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Abstract. A strong Saharan dust event that occurred over the
city of Athens, Greece (37.9◦ N, 23.6◦ E) between 27 March
and 3 April 2009 was followed by a synergy of three instru-
ments: a 6-wavelength Raman lidar, a CIMEL sun-sky ra-
diometer and the MODIS sensor. The BSC-DREAM model
was used to forecast the dust event and to simulate the verti-
cal profiles of the aerosol concentration. Due to mixture of
dust particles with low clouds during most of the reported pe-
riod, the dust event could be followed by the lidar only during
the cloud-free day of 2 April 2009. The lidar data obtained
were used to retrieve the vertical profile of the optical (extinc-
tion and backscatter coefficients) properties of aerosols in the
troposphere. The aerosol optical depth (AOD) values derived
from the CIMEL ranged from 0.33–0.91 (355 nm) to 0.18–
0.60 (532 nm), while the lidar ratio (LR) values retrieved
from the Raman lidar ranged within 75–100 sr (355 nm) and
45–75 sr (532 nm). Inside a selected dust layer region, be-
tween 1.8 and 3.5 km height, mean LR values were 83± 7
and 54± 7 sr, at 355 and 532 nm, respectively, while the
Ångstr̈om-backscatter-related (ABR355/532) and Ångstr̈om-
extinction-related (AER355/532) were found larger than 1
(1.17± 0.08 and 1.11± 0.02, respectively), indicating mix-
ing of dust with other particles. Additionally, a retrieval tech-

nique representing dust as a mixture of spheres and spheroids
was used to derive the mean aerosol microphysical proper-
ties (mean and effective radius, number, surface and volume
density, and mean refractive index) inside the selected atmo-
spheric layers. Thus, the mean value of the retrieved refrac-
tive index was found to be 1.49(± 0.10) + 0.007(± 0.007)i,
and that of the effective radiuses was 0.30± 0.18 µm. The
final data set of the aerosol optical and microphysical prop-
erties along with the water vapor profiles obtained by Ra-
man lidar were incorporated into the ISORROPIA II model
to provide a possible aerosol composition consistent with the
retrieved refractive index values. Thus, the inferred chemical
properties showed 12–40 % of dust content, sulfate compo-
sition of 16–60 %, and organic carbon content of 15–64 %,
indicating a possible mixing of dust with haze and smoke.
PM10 concentrations levels, PM10 composition results and
SEM-EDX (Scanning Electron Microscope-Energy Disper-
sive X-ray) analysis results on sizes and mineralogy of par-
ticles from samples during the Saharan dust transport event
were used to evaluate the retrieval.
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1 Introduction

Atmospheric aerosols have a large impact on the planetary
radiation budget, and are thought to exert a net cooling ef-
fect on climate (Andreae, 1995; Ramanathan et al., 2001;
Heinold et al., 2007; Levin and Cotton, 2009; Ramanathan
and Feng, 2009; Lohmann et al., 2010). The cooling effect
associated with anthropogenic aerosol is thought to partially
mitigate greenhouse gas warming, but estimates of the radia-
tive forcing pattern still remain complex and highly uncer-
tain, owing to the large spatio-temporal variability of aerosol
dust and their complex interaction with atmospheric con-
stituents, radiation and clouds (Satheesh et al., 2005; Forster
et al., 2007; Min et al., 2009). As mineral dust accounts for
about 75 % of the global aerosol mass load and 25 % of the
global aerosol optical depth (Kinne et al., 2006) and is a key
player in Earth’s climate (Mahowald et al., 2006; Balkanski
et al., 2007, Bierwirth et al., 2009; Otto et al., 2009; Müller
et al., 2011) affecting precipitation (Yoshioka et al., 2007),
it is very important to quantify its effects on Earth’s radia-
tive forcing, both in the short-wave (0.3–4 µm) and long-
wave (4–50 µm) spectral regions (Sokolik and Toon, 1999;
Sokolik et al., 2001). For the assessment of the radiative
effects of dust, it is imperative to obtain accurate data on
the vertical profiling of its optical and microphysical prop-
erties, as well as its chemical composition around the globe.
Although specific dust experiments (e.g. SAMUM 1 and 2)
(Ansmann et al., 2011 and references their in) focused also
on the estimation of the radiative effects of dust, their results
had a rather regional (Saharan region) and a limited tempo-
ral coverage; therefore, systematic vertical profiles of aerosol
optical-microphysical and chemical data around the globe
are still missing, and open questions about the aerosol role
on climate yet exist.

The gap concerning the vertical profiling of the aerosol
properties can be filled by synergy of systematic lidar
(ground-based, airborne and space-borne measurements to
derive the optical-microphysical properties) and of in situ
measurements (to derive the optical-microphysical-chemical
properties) (e.g. Kandler et al., 2009; Weinzierl et al., 2009;
Lieke et al., 2011), which are able to provide much of the in-
formation required to constrain models and reduce uncertain-
ties associated with radiative forcing estimate. Although the
in situ airborne measurements are information-rich, they re-
main extremely expensive and limited in both time and space.

To fulfill the gap of the vertical profiling of the aerosol
optical-microphysical properties over the globe, two ma-
jor aerosol monitoring schemes currently exist: (a) ground-
based lidar networks: the European Aerosol Research Lidar
Network (EARLINET; http://www.earlinet.org), the Asian
Dust Network, (AD-Net; www-lidar.nies.go.jp/AsiaNet) and
the Micropulse Lidar Network (MPL-Net;http://mplnet.
gsfc.nasa.gov), which are members of the Global Atmo-
sphere Watch (GAW), Aerosol Lidar Observation Network
(GALION) promoted by the World Meteorological Organi-

zation (WMO), and (b) space-borne active remote sensing
sensors (e.g. LITE and CALIOP lidars) (Berthier et al., 2006;
Winker et al., 2007, 2010; Mamouri et al., 2009; Mona et al.,
2009; Pappalardo et al., 2010; Liu et al., 2011). Ground-
based sun-sky radiometer networks, such as the Aerosol
Robotic Network (AERONET) that measures sun and sky
radiances in 16 spectral channels (340–1640 nm) (Holben et
al., 1998; Eck et al., 2005) in combination with several pas-
sive space-borne sensors (e.g. MODIS, OMI, MERIS, MISR,
etc.), can provide information about the total column dust
optical-microphysical properties over the globe (e.g. Santese
et al., 2008; Amiridis et al., 2009a,b; Carboni et al., 2012;
Kim et al., 2012; Redemann et al., 2012; Ridley et al., 2012).

The potential of the lidar technique to provide the verti-
cal profiles of the aerosol optical-microphysical properties
over the globe, with emphasis on pure desert dust or mixed
dust, has been proven by the measurements performed by the
above-mentioned lidar networks or by specific experimental
campaigns like: Asian Pacific Regional Aerosol Character-
ization Experiment (ACE-ASIA), African Monsoon Multi-
disciplinary Analysis (AMMA), Dust and Biomass-burning
Experiment (DABEX), Dust Outflow and Deposition to
the Ocean (DODO), Indian Ocean Experiment (INDOEX),
NASA AMMA (NAMMA), Puerto Rico Dust Experiment
(PRIDE), Saharan Mineral Dust Experiment (SAMUM 1 and
2), Saharan Dust Experiment (SHADE), Unified Aerosol Ex-
periment (UAE2), etc. (M̈uller et al., 1999, 2003, 2005,
2009, 2010; Ramanathan et al., 2001; Ansmann et al., 2003;
Blanco et al., 2003; Feingold and Morley, 2003; Léon et al.,
2003; Reid et al., 2003; Sugimoto et al., 2003; Balis et al.,
2004; Kim et al., 2004; Haywood et al., 2005; Pahlow et al.,
2006; Cuesta et al., 2008; Hansell et al., 2008; Heese and
Wiegner, 2008; Mattis et al., 2008; Papayannis et al., 2008;
Tesche et al., 2009a,b; Pappalardo et al., 2010; Ansmann et
al., 2011; Chen et al., 2011; T. M̈uller et al., 2011; Sicard et
al., 2011; Tesche et al., 2011a,b).

Our study aims to fulfill the existing gap on the vertical
profiling of the aerosol dust properties, focusing on the re-
trieval of the vertical profiling of the optical, microphysi-
cal and composition of aged dust aerosol particles associ-
ated with a strong saharan dust event, as they interact with
anthropogenic particles in the lower free troposphere over
an urban site (Athens, Greece). In the following sections
we first present the dust forecasting model, instrumentation
and methodology used for retrieving the aerosol properties
(Sect. 2). An analysis of the dust event then follows with an
emphasis on the days with optimal lidar retrievals (Sect. 3).
We provide final remarks and a summary of the work carried
on this paper in Sect. 4.
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2 Methodology

2.1 The NTUA 6-wavelength Raman lidar system

The National Technical University of Athens (NTUA) lidar
system is located on Campus in the city of Athens (37.97◦ N,
23.79◦ E, 200 m a.s.l.), and has been continuously operating
since the initiation of the EARLINET project (B̈osenberg
et al., 2003) in February 2000. The compact 6-wavelength
NTUA Raman lidar system (Mamouri et al., 2008) is based
on a pulsed Nd:YAG laser emitting simultaneously at 355,
532 and 1064 nm. The lidar signals are detected at six
wavelengths 355, 387, 407, 532, 607 and 1064 nm. The
system has been quality-assured by performing direct inter-
comparisons, both at hardware (Matthias et al., 2004) and
software levels (B̈ockmann et al., 2004; Pappalardo et al.,
2004).

To obtain reliable and quantitative lidar aerosol retrievals,
several techniques and methods have to be combined. The
standard backscatter lidar technique is appropriate to retrieve
aerosol parameters mostly for small aerosol optical depths
(AOD<0.2–0.3 in the visible), assuming a reference height
in an aerosol-free area (e.g. the upper troposphere). Under
such conditions, the Klett inversion technique (Klett, 1985) is
used to retrieve the vertical profile of the aerosol backscatter
coefficient (baer) at the respective wavelengths, during day-
time. The resulting average uncertainty on the retrieval of
baer (including both statistical and systematic errors corre-
sponding to a 30–60 min averaging time) in the troposphere
is of the order of 20–30 % (B̈osenberg et al., 1997). To
overcome this large uncertainty, the Raman N2 lidar tech-
nique was adopted using the methodology of Ansmann et
al. (1992). Since the Raman lidar signals are quite weak, the
Raman technique is mostly used during nighttime, when the
atmospheric background is low.

In the case of the Raman technique, the measurement of
the elastic backscatter signals at 355 and 532 nm, as well
as that of the N2 inelastic-backscatter signals at 387 and
607 nm, respectively, permits the determination of the ex-
tinction (aaer) and baer coefficients independently of each
other (Ansmann et al., 1992) and thus, of the extinction-to-
backscatter ratio, the so-called lidar ratio (LR=aaer/baer) at
both wavelengths (355 and 532 nm). The LR values depend
on the chemical composition of aerosols (absorption charac-
teristics), the size distribution and shape characteristics (Ans-
mann et al., 2003), while the other lidar-derived parameters,
at wavelengthsλ1 and λ2 (in nm), such as the̊Angstr̈om

backscatter-related (ABRλ1/λ2 =
ln[baer(λ1)/baer(λ2)]

ln[λ1/λ2]
) and the

Ångstr̈om extinction-related (AERλ1/λ2 =
ln[aaer(λ1)/aaer(λ2)]

ln[λ1/λ2]
)

exponent (Ansmann et al., 2002), depend on the particle size,
shape and the wavelength dependence of the absorption co-
efficient, respectively (Ansmann et al., 2003). The relative
errors ofbaer andaaer, of LR, of ABR and AER are mainly
due to the presence of noise on the received lidar signal. Ad-

ditionally, the lidar backscatter profile must be calibrated at
a reference height region with negligible aerosol scattering
(i.e., with only Rayleigh scattering). This uncertainty in the
calibration region in the upper aerosol-free troposphere (at
355–532–1064 nm) may lead to further errors. Finally, by
assuming all errors are random, uncorrelated and assigning
reasonable uncertainties at the input parameters mentioned
above and the lidar overlap function, the remaining system-
atic uncertainties are of the order of 10–20 % onbaer, and
10–15 % onaaer (Ansmann et al., 1992; Mattis et al., 2002).
Therefore, the corresponding uncertainty on LR is of the or-
der of 14–25 %, while on ABR and AER is if the order of
20–35 % and 20–30 %, respectively. To reduce the relative
errors on the vertical profile ofbaer(to about 15-20 %) re-
trieved before the local sunset time (∼19:00 UT) when the
Klett technique is used, we applied the LR values retrieved
by the Raman technique (Ansmann et al., 1992) from the
nighttime period of the same day as the Saharan dust event
occurred (2 April 2009).

2.2 The CIMEL sun-sky radiometer

The sun photometric observations reported in this paper were
performed by a CIMEL sun-sky radiometer, which is part
of AERONET (http://aeronet.gsfc.nasa.gov) (Holben et al.,
1998). The instrument is located on the roof of the Research
Center for Atmospheric Physics and Climatology of the
Academy of Athens (37.99◦ N, 23.78◦ E, elevation: 130 m).
The site is located in the city center and 10 km from the sea.
This sunphotometric station is operated by the Institute for
Space Applications and Remote Sensing (ISARS) of the Na-
tional Observatory of Athens (NOA). The CIMEL data used
in this study will provide information about the columnar
AOD, aerosol size distribution, aerosol microphysical prop-
erties, and̊Angstr̈om exponent (α). The inverted aerosol size
distributions refer to aerosol radius ranging from 0.01 µm to
15 µm. The expected accuracy for the AERONET inversions
is of the order of 15–25 % for radius greater than 0.5 µm and
25–100 % for radius less than 0.5 µm. The AERONET data
products description and accuracy along with the technical
specifications of the CIMEL instrument are given in detail in
Holben et al. (1998, 2006) and Smirnov et al. (2000).

2.3 The MODIS instrument

The Moderate Resolution Imaging Spectroradiometer
(MODIS) was launched in December 1999 on the polar
orbiting Terra spacecraft and since February 2000 has been
acquiring daily global data in 36 spectral bands from the
visible to the thermal infrared (29 spectral bands with
1 km, 5 spectral bands with 500 m, and 2 spectral bands
with 250 m nadir pixel dimensions). The MODIS aerosol
products are only created for cloud-free regions. The
columnar AOD values are retrieved by MODIS at 550 nm
(http://modis-atmos.gsfc.nasa.gov/products.html) for both
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oceans (best) and land (corrected) (Tanré et al., 1997;
Kaufman and Tanré, 1998; Levy et al., 2007; Russel et al.,
2007; Remer et al., 2008; Redemann et al., 2012). The main
sources of uncertainty in the retrieval of the AOD in this
case are from instrument calibration errors, cloud-masking
errors, incorrect assumptions on surface reflectance and
aerosol-size distribution, selection (Remer et al., 2005;
Levy et al., 2010). The pre-launch conditions suggested
that 1 standard deviation of retrievals would fall within
± (0.03 + 0.05 AOD) over ocean and± (0.05 + 0.15 AOD)
over land. These error bounds, derived pre-launch, are
referred to as the expected error (EE) (Remer et al., 2005;
Levy et al., 2010; Kleidman et al., 2012).

To minimize the uncertainties on the MODIS AOD prod-
uct several validation studies have been performed during
pre-launch and post-launch procedures, regarding the AOD
measurements using ground-based instrumentation (Chu et
al., 2003; Remer et al., 2005; Misra et al., 2008; Papadimas
et al., 2009; Prasad and Singh, 2009). More recently, Levy
et al. (2010) performed a global evaluation of the MODIS
Collection 5 (C005) dark-target aerosol products over land,
showing that more than 66 % (one standard deviation) of
MODIS-retrieved AOD values compared to AERONET ob-
served values within an expected error (EE) envelope of
±(0.05 + 15 %), with high correlation (R = 0.9). According
to the same authors, Terra’s global AOD bias changes with
time, underestimating by∼0.005, after the year 2004. How-
ever, although validated globally, MODIS-retrieved AOD
does not fall within the EE envelope in all regions of the
planet (Levy et al., 2010).

In this study we used MODIS C005 data, which were re-
cently evaluated and validated for the Greater Mediterranean
Basin (29.5◦ N–46.5◦ N and 10.5◦ W–38.5◦ E) against 29
AERONET stations, as described by Papadimas et al. (2009).
The same study found that when comparing C005 to C004
data, the correlation coefficient increases from 0.66 to 0.76,
and the slope of the linear regression fit from 0.79 to 0.85
whereas the offset decreased from 0.12 to 0.04, and the scat-
ter of compared data pairs from 0.15 to 0.12. On the other
hand, they found a significant decrease of AOD values over
land (by 25.8 %) for AODs> 0.2. However, the MODIS
C005 data still overestimate/underestimate the AERONET
AOD values smaller/larger than 0.25, but to a much smaller
extent than C004 data. More precisely, collocated MODIS
retrievals with data from our AERONET station are evalu-
ated, and the good comparison revealed justifies the MODIS
retrieval for the day under study. For that day, the scattering
angle of the MODIS observation used for comparison with
AERONET was 133.26◦ and the aerosol type retrieved over
land was equal to 2.

2.4 The BSC-DREAM dust model

The Barcelona Supercomputing Center – Dust Regional At-
mospheric Model (BSC-DREAM) (Nickovic et al., 2001)
has been delivering operational dust forecasts over the
North Africa-Mediterranean-Middle East and over Asia in
the last years (currently atwww.bsc.es/projects/earthscience/
DREAM/). The model simulates the 3-dimensional field of
the dust concentration in the troposphere. The dust model
takes into account all major processes of dust life cycle,
such as dust production, horizontal and vertical diffusion,
advection wet and dry deposition, while the chemical ag-
ing and aerosol-cloud interactions are not taken into account.
The model also includes the effects of the particle size distri-
bution on aerosol dispersion. The model numerically solves
the Euler-type mass partial differential equation by integrat-
ing it spatially and temporally. The dust production is param-
eterized using near surface turbulence and stability as well
as soil features. The dust production mechanism is based
on viscous turbulent mixing close to the surface and on soil
moisture content.

In BSC-DREAM, for each soil texture type, fractions of
clay, small silt, large silt and sand are estimated with typ-
ical particle size radii of 0.73, 6.1, 18 and 38 µm, respec-
tively. For the present study, BSC-DREAM simulation is ini-
tialized with 24-hourly (at 12:00 UTC) updated NCEP (Na-
tional Centers for Environmental Prediction) 0.5◦

×0.5◦ anal-
ysis data and the initial state of the dust concentration in
the model is defined by the 24-h forecast from the previous-
day model run (because there are not yet satisfactory three-
dimensional dust concentration observations to be assimi-
lated). The resolution is set to 0.33◦

× 0.33◦ (∼50 km) in the
horizontal, while in the vertical the model domain extends up
to 15 km height within 24 layers. For long-range dust trans-
port studies, only the first two classes (0.73 and 6.1 µm) are
relevant for the analysis particles since their lifetime is larger
than about 12 h.

2.5 Derivation of the aerosol microphysical and
chemical properties using models

The measured vertical profiles of the aerosol backscatter
and extinction coefficients at multiple wavelengths can be
inverted to derive particle microphysical parameter profiles
(Müller et al., 1999; Veselovskii et al., 2002, 2009; Oster-
loch et al., 2011). However, this kind of inversion is an ill-
posed problem requiring regularization (Engl et al., 2000),
therefore, “unique” (unambiguous) solutions will never be
available. Furthermore, an application of this technique to
dust needs to account for the particles non sphericity, given
that backscattering by irregularly shaped particles is weaker
than by equivalent-volume spheres (Mishchenko and Hove-
nier, 1995). To address this issue, Mishchenko et al. (1997)
suggested approximating the dust particles with a mixture
of polydisperse, randomly oriented spheroids, as they can
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mimic the aerosol optical properties. Dubovik et al. (2006)
have included the spheroid model in the AERONET retrieval
algorithm, while Merikallio et al. (2011) studied the ap-
plicability of spheroidal model particles for simulating the
single-scattering optical properties of mineral dust aerosols.
Veselovskii et al. (2010) introduced the spheroid model into
the lidar retrieval of dust particles physical properties, by as-
suming that aerosols are a mixture of spheres and randomly
oriented spheroids with a size-independent shape distribu-
tion. This assumption is applied to all particles. However,
we must keep in mind that for the fine mode the optical prop-
erties of spheres and spheroids are very close and important
differences occur only for the coarse mode. Besides, the out-
put result is not very sensitive to the exact type of shape
distribution (not shown), justifying the assumption of size-
independent shape proposed. Moreover, our numerical simu-
lations demonstrate that for 10 % uncertainty of input optical
data (backscatter and extinction coefficients) the dust particle
volume density and the effective radius can be estimated to
within 30 %.

The unknown shape of the aerosols remains an unresolved
issue, although progress has been recently made both in
the case of Saharan dust (Gasteiger et al., 2011a) and vol-
canic ash (Gasteiger et al., 2011b) by assuming mixtures
of absorbing and non-absorbing irregularly shaped mineral
dust particles and spheroids, respectively. For dust particles
in SAMUM-2, Gasteiger at al. (2011b) found that irregu-
larly shaped dust particles with typical refractive indices, in
general, have higher linear depolarization ratios than corre-
sponding spheroids, and improved the agreement with the
observations. However, these models remain too compli-
cated and time consuming for their implementation in in-
version algorithm, so in our study we are using a simplified
spheroidal model, which allows reasonable estimation of the
dust particle parameters.

In this paper the microphysical properties of the aerosols
in the lower free troposphere, inside the dust layer, were
retrieved using the regularization technique (Veselovskii et
al., 2002, 2004, 2010), which used as input the vertical
profiles of the aerosol extinctionaaer (at 355–532 nm) and
backscatter coefficientsbaer (at 355–532–1064 nm) retrieved
from the elastic (during daytime onlybaer was retrieved by
the elastic channels) and Raman (during night timebaer and
aaer were retrieved, independently) backscattered lidar sig-
nals (obtained at 5 different wavelengths: 355–387–532–
607–1064 nm). The inverted aerosol microphysical proper-
ties are the effective radius (reff), the total number (N), the
surface area (S) and volume (V ), as well as the real and
imaginary parts of the particle refractive index (mR andmi ,
respectively), within different layers in the lower troposphere
(1.8–3.5 km height asl.). In our approach we do not con-
sider the spectral dependence of the refractive index, or the
chemical composition of the aerosol particles. Thus, the re-
trieved values of the refractive index are the average ones
with respect to the size and spectral range considered (355–

1064 nm). Additionally, in our retrieval we considermR to
be in the range 1.33–1.65,mi in the range 0-0.02, and the
aerosol particles diameters in the range between 0.15-20 µm.
The uncertainty on themR andmi retrieval is of the order of
± 0.05 and± 50 %, respectively, according to Veselovskii
et al. (2010); the corresponding uncertainty of the retrieved
values of the effective radius, volume and surface density is
about±30 %. Finally, the uncertainty on the number density
estimation is about 50 % (Veselovskii et al., 2010).

We have of course to clarify here that the inverse prob-
lem (using lidar data to retrieve the aerosol micro-physical
properties) in our formulation is underdetermined: the set of
lidar measurements within a single atmospheric layer is ex-
tremely limited to 5 different profiles (3baer and 2aaer) and
this is not sufficient to uniquely describe the properties of the
aerosol. Therefore, we fit the observation and identify not
a unique solution but a family of solutions instead. Specifi-
cally, a series of solutions is generated using different initial
guesses, different aerosol assumptions and different settings
of a priori constraints. Each single solution is obtained using
the regularization technique. Then the individual solutions
corresponding to the smallest residuals are averaged and the
result of the averaging is taken as the best estimate of the
aerosol properties. This approach has demonstrated possibil-
ity to provide rather adequate retrieval of aerosol properties
(Veselovskii et al., 2009).

The inverted refractive index (which corresponds to in situ
conditions, i.e. includes aerosol water) along with the wa-
ter vapor profiles obtained by Raman lidar over Athens and
the temperature and relative humidity profiles obtained by
radiosonde, were incorporated in the thermodynamic model
ISORROPIA II (Fountoukis and Nenes, 2007) to determine
the aerosol composition. The model treats the thermody-
namics of aerosol containing K, Ca, Mg, NH3/NH4, Na,
SO4/HSO4, HNO3/NO3, HCl/Cl and H2O. ISORROPIA-II
can predict composition for the “stable” (or deliquescent
path) solution where salts precipitate once the aqueous phase
becomes saturated with respect to a salt, and a “metastable”
solution where the aerosol is composed only of an aqueous
phase regardless of its saturation state. ISORROPIA-II was
executed in “reverse” mode, where known quantities are T,
RH and the concentrations of aerosol K, Ca, Mg, NH4, Na,
SO4, NO3 and Cl. The output provided by ISORROPIA-II
is the aerosol phase state (solid only, solid/aqueous mixture
or aqueous only) and the speciation in the gas and aerosol
phases. The model has been evaluated with ambient data
from a wide range of environments (including “dust-rich”)
(Moya et al., 2001; Zhang et al., 2003; San Martini et al.,
2006; Nowak et al., 2006; Metzger et al., 2006; Fountoukis
et al., 2009), while its computational rigor and performance
makes it suitable for use in large scale air quality and chem-
ical transport models. Some examples of such 3-D models
that have implemented ISORROPIA-II are GISS, CMAQ,
PMCAMx, GEOS-Chem, and ECHAM/MESSy (Adams and
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Seinfeld, 2002; Yu et al., 2005; Pye et al., 2009; Karydis et
al., 2010; Pay et al., 2010; Pringle et al., 2010).

In order to use ISORROPIA in combination with the Ra-
man lidar data, an assumption concerning the aerosol com-
position has to be done, mainly due to the absence of air mass
sample within the under study layers. This is further corrob-
orated by the fact that the aerosol conditions in the Mediter-
ranean, and especially over Southern Greece are complex
(Lelieveld et al., 2002), due to the presence and mixing of
aerosols of various origins (marine, Saharan dust, biomass
burning events, long-range and/or local pollution) (Sciare et
al., 2003; Karageorgos and Rapsomanikis, 2007; Koulouri et
al., 2008; Sciare et al., 2008; Pikridas et al., 2010; Terzi et al.,
2010; Theodosi et al., 2011). Considering such complexity
in aerosol modeling is often important; the output however
may be subject to considerable uncertainty.

In our procedure, at first a typical composition of sulfate,
ammonium sulfate and mineral dust aerosols was consid-
ered. ISORROPIA was run forward for the computation of
complex refractive index for each aerosol composition, us-
ing as input the relative humidity and the temperature within
an aerosol layer. Finally, the aerosol composition (a mix-
ture of sulfate, ammonium and mineral dust) with the closest
refractive index (both real and imaginary part) value to the
one estimated by the inversion model is provided as the most
acceptable composition value.

2.6 In situ measurements of aerosol properties

In situ sampling of dust aerosols mixed with urban-like ones
was performed to infer the mass concentration and the com-
position of dust particles near ground. However, under
the generally complex aerosol conditions prevailing over S.
Greece, as previously mentioned, near surface particle mea-
surements cannot be directly compared to lofted aerosol lidar
data, although this could make sense under special conditions
(e.g. under very strong Saharan dust events, where the min-
eral constituents largely dominate the aerosol composition in
a homogenized lower troposphere). Our sampling site was
installed at the NTUA Campus at the top of a building at 14
m height from ground level (located 200 m a.m.s.l.) and in-
cluded: PM10 continuous concentration monitoring by TSI
Dustrak 8520 and TCR TECORA aerosol sampling. The
sampling procedure and the elemental composition determi-
nations are described in detail in Remoundaki et al. (2011).

Briefly, PM10 sampling for elemental composition deter-
mination and SEM-EDX (Scanning Electron Microscope-
Energy Dispersive X-ray) analysis was carried out using a
TCR TECORA (Sentinel PM) operating at 38.33 l min−1,
constructed and calibrated in order to comply with European
Standard EN12341 for standard sampling of PM10. The sam-
pling device operates with autonomy of 16 samples charged
in a charging cassette by programming the sampling span and
duration. Aerosol samples were collected on 0.45 µm nucle-
pore membranes. Twelve samples have been collected from

27 March to 2 April 2009. From 28 March to 2 April, two 3-h
samples per day were collected: one starting 06:00 UTC and
the second starting at 11:00 UTC in order to correspond to
urban activities maxima. This 3-h time span during the two
urban activities maxima (beginning and end of working day)
was also selected in order to avoid sampling interruption due
to filter clogging.

Sampling material and filter keeping petri-dishes were pre-
treated by soaking in dilute nitric acid solution and thorough
rinsing by ultra-pure water (18 M� cm−1) and dried under
the laminar flow hood of the laboratory. In order to deter-
mine PM10 concentrations, the nuclepore membranes were
weighted before and after sampling according to the proce-
dure described in Annex C of EN12341 (EN12341, 1999)
using a Mettler Toledo MS105 with a resolution of 10 µg in
the air conditioned weighing room of the laboratory. The
pre-weighted membranes were charged to the filter supports
and sampler cassette under the laminar flow hood. Filter
blanks and blank field samples were also prepared and anal-
ysed together with samples. The filters were also weighted
according to the same procedure as described before. The el-
emental composition determinations have been carried out by
using the EDXRF (Energy Dispersive X-Ray Fluorescence)
technique (SPECTRO XEPOS bench top XRF spectrome-
ter SPECTRO A.I. GmbH) with Pd end window X-ray tube.
NIST standard SRM 2783 has been used for spectrometer
calibration verification. The elements Si, Al, Fe, K, Ca, Mg,
S, Ni, Cu, Zn, Mn, and Ti, have been determined. SPECTRO
X-LAB PRO was used for values normalization and error
correction. The method detection limits were 100 ng cm−2

for Mg, 20 ng cm−2 for Al and K, 10 ng cm−2 for Ca, Ti, Fe,
5 ng cm−2 for Si, Mn, 2 ng cm−2 for Ni, 1 ng cm−2 for S, Cu
and Zn. The estimated precision of the method ranged be-
tween 0.1 % and 30 % for individual elements, for most of
them being<5 %.

3 Case study: 27 March–3 April 2009 dust episode

This case study concerns an intense Saharan dust outbreak,
which lasted for eight days (27 March to 3 April 2009) and
affected most of the Eastern Mediterranean and Balkans. The
ground and remote sensing instruments were operated con-
tinuously during this period (although the NTUA Raman li-
dar was operated during the end of the episode, when clouds
were dispersed and aerosol optical depths were low enough
to permit sampling by the laser beam. MODIS and CIMEL
instruments did not provide aerosol optical depth between 28
March and 1 April, due to extensive cloud cover.

Figure 1 presents the BSC-DREAM predictions of total
dust in size classes between 0.1 and 10 µm (in g m−2) over
the European continent at 12:00 UTC. Superimposed on the
same figure are the corresponding hourly forecasted wind
vectors at 3000 m height level. From this figure we see
that during the studied period Athens is influenced by high
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Fig. 1. Dust loading (in g m−2) over Europe in the period between 27 March and 3 April 2009, as estimated by the BSC-DREAM forecast
model (12:00 UTC). The wind field pattern is also shown for 3000 m height level.

values of dust loadings (up to 1.5 g m−2) from 29 March to
3 April. The maximum dust load was predicted to occur
over Athens on 28, 29 March and 2 April (Fig. 1). These
large amounts of dust particles originated from the Saha-
ran region and approached Greece after passing over the
Mediterranean Sea. Cluster analysis of back-trajectories for
air masses arriving in Athens suggests that they may often
experience interaction with maritime aerosol before reach-

ing the Greater Athens Area (GAA) as indicated by Markou
and Kassomenos (2010).

Figure 2 presents the air mass back-trajectories ending
over Athens at 1000, 2000 and 3500 m height levels at
15:00 UTC (left-side figure) and 19:00 UTC (right-side fig-
ure) on 2 April, as calculated by the HYSPLIT model
(Draxler et al., 2009). These trajectories show that the air
masses sampled over Athens had passed 3–7 days earlier
from central, western and eastern Sahara (sometimes within
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Fig. 2. Seven days air mass back trajectories ending over Athens
on 2 April 2009 (left-side: at 15:00 UTC, right-side: at 19:00 UTC)
based on the HYSPLIT model.

the Planetary Boundary Layer: PBL), so they were enriched
with dust particles. Subsequently, they traversed the cen-
tral Mediterranean region and moved anti-cyclonically over
Greece. More precisely, the air masses ending at 2000 m
height at 15:00 UTC were enriched with Saharan dust parti-
cles near the source passing at about 850 m a.s.l. (about 100–
120 h before their arrival in Greece), while those ending at
3500 m nearly touched the surface (some 70–80 h earlier);
thus, they should contain much higher dust loads (Fig. 2,
left). On the other hand, the air masses ending at 3500 m
at 19:00 UTC were enriched twice with dust particles passing
over the Sahara (about 150 and 30 h, before) (Fig. 2, right). In
both figures desert dust particles had the opportunity to mix
with marine aerosols and anthropogenic haze (from Italy and
the Balkans/Black Sea areas) accumulating over the Mediter-
ranean Sea, which is a common issue in that area (Lelieveld
et al., 2002).

Aerosol backscatter and Raman measurements at 355, 532
and 1064 nm were performed by the NTUA Raman lidar sys-
tem over Athens only under cloud-free conditions in the stud-

ied period. Thus, we will focus on aerosol profiles obtained
on 2 April. Figure 3 shows the time-height cross section
of the range-corrected backscatter lidar signal (in arbitrary
units: AU) obtained at 1064 nm from 13:42 to 20:49 UTC
from 300 up to 6000 m a.s.l., after the cloud dissipation.
According to the lidar measurements, the entire lower tro-
posphere shows a deep, pronounced and aerosol-rich layer
extending from ground up to 3500–4000 m height. More
specifically, two thin and distinct aerosol layers are shown.
The first layer was located around 2000 m, while the sec-
ond one was found between 3200–3700 m. Indeed, the BSC-
DREAM model indicates the transfer of Saharan dust parti-
cles over Athens (Fig. 1). These particles are mostly confined
between 2000 and 4000 m height (Fig. 4) and have very high
forecasted dust concentrations of the order of 400 µg m−3 at
3 km. These dust heights are also in full accordance with the
output of the HYSPLIT model indicating the arrival of dust-
rich air masses over Athens originating from the Saharan
desert, then passing over Algeria and Tunisia (Fig. 2). This
kind of aerosol structure indicates the presence of aerosols
of different origins, as similarly observed during the vari-
ous campaigns previously cited, such as SAMUM 1 and 2
(Weinzierl et al., 2009; Engelmann et al., 2011; Tesche et al.,
2011a), PRIDE, SHADE, DODO1 (McConnell et al., 2008)
and DABEX (Heese and Wiegner, 2008; Pelon et al., 2008).

Both aerosol layers detected by lidar slightly descended
to lower altitudes with time and became diluted during the
afternoon hours (from 13:42 UTC to 16:00 UTC), although
always present around 2000 m and 3200–3700 m. The PBL
height during daytime reached heights of about 1400 m
around 14:00 UTC, while during the afternoon hours it de-
scended down to 500 m a.s.l. around midnight, in full ac-
cordance with the closest radiosonde profile data (not shown
here). The highest values of the range-corrected backscatter
lidar signal within the PBL (shown by the red color in Fig. 3),
under stable relative humidity values, indicate the possibility
of dust presence also near ground, mixed with locally pro-
duced aerosols (e.g. by anthropogenic sources) (Balis et al.,
2006). This was confirmed by Remoundaki et al. (2011),
since the mass concentration of PM10 particles measured in
situ at 14 m a.g.l., from 27 March to 2 April, showed that dur-
ing this dust event when the aerosol rich air masses touched
the ground, the aerosol mass concentrations exceeded 140–
160 µg m−3, from 30 March to 1 April. During noon and
early afternoon hours of 2 April, PM10 concentrations at
ground reached 60–70 µg m−3, consistent with the lidar data
concerning the detection of the arrival of the dust layers over
Athens (Fig. 3). The BSC-DREAM model correctly sim-
ulated the existence of a dust layer centred around 3 km
(at 18:00 UTC) and extending up to 4000–4500 m height
(Fig. 4), although it did not correctly simulate the profile of
the aerosol mass concentration near ground (25 µg m−3 mea-
sured versus 10 µg m−3 simulated, while annual mean PM10
mass concentrations in Athens on 2009 were of the order of
26± 1µg m−3, YPEKA, 2010). This is because the BSC-
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Fig. 3. Time-height cross section of the range-corrected backscatter lidar signal (in arbitrary units: AU) at 1064 nm, as observed over Athens,
by the NTUA Raman lidar system on 2 April 2009 (13:42–20:49 UTC).

 
 

 
 

 
Fig. 4. Forecast of the vertical profile of the dust concentration
(in µg m−3) over Athens, Greece for 2 April 2009, at 18:00 UT us-
ing the BSC-DREAM model.

DREAM simulates only the dust-related aerosol profiles and
not those related to air pollution urban sources.

In Fig. 5 the corresponding vertical profiles of the aerosol
optical properties (aaer, baer, LR, ABR and AER), as well as
the water vapour mixing ratio (WVMR) are presented, along

with the respective error bars. The averaging time of the li-
dar signals for the retrieved vertical profiles is approximately
3 h and the vertical range resolution is of the order of 15 m.
We note here, that the lower height of our aerosol retrievals
is around 1500 m a.s.l., due to the overlap height of our li-
dar system, which is of the order of 1200–1500 m, depend-
ing on the wavelength used. Based on the aerosol extinc-
tion and backscatter profiles shown in Fig. 5, the presence
of particles (between 17:40–20:40 UTC) extends mainly up
to 3500 m, coinciding with decreased values (1.11± 0.02)
of the ABR532/1064 (red line in Fig. 5) between 1500 and
4000 m, indicating the presence of rather small particles
(0.1µm<diameter<1µm) (Müller et al., 2003; Ansmann et
al., 2002; Tesche et al., 2011b). The corresponding wa-
ter vapour vertical profile derived by the NTUA Raman li-
dar showed that its mixing ratio remained of the order of
4 g kg−1 inside the dust layer. Moreover, the relative hu-
midity (RH) profile obtained by radiosonde at a nearby loca-
tion (about 15000 m away) showed RH humidity values (79–
80 %) around the 3000 m height region, which could lead to
a probable mixing of the dust particles with humidity.

The mean LR values found over Athens inside the referred
aerosol layers in the height range between 1800 and 3500 m
height were 83± 7 sr (355 nm) and 54± 7 sr (532 nm); while
the ABR355/532 and AER355/532 values, were 1.17± 0.08
and 1.11± 0.02, respectively (Table 1). Indeed, the aerosol
optical properties presented in Fig. 5, support our view about
mixing of dust with other particles, since our measured LR,
ABR355/532 and AER355/532 values are higher than those for
pure dust which are close to 53± 7 sr (355 nm), 55± 7 sr
(532 nm), 0.2± 0.2, and 0.0± 0.2, respectively, according to
Tesche et al. (2009a) (see Table 1). Therefore, as our LRs
are higher than 53–55 sr and ABR355/532 and AER355/532
values are greater than 1, the particles probed should be a
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Fig. 5. Vertical profiles of the aerosol optical properties (extinction and backscatter coefficient, lidar ratio andÅngstr̈om backscatter- and
extinction-related exponent), as well as of the water vapor to dry air mixing ratio (g kg−1) (with error bars), as retrieved by the NTUA Raman
lidar over Athens on 2 April 2009 (17:40–20:40 UTC).

 
 
 
 

 
Fig. 6. Temporal evolution of the AOD at eight wavelengths over Athens for the period 27 March to 4 April 2009 according to CIMEL sun-
sky radiometer, MODIS at 550 nm (white squares) and BSC-DREAM model at 550 nm (upper panel). Temporal evolution of theÅngstr̈om
exponent (440/870 nm) for the same time period (lower panel).

mixture of dust (AER355/532 ∼0) and other particles, such as
continental haze and smoke (AER355/532 ∼1.4–2) (see refer-
ences in Table 1 and also Ansmann et al., 2001; Franke et al.,
2003; Müller et al., 2003, 2004, 2011; Amiridis et al., 2009b,
2012; Burton et al., 2012). This is further supported by the

MODIS hot spot fire product (http://modis.higp.hawaii.edu/
cgi-bin/modis/modisnew.cgi) indicating biomass burning ac-
tivity along the air mass trajectory path given in Fig. 2.
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Table 1. Raman lidar-derived mean aerosol optical properties (LR355, LR532, ABR355/532, AER355/532 ) obtained from different campaigns
or systematic measurements).

LR355(sr) LR532(sr) ABR355/532 AER355/532 Aerosol type Reference

83± 7 54± 7 1.17± 0.08 1.11± 0.02 Dust + haze + smoke This study
60± 10 50± 13 N/A N/A Haze + smoke Balis et al. (2003)
71± 8 79± 10 N/A 1.46± 0.30 Haze Noh et al. (2007)
58± 12 53± 11 1.4± 0.5 N/A Haze M̈uller et al. (2007)
75± 15 N/A N/A N/A Smoke Heese and Wiegner, 2008
45± 25 N/A 1.4± 0.5 N/A Dust + haze +

maritime
Papayannis et al. (2008)
(Thessaloniki station, only)

65± 16 N/A 1.7± 0.6 N/A Smoke Amiridis et al. (2009)
56± 7 63± 7 0.92± 0.59 N/A Smoke Noh et al. (2009)
56± 7 59± 10 0.87± 0.14 N/A Haze Noh et al. (2009)
75± 7 75± 7 0.7± 0.2 0.8± 0.3 Dust + smoke Ansmann et al. (2009)
53± 7 55± 7 0.2± 0.2 0.0± 0.2 Dust Tesche et al. (2009a)
69± 17 N/A 1.0± 0.7 N/A Smoke Giannakaki et al. (2010)
75± 9 69± 8 N/A 1.07± N/A Dust + smoke Gross et al. (2011)
67± 14 67± 12 0.71± 0.28 0.67± 0.38 Dust + smoke Tesche et al. (2011a)
74± 09 69± 10 0.63± 0.19 0.76± 0.31 Dust + smoke Tesche et al. (2011b)
87± 17 79± 17 0.90± 0.26 1.15± 0.28 Smoke Tesche et al. (2011b)

Figure 6 shows the temporal evolution of the CIMEL sun-
sky radiometer AOD at eight wavelengths and theÅnsgtr̈om
exponent (α) over Athens for the period 27 March to 3 April
2009. The value ofα is derived according to the̊Angstr̈om
power law, using the 440, 670 and 870 nm channels (e.g.
Eck et al., 1999; Holben et al., 2001). From the almucan-
tar sky radiance measurements (see alsohttp://aeronet.gsfc.
nasa.gov) at the four highest wavelengths an inversion algo-
rithm (AERONET version 2), as described by Dubovik et
al. (2002 and 2006), retrieves a large set of optical and mi-
crophysical aerosol parameters. In Fig. 6, the MODIS AODs
at 550 nm are additionally presented (white squares) along
with the BSC-DREAM dust AODs at 550 nm (upper panel).
CIMEL data between 29 March and 1 April are lacking ow-
ing to excessive cloud cover over the city of Athens.

Moreover, the MODIS data for the GAA (10 km× 10 km
over the station) on March 29 (not shown) showed that
the evolution of the event was well captured by the BSC-
DREAM model. The BSC-DREAM AODs data (Fig. 6)
showed the quick arrival of the desert plume over the Athens
station on 29 March and then on 2 April. The highest CIMEL
AOD was registered on 2 April with a value of 0.90± 0.05
(340 nm). The desert dust plume was also visible on 3 April,
while the following days (from 4 April) showed a clear weak-
ening of the event as the desert plume quickly moved away,
as shown by the AOD, which dropped back to background
levels of around 0.3 at 340 nm in accordance with the mean
annual AOD (0.29± 0.18), reported for Athens at 440 nm by
Gerasopoulos et al. (2011). We have to mention here that the
same authors report that the mean AOD at 500 nm for Athens
is 0.34 during stagnant conditions where anthropogenic haze
dominates (Gerasopoulos et al. (2011). Therefore, back-
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 Fig. 7. Retrieved aerosol volume size distribution from the NTUA

Raman lidar data for radiuses up to 10 µm, for the particles in layers
1 (1910–2070 m), 2 (2284–2850 m), 3 (2960–3100 m) and 4 (3140–
3420 m) between 17:40–20:40 UTC (left vertical axis). Measured
aerosol volume size distribution (total column) by the CIMEL sun-
sky radiometer on 2 April 2009, at 13:30 UTC. (right vertical axis).

ground AODs are slightly lower than those reported for lo-
cal haze conditions, and much lower for dust conditions
(AOD > 0.4). The temporal evolution of the̊Angstr̈om ex-
ponent (440–870 nm) for the same time period is also shown
in the lower panel, showing low values (from 0.4 to 1.0) for
2 and 3 April, in inverse correspondence with the high AOD
for desert aerosols. One of the characteristics of the desert
dust episodes in our area (Balis et al., 2004) is the high vari-
ability shown by both parameters during each day.
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As can be seen in Fig. 6, on 2 April between 10:00 and
14:00 UTC, we observed high AODs due to thick dust layers
which were advected to the observation location (as shown in
lidar data). For the same day, the mean daily volume aerosol
size distribution (not shown) exhibited two modes, but the
relative importance of the modes depends on the prevailing
aerosol type: an accumulation or fine mode with particle ra-
dius below 0.6 µm, and a coarse mode with particle radius
between 0.6 and 15 µm. In this case, we expect a predomi-
nant coarse mode during desert dust conditions. The mode
radii and volume concentrations were analysed in order to
characterize the aerosol dust evolution. The evolution of the
desert dust is clear in the coarse mode fraction.

Table 2 presents the percentual contribution of dust and
sulfates to PM10 at near ground level. The detailed cal-
culations have already been presented in Remoundaki et
al. (2011). From this Table, it can be seen that dust con-
tribution was at the level of 15 % before the arrival of the Sa-
haran dust and increased significantly during the dust event
reaching 65 % on 31 March and 79 % on 1 April, respec-
tively. Sulfates contribution (SO2−

4 ) was in expected levels
for the city of Athens (Karageorgos and Rapsomanikis, 2007;
Theodosi et al., 2011) and presented a maximum on March
29 where southerlies (responsible for long-range transport
of particles of crustal origin) were simultaneously present
with west winds charged with aerosol particles from local
urban and industrial emission sources (e.g. oil refineries of
Aspropyrgos located in the WNW-NW sector) (Remoundaki
et al., 2011). Finally, both dust and sulfates represent signif-
icant fraction of PM10 and account in some cases for more
than 50 % of the PM10 mass.

Indeed, the EDX analysis of all particles sampled (Re-
moundaki et al., 2011) during the reported period (27 March
to 3 April 2009), revealed that aluminosilicates (clays) were
predominant. The presence of illite was clear in many cases,
quartz particles were rare and very difficult to be detected.
Dust particles were very rich in calcium which is distributed
between calcite, dolomite and sulfates and Ca-Si particles
(e.g. smectites). Iron oxides were often detected. These re-
sults are in very good agreement and confirm those reported
on the elemental composition of the dust and the origins of
the air masses which first started from the Western Sahara
and passed over northern Algeria on their way to Greece.
These findings are also in very good agreement with litera-
ture on the Saharan particles characterization and their rela-
tionship to their origins (Coude-Gaussen et al., 1987; Avila
et al., 1997; Blanco et al., 2003; Coz et al., 2009; Rodrı́guez
et al., 2011).

Using the aerosol backscatter profiles at 355, 532 and
1064 nm and the corresponding aerosol extinction profiles
at 355 and 532 nm, we calculated the aerosol microphysi-
cal properties with the retrieval code for spheroid particles
(Veselovskii et al., 2010) using the lidar data of 2 April.
As mentioned previously, the retrieval algorithm represents
the aerosol as a mixture of spheres and spheroids. How-

ever, without using the particle depolarization ratio in re-
trieval, the spheroid volume ratio (SVR) is underestimated,
which leads to the underestimation of the real part of refrac-
tive index (Mishchenko and Hovenier, 1995; Veselovskii et
al., 2010). Thus, it is more accurate to suggest that the ma-
jority of the particle volume in the considered height range
is related to non spherical particles. This assumption is justi-
fied by the HYSPLIT trajectories, which suggest that most of
the particles in the coarse mode are associated with dust. The
finer mode particles (and a fraction of the coarse dust) are ex-
pected to mix with anthropogenic pollution and sea salt; this,
together with aerosol water will undoubtfully make particles
more spherical.

We selected to retrieve the aerosol properties at four dif-
ferent layers for the period between 17:40–20:40 UT: layer 1
(1910–2070 m), layer 2 (2284–2850), layer 3 (2960–3100 m)
and layer 4 (3140–3420 m). The retrieved particle volume
size distributions dV/dlnr for the four considered layers is
shown in Fig. 7 (left-hand graph). Moreover, the integral
particle parameters, such asV , S, N , reff andmR andmi

are summarized in Table 3. From the particle size distribu-
tion (PSD) analysis, shown in Fig. 7 we can conclude that
the fine mode of the PSD is centered at 0.13 µm, while the
coarse mode is centered near 1 and 2 µm. More specifically,
at lower heights (layer 1) the fine mode is prevailing, but at
higher altitudes the contribution of the coarse mode becomes
more important. The fine mode containing the small parti-
cles determines the integral particle number density. In our
case, the fine mode particles decrease with height, thus re-
sulting inN decreasing from 1700 cm−3 in layer 1, to 700–
800 cm−3 in layers 3 and 4. On the other hand, the mean
effective radius rises from 0.22 µm to around 0.32 µm be-
tween layer 1 and layers 3 and 4. In fact, the in situ aerosol
sampling near ground revealed that near the end of the Saha-
ran dust event on 2 April, the dominant size of the particles
diameter was smaller than 2 µm (Remoundaki et al., 2011),
which is consistent with the retrieved entire aerosol volume
size distribution (Fig. 7). Additionally, in Fig. 7 (right-hand
graph in blue color) we show the aerosol size distribution
(total column) measured by the CIMEL sun-sky radiometer
for different hours (from 05:55:42 UTC to 13:30:45 UTC)
where two main aerosol classes are found: those of fine mode
(around 0.15 µm radius, in agreement with those obtained in
the aerosol characterization from direct-sun AERONET data
presented in Basart et al., 2009) and those of coarse mode
particles (around 1–2 µm radius).

Furthermore, if we divide the integrated CIMEL data (at
13:30:45 UTC) by the dust layer thickness of about 3.5-4 km,
we obtain maxima of the dV(r)/dln(r) of the order of 5.5–6.2
and 15–17 µm3 cm−3 for the fine and coarse mode, respec-
tively. These maximum values are quite close (especially
the fine mode ones) to the maximum size distribution val-
ues (Fig. 7) retrieved from the lidar data (5.5–12 and 7–
10 µm3 cm−3, for the fine and coarse mode, respectively).
Moreover, our retrieved aerosol size distribution and the one
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Table 2. Percentage of mineral dust (MIN) and sulfates contribu-
tion in PM10 (27/03-02/04) (Remoundaki et al., 2011): time-height
cross section of the range-corrected backscatter lidar signal (in arbi-
trary units: AU) at 1064 nm, as observed over Athens, by the NTUA
Raman lidar system on 2 April 2009 (13:42–20:49 UTC).

Date PM10 %MIN %SO4 %TOT
(µg m−3) (MIN + SO4)

27/3/2009 17 19.0 27.4 46.4
28/3/2009 39 18.7 13.4 32.2
28/3/2009 17 17.0 32.3 49.3
29/3/2009 17 15.1 29.4 44.5
29/3/2009 14 13.3 45.6 58.9
30/3/2009 68 34.4 16.1 50.4
31/3/2009 62 64.7 14.3 79.0
31/3/2009 62 39.8 22.2 62.0
1/4/2009 57 45.7 14.7 60.4
1/4/2009 32 78.9 17.5 96.4
2/4/2009 54 34.5 17.5 52.0

from CIMEL show comparable size distributions having ra-
dius centered on 0.13 µm (fine mode) and 1 to 2 µm. Al-
though there is some difference, especially in the coarse
mode (around 1–2 µm radius) particles, temporal variabil-
ity and non concurrent measurements between the retrievals
could account for it.

Additionally, the retrieved real part of the refractive in-
dex is of the order of 1.47 for the layers 1 and 2, indicat-
ing mixing of dust with urban-like sulfate and organic car-
bon aerosols (Sokolik et al., 1993; Ebert et al., 2004; Raut
and Chazette, 2008; McConnell et al., 2010), while for the
layers 3 and 4 it increases up to 1.52, indicating the even
stronger mixing of dust with organic carbon aerosols and
urban-like sulfate over Athens (Ebert et al., 2002; Petzold et
al., 2009). The imaginary part of refractive index in all lay-
ers ismi=0.007± 0.0035, indicating aerosol that is internally
mixed with slightly absorbing dust (Patterson et al., 1977;
Sokolik et al., 1993; Sokolik and Toon, 1999; Ebert et al,
2004; T. Müller et al., 2009; Kandler et al., 2009).

It is interesting to note that the latest available CIMEL
data for 2 April, obtained at 13:30 UTC over Athens (not
shown here), gave a columnar refractive index of the order of
1.53–1.55 (real part), while the imaginary part was ranging
from 0.009i to 0.015i. These values represent column val-
ues which are obtained during the Saharan dust event several
hours before the lidar sampling; they are typical of mixtures
of silicate particles with sea salt (Ebert et al., 2002). More-
over, the retrieved mean columnar value of the effective ra-
dius was 0.21 µm (at 13:30:45 UTC), which compares very
well with the retrieved value (0.22 µm), from the lidar data
at the dust layer 1 (between 17:40–20:40 UTC), but less with
those retrieved from layers 2–4 (2.28–3.42 km), as shown in
Table 3. Indeed, layers 2 to 4 (17:40 to 20:40 UTC) are re-
lated to the strong dust layer which appeared around 3.5 km

(from 13:42 to 16:00 UTC) (see Fig. 3), therefore, they could
be probably associated to bigger dust particles.

The final data set of the aerosol optical and microphysical
properties along with the water vapour profiles were incorpo-
rated into the ISORROPIA II model (Fountoukis and Nenes,
2007), to provide a possible dry chemical composition that is
consistent with the retrieved refractive index values (Table 3).
Of course, due to the complexity of the aerosols probed over
Athens, a unique “solution” for the chemical composition
cannot be provided, unless in situ airborne data are avail-
able for direct comparison to validate our model results. For
the aerosols located at layer 1, we derived a chemical com-
position of about 50–60 % sulfate, 15–25 % organic carbon
(OC) and 15–35 % mineral dust is required for this. At the
second layer, the model showed less concentration of sul-
fates and a slight increase of OC in comparison with the first
one. Specifically, the retrieved chemical composition was of
the order of 32–52 % for sulfates, 28–36 % for the OC and
12–40 % mineral dust. For the aerosols located at layer 3
we derived a chemical composition of about 18–38 % sul-
fate, 52–62 % OC and 0–30 % mineral dust. For the aerosols
located at layer 4 a chemical composition of about 16–36 %
sulfate, 54–64 % OC and 0–30 % mineral dust was estimated
by the model. At the two upper layers the retrievals showed
more concentration of OC which is correlating well with the
high values of the refractive index (of the order of 1.52) and
is consistent with the enrichment of organics in the aerosol
that is often seen in the free troposphere (Heald et al., 2005).

These findings, which indeed indicate mixing of mineral
dust aerosols with sulfate and OC ones (typical from ur-
ban air pollution sources and biomass burning), are in ac-
cordance with the lidar data presented in Fig. 3 where the
dust layered aerosols around 2000–3500 m (between 17:40–
20:40 UT) are diluted over the PBL, through mixing with lo-
cally produced ones. Table 3 summarizes the optical, micro-
physical and chemical properties of aerosols retrieved at the
four specific layers (1st to 4th layer) as well as the RH (%)
at each layer for 2 April 2009. Regarding the percentage of
mineral dust (34.5 %) to PM10 shown in Table 2, we see that
the findings from the chemical analysis are in the upper limit
values of those derived by the ISORROPIA II model for the
lower atmospheric layers (1st and 2nd layers, located from
1.9 to 2.85 km a.s.l.). Given that OC is not measured, 34.5 %
is in reality the upper limit of dust concentration.

On the other hand, the percentage of SO4 contribution to
PM10 near ground (see Table 2) was much lower than the
ones derived by the ISORROPIA II model for the lower at-
mospheric layers, but it agreed quite well with the lower
limit values of those derived by the ISORROPIA II model
for the upper atmospheric layers (3rd and 4th layers, lo-
cated from 2.9 to 3.42 km a.s.l.). Given that the filter in-
tegrates over a larger period than the lidar (Remoundaki et
al., 2011), the average chemical composition differs from the
retrieval: furthermore, changes in acidity (due to uptake of

www.atmos-chem-phys.net/12/4011/2012/ Atmos. Chem. Phys., 12, 4011–4032, 2012



4024 A. Papayannis et al.: A case study analysis

Table 3. Mean optical, microphysical and chemical properties of aerosols, as well as the relative humidity RH (%) at each layer, retrieved at
four specific layers on 2 April 2009.

1st layer 2nd layer 3rd layer 4th layer

Height range (km) 1.91–2.07 2.28–2.85 2.96–3.10 3.14–3.42
Lidar Ratio @ 355 nm (sr) 89.8± 0.60 89.0± 5.50 75.2± 0.16 76.7± 1.60
Lidar Ratio @ 532 nm (sr) 64.0± 2.00 56.6± 5.00 47.8± 0.09 48.4± 1.90
AER355/532 1.250± 0.008 0.935± 0.043 0.849± 0.010 0.936± 0.024
ABR355/532 1.52± 0.05 1.14± 0.06 1.03± 0.02 0.97± 0.02
ABR532/1064 1.070± 0.003 1.11± 0.01 1.140± 0.004 1.13± 0.02
Refractive Index (real part) 1.47± 0.05 1.47± 0.05 1.51± 0.05 1.52± 0.05
Refractive Index (imaginary part) 0.0070± 0.0035 0.0070± 0.0035 0.0070± 0.0035 0.0070± 0.0035
Mean effective radius(µm) 0.22± 0.06 0.32± 0.10 0.33± 0.10 0.31± 0.10
Surface density (µm2cm−3) 290± 60 210± 45 150± 30 170± 35
Number density (cm−3) 1700± 1000 1100± 700 700± 400 800± 500
Volume density (µm3cm−3) 21± 6.5 22± 6.5 17± 5.0 17± 5.0
RH ( %) 59 64 79 80

50–60 % sulfate, 32–52 % sulfate, 18–38 % sulfate, 16–36 % sulfate,
Chemical composition 15–25 % OC, 28–36 % OC, 52–62 % OC, 54–64 % OC,

15–35 % dust 12–40 % dust 0–30 % dust 0–30 % dust

ammonium) affect the mass associated with the sulfate ion
by 40 % (Seinfeld and Pandis, 2008).

4 Conclusions

In this manuscript, we attempted to combine experimental
data (multi-wavelength Raman data (3 aerosol backscatter
and 2 extinction profiles) and in situ measurements to chem-
ically characterize the aerosol sampled) and models (micro-
physical inversion and thermodynamic ones) to infer the par-
ticle optical and microphysical properties, as well as a possi-
ble chemical composition.

During a strong Saharan dust event that occurred over
Athens (27 March to 3 April 2009), selected measurements
were performed to obtain the optical properties of the dust
particles in the lower free troposphere. A hybrid regular-
ization technique was used to derive the mean microphys-
ical properties of the dust particles, while the thermody-
namic model ISORROPIA II was used to provide possi-
ble aerosol chemical properties at four selected dust layers
between 2.9 and 3.4 km. AOD values, derived from the
CIMEL sun-sky radiometer, ranged from 0.33–0.91 (340 nm)
to 0.18–0.60 (500 nm), while the LR values retrieved from
the Raman lidar ranged from 75–100 sr (355 nm) and 45–
75 sr (532 nm). Moreover, ABR355/532 and ABR532/1064val-
ues of about 0.9–1.9 and 1.0–1.45 were observed, respec-
tively, while the AER355/532 ranged within 0.8–1.5. Inside
selected dust layers, mean AER355/532 ranged within 0.85–
1.25, while the mean LR values were 83± 7 sr (355 nm) and
54± 7 sr (532 nm) and the mean ABR355/532and AER355/532
were 1.17± 0.08 and 1.11± 0.02, respectively. The higher
mean value of AER355/532 (1.25) observed at the lower

atmospheric layer indicates the presence of smaller parti-
cles, compared to those at higher layers where we have
larger particles, since their AER355/532 were much lower
(0.85–0.94). The presence of pure dust can be easily ex-
cluded since it is characterized by AER and ABR val-
ues lower than 0.5 (Tesche et al., 2011a). The pres-
ence of smaller particles at the lower layer, under this
strong dust event, indicates a possible mixing of haze and
dust, while the larger particles at higher heights may in-
dicate the mixing of dust with coarser particles. Indeed,
inside the four selected dust layers the aerosol refrac-
tive indexes ranged from 1.47 (± 0.05) + 0.0070(± 0.0035)i
to 1.52(±0.05) + 0.0070(±0.0035)i, while effective radiuses
ranging from 0.22± 0.06 to 0.33± 0.10 µm were retrieved.

In the first two lower atmospheric layers, the inferred pos-
sible contribution of dust to the optical properties observed
was estimated to vary from 12–40 %, with a quite important
sulfate contribution from anthropogenic haze of 32–60 %,
and OC content (15–36 %) originating from urban combus-
tion and/or biomass burning activities (Prosmitis et al., 2004;
Sillanp̈aä et al., 2005). At the two higher layers the inferred
possible contribution of dust to the optical properties ob-
served was lower (0–30 %), as was the sulfate contribution
(18–36 %). The latter, combined with the much higher OC
content (52–64 %) indicates a possible mixture of higher lev-
els of biomass burning smoke, with dust and less continental
haze particles. This, along with our retrieved aerosol optical
and microphysical properties, is in agreement with Raman
lidar and in situ observations reported from DABEX (Heese
and Wiegner, 2008) and from SAMUM-2 in Cape Verde by
Ansmann et al. (2011) and Tesche et al. (2011a) for mixture
of dust and smoke particles. Furthermore, in situ airborne
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aerosol sampling together with multi-wavelength Raman li-
dar measurements should be performed to further evaluate
the procedure proposed in this study.
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Ducos, F., Grey, W., Hsu, C., Kalashnikova, O. V., Kahn, R.,
North, P. R. J., Salustro, C., Smith, A., Tanré, D., Torres, O., and
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