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Abstract. The impact of aerosol composition on cloud con-
densation nuclei (CCN) activity were analyzed in this study
based on field experiments carried out at downtown Tian-
jin, China in September 2010. In the experiments, the CCN
measurements were performed at supersaturation (SS) of
0.1 %, 0.2 % and 0.4 % using a thermal-gradient diffusion
chamber (DMT CCNC), whereas the aerosol size distribu-
tion and composition were simultaneously measured with
a TSI SMPS and an Aerodyne Aerosol Mass Spectrometer
(AMS), respectively. The results show that the influence of
aerosol composition on CCN activity is notable under low
SS (0.1 %), and their influence decreased with increasing
SS. For example, under SS of 0.1 %, the CCN activity in-
creases from 4.5±2.6 % to 12.8±6.1 % when organics frac-
tion decrease from 30–40 % to 10–20 %. The rate of increase
reached up to 184 %. While under SS of 0.4 %, the CCN
activity increases only from 35.7±19.0 % to 46.5±12.3 %
correspondingly. The calculatedNCCN based on the size-
resolved activation ratio and aerosol number size distribution
correlated well with observedNCCN at high SS (0.4 %), but
this consistence decreased with the falling of SS. The slopes
of linear fitted lines between calculated and observedNCCN
are 0.708, 0.947, and 0.995 at SS of 0.1 %, 0.2 % and 0.4 %
respectively. Moreover, the stand deviation (SD) of calcu-
latedNCCN increased with the decreasing of SS. A case study
of CCN closure analyses indicated that the calculated error
of NCCN could reach up to 34 % at SS of 0.1 % if aerosol
composition were not included, and the calculated error de-
creased with the raising of SS. It is decreased to 9 % at SS of
0.2 %, and further decreased to 4 % at SS of 0.4 %.

1 Introduction

Part of aerosol particles can act as cloud condensation nuclei
(CCN), which will affect cloud formation (Ramanathan et al.,
2001; Andreae et al., 2004), including cloud droplet number
concentration and their size (Jin and Shepherd, 2008; Rosen-
feld et al., 2008; Zhang et al., 2011). The complexities of
aerosol particles make it rather difficult to estimate their CCN
activity (Cruz and Pandis, 1998; Hegg et al., 2001; Prenni et
al., 2001; Brooks et al., 2003; Kumar et al., 2003; Raymond
and Pandis, 2003; Broekhuizen et al., 2004; Marcolli et al.,
2004; Henning et al., 2005), which resulted that the impact of
aerosol on cloud and the cloud feedbacks are currently con-
sidered as the largest uncertainty in climate system (IPCC,
2007).

The ability of an aerosol particle to become droplet is pri-
marily a function of their size and chemical composition (Se-
infeld and Pandis, 2006). K̈ohler theory describes the com-
peting effects involved in cloud droplet activation. Two com-
peting effects determine the equilibrium vapor pressure of
water over an aqueous solution droplet: the solution effect
(Raoult’s law) which tends to decrease the equilibrium vapor
pressure on the droplet and the curvature (Kelvin’s law) ef-
fect which tends to increase the equilibrium vapor pressure
on the droplet. Comparing with organics, the solubility of
inorganic salts are much higher, which make the inorganic
salts are easier to be activated. For example, the critical su-
persaturation (Sc) needed to activate the particles of ammo-
nium sulfate and adipic acid with size of 100 nm are 0.15 %
and 0.27 % respectively (Hings et al., 2008). Moreover, the
presence of slight soluble aerosol particles or soluble gases
will further decrease the Sc (Kulmala et al., 1997). The work
of Kulmala et al. (1997) reveals that stable cloud droplets
of size 1–10 µm could exist in air with a relative humidity
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of less than 100 %. Therefore, the SS should be concerned
during the experiment in studying the effect of aerosol com-
position on CCN activation. If the SS was set too high, the
component properties of aerosol particles might be covered.

In this study, a field experiment was conducted in a heavy
pollution area located in north China plain (NCP). During the
experiment, the aerosol number size distribution, composi-
tion (sulfate, nitrate, ammonium, chlorite, organics), and the
size-resolved activation ratio under different SS (0.1–0.4 %)
were measured. A large variability of the ratio of organics
to inorganic salts was observed during the field experiment,
providing a good opportunity to study the effect of aerosol
composition on CCN activity under different SS.

2 Experimental methods

2.1 Aerosol sampling site

The sampling site is situated in the northwest of the urban
area of Tianjin, and the measurements were conducted con-
tinuously from 1 September to 26 September 2010. The
monitoring instruments were deployed on monitor station
with no high building around. A main road about 20 m away
to the north passes by the monitor station, and no significant
pollution sources exist near the sampling site.

During the campaign, sampling of aerosol was conducted
from the top of the sampling room via a PM2.5 cyclone in-
let which can remove coarse particles more than 2.5 µm. To
minimize sampling losses, a stainless steel pipe, approxi-
mately 1/4 inch in diameter, is used to introduce air stream
into the room. During the campaign, the air-conditioned
room temperature is∼21◦ and the sampling air relative hu-
midity (RH) is maintaining below 30 % after passing through
two diffusion dryers.

2.2 Instrument setup

Polydisperse dry aerosol is charge-neutralized using a Kr-
85 neutralizer (TSI 3077A) and introduced into a differential
mobility analyzer (DMA, TSI 3081L) for classification by
electrical mobility. The classified aerosol is then split into
a condensation particle counter (CPC, TSI 3776) to mea-
sure the particle size distribution and the total aerosol con-
centration (condensation nuclei, CN), and a DMT double-
column continuous-flow CCN counter (CCN-200) (Roberts
and Nenes, 2005; Lance et al., 2006) to obtain the CCN ac-
tivation properties. The particle size distribution was mea-
sured every 5 min, with an up-scan time of 280 s. The DMA
was operated with 0.8 l min−1 sample air flow rate which was
split into two parts with 0.5 l min−1 for CCN counter and
0.3 l min−1 for CPC, and a closed-loop sheath air flow rate of
8 l min−1. The sheath flow rate was continuously regulated to
a constant volumetric flow, using a mass flow controller with
continuously pressure and temperature compensated mass
flow set point. All flow rates were regularly checked and

sizing accuracy was checked by employed Polystyrene latex
(PSL) spheres with different diameter.

The CCN-200 has two columns to measure different sam-
ples at different supersaturations (SS) at the same time. In
the field experiment, column A directly measures the dry
polydisperse aerosol sample to obtain the bulk CCN con-
centration, while column B connects to the exit of DMA to
measure the size-resolved particles activation properties. The
CCN-200 was operated at a total flow rate of 1 l min−1 with
a sheath-to-aerosol flow ratio of 10. Both columns operated
at the same SS at the same time. One measurement cycle
included measurements at 5 different SS (0.07 %, 0.10 %,
0.20 %, 0.40 % and 0.80 %) where 20 min for 0.07 % and
10 min for each of the rest. Therefore, theNCCN for five SS
were available every hour. Here 10 min per SS can make sure
at least twice replicates, as CCN temperature transients dur-
ing SS changes may produce unreliable spectra if they occur
during a voltage up-scan (Moore et al., 2010). Whenever the
temperature gradient is changed, up to 2 minutes are required
for the instrument profiles to stabilize.

The Dual CCN counter was calibrated regularly with size
selected (by DMA) ammonium sulfate particles (Rose et al.,
2008; Deng et al., 2011) before and after the campaign. The
critical dry diameters (50 % of the particles activated) deter-
mined from the activation curves of ammonium sulfate under
diffent tempetature gradients (TG), are converted to SS uti-
lizing the Köhler equation where several Köhler theory pa-
rameter employed (Seinfeld and Pandis, 2006; Young and
Warren, 1992; Low, 1969). TG and SS were linearly fitted.
The SS of CCN is calculated from the TG-SS linearly fitted
function.

The aerosol chemical composition of the non-refractory
submicron particles is measured by an Aerodyne Compact
Time-of-Flight Aerosol Mass Spectrometer (C-ToF-AMS).
The details description of the C-ToF-AMS and its operation
has been presented in many previous publications and re-
viewed by Drewnick et al. (2005). In short, ambient aerosol
is focused through an aerodynamic lens assembly into a nar-
row particle beam for sizes between 50 nm and 600 nm effi-
ciently (Zhang et al., 2002, 2004). Smaller and larger par-
ticles are also collected, but with lower efficiently. Parti-
cle size information is obtained by measuring particle ve-
locity with a mechanical chopper wheel. The particles im-
pact on an inverted conical tungsten vapour, where the non-
refractory components are flash vapour. Then the resulting
gas is ionised by electron ionization at 70 eV. The ions are
subsequently extracted orthogonally and sampled by the C-
ToFMS (Tofwerk AG, Thun, Switzerland) for mass analysis.
The instrument provides 2 min averaged quantitative mass
loading information on non-refractory components using a
well characterised series of calibrations and error estimations
(Jimenez et al., 2003; Allan et al., 2003, 2004), as well as
species resolved size distributions. The C-ToF-AMS calibra-
tion, e.g. inlet flow, ionization efficiency (IE) and particle siz-
ing, was performed at the beginning, the middle and the end
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of the campaign as the standard protocols recommend (Jayne
et al., 2000; Jimenez et al., 2003; Drewnick et al., 2005).

2.3 Date processiong

The CN and CCN time series distribution is obtained by us-
ing the TSI Aerosol Instrument Manager (AIM) software
(Wang and Flagan, 1989) and CCN acquiring software re-
spectively. AIM can provide the raw CN counts reported by
the CPC every 0.1 s during each scan cycle and CCN acquir-
ing software record data every second. Here data collected
during the voltage upscan was employed to inversion. The
detail description of the application of Scanning Mobility
CCN Analysis (SMCA) and the CCN activation ratio cal-
culation are introduced by Moore et al. (2010). Firstly, the
time series distribution of CN and CCN is aligned by match-
ing the minimum in counts that occurs during the transition
between upscan and downscan. Then the CN and CCN time
series is converted to size space using the size-scan time re-
lationship provided by the AIM software, the inverted size-
resolved aerosol number distribution is obtained. Finally, a
multiple charged correction is applied for the CCN activa-
tion ratio calculation due to the presence of multiply charged
particles which will result higher measured activation ratio
especially for these smaller particle sizes.

The C-ToF-AMS usually have two different operational
mode: The MS (Mass Spectrum) mode which is used to
collect averaged mass spectra of the non-refractory aerosol
and can provide mass concentrations for several species
such as sulfate, nitrate, ammonium, chloride and total non-
refractory organics, and the P-ToF (Particle Time-of-Flight)
mode which is used to collect averaged size distribution data
for all non-refractory aerosol and can calculate size distri-
butions for each species independently. Therefore, the C-
ToF-AMS can provide redundant as well as complementary
information of chemistry and size distribution for the non-
refractory aerosol. Details of the inversions are presented by
Drewnick et al. (2005) and DeCarlo et al. (2006).

3 Results and discussion

3.1 Sampling data

Figure 1 shows the sampling data at downtown Tianjin dur-
ing 1–7 and 15–23 September 2010. The hourly-averaged
mass concentration of aerosol particles observed by AMS
range from 4 to 251 µg cm−3, with averaged mass con-
centration of 66± 50 µg cm−3. Large variation of aerosol
composition was observed during this experiment. Hourly-
averaged organics fraction range from 1.1 % to 63.8 %, with
82 % data ranges from 10–60 %. The averaged mass com-
ponent of aerosols during the experiment are: organics,
23.8 %; sulfate (SO4), 21.8 %; nitrite (NO3), 24.6 %; ammo-
nia (NH4), 20.6 %; chlorine (Cl), 9.2 %. The number con-
centration of aerosol particles with size of 14.1–736.5 nm
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Fig. 1. The mass concentration(A), mass fraction(B) of aerosol
particles observed by AMS, CN number concentration(C), and the
CCN activation (CCN/CN) (D) of aerosols during the experiment.

observed by SMPS range from 2416 to 32 396 cm−3 with
averaged value of 13117± 4797 cm−3. The averaged num-
ber concentrations of CCN under SS of 0.1 %, 0.2 %, 0.4 %
are 1489±982 cm−3, 4121±2725 cm−3, 6640±6791 cm−3

respectively. Large variation of CCN/CN was also ob-
served during this experiment. The CCN/CN under SS of
0.1 %, 0.2 %, 0.4 % range from 0.6 %–32.6 %, 5.2 %–55.6 %,
8.8 %–75.7 % respectively.

3.2 Effect of aerosol composition on CCN activity

CCN is the aerosol particles that can grow into cloud droplets
(activate) under atmospheric SS. The SS needed to activate
the particles is called critical supersaturation (Sc). Based
on Köhler theory, for particles of constant size, the Sc de-
pend on their solubility, which is a function of its composi-
tion (Dusek et al., 2006), including the number of potential
solute molecules and their solubility. For example, the Sc
needed to activate the particles of ammonium sulfate, adipic
acid with size of 100 nm is 0.15 % and 0.27 % respectively
(Hings et al., 2008). With the increasing of SS, the CCN/CN
will increase correspondingly. Therefore, the SS should also
be concerned in studying the CCN activation of environment
aerosols. If the SS was set too high in the experiment, the
properties of aerosol particles might be covered. In the at-
mosphere, aerosol particles are most likely to be mixtures of
organic and inorganic components. Based on Köhler theory,
the Sc needed for inorganic salts to activate to CCN is lower
than organics for the same size of particles due to the high
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Fig. 2. The relation of CCN/CN with organics fraction under SS of 0.1 %, 0.2 % and 0.4 % respectively.
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Fig.3 The  relation of Dp50 with organics  fraction under SS of 0.1%, 0.2% and 0.4% 3 
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Fig. 3. The relation of Dp50 with organics fraction under SS of 0.1 %, 0.2 % and 0.4 % respectively.

solubility of inorganic salts, which make particles with more
inorganic salts will be easier to be activated under the same
condition. In this study, the organics fraction measured by
AMS was used to analyze the effect of aerosol composition
on CCN activity.

Figures 2 and 3 shows the relation of CCN/CN, and the
diameter of particles at CCN/CN = 0.5 (Dp50) with organ-

ics fraction under the three SS respectively. Under a cer-
tain SS, the CCN/CN decreased with the raising of organ-
ics fraction. Moreover the decreasing trend is more effec-
tive under lower SS. For example, under SS of 0.1 %, the
CCN/CN increases from 4.5± 2.6 % to 12.8± 6.1 % when
organics fraction decrease from 30–40 % to 10–20 %. The
rate of increase reached up to 184 %. While under SS of
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Fig. 4. The size-resolved CCN activation of aerosol particles under
SS of 0.1 %, 0.2 % and 0.4 % respectively.

0.4 %, the CCN activity increases only from 35.7±19.0 % to
46.5± 12.3 % correspondingly, and the rate of increase de-
creased to 30.1 %. In Fig. 2 the size of particles were not
included. To analyze the influence of particles size on CCN
activity under different aerosol composition, we compare the
relation of Dp50 with organics fraction. The Dp50 increased
correspondingly with the raising of organics fraction, indicat-
ing that less particle will be converted to CCN. For example,
under SS of 0.1 %, the Dp50 increase from 152.3±7.1 nm to
163.4±11.1 nm when organics fraction raised from 10–20 %
to 30–40 %. The extent of increase is 11.1 nm. While under
SS of 0.2 %, the extent of increase declines to 6.5 nm, and
further declines to 4.2 nm at SS of 0.4 %.

3.3 Size-resolved activation ratio

Based on the observation and method introduced in Sect. 2,
we first calculated the CCN activity (Fig. 4) and their stand
deviation (SD) (Fig. 5) under the three SS without considera-
tion of aerosol composition. The stand deviation (SD) of the
spectrum about CCN activity is defined as follow:

SD=

(∑
(r − r̄)2/N

)1/2
(1)

Wherer is the ratio of CCN to CN,̄r is averaged data, and
N is sample number.

Figure 4 shows that the CCN activity is sensitive highly to
SS for particles with size of 50–200 nm, which is the dom-
inated part of aerosol particles. For example, for particles
with size of 100 nm, the CCN/CN is near to 0 at SS of 0.1 %,
and increases to 0.75 at SS of 0.2 %, further increases to near
1.0 at SS of 0.4 %. The SD in our observation fluctuates with
SS and particles size. It decreased with the increasing of par-
ticles size for a certain SS, while the SD decreases with the
increasing of SS for all particles (Fig. 5). For example, under
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Fig. 5. The calculated stand deviation of size-resolved CCN activa-
tion under of 0.1 %, 0.2 % and 0.4 % respectively

constant SS of 0.1 %, the SD is 4.2, 0.8, and 0.09 at size of
100 nm, 150 nm and 200 nm. While for particles with size of
100 nm, the SD is 0.04, 0.2, and 4.2 at SS of 0.4 %, 0.2 %
and 0.1 % respectively. The high SD for small particles (50–
200 nm) at low SS (0.1 %) might be caused by the variation
of the aerosol composition since their effect on CCN activa-
tion is observed (Fig. 5), especially at low SS.

The CCN concentration (NCCN,Cal) can be calculated us-
ing the following equation,

NCCN,Cal=

∫
A

(
logDp

)
n
(
logDp

)
d logDp (2)

WhereA
(
logDp

)
is the size resolved activation ratio, and

n
(
logDp

)
is the function of the aerosol number size distri-

bution.
The calculatedNCCN based on Eq. (2), the size-resolved

activation ratios (Fig. 4) and observed aerosol number size
distribution is highly consistent with the measuredNCCN
(Fig. 6) at high SS (R2

= 0.9925 at SS of 0.4 %) and the con-
sistent decreased with decreasing of SS (R2

= 0.9480 at SS
of 0.1 %). The linear fitted lines have slopes lower than 1
for each SS. The slopes are 0.708, 0.947, and 0.995 at SS of
0.1 %, 0.2 % and 0.4 % respectively.

Above analysis indicated that the effect of aerosol com-
position on CCN can’t be ignored in estimating the CCN
concentration, especially at low SS which is present at natu-
ral environment. For example, the typical SS for stratiform
clouds and fog are 0.05 % and 0.1 %, respectively (Seinfeld
and Pandis, 2006). To estimate quantitatively the contribu-
tion of aerosol composition on CCN calculated error, two
cases of CCN closure study was analyzed with organics frac-
tion of 24 % and 55 % at next part.
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Fig. 6. Closure between measured CCN number concentration and the CCN Number concentration calculated from aerosol number size
distribution and Size-resolved activation for the three SS.
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Fig. 7. The daily averaged composition of the two days with size
ranging from 50 to 200 nm on 4 September and 20 September.

3.4 Contribution of aerosol composition on CCN
calculated error

The selected two cases are 4 and 20 September Fig. 7 shows
the daily averaged composition of the two days with size
ranging from 50 to 200 nm. On 4 September, inorganic is
the dominated component, which takes up 60–80 % in mass
concentration. While on 20 September, organic is the domi-
nated component, which takes up 40–70 % in mass concen-
tration. The size-resolved CCN activation of aerosol parti-
cles under different SS calculation on methods introduced at
Sect. 3.3 and observations of 4 and 20 September are shown
in Fig. 8. There are significant difference of CCN/CN for
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Fig.8 The size‐resolved CCN activation of aerosol particles under different SS for 4/Sep 3 

and 20/Sep 4 

 5 

Fig. 8. The size-resolved CCN activation of aerosol particles under
different SS for 4 September and 20 September.

particles size of 100–200 nm between the two cases under
low SS (0.1 %). Moreover, the difference goes down with
the increasing of SS. For example, for particles with size of
150 nm, the CCN/CN is only 0.03 on 20 September, while
it increase to 0.6 on 4 September. To estimate roughly the
influence of aerosol composition on CCN activation, we cal-
culate theNCCN based on the CCN activation ratio get from
the two cases at the same time and compare their difference.
The calculated error is 31 % at SS of 0.1 %, and decrease
to 9 % at SS of 0.2 %, and further decrease to 4 % at SS of
0.4 %. Above results indicate that the influence of aerosol
composition on CCN activation can’t be neglected under low
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SS since their composition exist great regional and temporal
difference (Zhang et al., 2009).

4 Summaries

A field experiment carried at downtown Tianjin during
September 2010 to analyze the effect of aerosol composition
on CCN activity. During this experiment CCN concentration
under SS of 0.1 %, 0.2 % and 0.4 %, together with the aerosol
size distribution and composition were simultaneously mea-
sured. Using the size and composition information, detailed
CCN closure analyses under different SS were performed.
The results are summarized as the follows:

1. The critical SS (Sc), which is the threshold SS for CCN
activation, is affected by their composition. Only when
environmental SS is higher than their Sc can the parti-
cles be activated. Based on Köhler theory, the Sc de-
creased with increasing particles solubility. Therefore,
the effect of aerosol composition on CCN activity is sig-
nificant at low SS, and this effect decreased with the
raising of SS. If the SS was set too high, most particles
can be activated. This point was verified in our exper-
iment. In this study, the fraction of organic component
was used to represent character of aerosol composition
in analyzing their influence on CCN activity. The obser-
vations indicated that the CCN activity decreased, and
the Dp50 increased with the raising of organic fraction.
Moreover the decreasing trend is more effective under
lower SS. For example, under SS of 0.1 %, the CCN ac-
tivity increases from 4.5± 2.6 % to 12.8± 6.1 % when
organics fraction decrease from 30–40 % to 10–20 %.
The rate of increase reached up to 184 %. While un-
der SS of 0.4 %, the CCN activity increases only from
35.7± 19.0 % to 46.5± 12.3 % correspondingly.

2. Regardless of aerosol composition, the calculatedNCCN
based on the aerosol number size distribution and the
size-resolved activation ratios is consistent with ob-
servedNCCN at high SS (0.4 %), but this consistence
decreased with the falling of SS. Moreover, the stand
deviation (SD) of calculatedNCCN increased with the
decreasing of SS. The slopes of linear fitted lines be-
tween calculatedNCCN and observedNCCN are 0.708,
0.947, and 0.995 at SS of 0.1 %, 0.2 % and 0.4 % re-
spectively.

3. The contribution of aerosol composition on CCN activ-
ity was estimated quantitatively based on CCN closure
study of two cases with organic fraction of 24 % and
55 %. The calculated error is estimated on the differ-
ence of the calculatedNCCN based on size-resolved ac-
tivation ratios got from the two cases. The result indi-
cated that the calculated error ofNCCN could reach up
to 34 % at SS of 0.1 % and calculated error decreased

with the raising of SS. It is decreased to 9 % at SS of
0.2 %, and further decreased to 4 % at SS of 0.4 %.
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