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Abstract. We applied a multiple linear regression model to
understand the relationships of PM2.5 with meteorological
variables in the contiguous US and from there to infer the
sensitivity of PM2.5 to climate change. We used 2004–2008
PM2.5 observations from∼1000 sites (∼200 sites for PM2.5
components) and compared to results from the GEOS-Chem
chemical transport model (CTM). All data were deseasonal-
ized to focus on synoptic-scale correlations. We find strong
positive correlations of PM2.5 components with temperature
in most of the US, except for nitrate in the Southeast where
the correlation is negative. Relative humidity (RH) is gen-
erally positively correlated with sulfate and nitrate but neg-
atively correlated with organic carbon. GEOS-Chem results
indicate that most of the correlations of PM2.5 with tempera-
ture and RH do not arise from direct dependence but from co-
variation with synoptic transport. We applied principal com-
ponent analysis and regression to identify the dominant mete-
orological modes controlling PM2.5 variability, and show that
20–40 % of the observed PM2.5 day-to-day variability can be
explained by a single dominant meteorological mode: cold
frontal passages in the eastern US and maritime inflow in the
West. These and other synoptic transport modes drive most
of the overall correlations of PM2.5 with temperature and RH
except in the Southeast. We show that interannual variability
of PM2.5 in the US Midwest is strongly correlated with cy-
clone frequency as diagnosed from a spectral-autoregressive
analysis of the dominant meteorological mode. An ensem-
ble of five realizations of 1996–2050 climate change with

the GISS general circulation model (GCM) using the same
climate forcings shows inconsistent trends in cyclone fre-
quency over the Midwest (including in sign), with a likely
decrease in cyclone frequency implying an increase in PM2.5.
Our results demonstrate the need for multiple GCM realiza-
tions (because of climate chaos) when diagnosing the effect
of climate change on PM2.5, and suggest that analysis of
meteorological modes of variability provides a computation-
ally more affordable approach for this purpose than coupled
GCM-CTM studies.

1 Introduction

Air pollution is highly dependent on weather, and it fol-
lows that climate change could significantly impact air qual-
ity. The pollutants of most public health concern are ozone
and fine particulate matter with diameter less than 2.5 µm
(PM2.5). Studies using chemical transport models (CTMs)
driven by general circulation models (GCMs) consistently
project a worsening of ozone air quality in a warming cli-
mate (Weaver et al., 2009). This finding is buttressed by ob-
served correlations of ozone with temperature that are well
reproduced by models (Jacob et al., 1993; Sillman and Sam-
son, 1995; Rasmussen et al., 2012). By contrast, GCM-CTM
studies of the effect of climate change on PM2.5 show no
consistency even in the sign of effect (Jacob and Winner,
2009). In previous work (Tai et al., 2010), we examined
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the observed correlations of PM2.5 and its components in
the US with meteorological variables as a means to under-
stand PM2.5 response to climate change. Here we develop
this approach further to define meteorological modes of vari-
ability for PM2.5 and interpret the observed correlations and
modes using the GEOS-Chem CTM. We apply the Goddard
Institute for Space Studies (GISS) GCM to illustrate how
the modes enable effective diagnosis of the effect of climate
change on PM2.5.

The uncertainty in assessing climatic effects on PM2.5 re-
flects the complex dependence of different PM2.5 compo-
nents on meteorological variables. Higher temperatures can
lead to higher sulfate concentrations due to faster SO2 ox-
idation, but to lower nitrate and organic components due
to volatility (Sheehan and Bowman, 2001; Aw and Klee-
man, 2003; Dawson et al., 2007; Kleeman, 2008). Biogenic
emissions of PM2.5 precursors including agricultural ammo-
nia, soil NOx, and volatile organic compounds (VOCs) in-
crease with temperature and further complicate the PM2.5-
temperature relationship (Pinder et al., 2004; Bertram et al.,
2005; Guenther et al., 2006). Higher relative humidity (RH)
promotes aqueous-phase sulfate production and ammonium
nitrate formation (Koch et al., 2003; Liao et al., 2006; Daw-
son et al., 2007), but inhibits fires, which are important con-
tributors to organic aerosols in many regions (Park et al.,
2007; Spracklen et al., 2009). Changes in precipitation and
in planetary boundary layer (PBL) depth have a consistent
effect on PM2.5 components but their projections in GCMs
are highly uncertain (Jacob and Winner, 2009).

Synoptic-scale transport should be an important factor
driving the effect of climate change on PM2.5. Previous stud-
ies have used principal component analysis (PCA) to iden-
tify important meteorological modes of variability for PM2.5
air quality (Cheng et al., 2007; Thishan Dharshana et al.,
2010). Thishan Dharshana et al. (2010) found that as much
as 30 % of PM2.5 daily variability in the US Midwest is as-
sociated with passages of synoptic weather systems. Cold
fronts associated with mid-latitude cyclone passages provide
the dominant ventilation pathway for the eastern US (Cooper
et al., 2001; Li et al., 2005). A general reduction in the fre-
quency of these cyclones is expected as a result of green-
house warming (Lambert and Fyfe, 2006; Christensen et al.,
2007; Pinto et al., 2007), potentially leading to more frequent
and prolonged stagnation episodes (Mickley et al., 2004;
Murazaki and Hess, 2006). Leibensperger et al. (2008) found
a strong anticorrelation between summer cyclone frequency
and ozone pollution in the eastern US for 1980–2006, and
further showed evidence of a long-term decline in cyclone
frequency over that period that significantly hindered attain-
ment of ozone air quality standards. Tai et al. (2010) pro-
jected a PM2.5 enhancement of up to 1 µg m−3 in the Mid-
west from 2000–2050 climate change due to more frequent
stagnation.

In this study, we first apply the GEOS-Chem global CTM
to interpret the observed correlations between PM2.5 com-

ponents and meteorological variables in the contiguous US.
As we will see, interpretation is complicated by the covaria-
tion of meteorological variables with synoptic transport. To
address this issue, we use PCA and regression to determine
the dominant meteorological modes of observed daily PM2.5
variability in different US regions, and show how spectral
analysis of these modes enables a robust estimate of the ef-
fect of climate change on PM2.5 air quality.

2 Data and models

2.1 PM2.5 observations

Daily mean surface concentrations of total PM2.5 and speci-
ated components including sulfate, nitrate, and organic car-
bon (OC) for 2004–2008 were obtained from the ensem-
ble of sites of the EPA Air Quality System (EPA-AQS)
(http://www.epa.gov/ttn/airs/airsaqs/), shown in Fig. 1. Total
PM2.5 data are from the Federal Reference Method (FRM)
network of about 1000 sites in the contiguous US. Specia-
tion data are from the State and Local Air Monitoring Sta-
tions (SLAMS) and Speciation Trends Network (STN) of
about 200 sites. These sites measure every one, three or six
days. Tai et al. (2010) show maps of the annual mean data for
total PM2.5 (1998–2008) and individual components (2000–
2008). We do not discuss ammonium and elemental carbon
(EC) here because ammonium is mainly the counter-ion for
sulfate and nitrate, and the correlation patterns of EC with
meteorological variables generally follow those of OC (Tai
et al., 2010).

2.2 GEOS-Chem simulations

We used the GEOS-Chem global CTM to conduct full-
year simulations of coupled gas-phase and aerosol chem-
istry. GEOS-Chem (http://geos-chem.org) uses assimilated
meteorological data from the NASA Global Earth Observ-
ing System (GEOS-5) with 6-h temporal resolution (3-h for
surface variables and PBL depth), 0.5◦ latitude by 0.667◦

longitude (0.5◦ × 0.667◦) horizontal resolution, and 47 hy-
brid pressure-sigma vertical levels. We conducted GEOS-
Chem simulations at three different horizontal resolutions:
native 0.5◦ × 0.667◦, 2◦

× 2.5◦, and 4◦ × 5◦. The coarser
resolutions have been used previously with meteorological
fields from the GISS GCM to investigate effects of climate
change on air quality (Wu et al., 2008; Pye et al., 2009;
Leibensperger et al., 2011a). For the native resolution simu-
lation we used a nested continental version of GEOS-Chem
over North America (140–40◦ W, 10–70◦ N) with 2◦

× 2.5◦

resolution for the rest of the world (Chen et al., 2009; Zhang
et al., 2011). The native simulation was conducted for one
year (2006) and the 2◦ × 2.5◦ and 4◦ × 5◦ simulations for
three years (2005–2007) using GEOS-Chem version 8-3-2.
We included a non-local PBL mixing scheme formulated
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Figure 1. US regions used to study the correlations of PM2.5 with meteorological modes of 4 

variability. Also shown are the EPA Air Quality System (AQS) PM2.5 monitoring sites in 5 

2006, including total PM2.5 monitors using the Federal Reference Method (FRM) and 6 

chemical speciation monitors from the SLAMS + STN networks. 7 
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Fig. 1. US regions used to study the correlations of PM2.5 with meteorological modes of variability. Also shown are the EPA Air Quality
System (AQS) PM2.5 monitoring sites in 2006, including total PM2.5 monitors using the Federal Reference Method (FRM) and chemical
speciation monitors from the SLAMS + STN networks.

by Holtslag and Boville (1993) and implemented in GEOS-
Chem by Lin and McElroy (2010). GEOS-Chem includes
a fully coupled treatment of tropospheric ozone-NOx-VOC-
aerosol chemistry (Park et al., 2004; Liao et al., 2007). Gas-
aerosol phase partitioning of the sulfate-nitrate-ammonium-
water system is calculated using the ISORROPIA II thermo-
dynamic equilibrium model (Fountoukis and Nenes, 2007).
In-cloud SO2 oxidation uses liquid water content informa-
tion from the GEOS-5 archive (Fisher et al., 2011). Sec-
ondary organic aerosol (SOA) formation is computed with
a standard mechanism based on reversible gas-aerosol parti-
tioning of semi-volatile VOC oxidation products (Chung and
Seinfeld, 2002). SOA precursors include isoprene, terpenes,
and aromatic hydrocarbons (Henze et al., 2008).

Anthropogenic emissions of sulfur, ammonia and NOx
emissions in the US are from the EPA 2005 Na-
tional Emissions Inventory (http://www.epa.gov/ttn/chief/
net/2005inventory.html), and primary anthropogenic OC and
EC emissions are from Cooke et al. (1999). Non-US an-
thropogenic emissions are described by Park et al. (2006).
Biomass burning emissions of OC and EC are from the
Global Fire Emissions Database (GFED v2) (Giglio et al.,
2006). These emissions are included in the model as monthly
averages and do not contribute to day-to-day variability of
PM2.5. In contrast, soil NOx emissions (Yienger and Levy,
1995) and biogenic emissions of isoprene, terpenes, and
methylbutenol (Guenther et al., 2006) are updated locally ev-
ery three hours as a function of temperature, solar radiation,
and precipitation. Scavenging of PM2.5 by precipitation fol-
lows the scheme of Liu et al. (2001). Dry deposition follows
a standard resistance-in-series scheme (Wesely, 1989) as im-
plemented by Wang et al. (1998).

Maps of annual mean PM2.5 concentrations from our sim-
ulation are included in the Supplement. Total PM2.5 in
GEOS-Chem is taken to be the sum of sulfate, nitrate, ammo-

nium, OC and EC. Detailed evaluations of the GEOS-Chem
simulation of PM2.5 and its components over the US have
been presented in a number of publications using observa-
tions from surface sites, aircraft, and satellites (Heald et al.,
2006, 2008; Park et al., 2006; van Donkelaar et al., 2006,
2008; Fu et al., 2009; Drury et al., 2010; Leibensperger et
al., 2011a; Zhang et al., 2012). These evaluations mainly fo-
cused on seasonal concentrations and showed no prominent
biases. Here we will focus on the ability of the model to re-
produce observed correlations of PM2.5 with meteorological
variables.

2.3 Multiple linear regression

We examined the correlations of PM2.5 and its components
with meteorological variables for 2004–2008 (EPA-AQS)
and 2005–2007 (GEOS-Chem) by applying a standardized
multiple linear regression (MLR) model:

y(t)− ȳ

sy
=

8∑
k=1

βk

xk(t)− x̄k

sk
(1)

where y represents the deseasonalized daily PM2.5 con-
centration (total PM2.5 or individual component),xk repre-
sents the eight deseasonalized meteorological variables from
GEOS-5 listed in Table 1,̄xk andȳ are the temporal means of
xk andy, sk andsy are their standard deviations (see Supple-
ment),βk is the dimensionless, normalized regression coeffi-
cient, andt is time. To compare observed with simulated cor-
relations, we interpolate the EPA-AQS data onto the GEOS-
Chem grid (Tai et al., 2010) and use the interpolated PM2.5
fields for regression.

The MLR model is applied to each individual grid cell
for both the observed and simulated PM2.5 fields. All data
(xk andy) are deseasonalized and detrended by subtracting
the 30-day moving averages from the original data so that
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Figure 2. Simulated (2005-2007) and observed (2004-2008) relationships of nitrate PM2.5 with 2 

surface air temperature, as measured by the multiple linear regression coefficient β1* in Eq. 3 

(2) with units of µg m-3 K-1. Simulated relationships are shown for three different GEOS-4 

Chem model resolutions: 0.5°×0.667°, 2°×2.5° and 4°×5°. Observations are averaged over the 5 

2°×2.5° grid. Values are for deseasonalized and detrended variables and are only shown when 6 

significant with 95% confidence (p-value < 0.05). 7 
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Fig. 2. Simulated (2005–2007) and observed (2004–2008) relationships of nitrate PM2.5 with surface air temperature, as measured by
the multiple linear regression coefficientβ1* in Eq. (2) with units of µg m−3 K−1. Simulated relationships are shown for three different
GEOS-Chem model resolutions: 0.5◦

× 0.667◦, 2◦
× 2.5◦ and 4◦ × 5◦. Observations are averaged over the 2◦

× 2.5◦ grid. Values are for
deseasonalized and detrended variables and are only shown when significant with 95 % confidence (p-value< 0.05).

x̄k = ȳ = 0. This allows us to focus on synoptic-scale vari-
ability and avoid aliasing from common seasonal or inter-
annual variations. The standardized regression coefficients
βk allow direct comparisons between the correlations of dif-
ferent PM2.5 components with different meteorological vari-
ables (Kutner et al., 2004). The original regression coeffi-
cientsβk* in units of µg m−3 D−1, where D is the dimension
of meteorological variablexk in Table 1, can be recovered by

β∗

k =
sy

sk
βk (2)

The observed coefficients of determination (R2) for the MLR
model have values ranging from 0.1 (in the west-central US
where data are sparse) to 0.5 (in the Midwest and Northeast),
agreeing with previous studies (Wise and Comrie, 2005; Tai
et al., 2010). In addition to the standardized MLR analysis,
we also conducted a stepwise MLR analysis with interaction
terms as described by Tai et al. (2010). The interaction terms
were generally found to be insignificant.

We conducted the MLR analysis for the model at all three
resolutions (0.5◦ × 0.667◦, 2◦

× 2.5◦, 4◦
× 5◦) and found the

patterns of correlations to be similar. Figure 2 shows as
an example (to be discussed later) the simulated and ob-
served relationships of nitrate with temperature as measured
by the recovered regression coefficientβ1* in Eq. (2). In
general, 2◦ × 2.5◦ and 4◦ × 5◦ regression results agree well
with each other for all meteorological variables and all com-
ponents. The native-resolution regression does not show as

Table 1. Meteorological variables used for PM2.5 correlation
analysisa.

Variable Meteorological parameter

x1 Surface air temperature (K)b

x2 Surface air relative humidity ( %)b

x3 Surface precipitation (mm d−1)

x4 Geopotential height at 850 hPa (km)
x5 Sea level pressure tendencydSLP/dt (hPa d−1)

x6 Surface wind speed (m s−1)b,c

x7 East-west wind direction indicator cosθ (dimensionless)d

x8 North-south wind direction indicator sinθ (dimensionless)d

a Assimilated meteorological data with 0.5× 0.667◦ horizontal resolution from the

NASA Goddard Earth Observing System (GEOS-5). All data used are 24-h averages,

and are deseasonalized and detrended as described in the text.
b At 6 m above the surface (0.994 sigma level).
c Calculated from the horizontal wind vectors (u, v).
d θ is the angle of the horizontal wind vector counterclockwise from the east. Positive

values ofx7 andx8 indicate westerly and southerly winds, respectively.

extensive and significant correlations. A likely explanation
is that averaging over larger grid cells smoothes out local
effects, yielding more robust correlation statistics. We will
use 2◦ × 2.5◦ resolution for model-observation comparisons
in what follows.
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Figure 3. Relationships of sulfate, nitrate, and organic carbon (OC) PM2.5 concentrations with 2 

surface air temperature. The left and middle panels show the observed (2004-2008) and 3 

simulated (2005-2007) standardized regression coefficients β1 in Eq. (1). Values are for 4 

deseasonalized and detrended variables and are only shown when significant with 95% 5 

confidence (p-value < 0.05). The right panels show the direct effects of temperature on 6 

sulfate, nitrate and OC as determined by applying a global +1 K temperature perturbation in 7 

the GEOS-Chem simulation, and normalizing the results to the standard deviations of 8 

deseasonalized concentrations and temperatures to allow direct comparison to β1. 9 
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Fig. 3. Relationships of sulfate, nitrate, and organic carbon (OC) PM2.5 concentrations with surface air temperature. The left and middle
panels show the observed (2004–2008) and simulated (2005–2007) standardized regression coefficientsβ1 in Eq. (1). Values are for de-
seasonalized and detrended variables and are only shown when significant with 95 % confidence (p-value< 0.05). The right panels show
the direct effects of temperature on sulfate, nitrate and OC as determined by applying a global +1 K temperature perturbation in the GEOS-
Chem simulation, and normalizing the results to the standard deviations of deseasonalized concentrations and temperatures to allow direct
comparison toβ1.

3 Correlations of PM2.5 with meteorological variables

3.1 Correlations with temperature

Figure 3 (left and middle panels) shows the observed and
simulated relationships of sulfate, nitrate, and OC with tem-
perature as measured by the standardized regression coeffi-
cientβ1 in Eq. (1). The relationships may reflect both a di-
rect dependence of PM2.5 on temperature and a covariation
of temperature with other meteorological variables affecting
PM2.5. To separate the two effects, we conducted a direct
sensitivity analysis with GEOS-Chem by increasing temper-
atures by 1 K throughout the troposphere while keeping all
other meteorological variables constant. The resulting sen-
sitivities are shown in the right panels of Fig. 3, normalized
to the standard deviations of deseasonalized concentrations
and temperature to make them directly comparable to the
standardized regression coefficientsβ1 in the left and mid-
dle panels.

Sulfate in the observations shows a positive relationship
with temperature over most of the US. The model is gen-
erally consistent with the observations but does not capture
the Southwest maximum. Results from the direct sensitiv-
ity analysis, however, show a generally negative dependence
of sulfate on temperature particularly in the West. This con-
trasts with a previous CTM sensitivity analysis by Dawson et
al. (2007) that found a positive dependence of sulfate on tem-
perature, though much weaker than the observed relationship
(Tai et al., 2010). Dawson et al. (2007) attributed their result
to faster SO2 oxidation kinetics at higher temperature, but
we find in GEOS-Chem that this is more than offset by the
increased volatility of H2O2 and SO2, slowing down the in-
cloud aqueous-phase production of sulfate. In any case, it is
clear from the model that the observed positive relationship
of sulfate with temperature must reflect covariation of tem-
perature with meteorological variables rather than a direct
dependence. We elaborate on this in Sect. 4.

Nitrate in the observations shows a negative relationship
with temperature in the Southeast but a positive relationship
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in the North and the Southwest. The model reproduces
these results except for the positive relationship in the South-
west. The negative relationship in the model is too strong
in the South but the higher-resolution 0.5◦

× 0.667◦ simula-
tion does not show such a bias (Fig. 2). The direct sensitiv-
ity of nitrate to temperature in the model is negative every-
where, with magnitude comparable to that found by Daw-
son et al. (2007), and reflecting the volatility of ammonium
nitrate (Stelson and Seinfeld, 1982). We see from Fig. 3
that this direct dependence could account for most of the ob-
served negative relationship of nitrate with temperature in the
Southeast, but it is more than offset in the North by the pos-
itive association of temperature with southerly flow import-
ing polluted air. The observed positive relationship of nitrate
with temperature in the Southwest may reflect the tempera-
ture dependence of ammonia and fire emissions; in the model
these emissions are specified as monthly means.

OC in the observations shows a positive relationship with
temperature throughout the US, and the same is found in the
model although the relationship is steeper. The direct sensi-
tivity study in the model also shows a positive dependence of
OC on temperature. Dawson et al. (2007) previously found a
negative dependence due to OC volatility but did not con-
sider the temperature dependence of biogenic VOC emis-
sions, which is included in our analysis and more than off-
sets the volatility effect. Day and Pandis (2011) similarly
found an increase in OC at higher temperatures mainly due
to increased VOC emissions. We see from Fig. 3 that the
direct temperature dependence may be a significant contrib-
utor the positive relationship between OC and temperature
in the Southeast, where biogenic emissions are particularly
high, but it has little effect elsewhere.

3.2 Correlations with relative humidity

Figure 4 shows the observed and simulated correlations of
sulfate, nitrate, and OC with RH, expressed as the standard-
ized regression coefficientβ2 in Eq. (1). The relationships
are generally positive for sulfate and nitrate both in the ob-
servations and the model. The OC-RH relationship is gen-
erally negative with some model biases in the Great Plains
and Midwest. Results from a model perturbation simulation
similar to that for temperature are also shown in Fig. 4, in-
dicating negligible direct dependence of sulfate and OC on
RH, but a significant positive relationship for nitrate due to
more favorable ammonium nitrate formation at higher RH
(Stelson and Seinfeld, 1982). The direct positive sensitivity
of nitrate in the southeastern coast is offset by the negative
influence from the association of high RH with clean marine
air, leading to the weak overall correlation there.

3.3 Correlations with precipitation and wind speed

Figure 5 shows the observed and simulated relationships of
total PM2.5 with precipitation and wind speed as measured

by β3 andβ6 in Eq. (1). Similar effects are found for all
individual PM2.5 components (Tai et al., 2010). The obser-
vations show strong negative relationships reflecting aerosol
scavenging and ventilation. These are generally well cap-
tured by the model. The precipitation effect appears to be
primarily driven by large-scale rather than convective pre-
cipitation in the US. Fang et al. (2011) similarly illustrated
the dominance of large-scale precipitation in wet scavenging
of soluble pollutants.

4 Major meteorological modes controlling PM2.5
variability

Results from the previous section show that much of the cor-
relation of PM2.5 with individual meteorological variables is
driven by covariance between meteorological variables, with
an apparent major contribution from synoptic transport. To
resolve this covariance we turn to principal component anal-
ysis (PCA) of the meteorological variables to identify the me-
teorological modes controlling PM2.5 variability.

4.1 Principal component analysis and regression

We conducted a PCA for the 2004–2008 GEOS-5 data by
averaging spatially over each region of Fig. 1 the eight de-
seasonalized meteorological variables of Table 1. The result-
ing time series for each region were decomposed to produce
time series of eight orthogonal principal components (PCs)
(U1, . . . ,U8):

Uj (t) =

8∑
k=1

αkj

Xk(t)−X̄k

sk
(3)

whereXk represents the regionally averaged GEOS-5 vari-
able, X̄k and sk the temporal mean and standard deviation
of Xk,, andαkj the elements of the orthogonal transforma-
tion matrix. Each PC represents a distinct meteorological
regime or mode. We identified the nature of meteorologi-
cal mode by examining the values ofαkj in Eq. (3). PCs
with high |αkj | values (e.g., greater than 0.3 and topping the
other|αkj | values) for geopotential height, pressure tendency,
and wind direction are presumably associated with synoptic-
scale weather systems, and can be referred to as synoptic
transport modes. We then followedUj (t) day by day and
visually examined the corresponding weather maps for mul-
tiple months during 2004–2008. From this we assigned a
generalized meteorological feature for a given PC when the
same feature could be associated with the majority of peaks
and troughs ofUj (t). The PCs are ranked by their variances,
usually with the leading three or four PCs capturing most of
the meteorological variability. For instance, in the eastern
US, a single mode representing cyclone and cold frontal pas-
sages (discussed further in Sect. 4.2) typically accounts for
∼20 % of total meteorological variability.
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Figure 4. Same as Fig. 3 but for relative humidity (RH). The right panels show the direct 2 

effects of RH as determined by applying a global -1 % RH perturbation in the GEOS-Chem 3 

simulation. 4 
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Fig. 4. Same as Fig. 3 but for relative humidity (RH). The right panels show the direct effects of RH as determined by applying a global
−1 % RH perturbation in the GEOS-Chem simulation.

 30 

 1 

Figure 5. Relationships of total PM2.5 concentrations with precipitation and wind speed, 2 

expressed as the standardized regression coefficients β3 and β6, respectively. The left panels 3 

show observations (2004-2008) and the right panels model values (2005-2007). Values are for 4 

deseasonalized and detrended variables and are only shown when significant with 95% 5 

confidence (p-value < 0.05). 6 
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Fig. 5. Relationships of total PM2.5 concentrations with precipitation and wind speed, expressed as the standardized regression coefficients
β3 andβ6, respectively. The left panels show observations (2004–2008) and the right panels model values (2005–2007). Values are for
deseasonalized and detrended variables and are only shown when significant with 95 % confidence (p-value< 0.05).
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Figure 6. Dominant meteorological mode for observed PM2.5 variability in the Midwest 2 

inferred from the principal component analysis. Top panel: time series of deseasonalized 3 

observed total PM2.5 concentrations and the dominant meteorological mode or principal 4 

component (PC) in January 2006. Bottom left: composition of this dominant mode as 5 

measured by the coefficients αki in Eq. (3). Meteorological variables (xk) are listed in Table 1. 6 

Bottom right: synoptic weather maps from the National Center for Environmental Prediction 7 

(NCEP) (http://www.hpc.ncep.noaa.gov/dailywxmap/) for 28 and 30 January, corresponding 8 

to maximum negative and positive influences from the principal component. The Midwest is 9 

delineated in orange. 10 
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Fig. 6. Dominant meteorological mode for observed PM2.5 variability in the Midwest inferred from the principal component analysis. Top
panel: time series of deseasonalized observed total PM2.5 concentrations and the dominant meteorological mode or principal component
(PC) in January 2006. Bottom left: composition of this dominant mode as measured by the coefficientsαki in Eq. (3). Meteorological
variables (xk) are listed in Table 1. Bottom right: synoptic weather maps from the National Center for Environmental Prediction (NCEP)
(http://www.hpc.ncep.noaa.gov/dailywxmap/) for 28 and 30 January, corresponding to maximum negative and positive influences from the
principal component. The Midwest is delineated in orange.

We then applied a principal component regression (PCR)
model to correlate observed and simulated PM2.5 concentra-
tions with the eight PCs for each region

Y (t)− Ȳ

sY
=

8∑
j=1

γjUj (t) (4)

whereY represents the regionally averaged PM2.5 concen-
tration,γ j the PC regression coefficients, andȲ andsY the
temporal mean and standard deviation ofY . The ratio of re-
gression to total sum of squares (SSRj /SST) for each PC is
calculated by

SSRj

SST
=

∑
t

[
γjUj (t)

]2

∑
t

{[
Y (t)− Ȳ

]/
sY

}2
(5)

where the summation is over the entire time seriesY (t) and
Uj (t). This ratio quantifies the fraction of variance of PM2.5
that can be explained by a single PC. From Eqs. (3) and (4),
the fraction (fk) of the overall correlation of PM2.5 with a

given meteorological variableXk (e.g., in Figs. 4 through 6)
that is associated with a particular PC can be estimated by

fk =
αkjγj∑

m

αkmγm

(6)

where the summation is over them PCs that have a signifi-
cant effect on PM2.5 (p-value< 0.01). Here the denominator
represents the total effect ofXk on PM2.5 that is equivalent
to a regionally averaged version ofβk in Eq. (1). The PCR
model was applied to both the full-year data and to seasonal
subsets.

4.2 Dominant meteorological modes of PM2.5
variability

Figure 6 shows as an example the dominant meteorologi-
cal mode contributing to total PM2.5 variability in the Mid-
west as determined by the highest SSRj /SST ratio in Eq. (5).
Based on the PCR model this mode alone explains 29 % of
the observed PM2.5 variability with a regression coefficient
γ j = −0.41. The top panel of Fig. 6 shows the time series
of this mode for January 2006 together with the deseasonal-
ized observed total PM2.5 concentrations, illustrating strong
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 1 

Figure 7. Same as Fig. 6 but for California. 2 

  3 

Fig. 7. Same as Fig. 6 but for California.

anticorrelation (r = −0.54). The bottom left panel shows the
meteorological composition of this dominant mode as mea-
sured by PC coefficientsαkj in Eq. (3), consisting of low
temperature, high precipitation, low and rising pressure, and
strong northwesterly winds. From weather maps we can ver-
ify that high positive values of this PC represent the center
of an eastward-propagating mid-latitude cyclone with a pre-
cipitating cold front at the southwest tail end. High negative
values indicate the “opposite” regime – warm and dry stag-
nant condition at the tail end of an anticyclone. Figure 6 (top
and bottom right) shows, for instance, that asUj (t) rose from
a minimum to maximum between 28 and 30 January 2006 in
the Midwest, a mid-latitude cyclone was approaching and the
associated cold front swept over the region bringing down to-
tal PM2.5 by 9 µg m−3.

Figure 7 shows as another example the dominant mete-
orological mode of PM2.5 variability in California, demon-
strating again a strong anticorrelation between the time se-
ries of this mode and PM2.5 concentrations (r = −0.80).
This mode has similar meteorological composition to that
in Fig. 6 except for wind direction. Positive phases of this
mode represent ventilation by cold maritime inflows asso-
ciated with synoptic disturbances, whereas negative phases
represent warm, stagnant conditions associated with high-
pressure systems. The bottom panel shows, for instance, that
between 6 and 8 January 2005, a precipitating maritime in-
flow reduced PM2.5 by 16 µg m−3.

The analysis above was conducted for all regions of Fig. 1.
Figures similar to Figs. 6 and 7 for other regions are in-
cluded in the Supplement. Table 2 summarizes the charac-
teristics of the dominant PC controlling PM2.5 variability for
five selected regions. In the eastern US (Northeast, Midwest
and Southeast), the observed dominant modes resemble that
for the Midwest described above (Fig. 6). In the Northeast,
another mode representing southwesterlies associated with
high pressure over the western North Atlantic is equally im-
portant. In the Pacific Northwest, the dominant mode resem-
bles that for California (Fig. 7). In general, the PCR results
illustrate the importance of synoptic-scale transport in con-
trolling the observed daily variability of PM2.5. As shown in
Table 2, this control appears to be well represented in GEOS-
Chem, supporting the ability of the model to describe the
variability in PM2.5 associated with this transport.

Using Eq. (6), we find overall that the synoptic transport
modes account for more than 70 % of the observed correla-
tions of PM2.5 components with temperature in the Northeast
and Midwest. This reflects the association of elevated tem-
perature with southerly flow and stagnation. In the Southeast,
however, we find that more than 60 % of the observed corre-
lations of nitrate and OC with temperature and RH arise from
a single non-transport mode consisting of low temperature
and high RH. Nitrate has a positive dependence on that mode
because of ammonium nitrate thermodynamics, while OC
has a negative dependence reflecting biogenic VOC emis-
sions and the occurrence of fires. The weaker importance
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of transport in driving the nitrate-temperature relationship
in the Southeast likely reflects the lower frequency of cold
fronts. In California, the transport and non-transport modes
are comparably important in shaping the observed correla-
tions of PM2.5 components with temperature and RH.

5 Cyclone frequency as a metric for climate change
effect on PM2.5

Mid-latitude cyclones and their associated cold fronts are
known to provide the dominant year-round mechanism for
ventilating the US Midwest and Northeast (Cooper et al.,
2001; Li et al., 2005), and they emerge in our analysis of
Sect. 4 as the dominant meteorological mode of PM2.5 vari-
ability. Previous studies diagnosing cyclone frequency have
relied on identifying local pressure minima (Mickley et al.,
2004; Lambert and Fyfe, 2006; Lang and Waugh, 2011)
or used storm tracking algorithms (Geng and Sugi, 2001;
Bauer and Del Genio, 2006; Bengtsson et al., 2006). Here
we diagnose cyclone frequency by applying a fast Fourier
transform (FFT) to the time series of the dominant Midwest
PC representing cyclone and frontal passages as shown in
Fig. 6. We use 1999–2010 meteorological data from the
NCEP/NCAR Reanalysis 1 (Kalnay et al., 1996; Kistler et
al., 2001), which provides a longer record than GEOS-5.
PCA of the NCEP/NCAR data yields essentially the same
meteorological modes as GEOS-5. Figure 8 (gray thin line)
shows the FFT spectrum for the dominant cyclone mode in
the Midwest for 1999–2010. The low-frequency structure
(with periods> 20 d) is an artifact of the 30-day moving aver-
age applied to the meteorological data to remove seasonality.
We smooth the time series with a second-order autoregres-
sive (AR2) filter (Wilks, 2006), indicating a median spectral
frequency of 52 a−1 (cyclone period of about 7 days).

We applied the spectral-autoregressive method above to
find the median cyclone frequencies and periods for individ-
ual years of the 1999–2010 record. Figure 9 shows the time
series of annual mean anomalies in total PM2.5 concentra-
tions and cyclone periods for the Midwest, where the cor-
relation is strongest (r = 0.76) corresponding to a PM2.5-to-
cyclone period sensitivity of 0.94± 0.43 µg m−3 d−1 (95 %
confidence interval). Leibensperger et al. (2008) previously
found a strong interannual correlation of summer ozone with
cyclone frequency in the Northeast using the 1980–2006
record of NCEP/NCAR data. Our analysis does not show
the same for PM2.5 in this region, possibly because of the
short record (12 years) available for PM2.5. Cyclone frequen-
cies found by Leibensperger et al. (2008) are generally lower,
possibly because their storm-tracking algorithm may neglect
weaker cyclones and fronts.

The strong interannual correlation of PM2.5 with cyclone
frequency, at least in the Midwest, encourages the use of cy-
clone frequency as a metric to diagnose the effect of climate
change on PM2.5. We used for this purpose an ensemble of

five realizations of 1950–2050 climate change generated by
Leibensperger et al. (2011b) with the GISS GCM III (Rind
et al., 2007) applied to the IPCC A1B scenario (Nakicen-
ovic and Swart, 2000) and including time-dependent aerosol
radiative forcings. For each realization we examined the
change in median cyclone frequency between the present-
day (1996–2010) and the future (2036–2050), by applying
the spectral-autoregressive method to the dominant cyclone
PC for each 15-year time series, and using a Monte Carlo
method to diagnose the probability distribution and signif-
icance of the change based on variability of the AR2 pa-
rameters. Three out of the five realizations indicated statis-
tically significant decreases in cyclone frequencies between
1996–2010 and 2036–2050 of−3.2, −3.4 and−1.5 a−1 (p-
value< 0.05). One realization showed a significant increase
of 2.7 a−1 and another showed no significant change. Fig-
ure 10 shows the combined probability distribution of cy-
clone frequency change in the Midwest from all five real-
izations and the corresponding responses of annual mean
PM2.5 based on the PM2.5-to-cyclone period sensitivity re-
ported above, indicating a roughly 70 % probability of re-
duced cyclone frequency and elevated PM2.5 in the Midwest
by 2050. This corresponds to a mean decrease in cyclone fre-
quency of−1.1± 4.8 a−1 and a resulting increase in annual
mean PM2.5 of 0.13± 0.60 µg m−3.

Previous GISS-GEOS-Chem GCM-CTM studies of the ef-
fects of 2000–2050 climate change on PM2.5 air quality pro-
jected a mean increase of 0.1–0.5 µg m−3 in the Midwest in
the 2050 climate based on one GCM realization (Pye et al.,
2009; Lam et al., 2011). Their estimates are within the range
of our projection from the cyclone frequency trend alone.
However, the large variability of the cyclone trends (includ-
ing in sign) across five realizations of the same GCM under-
scores the imperative need for multiple realizations in diag-
nosing the effect of climate change on PM2.5 air quality. All
GCM-CTM studies in the literature reviewed by Jacob and
Winner (2009) have used single climate realizations and this
may partly explain the inconsistency in their results.

Other climatic factors than cyclone and frontal frequency
may also affect future PM2.5 air quality in the US. Mean
temperature increases may be particularly important for the
Southeast as discussed previously. Changes in precipita-
tion and PBL depth are obviously important. As scaveng-
ing within a precipitating column is highly efficient (Balkan-
ski et al., 1993), precipitation frequency, often modulated by
synoptic weather, may be more relevant as a predictor than
climatological mean precipitation.

6 Conclusions

Projecting the effects of climate change on PM2.5 air qual-
ity requires an understanding of the dependence of PM2.5 on
meteorological variables. We used here a multiple linear re-
gression model to correlate both observed (EPA-AQS) and
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Table 2. Dominant meteorological modes for regional PM2.5 variability.

US Region PM2.5 variability explaineda PC regression coefficientγ b
j

Descriptionc

EPA-AQS GEOS-Chem EPA-AQS GEOS-Chem

Northeast 17 % 21 % −0.31 −0.33 Cold front
Midwest 29 % 25 % −0.41 −0.38 associated with
Southeast 31 % 15 % −0.42 −0.29 mid-latitude cyclone

Pacific NW 36 % 45 % −0.35 −0.39 Synoptic-scale
California 26 % 13 % −0.28 −0.21 maritime inflow

a From Eq. (5).
b From Eq. (4).
c For positive phases of the dominant PC.
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Figure 8. Frequency spectrum of the daily time series of the dominant meteorological mode 2 

(cyclone/frontal passages) in the US Midwest (Fig. 1) for 1999-2010 using NCEP/NCAR 3 

Reanalysis 1 data. The thin line shows the fast Fourier transform (FFT) spectrum and the 4 

thick line shows the smoothed spectrum from a second-order autoregressive (AR2) model. 5 

The vertical dashed line indicates the median AR2 spectral frequency used as a metric of 6 

cyclone frequency. 7 

  8 

Fig. 8. Frequency spectrum of the daily time series of the dom-
inant meteorological mode (cyclone/frontal passages) in the US
Midwest (Fig. 1) for 1999–2010 using NCEP/NCAR Reanalysis 1
data. The thin line shows the fast Fourier transform (FFT) spectrum
and the thick line shows the smoothed spectrum from a second-
order autoregressive (AR2) model. The vertical dashed line indi-
cates the median AR2 spectral frequency used as a metric of cyclone
frequency.

simulated (GEOS-Chem) daily mean concentrations of total
PM2.5 and its major components with a suite of meteorolog-
ical variables in the contiguous US for 2004–2008. All data
were deseasonalized to focus on synoptic correlations. We
applied principal component analysis (PCA) and regression
to identify the dominant meteorological modes controlling
PM2.5 variability, and showed how trend analysis for these
modes can be used to estimate the effects of climate change
on PM2.5.

We observe strong positive correlations of all PM2.5 com-
ponents with temperature in most of the US, except for ni-
trate in the Southeast where the correlation is negative. A
temperature perturbation simulation with GEOS-Chem re-
veals that most of the correlations of PM2.5 with tempera-
ture do not arise from direct dependence on temperature but
from covariation with synoptic transport. Exceptions are ni-
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Figure 9. Anomalies of annual mean PM2.5 concentrations and median cyclone periods for the 2 

US Midwest (Fig. 1). 3 
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Fig. 9. Anomalies of annual mean PM2.5 concentrations and me-
dian cyclone periods for the US Midwest (Fig. 1).

trate and OC in the Southeast, where the direct dependence of
ammonium nitrate thermodynamics and biogenic VOC emis-
sions on temperature contributes significantly to the corre-
lations. RH is generally positively correlated with sulfate
and nitrate but negatively correlated with OC; the correla-
tions also appear to be mainly driven by covariation of RH
with synoptic transport. Total PM2.5 is strongly negatively
correlated everywhere with precipitation and wind speed.

We find from the PCA and regression that 20–40 % of
the observed PM2.5 day-to-day variability in different US re-
gions can be explained by a single dominant synoptic me-
teorological mode: cold frontal passages in the eastern US
and maritime inflow in the West. These and other transport
modes are found to contribute to most of the overall corre-
lations of different PM2.5 components with temperature and
RH except in the Southeast.

We show that the interannual variability of annual mean
PM2.5 in the Midwest for 1999–2010 is strongly corre-
lated with cyclone frequency as diagnosed from a spectral-
autoregressive analysis of the dominant meteorological mode
of variability, with a PM2.5-to-cyclone period sensitivity of
0.9± 0.4 µg m−3 d−1. We conducted an ensemble of five
realizations of 1996–2050 climate change using the GISS
GCM III with A1B greenhouse and aerosol forcings. Three
of these found a significant decrease in cyclone frequency
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Figure 10. Probability distribution for the change in median cyclone frequency in the US 2 

Midwest between 1996-2010 and 2036-2050, and the corresponding change in annual mean 3 

PM2.5 concentrations. Results are from five realizations of the NASA Goddard Institute for 4 

Space Studies (GISS) GCM III applied to the IPCC A1B scenario of greenhouse gas and 5 

aerosol forcings. 6 

Fig. 10. Probability distribution for the change in median cyclone frequency in the US Midwest between 1996–2010 and 2036–2050, and
the corresponding change in annual mean PM2.5 concentrations. Results are from five realizations of the NASA Goddard Institute for Space
Studies (GISS) GCM III applied to the IPCC A1B scenario of greenhouse gas and aerosol forcings.

over the US Midwest, one found no significant change
and one found a significant increase. From this ensem-
ble we derive a likely increase in annual mean PM2.5 of
0.13± 0.60 µg m−3 in the Midwest in the 2050s climate.
This is consistent with previous GCM-CTM studies using
the same GCM and suggests that cyclone frequency may be
a major driver of the effect of climate change on PM2.5 air
quality. However, the variability of cyclone trends (including
in sign) across multiple realizations of the same GCM with
identical forcings demonstrates the importance of multiple
climate change realizations in GCM-CTM studies because of
climate chaos. All GCM-CTM studies to date have used sin-
gle realizations because of computational expense, and this
may partly explain the wide inconsistencies in their projec-
tions of PM2.5 response to climate change. The climate trend
analysis in this study, using the Midwest as an illustration, is
preliminary. A comprehensive analysis using outputs from
various GCMs will be the topic of a future paper.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/12/3131/2012/
acp-12-3131-2012-supplement.pdf.
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