

Corrigendum to

“The IPAC-NC field campaign: a pollution and oxidization pool in the lower atmosphere over Huabei, China” published in *Atmos. Chem. Phys.*, 12, 3883–3908, 2012

J. Z. Ma¹, W. Wang^{2,†}, Y. Chen¹, H. J. Liu², P. Yan^{1,***}, G. A. Ding¹, M. L. Wang¹, J. Sun^{1,***}, and J. Lelieveld^{3,4,5}

¹Chinese Academy of Meteorological Sciences, Beijing, China

²Chinese Research Academy of Environmental Sciences, Beijing, China

³Max Planck Institute for Chemistry, Mainz, Germany

⁴Cyprus Institute, Nicosia, Cyprus

⁵King Saud University, Riyadh, Saudi Arabia

* now at: CMA Meteorological Observation Centre, Beijing, China

** now at: CMA Numerical Prediction Centre, Beijing, China

† deceased, March 2010

Correspondence to: J. Z. Ma (mjz@cams.cma.cn)

Published: 5 April 2016

There is a typing error for the unit of aerosol mass concentrations in the paper “The IPAC-NC field campaign: a pollution and oxidization pool in the lower atmosphere over Huabei, China” (published in *Atmos. Chem. Phys.*, 12, 3883–3908, 2012). The correct unit should be $\mu\text{g m}^{-3}$, instead of $\mu\text{g cm}^{-3}$. The corrected complete sentences are as follows:

“The condensation potential of sulfuric acid is estimated to be $2\text{--}8 \mu\text{g m}^{-3} \text{h}^{-1}$, with a peak value at an altitude of 0.8 km. During IPAC-NC, the average mass concentration of sulfate in PM_{10} measured by aircraft was $9 \mu\text{g m}^{-3}$ (Ma et al., 2010)” (in p. 3903, the end of last paragraph).

“The condensation rate of sulfuric acid is estimated to be $2\text{--}8 \mu\text{g m}^{-3} \text{h}^{-1}$ during IPAC-NC, with a maximum at about 0.8 km altitude” (in p. 3904, the end of last paragraph of Sect. 4).