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Abstract. Dynamical downscaling has been extensively used
to study regional climate forced by large-scale global cli-
mate models. During the downscaling process, however,
the simulation of regional climate models (RCMs) tends to
drift away from the driving fields. Developing a solution
that addresses this issue, by retaining the large scale fea-
tures (from the large-scale fields) and the small-scale features
(from the RCMs) has led to the development of “nudging”
techniques. Here, we examine the performance of two nudg-
ing techniques, grid and spectral nudging, in the downscaling
of NCEP/NCAR data with the Weather Research and Fore-
casting (WRF) Model. The simulations are compared against
the results with North America Regional Reanalysis (NARR)
data set at different scales of interest using the concept of
similarity. We show that with the appropriate choice of wave
numbers, spectral nudging outperforms grid nudging in the
capacity of balancing the performance of simulation at the
large and small scales.

1 Introduction

Global climate models (GCMs) serve as the primary tool to
understand how climate will respond to emission changes
(IPCC, 2007). Information on regional scales, however, may
be unreliable at scales below∼200 km (Meehl et al., 2007),
which is still too coarse to be directly used in regional cli-
mate impact studies (Houghton et al., 2001). Downscaling
of global model results has been used to address this issue by
bridging the gap of scales between the global and regional

climate information. Downscaling can be achieved by sta-
tistical methods (called statistical downscaling) or by high-
resolution regional climate models (RCMs) (called dynami-
cal downscaling).

Dynamical downscaling has been at the forefront of model
development of regional climate models (e.g., Dickinson et
al., 1989), and now is being used to address how regional
air quality would change in future climate. In the process
of dynamical downscaling, errors are introduced primarily in
two ways. One is due to incomplete model physics. The
other type of error results from the downscaling itself. For
example, dynamical downscaling typically starts with a set
of coarse-resolution large-scale fields, which are used as the
initial conditions (ICs) and lateral and surface boundary con-
ditions (LBCs) for the RCMs. As the simulation evolves,
the internal solution developed by RCMs may be affected by
the size of domain, the spin-up period and update frequency
of LBCs. A good summary of such issues are provided by
Warner et al. (1997), Giorgi and Mearns (1999) and Denis et
al. (2002).

A key source of downscaling errors is the inconsistency
along boundaries (Davies, 1976, 1983) since RCM simula-
tion drifts away from the GCMs driving fields. It has been
a challenge to balance the performance of RCMs in adding
small-scale features and simultaneously retaining the large-
scale features. Nudging techniques are introduced to RCMs
to address this issue. A nudging term is added to the pre-
dictive equation of the variable to be nudged in its grid-point
model. Davies (1976) introduced the lateral boundary relax-
ation technique, in which the solution of RCM is nudged to
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the driving field in a “buffer zone” along boundaries. How-
ever, this technique is still unable to fulfill the goal of re-
taining the large-scale information provided by GCMs at the
interior of the modeling domain. In order to capture the fea-
tures of the driving force through the domain, grid nudging
(Stauffer and Seaman, 1990) was developed and has been ap-
plied to downscaling reanalysis data for regional air quality
modeling of historical episodes. In this technique, nudging is
conducted in every grid cell. Another nudging technique that
has gained interest is spectral nudging (Waldron et al., 1996;
von Storch et al., 2000), in which the nudging term is spec-
trally expanded in both the zonal and meridional directions
and only the waves under selected wave numbers are kept in
the nudging term. All other waves are filtered out. By keep-
ing the long waves in the nudging term, Miguez-Macho et
al. (2004, 2005) found that spectral nudging can help elimi-
nate the large-scale precipitation bias, and, at the same time,
maintain the features of small scale.

Studies have used dynamical downscaling for the purpose
of regional air quality modeling (e.g., Forkel and Knoche,
2006; Gustafson and Leung, 2007; Hogrefe et al., 2004; Le-
ung and Gustafson, 2005; Steiner et al., 2006; Tagaris and
Liao, et al., 2008) using boundary (Davies, 1976), grid nudg-
ing (Stauffer and Seaman,1990), or no nudging. However,
spectral nudging may have an advantage over no nudging or
boundary nudging (Feser, 2005; Feser and von Storch, 2005;
Rockel et al., 2008; Winterfeldt and Weisse, 2009) and could
theoretically outperform grid nudging. From the perspec-
tive of spectrum, grid nudging modifies the RCMs results
throughout the spectrum with the same strength, however,
the short-wave information provided by RCMs is thought to
be more reliable than that provided by GCMs. Therefore,
grid nudging has the risk of over-forcing the RCMs at small
scales (Castro et al., 2005). However, few studies discuss the
comparison between grid and spectral nudging and how to
determine optimal cut-off wave numbers for spectral nudg-
ing.

This study aims at improving the performance of down-
scaling using spectral nudging with a particular focus on de-
veloping regional-scale fields for assessing the impact of cli-
mate change on air quality. The main difficulties involve how
to evaluate the results between grid and spectral nudging and
how to determine the appropriate wave numbers for spectral
nudging. In order to address these issues, we focus on the
multi-scale performance of downscaling. The applications of
scale analysis in the evaluation of downscaling are well sum-
marized by Feser et al. (2011). We use NCEP/NCAR reanal-
ysis data for four historical periods and Weather Research
and Forecasting (WRF) Model (Skamarock et al., 2008). The
NCEP/NCAR data is used both to provide the information
needed for downscaling and to evaluate the downscaling us-
ing grid, spectral nudging and no nudging at all.

2 Method

The 2.5×2.5 degree NCEP/NCAR reanalysis data, archived
every 6 h, is utilized to drive the WRF (version 3.1.1) down-
scaling. We compare results developed using grid and spec-
tral nudging for four time episodes: Jul. 2009, Oct. 2009,
Jan. 2010 and Apr. 2010. The modeling domain covers the
COntiguous United States (CONUS) and portions of south-
ern Canada and northern Mexico, and is centered at 40◦ N
and 97◦ W with dimensions of 162× 126 horizontal grids
cells with a grid-spacing of 36× km. It contains 35 vertical
levels, with top pressure of 5000 pa.

Physical configurations in WRF are kept the same for all
simulation considered, except the nudging technique em-
ployed. Both grid and spectral nudging are configured to
nudge temperature and horizontal winds, but water vapor
mixing ratio can only be nudged in grid nudging, and geo-
potential height only in spectral nudging. Only horizontal
winds are nudged at all vertical levels, while no nudging is
conducted for other variables within the planetary bound-
ary layer (PBL). The strategy for grid nudging is based on
previous studies (Stauffer and Seaman, 1990; Stauffer et al.,
1991), which showed that this configuration reduced the bias
most. For spectral nudging, same nudging strategy is used
within PBL to keep the simulation consistent with grid nudg-
ing, and above PBL, geopotential field is nudged, instead of
water vapor mixing ratio, which does not have large-scale
features as strong as other fields and would not be nudged
in the spectral nudging of WRF. The nudging coefficients
for all variables for both grid and spectral nudging are set to
be 0.0003 s−1 (Stauffer et al., 1995). During the simulation,
nudging is conducted every 6 h consistent with the frequency
of the NCEP/NCAR reanalysis data. When spectral nudg-
ing is conducted, all waves with wave numbers greater than
a preset number are not nudged. In this study, the wave num-
ber in both directions is set to be 3 (m= n= 3, where m and
n represent the wave number in zonal and meridional direc-
tions, respectively). This preliminary choice is made based
on two considerations. One is the scale of the driving field,
in which the GCM is able to provide reliable information and
this information is also expected to be captured by RCM. von
Storch et al. (2000) determined that scales of about 15◦ and
larger are considered to be reliably analyzed by NCEP. The
other consideration is the size of WRF domain. In our study,
the WRF domain size is about 6000 km×4600 km in zonal
and meridional direction respectively. Hence, wave number
3 is employed as the first choice in both directions in order to
capture NCEP/NCAR features of scale about 2000 km. Sen-
sitivity tests on cut-off wave number choice are conducted.
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3 Results

3.1 Evaluation methods

The concept of similarity proposed by von Storch et
al. (2000) is used to evaluate the results at different scales,
using a metric,P(t,L),

P(t,L)= 1−

〈[
ψ(t,L)−ψ∗(t,L)

]2
〉

〈
ψ(t,L)2

〉 (1)

wheret is the simulation time,L the scale of interest,P(t,L)
the similarity,ψ(t,L) the input field (e.g., the NCEP/NCAR
data),ψ∗(t,L) the output field (e.g., the WRF output),〈〉 the
spatial average over the modeling domain. Similarity at dif-
ferent scales of interest is calculated every six hours just after
the nudging is updated by calculating the representative val-
ues ofψ(t,L) andψ∗(t,L) at different scales. The perfor-
mance of downscaling at large and small scales is evaluated
in the opposite way with respect to similarity using Eq. (1).
For large scales, it is better when the downscaling results are
more consistent with the input fields, so higher similarities
are desired; while for small scales, the results are better when
more variance is added, so lower similarities are desired.

The question arises as to how the large and small scales
are determined. As mentioned previously, information at
about 15◦ and larger is considered to be reliably analyzed
by NCEP. Accordingly, 2000 km and larger is chosen as the
“large scale”. At this scale, when comparing WRF output
with NCEP/NCAR input data, the higher the similarity is, the
RCM is viewed as performing better. As to the “small scale”,
instead of the WRF resolution of 36 km, 300 km is chosen in
order to capture features that occur at multiple grids, which
are more reliably captured by RCMs than individual grid
cells. Compared to the NCEP/NCAR data, 300 km is a small
scale and the RCMs should be adding variability that is not
resolved by the GCM. Therefore, 300 km is chosen as the
“small scale” and lower similarities are desired.

The calculation of similarity at 2000 km or 300 km in-
volves three steps. First, the WRF input field, namely the
NCPE/NCAR data, is interpolated to the same resolution as
the WRF results. Second, grid cells of 36 km resolution in
the modeling domain are re-divided according to the scale
of interest so that each new “aggregated” cell includes mul-
tiple original grid cells. For each new cell, its representa-
tive values of input and output fields, namelyψ(t,L) and
ψ∗(t,L) in Eq. (1), are computed from the spatial average
of the 36 km NCEP/NCAR data and WRF results. Finally,
similarity is calculated by Eq. (1). At the large-scale case,
for instance, the NCEP/NCAR 2.5×2.5 degree data is first
interpolated to a 36 km resolution, so that for both input and
output fields, the modeling domain includes 162 (zonal) by
126 (meridional) cells. Because we are concerned about the
features at the scale of about 2000 km, the modeling domain
could be re-divided into 3× 3 new cells, each of which has

54× 42 original cells, and thenψ(t,L) andψ∗(t,L) at the
scale of 2000 km are calculated by averaging the 54×42 cells
of input and output fields respectively.

A critical issue is whether the decrease in similarity at
small scales is of reasonable magnitude. In other words,
if the current choice of wave numbers insufficiently con-
strains the RCM so that the similarity decreases too much
at the small scale, and vice versa. To answer this ques-
tion, the 32 km resolution North America Regional Reanaly-
sis (NARR) data set (Mesinger et al., 2006) is used to assess
the appropriate level of similarity decrease between large and
small scales. The quality of NARR data has been evaluated
with surface station and sounding measurements (Mesinger
et al., 2006). In one case, if NARR data set is consistent
with NCEP/NCAR data at the large scale, which means sim-
ilarities between these two data set are high, NARR data
set is viewed as the best result we could have after down-
scaling from NCEP/NCAR data, and the similarity between
NCEP/NCAR and NARR data at the small scale could serve
as the criteria for a reasonable range of similarity for the
small-scale results. If the NARR data set can not provide
enough high similarity at the large scale, similarity between
NCEP/NCAR and NARR at small scale can not be used di-
rectly as the criteria. Instead, the difference of similarity be-
tween large and small scale would be used as the reference
when assessing whether the change in similarity between in-
put and downscaled fields is reasonable.

3.2 Similarity at different scales for grid and spectral
nudging

Our ultimate goal is to use the downscaled meteorological
fields to drive a regional chemical transport model, we are
especially concerned about the fields that will significantly
affect the concentration of pollutants. Therefore, we inves-
tigate temperature, horizontal kinetic energy (as a surrogate
for wind speed), and water vapor mixing ratio; analysis is
carried out at three vertical levels, the surface, 850 hpa and
500 hpa. Only the results of July 2009 are shown here, since
other tested episodes give similar results.

Temperature is nudged when either grid or spectral nudg-
ing is applied. At 850 hpa, at the large scale, spectral and grid
nudging results have high similarities (Fig. 1a) through the
simulation period. For example, the temporal means of sim-
ilarity P(t,L) at the large scale (as summarized in Table 1)
is over 0.99999 for both. Hence, the spatial averaged relative
difference of temperature is less than

√
1−P(t,L)' 0.03,

which means at the large scale, both of the nudging tech-
niques are equally capable of capturing the features of the
driving fields. This is not true for small scales, as spectral
nudging gives a much lower similarity than grid nudging.
Lower similarity is expected at small scales because vari-
ance is expected to be added by the RCM. The similarity
between the NCEP/NCAR and NARR data (Fig. 1b) is cal-
culated to determine whether or not the lower similarities
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Table 1. Summary of the Mean and Standard Deviation of Similarities for Temperature, Kinetic Energy (KE), Surface Pressure and Water
Vapor Mixing Ratio (QV) of July 2009 at Different Scales.
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Table 1. Summary of the Mean and Standard Deviation of Similarities for Temperature, Kinetic Energy (KE), Surface Pressure and Water
Vapor Mixing Ratio (QV) of July 2009 at Different Scales.

Similarity Between NCEP/NCAP and Downscaling Results by WRF
Similarity between

NCEP/NCAR and NARR

Grid Nudging Spectral Nudging No Nudging

Fields 2000 km 300 km 2000 km 300 km 2000 km 300 km 2000 km 300 km

Ts 0.99999
±0.8× 10−5

0.99995
±1.6× 10−5

0.99999
±0.5× 10−5

0.99995
±1.3× 10−5

0.99998
±1.0× 10−5

0.99992
±1.8× 10−5

0.99998
±1.0× 10−5

0.99994
±1.9× 10−5

T850 0.999998
±1.0× 10−6

0.999990
±5.4× 10−6

0.999998
±1.4× 10−6

0.999984
±4.7× 10−6

0.999988
±5.5× 10−6

0.999958
±9.0× 10−6

0.999992
±3.8× 10−6

0.999974
±6.7× 10−6

T500 1.000000
±0.1× 10−6

0.999999
±0.2× 10−6

1.000000
±0.1× 10−6

0.999997
±0.7× 10−6

0.999990
±4.2× 10−6

0.999974
±8.1× 10−6

0.999997
±1.6× 10−6

0.999991
±2.4× 10−6

KEs 0.98
±0.9× 10−2

0.94
±1.7× 10−2

0.94
±3.4× 10−2

0.83
±5.8× 10−2

0.87
±11.7× 10−2

0.65
±14.3× 10−2

0.90
±5.3× 10−2

0.76
±7.8× 10−2

KE850 1.00
±0.5× 10−2

0.99
±0.7× 10−2

0.97
±1.9× 10−2

0.84
±5.7× 10−2

0.89
±7.8× 10−2

0.61
±12.3× 10−2

0.97
±1.4× 10−2

0.84
±4.5× 10−2

KE500 0.999
±0.5× 10−3

0.997
±0.9× 10−3

0.996
±3.3× 10−3

0.940
±2.1× 10−2

0.946
±2.8× 10−2

0.769
±6.5× 10−2

0.993
±4.5× 10−3

0.940
±2.1× 10−2

Ps 0.9999998
±1.7× 10−7

0.9999994
±2.1× 10−7

0.9999998
±1.8× 10−7

0.9999992
±2.4× 10−7

0.9999973
±2.1× 10−6

0.9999947
±2.9× 10−6

0.9999983
±3.8× 10−7

0.9999913
±6.5× 10−7

QVs 0.993
±4.3× 10−3

0.986
±7.3× 10−3

0.990
±5.4× 10−3

0.979
±8.8× 10−3

0.988
±6.5× 10−3

0.974
±9.8× 10−3

0.994
±3.5× 10−3

0.981
±6.9× 10−3

QV850 0.999
±1.8× 10−3

0.991
±6.6× 10−3

0.996
±1.4× 10−3

0.969
±7.5× 10−3

0.993
±3.4× 10−3

0.944
±1.6× 10−2

0.994
±2.2× 10−3

0.967
±6.4× 10−3

QV500 1.000
±0.8× 10−3

0.996
±3.2× 10−3

0.970
±1.7× 10−2

0.880
±2.6× 10−2

0.970
±1.6× 10−2

0.817
±4.9× 10−2

0.992
±4.6× 10−3

0.950
±1.4× 10−2

Subscripts s, 850 and 500 stand for surface, 850 hpa and 500 hpa.

Table 2. Summary of the Mean and Standard Deviation (SD) of the Distribution of Temperature. Difference at 500 hpa of July 2009 at
Different Scales.

Data set at the Scale of 2000 km at the Scale of 300 km

Mean (K) SD (K) Mean (K) SD (K)

NARR minus NCEP/NCAR −0.11 0.533 −0.10 1.219
Grid Nudging minus NCEP/NCAR −0.09 0.173 −0.09 0.337
Spectral Nudging minus NCEP/NCAR −0.08 0.209 −0.07 0.837

given by nudging techniques at the small scale are consis-
tent with using NARR data. The decrease in similarity for
NCEP/NCAR and NARR data between large and small scale
indicates that at the small scale, spectral nudging performs
better than grid nudging because of a lower similarity. If
nudging is not applied during the simulation, the RCM is not
able to retain the features at large scales (Table 1). The re-
sults at 500 hpa are very similar to the results at 850 hpa (Ta-
ble 1), except that the difference of similarity between grid
and spectral nudging is even smaller. At the small scale, for
instance, the difference of the mean between the two nudging
techniques is on the order of 10−6, and the difference of stan-
dard deviation of similarity on the order of 10−7. We have

to ask, does the small difference in similarity really matter?
In other words, we want to know if the similarity is still able
to be used to assess the performance of downscaling, or it
is just noise when the difference of similarity is very small.
To answer this question, we compare the probability distribu-
tion of the temperature difference between the NCEP/NCAR
data and the WRF output (by grid and spectral nudging re-
spectively) with the distribution of temperature difference be-
tween NCEP/NCAR data and NARR data (Table 2). Chang-
ing from the large to small scale, the width of the distribu-
tion provided by grid nudging changes little compared with
spectral nudging and NARR data This indicates that for the
temperature field at 500 hpa, grid nudging over-forces the
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Fig. 1. Time series plots of similarity for temperature at 850 hpa, 2000 km and 300 km scales for July 2009.(a) similarity between
NCEP/NCAP and downscaling results by WRF by grid and spectral nudging;(b) similarity between NCEP/NCAR and NARR data.

Fig. 2. Correlation for the temperature anomaly from NCEP/NCAR data at 500 hpa, 2000 km and 300 km scales for July 2009 with linear
regression of 95 % confidence.(a) anomaly of WRF output by spectral nudging vs. anomaly of NARR data;(b) anomaly of WRF output by
grid nudging vs anomaly of NARR data.

RCM results towards the driving fields and the small-scale
features expected from RCM are hindered. To further inves-
tigate whether the larger variance provided by spectral nudg-
ing is reasonable or not, the correlation between WRF out-
put and NARR data is investigated by orthogonal regression
(Fig. 2). At the small scale, spectral nudging improves the
correlation with NARR data compared with grid nudging by
giving a slope more close to 1. Other regression methods,
such as least square regression, are also tested and we get
consistent results. The results above indicate that the metric
of similarity at different scales is important in evaluating the
performance of downscaling, even when the difference be-
tween similarity values is very small. At the surface, grid and
spectral nudging show little difference in similarity, which is
not unexpected because temperature is not nudged within the
PBL.

Spectral nudging, likewise, performs better than grid
nudging for horizontal kinetic energy (KE) with comparable
similarity at the large scale and lower similarity consistent
with NARR at the small scale at both 850 hpa (Fig. 3) and
and 500 hpa (Table 1). The improvement in the decrease of
similarity implies significant differences of the nudged vari-

able between grid and spectral nudging. For example, at
500 hpa (Table 1), grid nudging leads to a mean KE similarity
of 0.997 at the small scale; while spectral nudging decreases
the mean of similarity to 0.940. The kinetic energy differ-
ence between grid and spectral nudging is around 20 %. In
addition, at the small scale, the similarity found using spec-
tral nudging varies temporally with the same trend as that of
NCEP/NCAR and NARR data (Fig. 3), However, the sim-
ilarity found using grid nudging shows little such variabil-
ity. The variance of similarity (Table 1) also indicates that at
small scale, spectral nudging performs better than grid nudg-
ing in the magnitude of variability. If no nudging is used, the
results not only have low similarities at different scales, but
also give much larger variance compared with NARR data
(Table 1).The results at the surface are similar to those at
500 hpa and 850 hpa (Table 1).

Different similarities for KE suggest that the results from
grid and spectral nudging can be very different for fields
strongly affected by KE, such as clouds and precipitation,
both of which are important in regional climate and air qual-
ity modeling. Cloud hydrometeor mixing ratios provided by
WRF are used to calculate the monthly averaged cloud mass

www.atmos-chem-phys.net/12/3601/2012/ Atmos. Chem. Phys., 12, 3601–3610, 2012
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Fig. 3. Time series plots of similarity for horizontal kinetic energy at 850 hpa, 2000 km and 300 km scales for July 2009.(a) similarity
between NCEP/NCAP and downscaling results by WRF by grid and spectral nudging;(b) similarity between NCEP/NCAR and NARR data.

(including cloud water, cloud rain, ice, snow and graup) in
each column and compared with the convective cloud frac-
tion averaged from NARR data archived every 3 hours. The
convective cloud from NARR data is used for comparison
instead of total cloud because the horizontal resolution of
WRF in this study is not high enough to explicitly resolve
such clouds. The two nudging techniques lead to greater
differences over the middle and the eastern regions of the
US, with spectral nudging better capturing the cloud features
(Fig. 4). The superiority of spectral nudging becomes more
apparent when comparing the precipitation with NARR data
(Fig. 4b). Grid nudging significantly depresses the precipita-
tion across the middle of the US. Moreover, in the southeast,
results from spectral nudging more closely resemble NARR
data than grid nudging. Spectral nudging (Fig. 4d) gener-
ates the similar rainfall region over the east coast, although
the rainfall region shifted toward southwest compared with
NARR data; grid nudging (Fig. 4f) did not generate this fea-
ture at all. The difference in precipitation shown above in-
cludes the impact of nudging horizontal KE and water vapor
mixing ratio as well. To exclude the impact of the latter, we
also test the case by grid nudging with the same configura-
tion in Sect. 2, except that we turn off the nudging of water
vapor mixing ratio (this case is referred as “grid no gq” and
the cases with nudging configuration described in Sect. 2 are
referred as “grid” and “spectral” respectively). Compared
with “grid” case, “grid no gq” case shows little difference
in the similarities of temperature and horizontal KE at both
large and small scales (not shown here). Therefore, the dif-
ference of precipitation between “grid no gq” and “spectral”
cases better represents the impact of horizontal KE. We find
out that compared with “spectral” case, “grid no gq” case
(Fig. 4h) reproduces precipitation regions over Canada and
the Atlantic Ocean, although with less strength. However,
it still fails to generate the features across the middle of the
US. In addition, much more rainfall occurs over the Gulf of
Mexico.

Another field closely affected by KE is surface pressure.
Similarities of surface pressure at different scales are calcu-

lated and compared with the similarities of NARR data (Ta-
ble 1), with little difference in the mean and standard devi-
ation of similarity between grid and spectral nudging. The
spatially averaged change in surface pressure is on the order
of 10 Pa between the large and small scales (Eq. 1). However,
the similarity between NCEP/NCAR and NARR data shows
that the change in surface pressure is of magnitude of 100 Pa
between the large and small scales. Therefore, nudging does
not impact the surface pressure significantly, although spec-
tral nudging improves the simulated KE at the small scale.

Grid nudging, not spectral nudging, is applied to water va-
por mixing ratio in the “grid” case of this study. If spectral
nudging is used, the correction to water vapor mixing ratio
results from the changes in other fields. At the large scale,
the similarity using spectral nudging is still as high as that
by grid nudging at the surface and 850 hpa (Table 1). At
500 hpa, however, spectral nudging does not maintain the
large-scale features as well as grid nudging (Fig. 5a), al-
though the similarity of grid and spectral nudging at 500 hpa
differs little for temperature and horizontal kinetic energy.
This can be linked to the prediction of cloud formation,
which is at a scale smaller than that is captured by the GCM,
and is very sensitive to a number of local factors. At the small
scale, for all the vertical layers of interest, spectral nudg-
ing provides the desired decrease in similarity of water vapor
mixing ratio as compared to NARR; while for grid nudging,
little difference occurs at small and large scales (Table 1).

3.3 Sensitivity to wave numbers in spectral nudging

Choice of wave numbers in spectral nudging impacts the
quality of downscaling. If the wave number is too large,
which means the nudging term includes all the longer waves
under the selected wave numbers, the results of spectral
nudging would approach grid nudging, because the results
are overly forced at the smaller scale. If the wave num-
ber is too small, the long waves included in the nudging
term may not be able to represent enough energy to force
the RCMs to replicate the large scale features. Here, we
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Fig. 4. Comparison of monthly averaged cloud fraction (or cloud water) and monthly accumulated precipitation using WRF and NARR data
for July 2009.(a), (b) NARR; (c), (d) WRF simulation using spectral nudging;(e), (f) WRF simulation using grid nudging;(g), (h) WRF
simulation using “grid no gq”.
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Fig. 5. Time series plots of similarity for water vapor mixing ratio at 500 hpa, 2000 km and 300 km scales for July 2009.(a) similarity
between NCEP/NCAP and downscaling results by WRF by grid and spectral nudging;(b) similarity between NCEP/NCAR and NARR data
set.

Fig. 6. Time series plots of similarity of horizontal kinetic energy at 850 hpa for January 2010 by spectral nudging with different wave
numbers.(a) similarity between NCEP/NCAP and downscaling results by WRF at 2000 km scale;(b) similarity results at 300 km scale.

Table 3. Summary of the Temporal Mean and Standard Deviation
(SD) of the Similarity of Horizontal Kinetic Energy at 850 hpa of
January 2010 at Different Scales.

wave number at the Scale of 2000 km at the Scale of 300 km

Mean SD Mean SD

m= n= 2 0.98 1.6×10−2 0.90 4.5×10−2

m= n= 3 0.99 0.7×10−2 0.93 2.8×10−2

m= n= 6 1.00 0.1×10−2 0.98 0.8×10−2

conduct a sensitivity test to investigate how the fields of in-
terest respond to changes in wave numbers.

In our initial tests, the wave numbers for spectral nudging
were 3 in both zonal and meridional directions. Here, wave
number sets ofm= n= 2 andm= n= 6 are tested as ap-
plied to the four episodes simulated and the similarity at the
large and small scales are investigated. For the horizontal
kinetic energy, at both large and small scales (Fig. 6), when
the wave numbers decrease, the ability of spectral nudging
to follow large scale features becomes weaker as the similar-
ity markedly decreases; while when wave numbers increase,

the performance of spectral nudging approaches grid nudg-
ing by giving high similarity values, particularly at the small
scale. As the wave numbers increase, the variability and
difference between large and small scales becomes smaller
(Table 3). It is critical to choose the wave numbers which
are able to generate reasonable difference between different
scales and variability at the scales of interest. Therefore, the
results summarized in Table 1 indicate the choice of wave
numbersm= n= 3 is an appropriate choice for the studied
case here. The results of sensitivity test also suggest that sim-
ilarity at the small scale is more sensitive to wave number
choice than that at the large scale (Table 3). As wave num-
ber increase, the loss of variability at small scales is larger
than the increase of consistency at large scales. Therefore,
smaller wave numbers are preferred as long as the features at
the large scales of interest can be captured, in order to reduce
the loss of variability at small scales. The choice of wave
number had little impact on temperature and water vapor.
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4 Conclusions

The performance of two nudging techniques, grid and
spectral nudging are examined in the downscaling of
NCEP/NCAR data with the Weather Research and Forecast-
ing (WRF) Model. The simulations are compared against
the results with North America Regional Reanalysis (NARR)
data set at different scales of interest using the concept of
similarity.

Compared with grid nudging, spectral nudging provides a
better balance between the need to keep RCM results consis-
tent with the large scale driving forces that would be provided
by GCMs, and at the same time, allows more variance added
at the smaller scales. The performance of spectral nudging
is very good for temperature and horizontal kinetic energy
at 850 hpa and 500 hpa. In addition, the improvement at the
small scale allowed by spectral nudging is not only reflected
in spatial variability, but temporal variability as well.

In order to take the advantage of spectral nudging, appro-
priate wave numbers should be chosen based on a thorough
sensitivity analysis. The results of sensitivity tests show that
for the case studied here, the choice of wave numbers set at
m= n= 3, or wave lengths of about 2000 km is well sup-
ported. The choice of wave numbers is determined by the
size of modeling domain and the scale of driving forces that
RCMs should retain. Results suggest that the similarity at the
small scale is more sensitive to wave numbers than that at the
large scale, and as wave numbers increase, spectral nudging
performs more similarly to grid nudging and begins to over-
force the RCMs results at the small scale. The sensitivity
tests also imply that many of the biases of large-scale modes
are associated with resolved small-scale features, and only
spectral nudging can help to alleviate the biases while keep-
ing the resolved small-scale features to a reasonable extent.
In addition, much of the small scale variability may not have
a significant impact on large scale features
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