble transform or ensemble Kalman
filter), the impact of the stochastic parametrization may be
even greater since the initial ensemble will be influenced by
stochastic perturbations from earlier times (Reynolds et al.
2008). An important next step is to verify that the increased
variance resulting from the stochastic convection scheme
leads to better probabilistic forecasts when compared to ob-
servations (this work is in progress).

Finally, the dependence of the convective variability on
weather regime hints at a potential for developing flow-
dependent algorithms to generate forecast products, or adap-
tive ensemble design where computational resources are
more optimally assigned to capture the forecast uncertainty
inherent in the particular weather situation. A simple method
might involve selecting combinations of initial condition and
stochastic perturbations to maximise spread in an ensem-

ble of limited size, although more sophisticated measures
of forecast uncertainty could also be used. For example, our
results suggest that in weakly-forced weather patterns with
widespread convection, it would be wise to make sure many
stochastic realizations are available. Conversely, in strongly-
forced weather patterns with little convection, the use of the
stochastic scheme should not be given top priority. An impor-
tant pre-requisite for such developments is be identification
of an appropriate quantitative measure of large-scale forcing,
such as the quasi-geostrophic omega equation diagnostic of
Deveson et al. (2002).
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