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Abstract. We performed an atmospheric inversion of the
CO2 fluxes over Iowa and the surrounding states, from
June to December 2007, at 20 km resolution and weekly
timescale. Eight concentration towers were used to constrain
the carbon balance in a 1000×1000 km2 domain in this agri-
cultural region of the US upper midwest. The CO2 concen-
trations of the boundaries derived from CarbonTracker were
adjusted to match direct observations from aircraft profiles
around the domain. The regional carbon balance ends up
with a sink of 183 Tg C±35 Tg C over the area for the period
June–December, 2007. Potential bias from incorrect bound-
ary conditions of about 0.55 ppm over the 7 months was cor-
rected using mixing ratios from four different aircraft profile
sites operated at a weekly time scale, acting as an additional
source of uncertainty of 24 Tg C. We used two different prior
flux estimates, the SiBCrop model and the inverse flux prod-
uct from the CarbonTracker system. We show that inverse
flux estimates using both priors converge to similar posterior
estimates (20 Tg C difference), in our reference inversion, but
some spatial structures from the prior fluxes remain in the
posterior fluxes, revealing the importance of the prior flux
resolution and distribution despite the large amount of atmo-
spheric data available. The retrieved fluxes were compared
to eddy flux towers in the corn and grassland areas, revealing
an improvement in the seasonal cycles between the two com-
pared to the prior fluxes, despite large absolute differences
due to representation errors. The uncertainty of 34 Tg C (or

34 g C m2) was derived from the posterior uncertainty ob-
tained with our reference inversion of about 25 to 30 Tg C
and from sensitivity tests of the assumptions made in the in-
verse system, for a mean carbon balance over the region of
−183 Tg C, slightly weaker than the reference. Because of
the potential large bias (∼24 Tg C in this case) due to choice
of background conditions, proportional to the surface but not
to the regional flux, this methodology seems limited to re-
gions with a large signal (sink or source), unless additional
observations can be used to constrain the boundary inflow.

1 Introduction

Atmospheric inversions have been used to quantify the ex-
changes of CO2 between the atmosphere and the continents,
and the atmosphere and the oceans, each of them contribut-
ing to a significant part of the global carbon cycle (Tans et al.,
1990; Francey et al., 1995; Bousquet et al., 2000; Chevallier
et al., 2010). Uncertainties and variability amongst studies
remain large (Gurney et al., 2002), especially for the conti-
nental surface exchanges that are highly variable in time and
space and closely related to land use change, climate vari-
ability and ecosystem responses to environmental changes
(Canadell et al., 2007). The misrepresentation of atmo-
spheric processes in the transport models (Baker et al., 2007;
Stephens et al., 2007), the lack of available measurements

Published by Copernicus Publications on behalf of the European Geosciences Union.
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around the globe responsible for the ill-conditionning of the
problem at large scales (Enting, 2002), and the errors of
representation at the scales they have been performed (Geels
et al., 2007), limit the potential of the method.

Several studies attempted to reduce these major sources
of uncertainties by improving temporal and spatial resolu-
tions, from global to continental scales solving for homoge-
neous flux areas called ecoregions (Peters et al., 2007; But-
ler et al., 2010), or pixel-based fluxes (Carouge et al., 2010;
Gourdji et al., 2010; Schuh et al., 2010), and from continental
to regional domains (Lauvaux et al., 2009a; Göckede et al.,
2010a).

Refinement of the resolution requires the deployement of
high density measurement networks in order to solve for the
increasing number of unknowns in the state vector. Past cam-
paigns were limited to a few surface tower sites or flights
for a short period of time as CERES (CarboEurope Regional
Experiment Strategy) (Dolman et al., 2006) or for very lim-
ited areas as in the bay of Valencia, (i.e. during the RECAB
campaign,Pérez-Landa et al., 2007). Second, the bounded
simulation domain becomes an important limitation if not
well-informed of the CO2 inflow and requires the accurate
knowledge of concentrations representing the far field influ-
ence (Rödenbeck et al., 2009). The boundaries require then
additional observation datasets to inform the system about
potential biases due to incorrect carbon mass in the air flow.
Third, as inverse methods rely on a sufficiently good prior
flux estimate, the performances of terrestrial ecology models
need to be enhanced by finer vegetation description, espe-
cially its phenology, and a good description of the diurnal
variability (Corbin et al., 2008; Gourdji et al., 2010). Finally,
the mesoscale atmospheric transport models, even if better
able to simulate the atmospheric dynamics driving hourly
concentrations compared to general circulation models (Ah-
madov et al., 2007), are still affected by transport errors from
parametrizations of the Planetary Boundary Layer dynamics
in particular (Gerbig et al., 2005; Sarrat et al., 2007a).

More recent studies have shown the potential of the at-
mospheric inversion methodology at the mesoscale (Lauvaux
et al., 2009a). The evaluation of the inverse fluxes was lim-
ited to 18 days at 8km resolution, but this study demonstrated
for the first time the improvement of the fluxes in time and
space against direct flux measurements from aircraft (Gioli
et al., 2004). Over longer timescales, relatively small biases
at short time scales become increasingly important leading
to large final uncertainties at the annual time scale (Schuh
et al., 2010). Even if the use of high temporal frequency
data increases the amount of information in the system (Law
et al., 2003), the flow-dependence of the error structures in
the observation space increases with data density too, shown
through model error propagation (Lauvaux et al., 2009b) or
variograms of model-data mismatch (Gerbig et al., 2003b).
Finally, flux errors from ecosystem models used to generate
prior fluxes can be correlated, but studies at different time
scales and using different models revealed a variety of spatial

error correlation structures from large (Peylin et al., 2005) to
very small (Chevallier et al., 2006) length scales.

In this study, we developed a mesoscale inversion at 20 km
resolution generating inverse fluxes from June (start of the
measurement campaign) to December 2007, at a weekly time
scale (7.5 days), over the Mid Continent Intensive (MCI) do-
main, including Iowa and the surrounding states, known as
the “Corn Belt” area. This unique instrumental deployement
of concentration towers (Miles et al., 2010) and the presence
of the National Oceanic and Atmospheric Administration
(NOAA) aircraft profile sites (Sweeney et al.(2011), http://
www.esrl.noaa.gov/gmd/ccgg/aircraft/index.html) enable the
most data-constrained regional inversion. The abundance of
crops in the area (corn, soybean, wheat) includes C4 and C3
vegetation types, with a contribution of 20 to 40 % by C4
crops on the growing season gross photosynthetic CO2 ex-
change (Griffis et al., 2010). The apparent atmospheric sink,
due to the prevention of the decomposition of crop material
after harvest, is one of the largest contributions to the overall
US carbon budget annually (West et al., 2011), even though
this carbon is released by livestock and humans elsewhere in
the country during the following year. The strength of the
atmospheric signals and the observation network are optimal
conditions to test the potential of an atmospheric inversion at
the regional scale.

We first describe the system and the different models used
to generate the transport fields used to link concentrations to
fluxes and their related uncertainties (cf. Sect.2). Then we
estimate the inverse fluxes using two different prior fluxes
over the area, one being the direct results of the vegetation
model SiBcrop (Lokupitiya et al., 2009) and second the prod-
uct from the CarbonTracker inverse system (Peters et al.,
2007), that we compared to several eddy flux sites over corn
and grass ecosystems (cf. Sect.3). We ran several sensitivity
tests and demonstrate the importance of the different compo-
nents of the system, especially the assumptions made in the
error covariance matrices, the potential errors due to bound-
ary conditions, and tested the potential of the system in a
more general case. Finally, the remaining uncertainties and
the potential of the inverse system are discussed in Sect.4.

2 The inverse system

2.1 Analytical inversion framework

The inverse system used in this study is an analytical inver-
sion framework (Tarantola, 2004) correcting for temporally
averaged fluxes over 7.5 day periods, separated into the av-
eraged daytime (6 a.m. to 6 p.m.) and nighttime (7 p.m. to
5 a.m.) components at 20 km resolution, and boundary mix-
ing ratios. We solved the inverse problem using the classical
matrix solution by minimizing the cost functionF defined as
follows:

F =
1

2
[(x −x0)

T B−1(x −x0)+(Hx −y)T R−1(Hx −y)] (1)
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wherex are the unknown flux vector we invert for,x0 the a
priori flux estimate,y the observations,H the influence func-
tions, andR andB the uncertainty covariance matrices of the
observations and the fluxes respectively. The control vector
x includes the surface fluxes and the pre-processed bound-
ary mixing ratios, and the influence functionH describes the
relationship between the observed mixing ratios, the surface
fluxes, and the pre-processed boundary mixing ratios. Mini-
mizing the equation with respect tox yields:

x = x0+BH T (HBH T
+R)−1(y −Hx0) (2)

We can define the posterior error covarianceA for sources
given by the following expression:

A−1
= B−1

+H T R−1H (3)

For the boundaries, we defined two different time frequen-
cies that are applied to the different boundary condition time
series for each tower: hourly, and every 90 h, as explained in
Sect.2.5.3. In our inversion, the contributions of the bound-
ary conditions to the modeled concentrations (referred as
boundary conditions) are defined for each tower separately
and only vary in time (i.e. no spatial description of the inflow
in the inversion). The initial boundary condition is computed
in the direct simulation and corresponds to the influence of
the boundaries at the observation location. The spatial com-
ponent is also considered during the pre-processing using
the aircraft data and the influence functions (one for each
boundary) to correct for biases. In the inversion, we adjust
the overall inflow for each tower and at each time step using
the surface tower mixing ratios but no explicit adjoint model.
The final state vector dimension, on a grid of 980×980 km
at 20 km resolution (49 grid points in each direction) and
for two components (nighttime and daytime), ranges from
49×49×2+2×8= 4818 (90 hour frequency at the bound-
aries, or 2 unknowns per observation sites over 180 h) to
49×49×2+180×8= 6242 (hourly frequency at the bound-
aries, or 180 unknowns per tower). The observations are at
the hourly frequency (180×8 = 1440 observations per 7.5
days). One of our inversion setups includes observation er-
ror correlations depending on the time of the day, but not our
reference setup. The transport error correlations were defined
at similar scales but not for the transport model used in this
study. As a conservative choice, error correlations were used
only in the sensitivity experiments (cf. Sect.3.6). The sys-
tem is more constrained than past studies thanks to the large
amount of data over the domain (1440 atmospheric observa-
tions versus 4818 to 6242 unknowns). Inverse fluxes over
7.5 day periods are decorrelated from one period to the next,
considering the low temporal correlations in daily averaged
flux errors over few days (Chevallier et al., 2006).

2.2 Mixing ratio towers over the MCI

We used hourly CO2 mixing ratios from seven towers all lo-
cated in the Mid Continent Intensive Experiment area (Miles

Fig. 1. The Mid Continent Intensive domain with the dominant plant functional types and the
observation locations including the concentration tower sites used in the inversion (Ring2 and
NOAA towers), the boundary conditions (NOAA aircraft profiles), and the eddy-flux sites used
to evaluate the posterior fluxes
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Fig. 1. The Mid Continent Intensive domain with the dominant
plant functional types and the observation locations including the
concentration tower sites used in the inversion (Ring2 and NOAA
towers), the boundary conditions (NOAA aircraft profiles), and the
eddy-flux sites used to evaluate the posterior fluxes.

et al., 2010), part of the North American Carbon Program
(Ogle et al., 2006) (cf. Fig. 1). Five of them were deployed
from 2007 to 2009 as additional sites for inversion purposes,
on ∼100m high towers, located in and out of the corn belt
area: Centerville, Mead, Round Lake, Galesville, and Ke-
wanee (Fig.1). These five sites were equiped with cavity
ring-down analyzers (Crosson, 2008), calibrated daily, and
related measurement errors are 0.2–0.3 ppm for the hourly
averages (Richardson et al., 2011). One Ameriflux site, Mis-
souri Ozarks (Gu et al., 2006), on a 40 m tower was calibrated
during the period to provide an additional observation site
during our study period. Finally, two NOAA tall tower sites
were also available in the area: Park Falls (LEF), and West
Branch (WBI). We used 100m sampling heights from all the
sites to remain consistent. Compared to previous regional
campaigns, the large number of observation sites offers the
unique opportunity to constrain the regional carbon balance
and assess the full potential of such methodology. Mixing
ratio data were recorded every two minutes, and averaged to
hourly resolution for this study.

2.3 The prior fluxes and their associated errors

Two prior flux estimates are used in this study: the first
is the direct simulation of CO2 Net Ecosystem Exchange
(NEE) with the SiBcrop vegetation model (Lokupitiya et al.,
2009), and the second is the optimized flux estimate from the
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CarbonTracker inverse system (Peters et al., 2007). The CO2
fluxes of the first prior were simulated using the Simple Bio-
sphere model including the recent developments of crop phe-
nology and physiology (SiBcrop) at 10 km resolution and at
hourly time step, forced by the NARR meteorological renaly-
sis product (North American Regional Reanalysis). This ver-
sion of SiB (Lokupitiya et al., 2009) includes a parametriza-
tion of the Leaf Area Index (LAI) and the fraction of Photo-
synthetically Active Radiation (fPAR) for crops that showed
better agreement in comparison to eddy flux sites than pre-
vious NDVI-derived phenology. The allocation of carbon to
the different pools (leaves, roots, stems, flowers,...) is esti-
mated on a daily basis, the leaf pool being used to estimate
the LAI, and the crop harvest takes place after maturity of
the plants. In each pixel, three fluxes corresponding to the
three dominant vegetation types are computed. The total flux
corresponds to the sum of the three fluxes weighed by their
relative vegetation fraction. The second prior fluxes used in
this study are the inverse flux estimates from CarbonTracker
2009 system (CTv09) for the year 2007, computed at a 1◦ by
1◦ resolution, and a 3 hourly time step over North America
(Peters et al., 2007). The CarbonTracker inverse system uses
atmospheric mixing ratios from the NOAA global network of
surface stations to optimize surface fluxes over large ecore-
gions. Compared to the present inversion system, the spatial
patterns in the inverse fluxes are prescribed for these ecore-
gions to compensate for the lack of observational constraint.
The initial fluxes used in the CarbonTracker inverse system
comes from the Carnegie-Ames Stanford Approach (CASA)
biogeochemical model1, which lacks a description of applied
phenology that is specific to crops. A linear interpolation
was applied to generate hourly fluxes. Most of the towers
used in our inversion are not currently used in CTv09, only
WBI and LEF. These two prior fluxes were used to investi-
gate the importance of the spatial and temporal distribution
of the prior fluxes on the final retrieved estimates. We also
assess the degree to which the regional cumulative flux will
converge given very different priors (Sibcrop with a June-
December balance of 109 Tg C sink, and CTv09 final product
with 198 Tg C sink) over the region. We also investigated the
robustness of the system by adding substantial biases in the
prior fluxes in summer and winter (cf. Sect.4).

We quantified prior flux uncertainties based on the weekly
flux model-data mismatch at several locations within the do-
main (cf. Sect.2.6). We first defined the standard devia-
tions as the maximum difference observed during the year
between the weekly averaged modelled and observed NEE
for the three most represented vegetation types of the region
(corn, soybean, and grassland). This maximum model-data
mismatch is then normalized for every week following the
seasonal variability of the absolute fluxes (from 1 to 0.2), to
define a weekly standard deviation. The combination of the
observed seasonal cycle and the maximum model-data mis-

1http://geo.arc.nasa.gov/sge/casa/

match limits representation errors between site-level obser-
vations and grid point modeled fluxes. The final standard
deviations represent 30 to 50 % of the weekly net fluxes,
and 40 to 70 % of the total mismatch once projected in the
observation space. The uncertainty assessment was finally
controlled by computing the reducedχ2 value. Depend-
ing on the plant functional type (PFT), the maximum val-
ues for the standard deviations range in the growing season
from 5 µmol m−2 s−1 for grassland to 10 µmol m−2 s−1 for
corn, and 1 to 5 µmol m−2 s−1 during fall and winter. Er-
ror flux correlations are based on the vegetation cover map
combined with an averaged correlation length. We defined
the ecosystem spatial error correlation as the minimum of
the vegetation fraction for one given ecosystem in the two
pixels (following the SiBcrop ecosystem classification, from
Lokupitiya et al., 2009), usually from 0.4 to 0.8, as follows:

Ceco1
m,n = min(f eco1

m ,f eco1
n ) (4)

with C
eco1
m,n the correlation coefficient between the pixelm

and the pixeln for the ecosystem type eco1, andf eco1 the
fraction of vegetation for eco1 in one given pixel. We consid-
ered only the three major ecosystem types of each pixel. For
example, two pixels including respectively 25 % and 60 % of
corn will end up with.25 correlation coefficient. We com-
bined this ecosystem-based error correlation with a distance-
based error correlation (exponentially decaying correlation
in space with a correlation lengthL) to create the final prior
error correlation tensor as inLauvaux et al.(2009b) by:

C′
= (C

1/2
ecoC

1/2
dist)(C

1/2
ecoC

1/2
dist)

T (5)

with the associated correlation tensors,Ceco for the ecosys-
tem component andCdist for the distance component, and
C′ the correlation matrix in the control variable space. The
definition of the correlation lengthL in Cdist, based on previ-
ous studies, is highly uncertain. For example, at the monthly
timescale,Chevallier et al.(2006) showed no significant spa-
tial correlations in the model-data mismatch. Other studies
have used large error correlation lengths (Peylin et al., 2005;
Schuh et al., 2010), with an isotropic distance-based distri-
bution (Carouge et al., 2010). In the current inverse sys-
tem, several tests showed that correlation lengths of more
than 50 km showed very similar results in terms of inverse
fluxes, primarily due to the large observational constraint on
the fluxes. Past studies estimated clear spatial structures for
crops at short distances (≤100 km) (Lauvaux et al., 2009a).
We decide here to useL = 300 km as correlation length, de-
creased by the combination of ecosystem-based correlations.
As a comparison, the overall uncertainty on the prior is sim-
ilar to L = 100 km without considering the ecosystem influ-
ence. The choice of the error correlation length does impact
the posterior uncertainties and further investigations will be
performed in forthcoming studies. The prior error variances
were finally slightly modified to adjust the ratio between the
observational constraint and the prior errors. We used the
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reducedχ2 value to adjust the flux error variances (Kamin-
ski et al., 2001). However, the adjustment of the flux errors
remains lower than 10 % compared to the initial estimates.

2.4 Influence functions and atmospheric transport
model errors

2.4.1 Atmospheric transport model WRF-CHEM

The atmospheric transport model used in this study is the
Weather Research Forecast model (Skamarock et al., 2005),
including the chemistry module slightly modified here for
CO2 (referred to as WRF-ChemCO2). The simulation do-
main is centered on Iowa, covering 1000 km by 1000 km
at a 10 km resolution (Fig.1). The atmospheric boundary
layer scheme used is the Mellor-Yamada-Nakanishi-Niino
(MYNN) 2.5 scheme (Nakanishi and Niino, 2004) coupled
to the Monin-Obukhov (Jancic Eta) scheme for the surface
physics. The atmospheric vertical column was described by
60 levels, with 40 levels in the lower 2 km, the first level
being at about 20 m above ground. The NOAH land surface
model (Chen and Dudhia, 2001) was used to simulate the sur-
face energy balance, and the National Centers for Environ-
mental Prediction (NCEP) Eta/NAM model analysis product
at 40 km resolution was used for the initial and boundary me-
teorological and surface conditions.

2.4.2 Lagrangian particle dispersion modeling

The influence functions, representing the relationship be-
tween concentrations at the tower locations and their related
flux footprints at the surface, were simulated with the La-
grangian Particle Dispersion Model fromUliasz(1994). The
mean winds (u,v,w), potential temperature, and turbulent ki-
netic energy from the WRF-Chem CO2 simulations are used
as input variables each 30 min to drive the particle motions
from the receptor locations (receptor oriented framework),
as described inLauvaux et al.(2008). 1800 particles are re-
leased incrementally at equal intervals over one hour periods
to describe the influence functions for every hourly observa-
tions. We also ran an additional Lagrangian simulation with
a limited number of particles (180 per hour) to describe the
boundary influence. In this study, we used the boundary in-
fluence functions to relate every observations with one of the
four cardinal directions, in and above the planetary bound-
ary layer (PBL). The method is described in Sect.2.5. The
final resolution of the inversion was degraded to 20 km at the
surface for computational efficiency of the system, which re-
mains adequate considering the spatial dimensions of the flux
patterns in the area.

2.4.3 The MCI 2007 aircraft campaign

For the quantification of vertical transport errors, we used
aircraft observations, mainly vertical profiles of CO2 concen-
trations, that were measured using a twin-engine Beechcraft

Duchess (Garman et al., 2006) during summer 2007 over
Iowa (Martins et al., 2009). The vertical profiles ranged
from the surface to the lower free troposphere (∼3 km a.g.l.)
with an approximate ascent/descent rate of 2.5 m s−1. A non-
dispersive infrared differential absorption spectrophotometer
was used to detect dry mole fractions of CO2 every second,
with an uncertainty of the measurements of±0.3 ppm (Mar-
tins et al., 2009). In-flight calibrations were conducted every
3 min using a reference gas standard (386.12 ppm) prepared
at the NOAA Earth Systems Research Laboratory and trace-
able to the World Meteorological Organization Central Cal-
ibration Laboratory for CO2 (Zhao et al., 1997). Between
15 June to 25 June 2007, nine flights were performed in cen-
tral Iowa, which corresponds to one to three flights every two
days on average. Six flights including long transects and ver-
tical profiles were used in this study to evaluate the atmo-
spheric model performances.

2.4.4 Atmospheric transport model errors

We estimated the transport model errors in four different
steps: (1) we evaluated the WRF modeling performance by
comparing the simulated concentrations to observations from
nine aircraft transects between June 17 and 25 June 2007
(with six flights presented here); (2) we avoided inconsis-
tencies in the Lagrangian model simulation by removing ob-
servations showing large differences between the direct CO2
concentrations from WRF-ChemCO2 and the backward con-
centrations from the LPDM; (3) we computed the aggrega-
tion errors and adjoint model errors using the standard devi-
ation of the difference between the direct WRF mixing ratios
and the backward LPDM mixing ratios over each week; and
(4) we defined for one setup of our sensitivity experiment the
error correlations in the observation error covariance matrix
from previous studies based on ensemble simulations (Lau-
vaux et al., 2009b).

We describe here the four steps in more detail. First, we
evaluated the simulated PBL heights by comparing the CO2
vertical distributions to observed CO2 concentations from
nine aircraft flights that occured between the 17 to 25 June
2007 (Martins et al., 2009). The aircraft campaign consisted
of several transects located in central Iowa and encompassed
variable altitudes, ranging from a few hundreds of meters
above ground level (in the convective PBL) to a few thousand
(in the free troposphere). We present results for six flights
of the campaign with long transects and repeated vertical
profiles. The PBL height errors are diagnosed from these
flights for transition periods (morning to early afternoon) and
well-mixed conditions (midday to late afternoon), and con-
verted into mixing ratio uncertainties. Results are presented
in Sect.3.

Second, we compared the CO2 concentrations from the
direct simulation (WRF-ChemCO2) to the backward gener-
ated concentrations from LPDM for the 8 towers over the 7
months. Both simulations are coupled to the Sibcrop fluxes at
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10 km resolution. When the difference is larger than 2σ , the
standard deviation in the observation error covariance matrix
is increased such that the concentration is ignored.

Third, we estimated the potential biases between the two
simulated concentrations. The standard deviation is added to
the initial one (from the previous step). This part includes the
errors in the adjoint and due to aggregation of the fluxes from
10 km to 20 km. The results and the impacts are presented in
Sect.3.

Finally, we compared two estimates of temporal error cor-
relations in the observation error covariance matrix. Because
of the continuous flow of the atmosphere, errors affecting
hourly observations are propagated through time and space.
Lauvaux et al.(2009b) showed that spatial correlations are
significant below a distance of 150 km between observation
locations when using hourly observations, corresponding to
a correlation length of 30 to 40 km. Similarly,Gerbig et al.
(2003a) found an exponentially decreasing correlation length
of about 40 km from variograms of aircraft measurements.
So we have not included any spatial correlation in the ob-
servation errors in regard of distances between towers in the
present network (>150 km). But hourly observation errors
are affected by temporal correlations. We used a descrip-
tion of the temporal error correlations for each hour of the
day based on a previous ensemble of perturbed model sim-
ulations (Lauvaux et al., 2009b). For each hourly observa-
tion time step, the correlation coefficients with the following
hours are prescribed. These correlation functions correspond
to the propagation of errors from any hour of the day to the
following hours. For example, large correlation coefficients
relate one hour in the afternoon to the next ones (up to 0.6
for the first following hours) to lower values during the night
(less than 0.4 for the first following hours).Lauvaux et al.
(2009b) showed the conservation of the transport model er-
ror structures during the afternoons, whereas transitions to
different stability conditions (mornings and late afternoons)
tend to dissipate these structures. In our case, the error corre-
lation functions are defined over 12 h (linking for example er-
rors at 2 p.m. with the 12 following hours), or less if the cor-
relation coefficient becomes negative (e.g., 8 p.m. error cor-
relation function equals zero at 10 p.m.), meaning that the er-
ror structures disappear rapidly when the stability conditions
are changing. Here, we defined our reference case with no
temporal correlation because the correlation functions were
computed with a different mesoscale model (MesoNH in this
case), and over a different region. Though, we compare the
impact of these error correlations in Sect.3.6 to our refer-
ence inversion that assumes no temporal correlation to quan-
tify their relative importance compared to other components
of the system.

2.5 Boundary conditions and aircraft observations

The modeled CO2 mixing ratios can be decomposed in two
seperate contributions: the local surface fluxes within the

modeling domain, and the boundary conditions correspond-
ing to the far field influence, i.e. the contribution of the CO2
inflow from the outer domain to the observed concentrations.
We describe in this section the aircraft measurements used
to correct initial model outputs, the pre-processing of the
boundary mixing ratios to reduce the potential biases, and
finally the estimation of their associated uncertainties. This
pre-processing of the boundary conditions using aircraft flask
data is done independently, before the inversion. The fi-
nal corrected boundary conditions will be used as prior in-
flow in the flux inversion. Previous studies at the regional
scale showed limited impact from the boundaries because of
the oceanic influence and the orography, forcing the scale of
the atmospheric processes to mesoscale circulation patterns.
These campaigns were in summer, over short time periods (a
few weeks), with little changes in the far-field influence com-
pared to large local vegetation signals (Pérez-Landa et al.,
2007; Sarrat et al., 2007b). Over longer time scales, sys-
tematic errors become increasingly important and need to be
corrected (Göckede et al., 2010b).

2.5.1 Weekly aircraft data from NOAA

In this study, the flat terrain and the absence of orography
around our domain allow large circulation patterns to af-
fect the background air concentration through seasonal cir-
culation patterns, longitudinal continental jets, and latitu-
dinal conveyor systems as fronts pass (Wang et al., 2007).
Here, aircraft data, and more specifically vertical profiles,
were used to correct for biases and misrepresentation of the
inflow. We used weekly flights operated by the Carbon
Cycle Greenhouse Gases Aircraft Project (Sweeney et al.,
2011) run by the NOAA’s Earth System Research Labora-
tory (NOAA/ESRL). Four sites were selected to represent
our four simulation boundaries: the Airborne Aerosol Ob-
serving near Bondville, Illinois (AAO), Beaver crossing in
Nebraska (BNE), Homer in Illinois (HIL), and Park Falls in
Wisconsin (LEF) (cf. Fig.1). We compare flask data to mod-
elled mixing ratios at the boundaries, for each week of the
7 months, and compute a correction which we apply to the
inflow boundaries to remove or at least decrease biases by
pre-processing of the boundary concentrations.

2.5.2 Pre-processing of the boundary CO2
concentrations

The boundary conditions are defined in two steps: first, we
compute time series at each tower location. Second, these
time series are used in the inversion system. But before
adding these time series to the state vector in the inversion,
we removed systematic errors with the help of aircraft mea-
surements, and computed their associated uncertainties. The
pre-processing of the boundaries helps to limit potential bi-
ases affecting boundary conditions.
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Four aircraft profile sites were selected to correct for po-
tential biases in the CTv09 mixing ratios. We attributed each
of the four aircraft profile sites to one or two of the four car-
dinal boundaries. The choice of four cardinal boundaries is
due to the lack of extensive datasets in space. We limit our
correction here to the mean wind direction represented by
the four boundaries of our domain. Two of the sites (AAO
and HIL, cf. Fig.1) located in the South East of the domain
were both used to assess the South and East boundary cor-
rections, LEF for the North boundary, and BNE for the West.
The framework is presented in Fig.2. First, we compared
the aircraft profile mixing ratios to the modeled CTv09 mole
fractions integrated over two layers: one PBL contribution
and one free tropospheric contribution. The PBL height is
determined with the LPDM particle distribution over the col-
umn, defined by higher densities of particles within the PBL,
directly related to the TKE profile from WRF. Second, we
computed the model-data mismatches (North, South, East,
West, with one PBL and one free tropospheric values) at the
exact time of the flights, and averaged them if several flights
were performed during the week. These weekly model-data
mismatches represent the systematic errors, and are used to
correct the initial boundary conditions from CTv09. Finally,
we have to apply the corrections at the boundaries on the time
series computed at the tower locations. At each time step, a
correction is applied on the value of the time series depend-
ing on the origin of the inflow. Over a week, hourly ober-
vations are influenced by one or more boundaries (following
the main wind direction changes). We identified the inflow
origin with the particle distribution at the boundaries of the
domain. The particles are counted over each week on the
two levels and for each boundary. The selected mismatches
were then removed from the initial CTv09 inflow time series
depending on the boundaries influencing the tower mixing
ratios. These corrected values were then included in the in-
version system as additional unknowns, described hereafter
(cf. Sect.2.5.3). The results are presented in Sect.3.3.

2.5.3 Optimization of the boundary CO2 concentrations
in the inversion system

The processed boundary conditions are now treated as ad-
ditional unknowns in the inverse system, decreasing slightly
the observational constraint by increasing the number of el-
ements in the state vector (representing both the fluxes and
the boundaries). In the system, we attribute part of the atmo-
spheric signals to the boundaries following the uncertainties,
i.e. no transport model is used to attribute atmospheric sig-
nals to the inflow at this step. A transport model was used
previously to estimate systematic errors and relate the obser-
vations with the boundaries. Here, we only consider the in-
flow as an uncertainty instead of trying to optimize it without
the help of additional observations.

The temporal window for the correction of the bound-
ary conditions corresponds to the temporal variability of the

  

Boundary condition time series
at the site locations 
(WRF simulation using CTv09)

NOAA aircraft profiles
(4 sites, flasks)

CTv09 mixing ratios
at the boundaries

Attribution of the corrections
using LPDM particle distribution

Corrected tine series of
Ctv09 mixing ratios at the 
site locations

Boundary time series
uncertainties
(model­data mismatch)

CO2 mismatch at the
boundaries (corrections)

Atmospheric inversion

Fig. 2. Schematic framework of the boundary conditions including the mixing ratio pre-
processing and the estimation of the uncertainties
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Fig. 2. Schematic framework of the boundary conditions including
the mixing ratio pre-processing and the estimation of the uncertain-
ties.

CO2 inflow. We chose two different temporal windows to
invert for the boundaries at each tower: one hour, and 90
hours. The dimensions increase with 2×8= 16 additional
unknowns when using 90-h averaged boundary mixing ratios
or 180×8= 1440 additional unknowns with hourly bound-
ary mixing ratios. Hourly changes correspond to large gradi-
ents, whereas several days represent only synoptic changes.
Theoretically, longer time windows imply longer temporal
correlations in the boundary conditions. The implicit defini-
tion of the correlations in the state vector errors implies more
than the physical duration of events but also the capacity of
the system to invert for biased concentrations. 90 h (about
four days) corresponds to the length of synoptic events af-
fecting the inflow concentrations. In our study, we estimated
the boundary condition uncertainties based on the standard
deviations of the model-aircraft data mismatch, ranging from
2 to 4 ppm at the hourly time step, and from 0.5 to 1 ppm on
90 h-averages.

Depending on the time of the day, the combination of the
performance of the mesoscale model, the reproductability of
the concentrations by the Lagrangian model, and the bound-
ary condition uncertainties, the inverse system will distribute
the atmospheric signals amongst the different components
(nighttime and daytime surface fluxes, and boundary concen-
trations). We discuss in Sect.4 the impact of these compo-
nents and their related uncertainties associated on our final
CO2 balance.

2.6 Evaluation of the inverse fluxes: Eddy-flux sites
over the MCI

We used observed Net Ecosystem Exchange (NEE) measure-
ments from six different eddy-covariance flux sites to evalu-
ate the temporal patterns of the inverse analysis. Four are
located in the corn area: Bondville (Meyers and Hollinger,
2004), Rosemount 21 and 19 (Baker and Griffis, 2004), and
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Fig. 3. CO2 concentrations observed during several flights of the ALAR campaign for June
15, 17 and 19 (on the left) compared to WRF-ChemCO2 concentrations using SiBcrop fluxes
(=before flux optimization) (on the right). Colors indicate the mixing ratio range in ppm. The
top of the PBL is indicated by the large vertical gradients from low to high mixing ratios in the
free troposphere (green dashed line). The differences between observed and simulated PBL
heights are large during transition periods (mornings), overwhelming signals during nighttime,
but are low during daytime (afternoons), ranging from 10 to 15% of the PBL height.

43

Fig. 3. CO2 concentrations observed during several flights of the ALAR campaign for 15, 17 and 19 June (on the left) compared to WRF-
ChemCO2 concentrations using SiBcrop fluxes (=before flux optimization) (on the right). Colors indicate the mixing ratio range in ppm.
The top of the PBL is indicated by the large vertical gradients from low to high mixing ratios in the free troposphere (green dashed line).
The differences between observed and simulated PBL heights are large during transition periods (mornings), overwhelming signals during
nighttime, but are low during daytime (afternoons), ranging from 10 to 15 % of the PBL height.

Mead (with three sites on irrigated, rainfed, and irrigated
with crop rotation ecosystems) (Verma et al., 2005), and two
in grassland areas: Brookings and Fermi prairie sites (Mata-
mala et al., 2008), all part of the Ameriflux network1 (Fig.1).
We focused our evaluation on the flux sites whose dominant
landcover was corn or grassland in order to gauge the suc-
cess of the inverse fluxes over the most represented ecosys-
tems. The four eddy flux sites over corn are reliable indica-
tors of the temporal variability but representation errors re-
main large when compared to our 20 km resolution inverse
product. The ecosystem variability in one given grid point
at 20 km resolution is far from negligeable. The fraction of
corn in one pixel is between 40 to 60 % in the corn belt area
(referred here as corn-dominated pixels). Eddy flux measure-
ments indicate larger uptake during the growing season, corn
being the most active plant in term of photosynthetic activity
at this time of the year (Verma et al., 2005). The uptake is
larger by at least a factor of two during the maximum growth
period (July) compared to other plant types. We used the sea-
sonal cycle and the week-to-week variations to evaluate the
temporal corrections in the inverse fluxes. We assume that
the observed variability in the eddy-flux measurements is ro-
bust and well-correlated with larger scale variability, but too
limited to be extrapolated to a region (Wang et al., 2006). We

1http://public.ornl.gov/ameriflux/

focus on temporal behaviour observed during the season and
droughts occuring later in summer of the year 2007. We rep-
resented eddy flux site errors by the variations across sites,
assuming that representation errors are dominant in our con-
text.

3 Results

3.1 Aircraft data and transport errors due to vertical
mixing

We analyze here model-data mismatch using prior fluxes and
pre-processed boundary conditions to characterize the ver-
tical structures of the lower troposphere and assign realis-
tic uncertainties representing transport errors due to incor-
rect vertical mixing. The absolute concentration mismatch
is not considered as an indication of transport errors as the
CO2 flux errors represent the majority of the final mismatch.
In Figs.3 and4, we show the simulated CO2 concentrations
within 4ppm-intervals represented by colored circles against
aircraft observed concentrations during 6 different aircraft
flights. The PBL heights defined by the vertical gradient in
CO2 show relatively good agreement during the afternoon
with differences of about 10 to 15 %, in the range of the ob-
served variability of the entrainment zone depth between the
convective boundary layer and the free troposphere (Grabon
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Fig. 4. Same figure for June 23, 24 and 25 flights
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Fig. 4. Same figure for 23, 24 and 25 June flights.

et al., 2010), whereas transition periods are not well cap-
tured by the model. In the early morning (19 June, 7 a.m.
to 10 a.m.), the PBL is well-developed in the model whereas
no vertical gradient between the PBL and the free tropo-
sphere is observed during the flight. In the late afternoon (17
and 19 June, from 7 p.m. to 9 p.m.), the vertical distributions
of CO2 are simulated well by the model. We defined the
standard deviations (diagonal terms of theR matrix) based
on this comparison by assigning large errors during the late
morning (10 a.m.–12 p.m.) of 30 to 50 % of the total model-
data mismatch, then smaller errors of 10 to 15 % of the sig-
nal as transport errors (2 to 3 ppm in summer on average)
during the well-mixed conditions, and finally very large er-
rors for nighttime concentrations (after 8pm) that almost re-
move entirely the observational constraint during these hours
(σnight=100 ppm).

3.2 Backward/Forward transport comparison

We evaluate the internal consistency of our forward and in-
verse modeling systems which represents the adjoint and
the aggregation errors. We also eliminate time periods
when there are significant discrepancies between forward
and backward simulated mixing ratios. We do this by com-
puting the CO2 mixing ratios predicted at the tower sites us-
ing the same prior fluxes with both WRF-chem and LPDM,
and compare these hourly estimates over the entire 7-month
period of study.

The initial mismatch between the Eulerian model (WRF-
chem) and the Lagrangian model (LPDM) is affected by
large differences in the concentration time series during a
few days per month (one isolated day or few hours). These
larges biases are correlated with more stable conditions in the
lower atmosphere and indicates clear disagreements between
the Lagrangian model and the Eulerian simulations. We ap-
plied a filter to remove these periods in our inverse system
by increasing observation errors to 100 ppm for these obser-
vations. The assigned weights are equivalent to neglect these
observations. The threshold that we chose as indicative of
inconsistent dynamics, is 2σ of the residual distribution (de-
fined as the square root of the mean square of the half-hourly
model-model difference), whereσ is computed on a weekly
basis for each tower. This threshold ranges from 2 to 7 ppm
depending on the season and the tower. We re-compute the
daytime biases after removing the large mismatch periods. In
summer, when the CO2 surface flux is large (implying large
atmospheric signals), the standard deviation of the residuals
are now lower than±2.2 ppm, and show an averaged summer
bias of 0.12 ppm.

We then added an uncertainty corresponding to the stan-
dard deviation for each week of 1 to 2 ppm to the initial
WRF errors (diagonal terms inR) for the misrepresentation
of the Eulerian dynamics by the Lagrangian model based
on these results. During winter, weekly and seasonal bi-
ases are much lower, respectively less than 1.9 ppm at the
hourly time scale and equal to 0.1 ppm on average. But
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Fig. 5. CO2 concentration differences between the observed CO2 concentrations by the aircraft
and simulated by CTv09 at the four aircraft sites (indicated by the cardinal directions) in the
Planetary Boundary Layer (in red), the free troposphere (in blue), and column-averaged PBL
(black diamonds).
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Fig. 5. CO2 concentration differences between the observed CO2
concentrations by the aircraft and simulated by CTv09 at the four
aircraft sites (indicated by the cardinal directions) in the Planetary
Boundary Layer (in red), the free troposphere (in blue), and column-
averaged PBL (black diamonds).

the surface flux contribution to the atmospheric variability is
lower, which explains the apparent smaller mismatch. We
defined the additional uncertainties using the same method-
ology as for summer, from 0.2 to 0.9 ppm for the variances
of the observation errors. The forward/backward revealed
occasional large disagreements due to the Lagrangian model.
Seasonal biases that will influence our final balance are small
after removal of these periods (0.12 ppm over summer, and
0.1 ppm over winter), limiting the impact on the inverse CO2
flux balance.

3.3 Pre processing for boundary conditions

The potential boundary inflow corresponds to the mole frac-
tion from the CTv09 inverse system using the TM5 trans-
port model at 1◦ resolution. We directly compared the mole
fractions to observed mixing ratios from aircraft profiles at
four different sites, each site being attributed to the closest
boundary (or two for AAO and HIL sites) of the domain (cf.
Sect.2.5.2). In Fig. 5, we present the model-data mismatch
in the PBL (blue letters), in the free troposphere (red letters),
and the difference of the averaged model-data mismatch over
the PBL (black diamonds), computed at the exact flight times
and locations. If several profiles were available over a week,
we show here the averaged differences. In the figure, the let-
ters correspond to the boundaries of the domain (East, West,
North, South) for each week. The very large residuals in June
(more than 20 ppm) are observable within the two lower lev-
els of the PBL, where the TM5 model is usually underesti-
mating the vertical mixing (vertical profiles show clear un-
expected gradients during convective days). We used the dif-
ferences of the averaged mixing ratios over the higher levels
of the PBL (black diamonds) to avoid these large differences
in the lower levels of CTv09.

In Fig. 6 (a), we present the histogram of the residuals
between the aircraft data and the CTv09 mixing ratios. The
averaged model-data mismatch (or bias) is about 1.17 ppm

over summer (week 1 to 12) and 0.55 ppm over the 7 months.
We investigate the impact of the 7-month bias on the final
inverse flux balance over the region in Sect.4.1. In Fig.6 (b),
no bias toward higher or lower mixing ratios is observed. We
conclude here that, without the aircraft data correction, the
weekly boundary conditions may contain large errors during
critical periods, but on average over the 7 months, the bias
remains modest (0.55 ppm).

3.4 CO2 flux time series

The temporal variability observed at the local level using
eddy-flux tower measurements is used to evaluate the pos-
terior fluxes over two different ecosystem types. While this
comparison is limited by representation errors, we believe
that it is valid to compare the temporal patterns in both flux
estimates. We compared our results by selecting the posterior
fluxes in pixels where one ecosystem type covers more than
40 % of the landscape. In Fig.7a, we present daily-daytime
averages of the prior fluxes from Sibcrop compared to the ob-
served fluxes (averages of the two sites) from two eddy-flux
tower measurements, with their standard deviations, repre-
senting the grassland ecosystems in the region (Brookings
and Fermi). The two sites are significantly different in 2007
resulting in a large representation error (in green in Fig.7a).
The maximum of uptake in June indicates that the growing
season peak for grassland ecosystems is outside our study pe-
riod. The seasonality of this ecosystem is accentuated by the
atmospheric observations (larger uptake in July compared to
the prior flux) but the uptake in June remains too low, under-
estimated after inversion. The large boundary condition dif-
ferences observed in Fig.5, despite the corrections applied,
might still affect the inverse fluxes during this period. Af-
ter June, the inverse flux variablity is well correlated with
the observed eddy-flux variability with a peak of uptake in
mid-July and a decrease of the uptake in mid-August due to
a drought in the North West of the domain.

Concerning the corn dominated area (cf. Fig.8), the sea-
sonal variability is well-correlated with the observations but
varies depending on the location. The correlations over
the 7 months with the 4 different sites are respectively
0.832, 0.948, 0.964, and 0.950 with the prior compared
to 0.91, 0.955, 0.965, and 0.953 with the posterior fluxes.
The correlation with the mean (average of the time series
from the four sites) is about 0.94 with the prior fluxes, and
0.96 with the posterior. The mismatch (square root of the
squared differences) is decreasing from 1.949 µ mol m−2 s−1

to 1.915 µ mol m−2 s−1 on average. We see here that the ini-
tial fluxes were highly correlated with the observations, with
consistent but relatively small corrections after inversions on
a weekly basis. In northern Illinois (East of the domain), the
inverse fluxes show a late start to the growing season (end of
June). The posterior fluxes show distinct temporal patterns
for the West and the East of the domain. The observations
indicate a large standard deviation across eddy-flux sites (as
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(a) (b)

Fig. 6. Histogram of the model-data mismatch at the boundaries with the mean and standard
deviation used to correct for the mean bias and to define uncertainties related to the boundaries
in the inversion (on the left) and the linear regression between observed aircraft and CTv09

modeled CO2 mixing ratios (on the right)
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Fig. 6. Histogram of the model-data mismatch at the boundaries with the mean and standard deviation used to correct for the mean bias and
to define uncertainties related to the boundaries in the inversion (on the left) and the linear regression between observed aircraft and CTv09
modeled CO2 mixing ratios (on the right).

(a)

(b)

Fig. 7. Net Ecosystem Exchange comparison between Sibcrop grass-dominated pixels and
eddy flux towers over grassland (Fermi prairie and Brookings) for the 7 months in umol.m2.s−1

(in green): (a) SiBcrop prior (in blue) and (b) inverse fluxes (in red). The improvement after
inversion remains limited in June but posterior fluxes (in red) are in better agreement with the
observed fluxes on average over the period.
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Fig. 7. Net Ecosystem Exchange comparison between Sibcrop
grass-dominated pixels and eddy flux towers over grassland (Fermi
prairie and Brookings) for the 7 months in umol.m2.s−1 (in green):
(a) SiBcrop prior (in blue) and (b) inverse fluxes (in red). The
improvement after inversion remains limited in June but posterior
fluxes (in red) are in better agreement with the observed fluxes on
average over the period.

seen for grass), two of them being irrigated (less affected by
the sporadic dry periods) increasing the overall flux uptake
over summer in the Western Corn Belt. The absolute val-
ues of the posterior fluxes remain smaller than the observed
fluxes, as corn occupies only about 40 to 60 % of the pixel
surface, mixed with soybean and other crop types. In the

(a)

(b)

Fig. 8. Net Ecosystem Exchange comparison between Sibcrop corn-dominated pixels for the
western (affected by droughts in July and August, in purple)) and the eastern part of the domain
(in light blue), and eddy flux towers over corn fields (in green), irrigated or rainfed (Bondville,
Rosemount G19 and G21, and Mead) in umol.m2.s−1: (a) SiBcrop prior (in blue) and (b) inverse
fluxes (in red). Posterior fluxes are lower on average due to mixed vegetation types over the
pixels.
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Fig. 8. Net Ecosystem Exchange comparison between Sibcrop
corn-dominated pixels for the western (affected by droughts in July
and August, in purple)) and the eastern part of the domain (in light
blue), and eddy flux towers over corn fields (in green), irrigated
or rainfed (Bondville, Rosemount G19 and G21, and Mead) in
umol.m2.s−1: (a) SiBcrop prior (in blue) and (b) inverse fluxes (in
red). Posterior fluxes are lower on average due to mixed vegetation
types over the pixels.

model, the presence of soybean with a lower uptake compen-
sates for the large corn uptake. For grassland, the vegetation
fraction in the grass-dominated pixels is usually larger (up to
80 %) explaining the better agreement between the modeled
fluxes and the observed eddy-flux data. Despite the smaller
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(a) (b)

(c) (d)

Fig. 9. Map of the CO2 fluxes accumulated from June to December in TgC.degree−2 over the
MCI using CarbonTracker2009 inverse fluxes as prior: (a) prior and (b) posterior fluxes; and
direct flux estimates from SiBcrop as prior fluxes: (c) prior fluxes and (d) posterior fluxes
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Fig. 9. Map of the CO2 fluxes accumulated from June to December in TgC.degree−2 over the MCI using CarbonTracker2009 inverse fluxes
as prior: (a) prior and (b) posterior fluxes; and direct flux estimates from SiBcrop as prior fluxes: (c) prior fluxes and (d) posterior fluxes.

surface flux corrections in wintertime (i.e. limited improve-
ment, discussed in Sect.4.3), the posterior fluxes show a bet-
ter correlation with the observed fluxes over the 7 months (cf.
Fig. 7b), and no clear bias was introduced by the system. We
discuss in Sect.4.3 the capacity of the system to correct for
wintertime flux biases.

3.5 Convergence of the prior fluxes and impact on the
posterior distribution

We present in this section the spatial distribution of the
prior and posterior fluxes, using sibcrop (Fig.9c) and CTv09
(Fig. 9a) as two distinct priors. First, both posteriors show
similar features in space, as a maximum of uptake in north-
ern Illinois, and a stronger sink in Wisconsin, suggesting that
the observational constraint is sufficient in both cases to de-

tect the main spatial characteristics of the fluxes. But several
areas remain correlated to the initial prior flux distribution,
such as in Kansas and Nebraska, west of Mead (cf. Fig.9b).
Other areas show clear posterior flux structures that are not
present in any prior. In northern Illinois for example (around
Kewanee), the strong sink indicated by the posterior is well
defined in both cases. This correction is consistent with high
corn productivity with +10 % for the year 2007 compared to
the past years as indicated by the annual USDA-NASS report
1. Northern Iowa, usually very productive in terms of corn
Net Primary Production, was affected by severe droughts
during August 2007, whereas southern regions recorded av-
eraged precipitations.

1www.nass.usda.gov/il
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In general, areas between tower sites show similar pos-
terior flux distributions and magnitudes, resulting from the
large constraint brought by the superimposed observation in-
fluence functions. The corn belt area, clearly defined in space
in both priors, becomes wider with smaller spatial gradients.

3.6 CO2 flux balance: final balance and uncertainties

In this section, we investigate the sensitivity of the integral
of the inverse fluxes across the region, and its sensitivity to
the assumptions. These uncertainties come from the differ-
ent choices one could make, all being realistic, with different
degrees of complexity. Other tests are performed in Sect.4
for additional errors or biases that may affect the inverse esti-
mate but are not part of the present system, as e.g. the impact
of remaining biases in boundary conditions that may not have
been removed. These second tests help quantify the sensitiv-
ity of the system to the different components for future in-
verse systems, in other areas or using different prior fluxes.
Using two different prior fluxes (CTv09 and SiBcrop), we ob-
tain similar posterior fluxes (cf. Table1) though the prior
fluxes were significantly different. We defined next several
cases in which we dramatically increased or decreased uncer-
tainties (prior flux errors, nighttime and daytime observation
errors), inserted transport error correlations in time, modify-
ing prior flux error correlations in space, and increased the
time window over which the boundary conditions were op-
timized from one hour to four days. We increased our ini-
tial prior variances by 20 % for the first case. For transport
errors, we decreased the daytime standard deviationsσB to
2 ppm, about a factor two lower than our initial summertime
standard deviations. We also considered the use of nighttime
observations by decreasing the uncertainties to 10 ppm. The
different cases are summarized in Table1.

Increasing prior flux variance (largerσB ) has little impacts
on the posterior flux, similar to decreasing the observation er-
ror variances during the day (lowerσ

day
R ). This result, when

compared to the large impact of temporal correlations in the
observation errors (ρ(Xt ,Xt+n) 6=0), reinforces the importance
of the covariances in our system (the structure of the er-
rors), here having more impact on the regional fluxes than
the daytime variances. Higher confidence in nighttime data
(σ night

R =10 ppm) shows the largest decrease of NEE on the
final flux balance. This impact is consistent with the con-
sistently lower nighttime mixing ratios simulated by WRF-
Chem. Fitting the nighttime observations is translated into
an increase of the positive nighttime flux, decreasing the net
sink over the region. Considering the impact of observation
error correlations in time when using CTv09 as prior fluxes
(ρ(Xt ,Xt+n) 6=0), the impact is lower (only 33 Tg C change
compared to 41 Tg C change when using SiBcrop). We also
examined the impact of using different time windows for the
boundary conditions (Tbc = 90 h) and noticed a change of
16 Tg C on the 7-month regional balance. Finally, we simpli-
fied the prior error correlation by using a simple correlation

length (L = 300 km), without considering ecosystem types
(ρB = f (dist)).

The posterior uncertainties from our system are, over
the 7-month period, about 30 Tg C (depending on the se-
lected case). Considering the different setups we defined,
the uncertainty in the regional balance due to assump-
tions in the inverse system is about 15 Tg C, with a mean
slightly weaker than the reference setup (mean balance of
−183 Tg C±16 Tg C). This quantity is a range of solutions
but is not following a Gaussian distribution. We excluded
here the low nighttime transport error case, this one being
fundamentally incorrect. For example, the choice of tempo-
ral correlations in the observation errors or the structure of
the prior errors are motivated by previous studies and one
may argue about their relevance. We consider here that any
assumption made in the system, if not well established, has
to be tested and considered as an additional source of uncer-
tainty. In Sect.4.1, we present the different sources of uncer-
tainties and combine these to our posterior uncertainties.

4 Discussions

4.1 Boundary conditions and remaining uncertainties

We applied a pre-treatment of the boundary concentrations
by correcting model-data mismatch at the boundaries before
inversion instead of adding aircraft data to the inverse sys-
tem to correct for the CO2 inflow. The comparison between
the observed and the simulated CTv09 concentrations could
lead to an incorrect quantification of the boundary inflow er-
rors for two main reasons: first, the aircraft profiles, punctual
observations over the column, are not representative of the
entire boundary of 1000 km long and the entire week; and
second, the PBL mixing ratios affected by vertical mixing
errors in CTv09 transport model (currently the TM5 model
Krol et al., 2005) could be different in WRF-ChemCO2 when
remixed by our PBL scheme. We computed boundary mix-
ing ratios at the tower locations. Along their path within the
simulation domain from the boundary to the tower location,
CTv09 mole fractions are redistributed on the vertical. The
differences between CTv09 and aircraft data at the boundaries
might not be valid at the tower locations, because the vertical
mixing in WRF-ChemCO2 modified the original vertical dis-
tribution of the CTv09 mole fractions. Because TM5 model
is affected by low vertical mixing in the lower atmospheric
levels (levels one and two mainly), we only used differences
integrated over the PBL.

In the inversion, we defined the inflow as time series, in-
stead of influence functions and gridded boundaries, to limit
the increase of the dimension of the state vector. The CO2
vertical distribution at the boundaries is also very sensitive
to PBL dynamics and may contain large uncertainties at the
pixel level if we grid the boundaries of our domain. Previ-
ous studies have also shown that the error reduction using
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Table 1. Regional CO2 flux balance from June to December 2007 in TgC over the MCI using Sibcrop and CarbonTracker2009 as prior fluxes
in the reference setup (prior and posterior), then assuming larger uncertainties in the prior (= largerσB ), more confidence in nighttime data

i.e. 10 ppm instead of 100 ppm (=lowerσ
night
R

), more confidence in daytime data i.e. 2 ppm instead of 3 ppm for the lower limit (=lower

σ
day
R

),temporal correlations in hourly observation errors between the hourt with the followingn hours (=ρ(Xt ,Xt+n) 6= 0 or ρ(t) 6= 0), a
longer time period to correct for boundary influence (=Tbc =90h), and prior error correlations based on distance only (ρB = f (L)).

prior post largeσB low σ
night
R

low σ
day
R

ρ(t) 6=0 Tbc = 90 h ρB = f (L)

SiBcrop −109 −194 −190 −149 -195 −153 −178 −179
CTv09 −198 −215 / / / −182 / /

aircraft data is limited by the shorter time window of avail-
able observations (Lauvaux et al., 2008). We decided here to
use the aircraft observations in a pre-processing of the bound-
aries and not directly as observations in the inverse system.
The aircraft profiles available once a week on average over
few hours contain little information to optimize the weekly
fluxes biases and the boundaries. Using our approach in the
future, more sophisticated methods could be applied as data
nudging including additional dataset from commercial flight
CO2 profiles or satellite products where available.

Here, we investigate the impact of potential biases in the
boundary concentrations by adding a constant change of
+1 ppm. On the 7 month regional balance, this bias leads
to a change of +45 Tg C. As explained in Sect.3.3, the ver-
tical mixing errors in TM5 (CTv09) have a limited impact at
the observation locations thanks to the remix of the lower
part of the column along its path in the WRF simulation do-
main. This element is of major importance to avoid large dif-
ferences as observed in the lower troposphere in the CTv09
residuals (cf. Fig.5 in red). The potential bias due to in-
correct boundary conditions can be estimated at half a ppm
(defined as 1σ of the error distribution) based on the initial
model-data mismatch using the NOAA aircraft vertical pro-
files. This bias is translated in terms of potential errors on the
final balance into a±24 Tg C. Because we are not consider-
ing the improvement of the boundary conditions thanks to
the use of aircraft data, this error represents an upper limit on
the 7-month balance. This value seems reasonable compared
to the large sink of our region. But, because of the unique
strength of the atmospheric sink due to the high corn produc-
tivity entirely harvested (responsible for the apparently large
atmospheric sink), our region is not common and many other
areas may suffer from this large potential bias compared to
their relatively low annual flux (e.g.Göckede et al., 2010a).
Further measurements will be needed to better constrain the
error in the boundary conditions.

4.2 Temporal window for the boundaries –
what is the impact?

The time length for the boundary conditions in our system,
from hourly to a few days, has additional impacts on the cor-
rection of biases in the inflow. The surface fluxes are cor-

rected on a weekly time scale. If the time resolution of the
boundaries in the state vector is closer to one week, some
signals originally attributed to the surface are transferred to
the boundaries. But this assumption can be justified by the
fact that inflow errors occur at the time scale of synoptic
changes rather than the scale of the local dynamics. We in-
vestigated the two assumptions (one assuming rapid changes
at the boundaries and the second slow changes driven by syn-
optic conditions) by changing the time period of the bound-
aries in the state vector as explained in Sect.2.5.3. Table1
shows that a change of the order of 16 Tg C was removed
from the surface fluxes and transposed to the inflow. In or-
der to compare the boundary condition corrections in both
cases, we estimated the boundary condition impact on the
optimized atmospheric concentrations. The first case, us-
ing hourly concentrations at each tower, shows large hour-to-
hour variations. We then averaged over the longer period of
time (90 h) and noticed that the contribution from the bound-
aries can change by several ppm when using hourly con-
centrations at the boundaries or averages over several days.
Weekly surface fluxes changed depending on the inflow av-
eraging period. But the final surface flux balance remains
similar in both cases, with only 0.3 to 0.8 ppm (standard de-
viations of the corrections) reattributed to the boundary cor-
rections, and similar mean corrections (about 0.4 ppm in both
cases). Over the 7 months, less than 0.5 ppm of the 90h-
averaged hourly boundary correction is due to the transfer
of information from the surface to the boundary concentra-
tions, implying an additional standard deviation of about 7 to
10 Tg C in the final regional carbon balance. At this point, the
time window for boundary conditions will remain an under-
constrained parameter in our system, considering the related
uncertainty as additional errors in the final balance. Further
study will focus on the autocorrelation of the residuals to de-
fine the time scale of the inflow errors.

4.3 What is the real potential of convergence of the
system?

The impact of the prior flux spatial distribution affects several
areas despite the large amount of atmospheric observations
used to constrain the surface fluxes. For the 7-month bal-
ance, both priors end up at relatively similar values around
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−205 Tg C±10 Tg C. Two additional cases were designed to
evaluate the potential of convergence of the system. The first
case assumes an additional flux bias in summer and in winter,
by multiplying the SiBcrop prior fluxes by 1.5, i.e. increasing
the seasonal signals considerably. This biased prior presents
a larger 7-month sink (−164 Tg C instead of−109 Tg C) be-
cause of the large increase of the summer uptake compared
to the relatively lower increase of the wintertime net positive
flux. The results show that the summer bias is almost en-
tirely removed (95 % retrieved), but the winter time bias af-
ter inversion is partially retrieved, with a difference with the
reference inversion of 0.95 Tg C per week on average, cor-
responding to a posterior 7-month balance of−185 Tg C. It
clearly indicates that the inverse system is limited in winter
because of the larger boundary condition contribution com-
pared to the surface flux signal. We computed the ratio of
the boundary contribution to the surface flux contribution
on hourly concentrations. In July, about 10 to 20 % is due
to boundary contribution versus 30 to 40 % during winter.
However, by including an additional 4.1 Tg C per week in
winter, the inversion corrected for 77 % of this bias.

The second case uses a SiBcrop simulation affected by
unrealistic water stress in summer. The 7-month balance
of this prior is close to zero (−1.9 Tg C). Starting with this
erroneous prior flux, the posterior flux balance ends up at
−147 Tg C. The inverse system, even if not able to retrieve
or converge to previous inverse estimates in this case, showed
a large correction of the initial balance retrieving 80 % of the
reference posterior flux balance. It suggests that the obser-
vational constraint is large enough to reach a reasonable es-
timate despite the distant initial carbon balance. As shown
in Sect.3.6, the spatial structure may be affected by the ini-
tial flux distribution. But the regional balance itself is highly
constrained by the observations. Further investigations will
consider the impact of observations on the inverse fluxes for
concentration tower network design.

The transport model errors were evaluated using aircraft
data vertical profiles. Additional errors from the Lagrangian
model were also quantified by a forward-backward compar-
ison and reasonable biases were included in our final flux
uncertainty assessment. Part of the errors were not consid-
ered due to the lack of data to evaluate the atmosphere dy-
namics, as the advection of air or the convection scheme.
We tested the potential impact of the daytime observation er-
rors (variances) in the system by decreasing uncertainties to
2 ppm, and little impact affected our results (less than 1 Tg C
change). Only uncertainties decreased in this case, with an
underestimation of the posterior variances. Nighttime prior
errors appeared more critical in our system. This result is
consistent with past studies (e.g.Lauvaux et al., 2008) that
showed the importance of the nighttime flux signals in the
daytime observations to constrain the overall flux balance,
affected by incorrect nighttime transport. Even though we
almost removed the nighttime observations in our system
(σR = 100 ppm), transport model errors during nighttime af-

fect the daytime observation signals. This result explains
also the strong impact of temporal error correlations rein-
forcing the impact of transition period observations (morning
and evening). The performances of actual mesoscale models
during nighttime (or more generally during stable conditions)
have to be improved in the future to reduce actual uncertain-
ties, despite the absence of nighttime data use in the inverse
system.

Finally, the posterior uncertainties of the inverse fluxes at
about 30 Tg C and the different sensitivity tests (16 Tg C),
including potential biases from the boundaries of about
24 Tg C, gives a combined uncertainty of 34 Tg C, exclud-
ing the additional 24 Tg C of potential additional biases for
a regional sink of about 183 Tg C. The present calculation is
not a posterior uncertainty following a Gaussian distribution
but an interval of confidence with an undefined distribution.
Remaining errors are hard to quantify precisely (e.g. prior
flux error correlations, complete transport model errors), and
additional biases are likely to arise in future model intercom-
parisons. Further investigations will include transport eval-
uation and comparisons to independent estimates from in-
ventory data at the regional level. High quality agricultural
inventories made in the area (West et al., 2011) will allow the
comparison to independent annual estimates of the regional
carbon balance.

5 Conclusions

We presented here an inverse flux estimate at high resolution
over the corn belt area for 2007 using eight CO2 concentra-
tion towers and two different prior fluxes. The sensitivity to
the different assumptions was used to evaluate a more com-
plete final uncertainty for our inverse flux balance. Bound-
ary conditions were corrected with aircraft data profiles, po-
tentially leading to an error (or a potential bias) of about
24 Tg C over the 7 months. But more critical is the impact
of nighttime transport model errors and temporal error cor-
relations in the simulated concentrations. Total uncertainties
are about 34 Tg C including 16 Tg C from the assumptions
made in the system, 30 Tg C from the prior and the trans-
port model, and 24 Tg C of potential bias from the bound-
ary conditions. The impact of boundary conditions is inde-
pendent of the regional balance but only of the domain size,
limiting the actual method to regions presenting large annual
flux balances (more than 20 Tg C year−1 for a 106 km2 do-
main). The degree of convergence indicates a robust signal
for a sink of about 180 Tg C for the June to December period.
Spatial patterns inherited from the prior fluxes were still de-
tectable in the posterior fluxes especially on the sides of the
domain, despite the large observational constraint. The atmo-
spheric signal remains large enough to constrain the regional
flux balance but spatial distribution required that influence
functions from different towers were super-imposed. Clear
spatial patterns in the posterior fluxes were identified (as the
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strong uptake in northern Illinois for the present year) despite
the use of different priors.
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