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Abstract. This paper presents a novel approach to investi-concentration in the accumulation mogl@000 cnt3) where
gate cloud-aerosol interactions by coupling a Markov chainparticle chemistry is more important than both number con-
Monte Carlo (MCMC) algorithm to an adiabatic cloud parcel centration and size of the accumulation mode.
model. Despite the number of numerical cloud-aerosol sen- The competition and compensation between the cloud
sitivity studies previously conducted few have used statisticaimodel input parameters illustrates that if the soluble mass
analysis tools to investigate the global sensitivity of a cloudfraction is reduced, the aerosol number concentration, geo-
model to input aerosol physiochemical parameters. Usingnetric standard deviation and mean radius of the accumula-
numerically generated cloud droplet number concentratiortion mode must increase in order to achieve the same CDNC
(CDNC) distributions (i.e. synthetic data) as cloud observa-distribution.
tions, this inverse modelling framework is shown to success- This study demonstrates that inverse modelling provides
fully estimate the correct calibration parameters, and theira flexible, transparent and integrative method for efficiently
underlying posterior probability distribution. exploring cloud-aerosol interactions with respect to parame-
The employed analysis method provides a new, integrativder sensitivity and correlation.
framework to evaluate the global sensitivity of the derived
CDNC distribution to the input parameters describing the
lognormal properties of the accumulation mode aerosol and  |ntroduction
the particle chemistry. To a large extent, results from prior
studies are confirmed, but the present study also provide€louds are recognised as one of the most important modu-
some additional insights. There is a transition in relative sendators of radiative processes in the atmosphere (Platnick and
sitivity from very clean marine Arctic conditions where the Twomey, 1994). Cloud reflectance is partially dependent on
lognormal aerosol parameters representing the accumulatiodroplet size, which in turn is linked to the concentration of
mode aerosol number concentration and mean radius and acdoud condensation nuclei (CCN). The net effect of an in-
found to be most important for determining the CDNC dis- crease in CCN is to increase cloud albedo (at fixed cloud
tribution to very polluted continental environments (aerosolliquid water path) generally resulting in a radiative cooling
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2824 D. G. Partridge et al.: Inverse modelling of cloud-aerosol interactions — Part 2

of the surface. To assess the impact of aerosols on cloudection of these values becomes more difficult if a parameter
in the climate system, it is crucial to understand the underly-is non-measurable or if only limited or unreliable measure-
ing physical processes governing cloud-aerosol interactionaments exist.

The ab|l|ty of a partiCIe to act as a CCN is a function of the Methods which exp|ore the whole multi-dimensional pa-
size of the particle, its composition and mixing state, and therameter space on the other hand have distinct advantages.
supersaturation of the air (Fitzgerald, 1974; Hegg and Lar-G|obal sensitivity analysis generally leads to different, but
son, 1990; Laaksonen et al., 1998; Feingold, 2003; Conangnore reliable results because parameter sensitivities in non-
et al., 2004; Kanakidou et al., 2005; Quinn et al., 2008) Un'"near models of Comp|ex systems typ|ca||y vary consider-
tangling the relative importance of size and composition foraply over the feasible space of solutions. Secondly, if a
the cloud nucleating ability of aerosol particles is at presentmodel exhibits highly non-linear parameter interactions it is
a major challenge facing the cloud-aerosol modelling com-possible to diagnose this parameter compensation by simul-
munity, and this topic is at the core of the aerosol indirecttaneously varying parameters.

effect (Dusek et al., 2006; McFiggans et al., 2006; Andreae Few studies have used global sensitivity analysis to study

ang Roienfelld ’ ;ggg S;evenj a;]nd Feir?glold,. 2009). ‘ cloud-aerosol interactions. One example is the study of
usek etal. ( ) showed that particle size accounts Oanttila and Kerminen (2007), which used the probabilistic

84 to 96 % of observed variability in CCN concentrations. collocation method (PCM) to test the sensitivity of cloud mi-

T.hey_hypothesised that_ gerosoI-CCN relationsh_ips could b%rophysics to Aitken mode particles (50—100 nm diameters).
simplified by parameterising the effects of chemical COMPO-ne of the main conclusions of their work is that parameters

sﬁ!on on chCNbacélvgt|or; dfo;(;:g:;tam SeErosoI typesl. I;A(())(()js describing the aerosol number size distribution are generally
el N9 Etu |eds hy felngo_ ( ”) an drvens Etl al. ( _)more important than those describing chemical composition
also showed that for an internally-mixed aerosol, COMpPOSl+ g the particle surface tension or mass accommodation

tion has a relatively S.”.]a" effect on df"p'et ach_v ation, xceptyqqicient of water is strongly reduced due to the presence of
perhaps under conditions of both high pollution levels and

Il undraft velocities. H Hud 2007 Cgurface-active organics. This corroborates the results of e.qg.
small updraft velocities. However, Hudson ( ) presente usek et al. (2006). Despite the progress made, the PCM

a more extensiye ,5_et _Of measur(.amen.ts that showed Sigr,‘ifhwethod which uses a polynomial approximation can never
cantly more variability in the relationship between dry parti- erfectly replace the original cloud-parcel model. Moreover,
cle size and critical supersaturation by including cleaner ailp

- th vsis. Ofth dies h | h hthe parameters used in the polynomial function do not repre-
MAsses In t € analysis. ! ther studies ave aiso shown t f@Iant system properties, but are just fitting coefficients.
under certain meteorological/aerosol conditions the effect o An al . h lobal e vsis of
chemistry may be relatively more important (e.g. Lance et al., n alternative approach to global sensitivity analysis o

2004; Rissman et al., 2004; Twohy and Anderson, 2008) ircloud-aerosol interactions is to embrace an inverse modelling
light of this, it is necessary to scrutinize and evaluate modelapproach and invoke posterior probability density functions

parameters over a wide range of input and output conditionj; model parameters using Markov chain Monte Carlo simu-

by efficiently searching the entire parameter space of releva ft'(r)]n (bMCMC)' Such melthodsbnot :)nly prowd:a an es;lr::ate
properties governing aerosol activation and growth. ofthe best parameter values, but also a sample set of the un-

The difficulty in untangling relationships among aerosols, Qerlying (posterior) uncertainty. This distribl.J"[i(')n contains
clouds and precipitation has been attributed to the inadelmpo_rtam mform_atlon about parameter sensitivity, anq cor
quacy of existing tools and methodologies (Stevens and Feinr_elatlon (interaction), and can be used to produce confidence

gold, 2009). Numerous cloud-aerosol modelling sensitivity'mervals on the model predictions. The parameter sensitivity

studies have been conducted (e.g. Feingold, 2003; Rissma‘ﬁetermined for the full dimensional parameter set augments

et al., 2004, and references therein; Chuang, 2006), howt-he se_nsitivity derived from_ 2-D response surface analyses
ever, few have used statistical analysis tools to investigaté':)artrldge etal., 2011, herein denoted P11).

the global sensitivity of a cloud model to input aerosol pa- MCMC approaches have found widespread application
rameters. There are two kinds of sensitivity analysis: lo-and use across a range of different disciplines to estimate
cal and global. The former examines input parameter variaPosterior parameter distributions (Voutilainen and Kaipo,
tions across ranges that are believed to contain the appropr?005; San Martini et al., 2006; Tomassini et al., 2007; Laine
ate values, while global sensitivity analysis considers inputand Tamminen, 2008; Vrugt et al., 2008a; Wraith et al.,
parameter changes over the entire multi-dimensional param2009; Bikowski et al., 2010;akvinen et al., 2010; Loridan
eter domain (Brez et al., 2006). When the local sensitivity €t al., 2010; Vuollekoski et al., 2010).

to a set of model input parameters is tested, models are often Unfortunately, MCMC simulation requires significant
run iteratively, perturbing one set of selected parameters at aomputational resources and in addition, standard MCMC
time, thus testing the sensitivity to these parameters individ-approaches are not particularly efficient and typically re-
ually. This approach requires prior knowledge as to how bestjuire many thousands of model evaluations to find the pos-
to perturb each input parameter as the number of possibléerior parameter distribution, even for relatively simple prob-
model permutations performed is usually limited. The se-lems. Therefore, it is paramount to test the performance and
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applicability of sophisticated state-of-the-art MCMC algo- vironments; from clean marine Arctic conditions to pol-
rithms for investigating cloud-aerosol parameter interactions. luted continental conditions.

P11 introduced an automatic parameter estimation frame- , _ . .
To the authors’ knowledge this study is the first to use an

work to solve the cloud-aerosol inverse problem using the CMC f K with diabatic cloud | model
shuffled Complex Evolution (SCE-UA) global optimisation MCM ramewor with an adiabatic clou parcel mode to
summarize the parameter and model uncertainty for cloud-

algorithm (Duan et al., 1992), in conjunction with an adia- . . i Lo T
batic cloud parcel model (Roelofs and Jongen, 2004). Syn_aerosol interactions, and infer probability distributions of the

thetic calibration data was used to illustrate the method-faCtors determining the growth of droplets for different atmo-

ology in the form of droplet size distributions generated sp?ﬁ_rlc Cond't'c.’l?i' din the followi Fi
from literature values of model input (calibration) parame- ',Ti pape_(er| be' pfrgsen(tje |.nt e following m:anrlllgr. Irst
ters. This allowed us to demonstrate conclusive convergenc}Q’e will provide a briet introduction to inverse modelling us-

to the appropriate parameters used to generate the syntheff&g Bayg&anflrlcﬂfgrl\e;lr(l:ce._ TT'S. wil als_o mEIUngang/lta”Ied
data as the true values of the calibration parameters Werges_cnptlon ot M simu ations usmg_t € L ar
known a-priori. In P11 it was shown that without holding gorithm, and a discussion about the choice of the objective

a number calibration parameters at their true values, speciftuncuon' We then provide a s_hort overview ,Of the most im-
ically the lognormal parameters describing the Aitken modePortant cloud-aerosol sensitivity tests that will be performed,

aerosol, surface tension and mass accommodation Coeﬁf_ollowed by stepwise summary of the results. These results

cient, it would be difficult for the automatic search algorithm will highlight the sensi_tiviFy Of_ the cloud dr_oplet numb_er con-
to find the true optimal parameter values. In particular, it wasgentration (CDNC) dlstrlbuthn o t_he different C?I'b.r ation
illustrated that the cloud-aerosol inverse problem is particu_parameters, followed by a discussion of the main findings

larly difficult to solve because it is highly nonlinear, and may and conclusions of the work considered herein.

contain numerous local minima both within the immediate

vicinity of the true solution, and far away. Althoughthe SCE- 2 method

UA algorithm was shown to successfully locate the optimum

parameter values for the soluble mass fraction and lognor2.1  Bayesian inference

mal aerosol parameters describing the accumulation mode, it

does not provide an estimate of the underlying parameter unfo start we provide a short summary of Bayesian infer-

certainty, associated with model nonlinearity, measuremenence. For a comprehensive review see e.g. Tamminen and

and model error. Kyrola (2001); Jackson et al. (2004); Villagran et al. (2008).
Explicit treatment of parameter uncertainty is possible if Bayesian inference represents a mathematically rigorous ap-

we adopt Bayesian statistics. Therefore, in this study, weproach to parameter estimation. This statistical method treats

pose the model calibration problem in a Bayesian frameworkthe model parameters as random variables with a joint (but

and use the DREAM adaptive MCMC sampling schemeyet unknown) posterior probability distribution. This distri-

(Vrugt et al., 2008b, 2009b) to approximate the posteriorbution is the product of the prior distribution and the likeli-

parameter distribution. This distribution contains the besthood function and conveys all desired information about the

parameter values found with SCE-UA, but also summarizescurrent knowledge of the parameters, and implicitly carries

the associated parameter uncertainty. The method is used toformation about their maximum a-posteriori (MAP) val-

compare the global sensitivity of the adiabatic cloud parcelues, underlying uncertainties and possible multi-dimensional

model to different key input parameters. The specific aimscorrelations. The posterior probability density function of the

are as follows: parameters, hereafter referred topg8|Y) can be written as

follows using Bayes law:
— Demonstrate that DREAM, a current state-of-the-art

MCMC method can be successfully used to provide €S-,(0Y) = p©)pY10) 1)
timates of parameter uncertainty and correlation when pY)
coupled to an adiabatic cloud parcel model. where p(#) denotes the prior distribution of the parameters,

— Demonstrate the applicability and power of MCMC andL(Q|Y)_zp(Y|9) signifies the Iike:‘lih(_)od furlc_tior?. _The
simulation to investigate cloud-aerosol interactions. We "ormalization factorp(¥), also called "evidence” is difficult
are particularly concerned with a global sensitivity anal- to gsnmatg directly in practice, and is instead derived from
ysis of the parameters describing the aerosol physio-an integration over the parameter space sopEto) scales

chemical properties, i.e. the lognormal parameters del0 Unity-
scribing the aerosol accumulation mode and chemistry

(denoted by the soluble mass fraction). r(Y) =/®P(9)p(Y|9)d9 =/®p(9,Y)d9 2

— Pinpoint which are the dominant parameters controllingThe prior distribution defines our knowledge about the pa-
the activation of cloud droplets in different aerosol en- rameters before the actual measurement data is collected and
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processed. Priors can change iteratively after assimilatingherein). MCMC algorithms are typically used to summarize
new data. This distribution typically constitutes information parameter and model output uncertainty, without recourse to
about the system of interest, and ensures that the parametstudying parameter sensitivities. A few studies exist that
estimates at least partially adhere to prior knowledge. have used MCMC simulation to study “global” parameter
The likelihood function provides a diagnostic measure of sensitivities (Benke et al., 2008; Kanso et al., 2006; Vrugt
how well the model fits the data. It essentially measureset al., 2006, 2008b), yet such contributions are rather novel.
the distance between the model predictions and correspondFhis is rather remarkable as the posterior distribution directly
ing observations. If we assume a standard Gaussian formonveys information about parameter sensitivity.
of L(9]Y), then the highest likelihood is typically found for  Existing theory and experiments prove the convergence of
those parameter values that provide the least squares fit to theell constructed MCMC schemes to the appropriate limiting
experimental data. Additional observations (new evidence)distribution under a variety of different conditions. However,
are easily processed in this framework and will result inin practice this convergence is observed to be frustratingly
changes in the posterior parameter distribution. Hence, wheslow, the efficiency being limited by the scale/orientation of
confronted with new data, the likelihood function (and prior the proposal distribution (Vrugt et al., 2009b). Slow con-
distribution) will change and alter the parameter and predic-vergence towards the correct target distribution is frequently
tive uncertainty. Many different formulations of this function caused by an inappropriate selection of the proposal distribu-
are available in the (Bayesian) literature. Schoups and Vrugtion used to generate trial moves in the Markov chain. This
(2010) recently introduced a generalized likelihood functionindicates the need for preliminary test runs or arduous hand
that encapsulates most of these different formulations, and isuning of the proposal distribution. Naturally this is a particu-
especially developed to explicitly treat autocorrelation, het-lar hindrance for the successful application of Bayesian infer-
eroscedasticity, and non-Gaussianity of the residuals. ence for models that are CPU intensive, necessitating the use
Once the posterior parameter distribution has been samef more sophisticated and efficient MCMC methods which
pled with MCMC simulation, predictive uncertainty can be improve on the efficiency of older methods by employing
derived by evaluating the different posterior samples with theadaptive techniques that 'learn’ during the sampling process.
adiabatic cloud parcel model. This results in an ensemble offhis allows the continuous adaptation of the shape/size of
model predictions from which the appropriate prediction in- the proposal distribution such that the sampler more rapidly
tervals (90 %, 95 %, 99 %, etc.) can be estimated. evolves towards the appropriate limiting distribution (Vrugt
This distribution contains the required information to as- et al., 2009b). Convergence can also be hindered for inverse
sess the importance (sensitivity) of individual parametersproblems that contain numerous local minima in the poste-
and their cross-correlation. If the marginal posterior distri- rior parameter space when using single chain MCMC meth-
bution of a given parameter is very well defined and extendsods. Gelman and Rubin (1992) advocate the use of MCMC
over only a small portion of its prior range, the parameter canalgorithms that run multiple different Markov chains (trajec-
be considered sensitive. On the contrary, if the marginal postories) in parallel. This not only reduces the chance of get-
terior distribution extends over a large region of its prior dis- ting stuck in a local solution, but it also helps monitoring
tribution, then the parameter is said to be insensitive. Thusconvergence to a limiting distribution. For instance, a sim-
the reduction in uncertainty of the posterior distribution com- ple comparison of the within and in-between variances of the
pared to the prior is a simple and useful diagnostic to assesdifferent chains will help judge whether the same distribution
parameter sensitivity. Further details are given in Sect. 3.3.1is being sampled by the different parallel chains. This con-
In the past decade, much progress has been made in th&rgence diagnostic was introduced by Gelman and Rubin
development of efficient sampling methods that approxi-(1992) and is generally referred to as tRestatistic. In this
mate the posterior distribution within a limited number of study we employ a state-of-the-art self adaptive DiffeRential
model evaluations. The Markov chain Monte Carlo (MCMC) Evolution Adaptive Metropolis algorithm (DREAM) (Vrugt
scheme was introduced by Metropolis et al. (1953), the baet al., 2009b) for the efficient investigation the cloud-aerosol
sis of which is a Markov chain, which generates a randominverse problem.
walk through the search space and successively visits solu-
tions stemming from a fixed probability distribution (Vrugt 2.2 DiffeRential Evolution Adaptive Metropolis
etal., 2009a). This sampling procedure operates in two steps:  algorithm: DREAM
(1) The proposal step: a candidate value is sampled from a
“proposal distribution”. (2) The acceptance/rejectance stepThe DREAM sampling scheme is an adaptation of the Shuf-
the candidate value is either accepted or rejected using thed Complex Evolution Metropolis (SCEM-UA) algorithm
Metropolis acceptance probabilitygf¥inen et al., 2010). (Vrugt et al., 2003), but maintains detailed balance and er-
The original Metropolis MCMC scheme was extended for godicity (Vrugt et al., 2008a, 2009b). The DREAM algo-
posterior inference in a Bayesian framework by Gelfand andrithm uses differential evolution as a genetic algorithm for
Smith (1990), and has subsequently enjoyed widespread uggpulation evolution with a Metropolis selection rule to de-
in many fields of study (Vrugt et al., 2009b, and referencescide whether to accept the candidate points (offspring) or not.
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In DREAM, N different Markov chains are run in parallel, 3. Rural continental: measurements from the well-
and jumps in each chain are generated using a fixed multi-  established SMEAR Il station at Hy@la from Tunved
ple of the difference of the states of one or more randomly et al. (2005).
chosen pairs of chains. The scale and orientation of this dis-
crete proposal distribution is continuously changing en route : i o
to the posterior target distribution. The samples generated af- measurements at the Melpitz station from Birmili et
ter convergence can be used to summarize the posterior dis- al. (2001).
tributioq, and communicate parameter and model predictiverpa pase “true” value for all 10 input parameters of the adi-
uncertainty. abatic cloud parcel model and the associated lower and up-
Synthetic and real-world case studies have shown that thi%er (prior) limits for the four parameters to be investigated
new approach elicits good efficiencies for complex, highly (herein termed calibration parameters) can be found in Ta-
nonlinear, and multimodal target distributions (Vrugt et al., ple 1 for marine Arctic and marine average conditions and
2009b) typical for the parameters involved in cloud-aerosolin Table 2 for rural continental and polluted continental envi-
interactions (P11). It is therefore well suited to the purposeronments. The true values for each environment are used to

4. Polluted continental: summer continental air mass

of this investigation. generate the synthetic CDNC distributions that constitute the
calibration data for each respective aerosol environment (cf.
2.3 Adiabatic cloud parcel model Sect. 2.4.1). For each aerosol environment the true value, and

lower/upper bounds for the lognormal parameters describ-
Adiabatic cloud parcel models have been used successfulling the accumulation mode aerosol were obtained using the
with field measurements to estimate the impact of aerosostatistics from P. Tunved, (personal communication, 2011);
size/composition for liquid clouds (Ayers and Larson, 1990; Heintzenberg et al. (2000); Tunved et al. (2005); and Birmili
Nenes et al., 2002; Hsieh et al., 2009). To complete aret al. (2001) as a guide. The aerosol size distributions for
MCMC simulation for a single cloud case with relatively few each of the four environments that correspond to the aerosol
calibration parameters, many thousands of cloud model evallognormal parameter base values in Tables 1, 2 can be found
uations are required to explore the posterior distribution. Then P11. The base (true) values and upper and lower (prior)
computational requirements of MCMC could therefore hin- limits for the updraft, mass accommodation coefficient and
der the use of CPU intensive models. In this paper, we utilizesurface tension are taken from the literature (P11).
a computationally efficient adiabatic cloud parcel model that As in P11 the chemistry was defined as a two-component
provides a reasonable trade-off between processes accountedheme consisting of either a soluble component, ammonium
for and computational speed. This provides us with flexi- bisulphate (NHHSQy), or an insoluble component, black
bility to run different MCMC trials with different data sets, carbon (BC). The only difference to P11 is in the definition
and calibration parameters. The chosen cloud parcel modeif the prior limits for the soluble mass fraction. In P11 as our
(Roelofs and Jongen, 2004) simulates the adiabatic ascent ghain interest was in visualising the posedness and sensitivity
an air parcel, condensation and evaporation of water vapoof the calibration parameters the soluble mass fraction was
on aerosols, particle activation, condensational growth, col-allowed to vary over the entire range of possible solutions,
lision and coalescence between droplets, and agueous phatteus between 0.05 and 1. The main thrust of the present paper
sulfur chemistry. As in P11, the model is currently config- is to investigate the global parameter sensitivity for different
ured so that the aerosol is represented as an internal mixturgerosol environments. It is important that the prior limits are
of compounds. The reader is referred to P11 for a descriprepresentative of the real atmosphere or else subsequently de-
tion of the model setup and to Roelofs and Jongen (2004) forived relative sensitivity estimates for individual parameters

more information on the cloud parcel model. may be misleading. Therefore, to better portray the behavior
of the soluble mass fraction in the real-world, it is necessary
2.4 Calibration parameters to narrow its prior range somewhat to represent the range of

possible observations. Thus, we define the prior limits for
4he soluble mass fraction based on the statistics available in
the same literature used to define the soluble mass fraction
base values (P11).

To test a wide range of input aerosol size distributions, dat
from four distinctively different aerosol environments were
used, as outlined in P11. These are:

. . . Synthetic calibration data
1. Marine Arctic: summertime measurements performed

at Ny-Alesund, Svalbard (P. Tunved, personal commu-To henchmark our MCMC algorithm, it is useful to start the

nication, 2011). inverse modelling analysis with numerically generated cloud

observations (i.e. “synthetic” calibration data) simulated us-

2. Marine average: global measurements of marineing known values of the model parameters. In this study,
aerosol from Heintzenberg et al. (2000). these known values are defined as the base values for each

www.atmos-chem-phys.net/12/2823/2012/ Atmos. Chem. Phys., 12, 2883+, 2012
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Table 1. Model parameter values used to generate synthetic data for marine Arctic and marine average aerosol environments (bold), as well
as their respective lower and upper prior bounds used to create posterior distributions derived with DREAM. Parameters N, R and GSD

denote particle number concentration, mean radius, and geometric standard deviation of the aerosol mode where an accompanying numbe
1 indicates the Aitken mode and number 2 the accumulation mode. Sol MF denotes the soluble mass fraction. Parameters 1-6 are held fixe
at their true values during the MCMC simulation.

Environment Marine Arctic Marine average

Parameter Lower limit  True value  Upper limit Lower limit  True value  Upper limit
1 Mass accom. coefficient N/A 1.00 N/A N/A 1.00 N/A
2 Surface Tension m N m N/A 70.00 N/A N/A 70.00 N/A
3 Updraft (m §1) N/A 0.30 N/A N/A 0.30 N/A
4 N1 (cm—3) N/A 80.00 N/A N/A 265.00 N/A
5 R1 (nm) N/A 17.40 N/A N/A 21.00 N/A
6 GSD1 N/A 1.43 N/A N/A 1.45 N/A
7 N2 (cm*3) 36.50 74.50 150.00 60.00 165.00 250.00
8 R2(nm) 35.00 48.00 65.00 70.00 82.50 100.00
9 GSD2 1.50 1.68 1.85 1.40 1.50 1.60
10 Sol MF 0.30 0.60 1.00 0.45 0.90 1.00

Table 2. Model parameter values used to generate synthetic data for rural continental and polluted continental aerosol environments (bold),
as well as their respective lower and upper prior bounds used to create posterior distributions derived with DREAM.

Environment Rural continental Polluted continental

Parameter Lower limit ~ True value  Upper limit Lower limit  True value  Upper limit
1 Mass accom. coefficient N/A 1.00 N/A N/A 1.00 N/A
2 Surface Tension m N m N/A 70.00 N/A N/A 70.00 N/A
3 Updraft(ms 1) N/A 0.30 N/A N/A 0.30 N/A
4 N1 (cm—3) N/A 1010.00 N/A N/A 4900.00 N/A
5 R1(nm) N/A 23.70 N/A N/A 33.00 N/A
6 GSD1 N/A 1.71 N/A N/A 1.55 N/A
7 N2 (cm—3) 215.00 451.00 690.00 730.00 1200.00 1600.00
8 R2(nm) 75.00 89.80 105.00 75.00 93.50 105.00
9 GSD2 1.40 1.58 1.75 1.50 1.55 1.62
10 Sol MF 0.25 0.70 1.00 0.20 0.60 1.00

environment, obtained from the literature (cf. Sect. 2.4). Thistherefore remove the interstitial aerosols from our calibration
is important to ensure that the subsequent sensitivity analdata set. The simulated droplet size distribution is output at
ysis is not contaminated by model error or parameter non-L00 m above cloud base which is used as the calibration tar-
identifiability. get.

The choice of the calibration data set essentially deter- To investigate the influence of environmental conditions
mines the posterior distribution of the parameters. More in-on the posterior distribution and associated sensitivity of the
formation available in the calibration data allows for more governing adiabatic cloud parcel model parameters we syn-
parameters to be constrained. On the contrary, noisy datthetically generate CDNC distributions using input from four
with poor sensitivity to the individual parameters will result different aerosol environments (cf. Sect. 2.4). The resulting
in uncertainty in the posterior distribution. Hence, in such CDNC distributions are depicted in Fig. 1.
situations it will be difficult to reduce parameter uncertainty,
and appropriately calibrate the adiabatic cloud parcel model2.5 Coupling adiabatic cloud parcel model to MCMC

Thus, the information content of the calibration data directly algorithm
determines the identifiability, uncertainty, and correlation of
the adiabatic cloud parcel parameters (P11). Figure 2 provides a schematic overview of the cloud-parcel

Here we wish to assess the impact of the calibration paparameter estimation problem using MCMC simulation with
rameters on the number of activated cloud droplets and wREAM. The plot is essentially divided in two main parts.

Atmos. Chem. Phys., 12, 2823847, 2012 www.atmos-chem-phys.net/12/2823/2012/
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4000 ; rameters) such thatE(9) is in some sense forced to be as
close to zero as possible.

We run the DREAM algorithm with the parameter bounds
of the four calibration parameters listed in Table 1/2 and with
10 different Markov chains and 75000 cloud parcel model

3500+ .

3000

200 L evaluations. Our experience with other parameter estimation
5 . problems of similar dimension suggests that these settings
gn 2000 : A : are appropriate. Such a setup completes an MCMC simu-
Z ! E : lation in approximately two days using a standard desktop

1500 -

computer.

1000

2.6 Defining the objective function —0 F ()

500

In practice, it is difficult, if not impossible to work directly
o , with the n-dimensional vector of residuals and find the ap-
Diameter nm propriate parameter values. Instead, it is much easier to ag-

_ ] S gregate the error residual& (9), see Eq. 3) into a single
Fig. i‘ Tthe?N/dl)ogDP particle size ?bllstn;:)utlonlgenet_rate(tj flo(r ma- )measure of model performance and minimize (or maximize,
rine Arctic (cyan), marine average ue), rural continenta reen). . . . . . .
and poIIuted)::ontinental (red) agrosol environments. Blackgdotte f approprlatg) thls dlagn.ostlc. Such a measure is typically
line represents location of 2 um diameter. calk_ed the objective fun.c'uon, hgrgafter rgferred taaB(0).
Typically, we are seeking a minimum discrepancy between
our model predictions and the corresponding data. The sim-
ePle least squares (SL$) F () is one of the most commonly
measures in model-data synthesis studies, and is defined as

The top part corresponds to “the real-world”, in our cas
represented by synthetically generated data. The environ
Knental corldltlons (denoted Wlt_h true mpqt) act on t_he OF(Q)ZZ’-l:l(Yi_‘f’(Xi’O))Z (4)
real cloud” to produce a certain particle size distribution !
(dotted blue line, Fig. 2). Note, although the cloud parcelwhereé signifies the vector of calibration parameters. For
model output includes the interstitial aerosol as representethe cloud-aerosol inverse problem these are the input lognor-
in the schematic, in this study we only include the activatedmal parameters describing the accumulation mode and sol-
droplets in the calibration data (cf. Sect. 2.4.1). The terminol-uble mass fraction. The SLS approach essentially assumes
ogy “true” and “observed” response is used to differentiatethat each data point has a similar measurement error. This
between reality and respective observations of reality that arés also referred to as homoscedasticity. Examples of mea-
prone to measurement error and uncertainty. Our frameworlsurements that typically exhibit homoscedastic errors include
thus explicitly recognizes the role of measurement error.  temperature and pressure. In this specific case, the likelihood
The DREAM algorithm is now used to find those values function of Eq. (1),L(0]Y) is directly related to the® F(¢),

of the adiabatic cloud parcel parameters that provide the best 1 n 1

possible fit to the measured droplet size distribution. ThisL(6]Y) = <\/_2> eXp[—Eg_ZOF(Q)}, (5)

results in an ensemble of parameter values that define the 2ro

posterior distribution. whereo denotes the standard deviation of the measurement
Mathematically, the model calibration problem can be for- error.

mulated as follows: Le¥ = ¢(X,0) = {J1,...,7.} denote If the measurement error varies dynamically with the mag-

predictions of the moded with observed input variableX nitude of the data, then the error residuals need to be nor-
and model parametefis Let,Y ={y, ..., y,} represent obser- malized with the measurement error to ensure statistically
vations of the droplet size distribution (whereorresponds  optimal estimates of the model parameters. Real world ob-
to the resolution — i.e. the number of size bins used in cloudservations of precipitation, river discharge and the cloud
parcel model). The difference between the model-predictediroplet size distribution considered herein typically exhibit

and measured droplet size distribution can be represented byeteroscedasticity. The synthetically generated model output
the residual vectoFE as: therefore needs to be perturbed with a “measurement error”,

~ (Koda and Seinfeld, 1978) to obtain parameter uncertainty.
E©®) =GXY)-GX)={G(H1—-G(1),-...G(n)—G(yn)} We assume a 10 % error for each individual calibration data
= {e1(0),...,e,(0)} () point, and perturb each observation artificially with this mea-
surement error. We then use this perturbed data set as our
whereG(.) allows for various monotonic (such as logarith- calibration data using MCMC simulation with DREAM to
mic) transformations of the output. The inverse modelling derive the posterior parameter distribution, and subsequent
approach now relies on the estimation of the set of input pa-global parameter sensitivities. The particular choice of error
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Fig. 2. A schematic representation of inverse modelling. The rectangular box in the bottomdpegmaiesents the cloud-parcel model that

is being used to predict the observed particle size distribution from given input data (also called forcing or boundary conditions), and some
a-priori values of the model parameters. The model parameters are iteratively adjusted so that the predictions of thénmodsiented by

the green and red solid lines) approximate as closely and consistently as possible the observed response (measured particle size distributiol
blue dotted line).

A

function used here was guided by experience with real worldpoorly defined and chaotic response surfaces (P11) and non-
measurements. identifiability problems for high dimensional setups.

The likelihood function for the heteroscedastic case is In all our simulations presented herein, we discard the
closely related to Eq. (5), but normalizes each error residuafirst 80 % of the samples in each Markov chain, to give the
as follows, MCMC sampler a more than sufficient time to successfully
converge to the posterior distribution. The number of steps
L©OY) znf’_ ;exp[—}ai‘z(y,- —¢>(X,-,9))2} (6) in each chain required to travel to the posterior distribution

i=t /2702 2 (convergence) is commonly called “burn-in”, and these sam-

’ ples are removed from the analysis (Dekker et al., 2010). In
where the measurement error variance now explicitly de-principle, we could take all those simulations for which the
pends on the actual observation. R-statistic is smaller than 1.2; but resort to the last 20 % of

The identifiability of the calibration parameters is some- our 75000 samples. This is sufficient to obtain stable poste-
what dependent on the definition of ti@eF (9). Adiabatic  rior statistics.
cloud parcel models that employ a moving centre (MvCr)
framework are particularly problematic for inverse modelling
techniques as both the droplet radius and number are simu2 Results
taneously changing in each run (P11).

For comparisons between different simulations to be

meaningful, it is essential to construct a calibration data Sl this first study using MCMC to investigate cloud-aerosol
that is constant with respect to the droplet size grid regardles%teractions we limit ourselves to investigating four param-

of the prescribed calibration input parameters. If (hE () eters. Simulations and analysis will be presented for the

IS deﬁned using only the r.aw'MvCr oqtput of ttip/(dl_o 9Dp calibration parameters deemed to be of most interest for the
funct'|0n, W|thogt any radius information, thgn Itis in theory discussion regarding the relative importance of particle size
possible to achieve exa_ctly_ the same f“”C“F’” shape for dIf'versus chemistry. Those are the number concentration, mean
ferent parameter _c_omb|nat|0ns, l.e. the calibration Parameagius, and geometric standard deviation of the accumula-
ters are non-identifiable. tion mode aerosol as well as the soluble mass fraction (cf.

1o av_oid this, a direct interpolation of the droplet SIZ€ Taples 1-2). The analysis is performed for four aerosol envi-
distributions is performed, so that the corresponding mode} e (Sect. 2.4)

predictions of thedN/dlogDp size distribution function In the following, we will:
Y ={$1,....5,} are interpolated to the size grid of the cal- ’

3.1 Performed sensitivity simulations and analysis

ibration data,Y = {y1,...,y,} (Fig. 1). Unfortunately de- 1. Perform an initial sensitivity analysis of the calibration
pending on the environmental conditions (aerosol size dis- parameters for marine average and rural continental en-
tribution/updraft velocity) this interpolation can result in vironments.
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Fig. 3. Marine average aerosol environment. Evolution of the DREAM sampled Markov chains (different blue dots) towards the stationary
posterior distribution of the lognormal parameters describing the accumulation mode and soluble mass fraction. Each panel considers a
different parameter. The dashed green line represents the actual values of the calibration parameters used to generate the synthetic dropl
size distribution. The red line represents the convergence of DREAM algorithm when the calibration data set is not perturbed with a
heteroscedastic measurement error.

2. Examine the posterior parameter distributions for all They illustrate the sensitivity bounds with respect to the true
four aerosol environments in order to present a more de-optimal solution, which for this synthetic study are the base
tailed sensitivity analysis whilst concurrently revealing parameter values documented in Tables 1, 2, as represented
the effects of parameter compensation within the adia-by the green dotted line for each calibration parameter. The
batic cloud parcel model. convergence of the MCMC algorithm when run without per-

. ., s , turbing with a heteroscedastic measurement error in reaching
3. Repeat step 3 for a “lower” and “higher” updraft veloc- y,eq6 single optimal values is illustrated by the red lines.
ity conditions to study the effect of updraft velocity on

the derived sensitivity. The range on the Y-axis of each subplot in Figs. 3 and 4

corresponds to the prior range defined in Table 1, 2 for ma-
3.2 Performance of MCMC algorithm rine average and rural continental conditions within which
the algorithm is allowed to search. This means that the
To demonstrate that DREAM successfully converges to arange of the posterior distribution for a specific parameter
posterior distribution that contains the correct parameter valin relation to the prior distribution (seen at function evalu-
ues, please consider the blue dots in Figs. 3 and 4 that ilation=0) provides key information as to how sensitive the
lustrate the performance of the MCMC sampler. We displayparticle size distribution is to changes in a parameter (cf.
the results for marine average and rural continental condiSect. 3.3.1). Since all input parameters are simultaneously
tions only. The blue dots represent the convergence of theptimised within this framework, a calibration parameter
prior distribution towards the marginal posterior distribution whose posterior distribution has a small spread about the true
for each parameter and correspond to when we perturbed owgolution is of high importance; as there are few combinations
calibration data with a 10% synthetic measurement errorfor which it can be defined in the model input and still get a
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Fig. 4. Rural Continental aerosol environment. Evolution of the DREAM sampled Markov chains (different blue dots) towards the stationary
posterior distribution of the lognormal parameters describing the accumulation mode and soluble mass fraction. Each panel considers a
different parameter. The dashed green line represents the actual values of the calibration parameters used to generate the synthetic dropl
size distribution. The red line represents the convergence of DREAM algorithm when the calibration data set is not perturbed with a
heteroscedastic measurement error.

measurement output which is close to the calibration data. with the prior range. We can subtract this value from 1, so
To visualise the maximisation of the likelihood function that a large reduction in uncertainty corresponds to a high
with regard to the individual Markov Chains consider one pa-sensitivity (cf. Sect. 4). For instance, if the prior distribu-
rameter, the number concentration of the accumulation mod&on of a given parameter varies between 0 and 10, and its
aerosol for marine average conditions (Fig. 5). In this fig- (marginal) posterior distribution ranges from 2 to 4, then the
ure the convergence of the parameter value (Fig. 5a) and theglative sensitivity of this parameter is 1-2/10=0.8. Sensi-
evolution of log likelihood value, lod=(9|Y) (Fig. 5b) for tivities thus range between O (completely insensitive) and 1
the separate Markov chains are plotted, complementing théextremely sensitive — or uniquely defined). In other words,
results shown in Fig. 3a. It is clear from this figure that the the larger the reduction in uncertainty of the posterior range
convergence is fast{8000 samples) and the posterior distri- of a parameter compared to its prior range, the more sensitive

bution is stationary after15 000 samples. a parameter is. We choose to define our relative sensitivities
in this way, however, we are aware that from the information

3.3 Sensitivity analysis stored in the posterior distribution there are alternatives (e.qg.
standard deviation).

3.3.1 Initial results Based on the width of the posterior distribution (cf.

Sect. 3.2) it is clear from Figs. 3a and 4a that for both
In the following sections we focus on the samples stored inaerosol environments the key calibration parameter for de-
the posterior distribution with respect to the relative parame-scribing the CDNC distribution is the number of particles
ter sensitivity. To calculate the relative sensitivity of each in- in the accumulation mode, as its posterior range is the nar-
dividual parameter, we simply normalize its posterior rangerowest out of all calibration parameters relative to its prior
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Fig. 5. Marine average aerosol environme(g) Evolution of the DREAM generated Markov chains to the stationary posterior distribution

for the accumulation mode number concentration (modg(1®) Evolution of log likelihood value: log=(9|Y). In both(a) and(b), each

trajectory (Markov chain) is coded with a different color. Note also the use of a log scale for the x-axis for easier visualisation. The green
star in a) represents the true value of the accumulation mode number concentration used to generate the synthetic calibration data for marin
average aerosol conditions.

range. Conversely for marine average conditions these fig- The results for marine average aerosol conditions (Fig. 7b)
ures indicate that the least important calibration parameteconfirm those displayed in Fig. 3, i.e. for the adiabatic cloud
for our adiabatic cloud parcel model is the soluble mass fracparcel model used in this study the particle concentration of
tion. For rural continental conditions the difference betweenthe accumulation mode is the most important parameter for
the widths of the posterior distributions is less pronounced. the activation of cloud droplets. The geometric standard de-
The CDNC distribution associated with this posterior dis- viation of the accumulation mode and soluble mass fraction
tribution is shown in Fig. 6 for all four aerosol environments. are least important. For marine Arctic conditions (Fig. 7a)
It is clear that the solutions stored within the posterior dis-whilst the sensitivity towards the geometric standard devia-
tribution bound the calibration data set for all aerosol condi-tion, mean radius and soluble mass fraction is increased com-

tions investigated. pared to marine conditions the relative sensitivity between
the parameters is very similar A low relative sensitivity to
3.3.2 Parameter sensitivity chemistry in cleaner aerosol environments (fewer CCN) is

intuitive; it does not matter how soluble a particle is if it
We will now explore the relative sensitivity between the pa- does not exist. Thus, the number of particles must be, up
rameters by investigating the normalised posterior distribu-to a certain threshold the limiting factor in any environment
tion for each of the calibration parameters for all four aerosolfor the cloud droplet nucleating ability of an aerosol popula-
environments (Fig. 7). A larger normalised posterior rangetion. This will be especially true for environments in which
represents smaller sensitivity to a calibration parameter. Ithe number of available cloud condensation nuclei (CCN) is
should be noted here that our normalised ranges used to infdimited (P11). This is also consistent with current observa-
parameter sensitivity are dependent on the prior range. It i§ions and theory for cleaner (e.g. marine) aerosol environ-
for this reason that the prior ranges have to represent physnents (e.g. Dusek et al., 2006).
ically reasonable lower and upper limits for each parameter For rural continental conditions, the overall picture is the
(cf. Sect. 2.4). same, the number of aerosol particles in the accumulation
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Fig. 6. The range of droplet size distributions associated with the posterior parameter distribution values (last 20 % of the posterior samples
derived with DREAM).(a) marine Arctic aerosol environment (cya®) marine average aerosol environment (blge)rural continental

aerosol environment (greer{li) polluted continental aerosol environment (red). Coloured lines represent the synthetic calibration data set
(prior to being perturbed). Each grey line represents one sample from the posterior distribution.

mode is still the most important parameter and the solublepolluted aerosol conditions the higher concentration of larger
mass fraction is the least important calibration parameteparticles results in the activation of larger droplets, followed
(Fig. 7c). However, now the soluble mass fraction is rela-by a suppression of peak supersaturation which tends to re-
tively more important, having approximately the same nor-duce the total number of droplets activated. This allows for
malized parameter range as the accumulation mode meathe soluble mass fraction to be relatively more important, in
radius. The importance of the accumulation mode numbeagreement with previous studies (Feingold, 2003; Lance et
concentration is lower than for marine average conditionsal., 2004; Ervens et al., 2005; Quinn et al., 2008). It is ex-
The geometric standard deviation of the accumulation modegected at higher updraft velocities the critical supersaturation
is only slightly less important for the cloud nucleating abil- is reduced, enabling a greater fraction of the larger aerosol to
ity of particles than the mean radius. This is in agreementactivate (regardless of composition), thereby decreasing the
with the study of Anttila and Kerminen (2007) which also relative sensitivity of the aerosol composition compared to
focussed on continental background aerosol conditions.  aerosol size (Anttila and Kerminen, 2007).

Moving to a yet further polluted environment (Fig. 7d) we  The evolution of the calibration parameter sensitivity from
see a shift to an increase in the importance of chemistry fowvery clean (marine Arctic) to more polluted conditions is
describing droplet activation, the soluble mass fraction nowin keeping with a previous two-dimensional response sur-
the most important parameter, with the difference betweerface analysis of the sensitivity between aerosol accumula-
sensitivity of the lognormal aerosol parameters describingtion mode number and chemistry (P11). There is a clear tip-
the accumulation mode, in particular the number concentraping point in the relative sensitivity between chemistry (de-
tion, decreasing further. These results are consistent witmoted by the soluble mass fraction) and the lognormal pa-
current theory for conditions in which the environment is pol- rameters describing the accumulation mode aerosol that oc-
luted and the updraft is relatively low, (0.3mY. For more  curs at an accumulation mode number concentration level
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Fig. 7. Normalized posterior parameter ranges(@@yrmarine Arctic aerosol environmerfh) marine average aerosol environmej,rural

continental aerosol environment, aftfj polluted continental aerosol environment. The four calibration parameters under investigation: N2,

R2, GSD2, and Sol MF denote the accumulation mode aerosol number concentration, accumulation mode aerosol mean radius, accumulatiol
mode aerosol geometric standard deviation, and the soluble mass fraction respectively. The same acronyms are used in all following figures
The last 20 % of the samples generated with DREAM were used to derive the results. The y-axes are scaled between 0 and 1 using the
prior ranges defined in Table 1 to yield normalized ranges. The blue error-bars represent define the 1%—99 % limits of the normalized
posterior distribution. The blue circles are used to signify the MAP values of the calibration parameters that provide the highest likelihood
to the measured (synthetic) droplet size distribution, whereas the red circles denote the true parameter values used to create the synthet
calibration data. Each grey line going from left to right through each panel is a different parameter sample from the posterior distribution.

between marine average (Fig. 7b), and rural continental conhave the highest uncertainty within the posterior parameter
ditions (Fig. 7c¢). This behaviour is caused by the shift from distribution. As indicated by the less constrained minimum
clean aerosol environments (low available CCN) to more pol-and maximum ranges after optimisation for polluted condi-
luted environments (higher available CCN) and the associtions, more variability in the calibration parameters describ-

ated competition for water vapour. ing the activation of cloud droplets is possible, whilst still
achieving approximately the same CDNC distribution com-
3.4 Distribution of parameter values pared to clean aerosol environments; this will be discussed

further (cf. Sect. 3.5).

Table 3 lists values of the derived posterior: mean, minimum, The MAP value is generally very close to the base val-
maximum, coefficient of variation (CV) and MAP value of ues of the calibration parameter for all aerosol environments;
the four calibration parameters under investigation for allwith the MAP value of the soluble mass fraction departing
aerosol environments. The MAP value is simply the point in furthest from the base value, e.g. for marine average condi-
the MCMC sample for which the likelihood functioh(6|Y) tions (Table 3; Fig. 7b) (0.75 compared to 0.90). For pol-
was maximized (hence the calibration parameter value thaluted conditions the accumulation mode number concentra-
provided the best fit to the calibration data). This is becausaion MAP value is 1352 cm3, ~150 cnT2 higher than the
we assume a flat (uniform) prior parameter distribution. With true value. The reason for this departure from the true value
other, non-uniform, prior distributions, the MAP is defined as can be partially ascribed to the magnitude of the calibration
maximum of the product of the likelihood function and the data. The perturbation to the synthetically generated CDNC
prior density. distribution using a 10 % heteroscedastic error in Sect. 2.6

For all aerosol environments the soluble mass fraction hago obtain the calibration data was generally positive, result-
the highest coefficient of variation, showing the parameter toing in it having on average a higher peak droplet number
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Table 3. Prior ranges and true values for each environment are presented under heading “Initial Range” for: marine Arctic, marine average,
rural continental and polluted continental conditions. Summary statistics of the derived final (posterior) distribution are also listed for each
parameter for which CV denotes the coefficient of variation and MAP the maximum a posteriori (MAP) values.

Environment

Marine Arctic

Initial range Optimised range: DREAM
Parameter Min Truth Max Min Max Mean Ccv MAP
7.) N2 (cm*3) 36.50 7450 150.00 69.64 94.16 80.13 0.07 79.77
8.) R2 (nm) 35.00 48.00 65.00 45.39 56.79 50.53 0.04 50.28
9.) GSD2 1.50 1.68 1.85 1.64 1.78 1.70 0.02 1.70
10.) Sol MF 0.30 0.60 1.00 0.30 0.64 0.46 0.21 0.46
Environment Marine average

Initial range Optimised range: DREAM
Parameter Min Truth Max Min Max Mean Ccv MAP
7.) N2 (cm—3) 60.00 165.00 250.00 162.52 188.90 173.37 0.04 171.65
8.) R2 (nm) 70.00 82.50 100.00 71.01 89.96 80.47 0.04 80.26
9.) GSD2 1.40 1.50 1.60 1.46 1.60 1.54 0.02 1.54
10.) Sol MF 0.45 0.90 1.00 0.45 0.96 0.73 0.15 0.75
Environment Rural continental

Initial range Optimised range: DREAM
Parameter Min Truth Max Min Max Mean CV MAP
7.) N2 (cm‘3) 215.00 451.00 690.00 393.83 535.86 44486 0.05 451.60
8.) R2 (nm) 75.00 89.80 105.00 86.77 105.00 99.74 0.04 102.36
9.) GSD2 1.40 1.58 1.75 1.44 1.66 1.55 0.02 1.55
10.) Sol MF 0.25 0.70 1.00 0.34 0.96 0.63 0.16 0.56
Environment Polluted continental

Initial range Optimised range: DREAM
Parameter Min Truth Max Min Max Mean cv MAP
7.) N2 (cm*3) 730.00 1200.00 1600.00 1041.80 1599.90 1353.90 0.10 1352.10
8.) R2 (nm) 75.00 93.50 105.00 80.88 105.00 95.95 0.06 94.73
9.) GSD2 1.50 1.55 1.62 1.50 1.62 1.57 0.02 1.57
10.) Sol MF 0.20 0.60 1.00 0.27 0.72 0.49 0.17 0.50

concentration than the original (error free) CDNC distribu- The marginal density is the probability distribution of the

tion generated using the base parameter values. Therefore \ariables contained in our four-dimensional inverse problem
is consistent that the MCMC algorithm tends towards a MAP and provides us with counts of the calibration parameters val-
accumulation mode number concentration that is higher thames over their posterior distribution range, thus providing the
the base value for this parameter. This is more noticeable foshape of the posterior distribution. The marginal distribu-
polluted aerosol conditions for which there is a reduced sentions are derived by plotting the frequency distribution of
sitivity (higher uncertainty) to the particle concentration as each individual parameter sampled with DREAM. In such
(for the current base updraft velocity) more particles remainprocedure we essentially marginalize out all the other param-
unactivated, staying within the interstitial size regime. eters, and in probability theory and statistics we therefore re-
fer to these histograms as marginal distributions. A marginal
distribution that extends over the entire prior ranges is indica-
tive for poor parameter sensitivity. On the contrary, if the
To explore relationships between calibration parameters fur_hlstograr_n is well d_eflned with narrow ranges, t_hen_thls pa-
rameter is well defined, and sensitive to the calibration data.

ther we analyze the marginal (posterior) distributions for Th | d ori . fthe inferred .
each aerosol environment and present the results in Fig. 8. e scale and orientation of the inferred posterior parameter

3.5 Parameter compensation and correlation
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Fig. 8. Histograms of the marginal posterior distributions of the four different adiabatic cloud parcel model calibration paraméigrs for

(d) marine Arctic,(e){(h) marine averagd]j)—(l) rural continental, an¢im)—(p) polluted continental aerosol environments. The star in each
subplot for each aerosol environment is used to separately indicate the true values of the cloud model parameters used to create the synthet
calibration data set.

distributions provide important diagnostic information about presence of correlations between the four calibration param-
the structure of the adiabatic cloud parcel model under inveseters under investigation. For each of these three environ-
tigation. ments, many of the four calibration parameters depart from
a normal distribution. The probability density is forced to

For polluted continental aerosol conditions (subplots M— late at th tor bound that th K of th
P) the histograms are not well defined for the lognormal pa_accumu ate at the parameter bounds so that the peak of the

rameters describing the accumulation mode aerosol shoV\probability distribution departs from the true optimal solu-

ing significant parameter variation across the posterior ranget.lon’ causing the marginal distributions to be skewed. This

This indicates that for these three calibration parametergeSUIt i.ndice}tes that aerosol physiochemical properties within
there is a wide range of possible aerosol size distribution§he adiabatic cloud parcel model compensate each other to

that can be considered optimal for the given environmentaf'a‘chleve th_e same CDNC distribution. To examine this in
conditions. The spread of the posterior distribution around'°r® detail consider Table 4 that presents correlation coef-

the modal values for these calibration parameters are genep-Clents of the samples of t.he posterior par.ame.ter distribu-
ally more constrained for cleaner aerosol conditions. This in-t'on' hFor EaCh ‘T"er.‘;.”' enwronment the calllbratlon pf?rgme—
dicates that for clean environments these parameters are pﬂtgrst at show signi |c§mt go-varlgtlon (correlation coefficient
ticularly important for the accurate prediction of the droplet r|>0.6) have been highlighted in bold.

size distribution. As three of the four aerosol environments share common

The shape of the marginal density distribution for all correlations between three sets of calibration parameters we
aerosol environments except marine Arctic indicates thepresent these three sets in the form of scatter plots for all
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Fig. 9. Scatterplots of the posterior samples of the adiabatic cloud parcel model calibration parameter faiéciomarine Arctic,(d)—
(f) marine averaggg)—(i) rural continental, andj)—(l) polluted continental aerosol environments. The solid lines in each individual plot
denote the posterior range for each individual calibration parameter.

conditions (Fig. 9). These scatter plots can potentially bethe accumulation mode (Fig. 9c, f, i and I) for all aerosol
used to gauge at which point within the parameter space &nvironments. There is a clear shift in the linearity of the
specific parameter used to describe the activation of clouctorrelation as we move into polluted environments which
droplets becomes important in relation to another calibrationcan be attributed to the associated increase in sensitivity of
parameter for a certain atmospheric environment. All pa-the soluble mass fraction relative to the lognormal aerosol
rameter combinations in the posterior distribution shown inproperties describing the accumulation mode. The change in
Fig. 9 give approximately the same cloud droplet size distri-shape (width) of the correlation across the parameter space
bution for each aerosol environment respectively (Fig. 6). is indicative of the relationship between parameters pairs.

The geometric standard deviation is positively correlatedFor polluted continental conditions the relative sensitivity to-
with the number concentration of particles in the accumu-wards the soluble mass fraction decreases if the number or
lation mode for all four environments (Fig. 9a, d, g and j). the geometric standard deviation of the accumulation mode
Thus, to reach the same CDNC distribution it is necessaryis increased (Fig. 9k and I), evident from the increase in scat-
for both the number and geometric standard deviation to inter in the posterior distribution. Thus the ability of the chem-
crease simultaneously. This is in agreement with previoudstry to compensate changes in these lognormal accumulation
studies, for instance Quinn et al. (2008), reported that formode parameters in such conditions is reduced as a larger
a given mean particle diameter and total number concentrapercentage change in the soluble mass fraction is required to
tion, increases in the geometric standard deviation lead to anatch the calibration data. This is in agreement with current
decrease in the total droplet concentration because a broad#reory that for more polluted environments the effect of a
mode suppresses the supersaturation due to the presencedscrease in supersaturation with a larger geometric standard
more larger particles. deviation is larger in the presence of more large particles.

There is a strong negative relationship between the solublf his analysis highlights the importance of a proper represen-
mass fraction and the number of aerosol particles (Fig. 9btation of the geometric standard deviation for estimating the
e, h and k) as well as the geometric standard deviation otloud nucleating ability of particles (cf. Sect. 3.3).
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Fig. 10. Scatterplots of the posterior samples illustrating the relationship between all four calibration parameters of the adiabatic cloud parcel
model under investigation fgg) marine Arctic,(b) marine averagég) rural continental, an¢d) polluted continental aerosol environments.

In Fig. 10 the relationship between all four calibration pa- effects for a variety of environments and meteorological
rameters is presented. If the soluble mass fraction is reducedonditions globally.
the number, geometric standard deviation and mean radius of
the accumulation mode must increase to achieve a very sim-
ilar CDNC distribution. The correlations are less clear for 4 Effect of updraft velocity
marine Arctic conditions (Fig. 10a) and this can most likely
be partly attributed to the very narrow CDNC distribution The impact of the magnitude of the updraft velocity on the
and the loss of information caused by an interpolation of thisrelative sensitivity of the aerosol physiochemical properties
function to a fixed size grid (P11). is investigated by changing the base updraft velocity value
The scatter plots presented in Fig. 10 illustrate that therérom 0.3ms ! to 0.15ms?! and to 0.60 ms?, respectively.
exists a wide range of aerosol physio-chemical propertiesThe statistics of the posterior distribution resulting from
that result in very similar modelled cloud microphysical these simulations are presented in Table 5 for all four aerosol
properties. Therefore, we can surmise that for real world ap-environments. The same initial ranges were used, as defined
plications of inverse modelling of cloud-aerosol interactions, in Table 3. It is important to ascertain the effect of updraft on
it will be necessary to obtain detailed measurements of cloudhe sensitivity of the parameters describing the aerosol phys-
properties to ensure that different clouds can be considere@chemical characteristics as it has a strong influence on the
“unique”. In light of this, height resolved measurements, sizenumber and size of cloud droplets formed (Rissman et al.,
resolved chemistry, and interstitial aerosol measurements ar@004; Brenguier and Wood, 2009). We also showed from
beneficial (P11). our initial response surface analysis (P11) that the CDNC
In summary, the sensitivity analysis presented in Sect. Jistribution was most sensitive updraft perturbations.
illustrates that the size of the aerosol particle is only “some- To illustrate the results from all updraft simulations si-
times” more important than its chemical composition, high- multaneously we calculate our relative sensitivity and sub-
lighting the importance of accurately representing the chem+ract this value from 1 (cf. Sect. 3.3.1) so that a high value
ical composition of aerosols in global climate models. Thisrepresents a relatively more important parameter and plot
must be considered in future development of parameterithese against the accumulation mode number concentration
sations used to calculate droplet number with respect tdor each aerosol environment (Fig. 11). The relative im-
subsequent calculations of the aerosol indirect effect, thuportance of the chemistry compared to the accumulation
it is paramount to estimate the importance of chemicalmode radius increases for all aerosol environments when the
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Fig. 11. Parameter relative sensitivity f¢a) updraft=0.15 msl, (b) updraft=0.30 msl, (c) updraft=0.60 m3sl. The last 20 % of the

samples generated with DREAM were used to derive the results. The y-axes NPR label denotes the “Normalized posterior parameter range”
A higher value of 1-NPR indicates a parameter having higher relative sensitivity. Thus, we present the relative sensitivity for each calibration
parameter as the aerosol environment becomes more polluted. Going from left the right for each of the four aerosol environments the x-axes
corresponds to the accumulation mode aerosol concentration of marine Arctic, marine average, rural continental, and polluted continental
aerosol environments respectively.

updraft is halved (Fig. 11a). For all base updraft velocity CDNC distribution was more sensitive to a small perturba-
values the importance of the soluble mass fraction is highetion in these parameters compared to the low updraft case.
than the lognormal parameters describing the accumulatiofhis effect becomes weaker as the environment becomes
mode aerosol for polluted continental conditions and rela-more polluted partly due to the effect of parameter compen-
tively the least important for clean marine arctic conditions. sation (cf. Sect. 3.5). The smaller response in the relative
The sensitivity to all parameters is increased for the marinesensitivities when halving the updraft compared to doubling
average aerosol environment when the updraft is doubledit with respect to the base case (Fig. 11b) can be explained
This is due to the increase in updraft (keeping all other val-by the non-linear relationship between updraft and the ac-
ues fixed) resulting in a higher fraction of activated dropletscumulation mode concentration and soluble mass fraction as
(subsequently less interstitial aerosol remaining comparedghown by our response surface analysis (P11), so that below
to Fig. 1). Therefore, as the updraft is not optimised dur-a certain updraft value only small changes in the sensitiv-
ing the MCMC simulation it cannot act as a limiting fac- ity will be observed. In summary, for low updraft the criti-
tor, and with the same number of aerosol particles avail-cal saturation vapour pressure is the limiting factor, whereas
able, smaller perturbations in the remaining parameters willfor high updraft conditions the non-linear physiochemical ef-
be amplified causing this clean aerosol environment to exfects relating to the aerosol are limiting.
hibit higher sensitivity to changes in aerosol physiochemical
properties. The effect is not as pronounced for marine Arctic
conditions when the updraft is doubled as when the updraftis Inclusion of additional calibration parameters
0.3ms! there is already only a small reservoir of particles
left unactivated (Fig. 1). In the base setup used in this paper we focus on the sensitiv-
To check this hypothesis a simple sensitivity analysis toity of the accumulation mode aerosol and the chemistry (de-
the input parameters was performed as in P11 (figures nonoted by the soluble mass fraction), as well as the correlation
shown). For the higher updraft base case the simulatedbetween these parameters. Whilst this is a limited humber
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Fig. 12. Normalized posterior parameter ranges(Bymarine average aerosol environmeghb, rural continental aerosol environment. The
additional three calibration parameters under investigation: MAC, ST, and W denote the mass accommodation coefficient, surface tension
and updraft velocity respectively. The last 20 % of the samples generated with DREAM were used to derive the results. The y-axes are
scaled between 0 and 1 using the prior ranges defined in Tables 1, 2 to yield normalized ranges. The blue error-bars represent define thi
1%-99 % limits of the posterior distribution. The blue circles are used to signify the MAP values of the calibration parameters that provide
the highest likelihood to the measured (synthetic) droplet size distribution, whereas the red circles denote the true parameter values used tt
create the synthetic calibration data. Each grey line going from left to right through each panel is a different parameter sample from the
posterior distribution.

of parameters, it was deemed important to keep the analysighen the number of calibration parameters included in the
simplified for the first time in which an MCMC algorithm is MCMC analysis is increased.
coupled to a cloud parcel model to investigate cloud-aerosol In the absence of reliable measurements in the literature
interactions. the median and prior range for the MAC and ST are de-
The results presented herein focus on those parameteffied as in P11. Thus, the median of the MAC is set to 1
considered to be most interesting with respect to the im-with a prior range of 0.01-1, and the median of the ST to
portance of aerosol size versus chemistry. However, it wag0m N nT! with a prior range of 20-75m N m. The
demonstrated in P11, the updraft was clearly the mostimporvalue of the MAC is widely acknowledged to be uncertain,
tant calibration parameter for droplet activation. As a focuswith an experimentally determined range of 0.01 to 1.0 (Xue
of this paper was to determine the relative importance of sizeand Feingold, 2004, and references therein). The ST is also a
and chemistry for the nucleating ability of an aerosol parti- highly uncertain parameter, and the presence of organic sur-
cle the updraft was held fixed to 0.3 m's Nevertheless, it face tension-lowering compounds in the aerosol is acknowl-
is possible to include additional parameters in the analysisedged to affect cloud microphysical properties (Facchini et
thus we repeat our simulations for two aerosol environmentsal., 1999; Gautam and Tyagi, 2006). The prior range of the
(marine average and rural continental) with an increase of theipdraft is selected to represent a wide range of meteorologi-
number of calibration parameters from four to seven by in-cal conditions as in P11 (0.05—-2 mi3.
cluding the mass accommodation coefficient (MAC), surface In Fig. 12a for marine average aerosol conditions, the up-
tension (ST), and updraft velocity. The associated relativedraft velocity is the most important calibration parameter,
parameter sensitivity is presented in Fig. 12. This test allowsslightly more important than the accumulation mode num-
us to examine whether there is a significant change in théer concentration. Its importance increases relative to the ac-
relative sensitivity of the original four calibration parameters cumulation mode number concentration in rural continental
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Table 4. Correlation structure induced between the parameters o‘analy5|s (compare F'g,s' 7 and 12). This cgn be explained by
the posterior distribution derived with DREAM for four contrasting Parameter compensation, the effects of which are stronger for
aerosol environments including: marine Arctic, marine average, ru-the more polluted environment (cf. Sect. 3.5).

ral continental and polluted continental environments. Correlation Tests were conducted (figures not shown) in which the

coefficients larger thapr| > 0.6 are highlighted in bold. lognormal parameters describing the smaller Aitken aerosol
mode were also included as calibration parameters using the
Environment Marine Arctic prior ranges found in P11. In P11 these parameters were

shown to be non-identifiable (the droplet size distribution

N2 R2 GSD2 Sol MF . . . .
used as calibration data does not include the necessary infor-

N2 1.00 mation content to warrant their estimation), thus they are not
R2 —-0.10  1.00 crucial for accurately simulating the droplet size distribution.
GSD2 095 -0.16 1.00 The results when posing the inverse problem in a Bayesian
Sol MF —094 -018 -087 1.00 framework and calculating their relative sensitivity supports
Environment Marine average the response surface analysis in P11, that these parameters
N2 R2 GSD2 Sol MF are non-identifiable (their posterior ranges ex@ending to their
prior ranges). Including these parameters did alter the rel-
N2 1.00 ative sensitivity of the other calibration parameters due to
R2 —-0.38  1.00 parameter correlation. Therefore, for such synthetic studies
GSD2 0.95 -0.60 1.00 where correlation between certain calibration parameters ex-
Sol MF —096 019 -087 1.00 ists, if the number of calibration parameters included in the
Environment Rural continental inverse procedure is increased substantially (e.g. including
N2 R2 GSD2 Sol MF the lognormal parame't'er's describing the Aitken mode) the
calculated global sensitivity of parameters can be altered.
N2 1.00 We also tested the effect on the non-identifiability of the
R2 —0.21 1.00 lognormal parameters describing the Aitken mode by includ-
GSD2 092 -0.54 1.00 ing the interstitial aerosol in the calibration data. For simplic-
Sol MF -0.90 -0.12 -0.75 1.00 . . . .
ity we applied the same 10 % heteroscedastic error function.
Environment Polluted continental By including this information in the calibration data the log-
N2 R2 GSD2 Sol MF normal parameters describing both aerosol modes generally
become more constrained. It is possible to isolate and mea-
N2 1.00 sure the interstitial aerosol and this has been undertaken dur-
R2 —0.47 1.00 ing the MASE Il campaign in which a reverse-facing inlet in
GSb2 0.93 -0.6r 1.00 cloud was used to sample the interstitial aerosol (Sorooshian
Sol MF —-0.71 -020 -0.57  1.00

et al., 2010).

conditions (Fig. 12b) as there as more aerosol particles availé Discussion

able to nucleate, so the environment is less limited by the

number of available CCN (cf. Sect. 3.3.2). The MAC is not The sensitivity analysis presented in Sects. 3 and 4 shows
important for both aerosol environments. The ST is relativelythat the importance of the chemistry for the cloud nucleat-
unimportant, its importance being somewhat larger for theing ability of aerosol particles varies substantially as a func-
marine environment compared to the rural continental condition of both the accumulation mode aerosol concentration
tions. It appears that the MAC, ST, and soluble mass fractiorand the updraft velocity. We have probed an idealised cloud
all give similar (and compensating) effects (figure not shown)using synthetically generated CDNC distribution measure-
They are all relatively unimportant compared to the updraftments with respect to four of the key calibration parameters
and accumulation mode number concentration for instancegf an adiabatic cloud parcel model.

and are thus difficult to pinpoint. These results are in ac- The strong correlation between three of the four param-
cordance with Ervens et al. (2005) who examined numerougters investigated in this synthetic study provides hope for
chemical/composition effects in unison and showed that duesimplification of parameterisations describing droplet acti-
to compensation between parameters the effect of composivation (Kivelkas et al., 2007), and this motivates apply-
tion on total droplet number was significantly less than sug-ing MCMC simulation to real world observations of cloud-
gested by studies that address the effects individually. Theerosol properties. The strong parameter correlation and
relative sensitivity of the original four calibration parameters compensation for all aerosol environments also highlights
is slightly decreased compared to the base sensitivity resultthe need for detailed measurements of cloud properties if we
when the updraft velocity, MAC and ST are included in the wish to constrain the cloud-aerosol inverse problem using
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Table 5. Summary statistics of the derived final (posterior) distribution are presented for MCMC simulations using lower base updraft
velocity (updraft velocity =0.15 nsl) and higher base updraft velocity (updraft velocity = 0.60'Msfor: marine Arctic, marine average,

rural continental and polluted continental aerosol conditions. CV denotes the coefficient of variation and MAP the maximum a posteriori
(MAP) values.

Updraft Velocity =0.15 ms? Updraft Velocity = 0.60 ms?

Posterior distribution statistics Posterior distribution statistics
Environment Marine Arctic
Parameter Min Max Mean CV MAP Min Max Mean CVv MAP
7. N2 (cm—3) 75.30 108.58 90.68 0.09 96.95 73.04 93.24 78.51 0.05 74.51
8. R2 (nm) 40.65 53.91 46.30 0.07 44.99 42.57 50.28 46.54 0.03 47.91
9. GSD2 1.70 1.83 1.76 0.02 1.78 1.65 1.78 1.70 0.01 1.68
10. Sol MF 0.30 0.59 042 0.21 0.37 0.40 0.62 0.55 0.09 0.60
Environment Marine average
Parameter Min Max Mean cv MAP Min Max Mean CcVv MAP
7. N2 (cm‘3) 154.06 194.63 171.02 0.06 164.16 161.13 169.78 163.62 0.01 162.45
8. R2 (nm) 71.75 99.95 86.35 0.07 82.98 75.19 86.94 81.44 0.02 81.19
9. GSD2 1.43 1.60 1.52 0.03 1.50 1.47 1.56 1.51 0.01 1.51
10. Sol MF 0.45 1.00 0.71 0.22 0.89 0.78 0.95 0.89 0.03 0.89
Environment Rural continental
Parameter Min Max Mean Ccv MAP Min Max Mean Ccv MAP
7. N2 (cm—3) 352.43 676.28 461.29 0.13 437.58 438.29 583.37 485.63 0.04 491.91
8. R2 (nm) 75.01 104.99 96.23 0.07 93.56 81.22 104.99 97.22 0.06 104.19
9. GSD2 1.46 1.74 1.58 0.03 1.57 1.48 1.72 1.57 0.02 1.54
10. Sol MF 0.26 0.92 0.58 0.22 0.66 0.32 0.83 0.58 0.12 0.55
Environment Polluted continental
Parameter Min Max Mean cv MAP Min Max Mean CcVv MAP
7. N2 (cm‘3) 949.51 1599.20 1324.00 0.12 1321.50 1131.00 1599.90 1351.10 0.07 1326.70
8. R2 (nm) 82.18 105.00 97.33 0.06 96.24 83.73 104.97 96.68 0.05 95.67
9. GSD2 1.50 1.62 1.56 0.02 1.56 1.50 1.62 1.56 0.02 1.56
10. Sol MF 0.27 0.66 0.49 0.18 0.50 0.32 0.70 0.50 0.14 0.51

physically based cloud models. Future measurement camparameter (cf. Sect. 5) is was shown to be a very important
paigns should therefore measure the cloud microphysicaparameter for the accurate simulation of the CDNC distri-
properties at multiple height levels simultaneously, and in-bution as would be expected, As it is currently considered
clude the interstitial aerosol (cf. Sect. 5) as well as size re-both difficult to measure and highly variable (Lance et al.,
solved chemistry. This will allow us to increase the infor- 2004), the results shown with MCMC highlight the impor-
mation content stored in the calibration data, and more accutance to constrain the uncertainty of its measured value in
rately constrain more of the calibration parameters. future cloud-aerosol measurement campaigns. It has also
The parameter compensation and correlation, in particubeen shown that for clean aerosol conditions the fraction
lar for polluted environments also highlights the difficulty of aerosols activated to droplets is a weak function of ver-
in ascertaining the true parameter sensitivity using synthetidical velocity and a much stronger function of vertical veloc-
studies and care should be taken when performing local serity When aerosol concentrations are typical of polluted envi-
sitivity studies on aerosol parameters as their effects on théonments (Snider and Brenguier, 2000). To investigate this,
droplet nucleating ability are highly non-linear. Thus, the ef- further analysis is required for when the updraft velocity is
fects of parameter correlation and interaction justify the useincluded as a calibration parameter for polluted continental
of statistical approaches such as MCMC simulation for inves-2erosol conditions, which was beyond the scope of this study.

tigating cloud-aerosol interactions with respect to parametric When the MAC and ST were included in the analysis
uncertainty and cloud model structural accuracy. they were found to be unimportant, indicating that con-
When the updraft velocity was included as a calibration straining their measured values by improved instrumentation

www.atmos-chem-phys.net/12/2823/2012/ Atmos. Chem. Phys., 12, 2883+, 2012



2844

would not significantly improve the accuracy of the simu-
lated droplet size distribution with respect to measurements
for the cloud model setup used herein. For instance, for the

D. G. Partridge et al.: Inverse modelling of cloud-aerosol interactions — Part 2

and correlation, and assessment model prediction uncer-
tainty ranges.

MAC for the two environments investigated, regardless of Considerations to be taken when applying inverse modelling
how much the prior range was constrained the relative sensito cloud aerosol interactions:

tivity (1-normalized posterior range) will always be close to
zero.

This illustrates a further benefit of MCMC when develop-
ing droplet activation parameterisations as we can use this
information stored in the posterior distribution to identify
unimportant parameters and thus simplify the number of in-
put parameters required. However this must also be investi-
gated using real world droplet size distribution measurements
as calibration data rather than synthetically generated obser-
vations from the adiabatic cloud parcel model.

The particular choice of measurement error used to per-
turb the model output in the setup (in this case assumed to
be 10%) can potentially influence the resulting parameter
sensitivities. A comprehensive evaluation of the effect of
changes in the assumed measurement error on the derived
parameter sensitivities is beyond the scope of this work and
will be more appropriately dealt with when real world mea-
surements are used. Nevertheless, a simple test of the sen-
sitivity was conducted whereby the measurement error was

increased from 10% to 20% for the marine average case —

(figures not included). Although the absolute sensitivities

of the parameters decreased somewhat with increasing mea-
surement error (which can be attributed to a higher spread of
probability mass over the parameter space, hence larger pa-

— The parameter sensitivity results presented herein are

dependent on the choice of the calibration data set, and
likelihood (objective) function used, and number of cal-
ibration parameters investigated.

The ability of DREAM MCMC algorithm to search the
entire parameter space significantly reduces the chance
of getting stuck in local optima. Yet, population based
search and optimization algorithms may pose computa-
tional challenges, particularly when the (cloud) model
under investigation requires significant time to run and
produce the desired output.

Future studies can benefit from the ability of DREAM
MCMC algorithm to be run in parallel, and distributed
computing opens up new possibilities for solving com-
plex, and computationally demanding parameter esti-
mation problems related to cloud-aerosol interactions.

To inspire confidence in the MCMC inverse modelling
approach, a successful demonstration using real rather
than synthetic measurements is required. This is a pre-
requisite to accurately predict cloud-aerosol interactions
across a range of spatial scales.

rameter uncertainty), the relative importance of the parame- ) o
ters remained relatively unchanged. We found strong correlations between certain input parame-

ters, for example, the solubility versus the number and geo-
metric standard deviation of the accumulation mode aerosol
in polluted aerosol environments. In light of this it is crucial

to improve our knowledge of the physical upper and lower

In this study, we have coupled a state-of-the-art MCMC a|go_limits of aerosol physio-chemical properties in the real atmo-
rithm, to an adiabatic cloud parcel model. By using syntheti-SPhere by performing more measurements of these parame-
cally generated observations for marine Arctic, marine averters both spatially and temporally. This will ensure a better
age, rural continental and polluted continental conditions, weconfidence in subsequently derived global parameter sensi-
have shown that the MCMC algorithm is able to efficiently tivity using MCMC methods.
provide a means to calculate the global sensitivity of key in- The applied algorithm shows that for marine Arctic and
put parameters for describing the development of a CDNCMarine average aerosol conditions the aerosol particle con-
population in an adiabatic cloud parcel model. centration and mean radius of the accumulation mode are the
The most important merits of the approach adopted are: Most important parameters when simulating the CDNC dis-
tribution, whereas the chemical composition is the least im-
— MCMC algorithms can successfully be coupled with portant. However, for the present updraft applied (0.3Ms
adiabatic cloud parcel models. This framework opensin more polluted environments (aerosol concentration of the
up new ways forward to investigate cloud-aerosol inter- accumulation mode-400 cnt3) the relative importance of
actions. the soluble mass fraction increases considerably. In polluted
conditions (aerosol concentration of the accumulation mode
— ltis possible to simultaneously quantify both global pa- >1000cnt3) chemistry dominates the lognormal aerosol
rameter sensitivity and investigate the structure of theparameters describing the accumulation mode.
cloud model in relation to its input parameters. This  Whilst these main conclusions mostly confirm those ob-
framework results in a high level of transparency with tained by previous studies, the method presented considers
respect to statistical inference of parameter uncertaintyand displays a number of important findings in an integrative

7 Conclusion
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way, providing a clear way to deconstruct complex cloud- namics and Precipitation, edited by: Heintzenberg, J. and Charl-
aerosol interactions into a simple form. son, R. J., pp. 487-510, MIT Press, Cambridge, Mass, 2009.
The results presented here are not derived using real-worl§huang, P. Y.: Sgns!tivity of cloud condensation nuclei activation
cloud data, the findings so far being limited to synthetic cases gg?_i%sigz;‘/’;8823‘;88;2;8%‘:* J. Geophys. Res., 111, D09201,
only. I_n a r_elateq study we will Investlgate cloud-aerosol in- Conant, W. C., VanReken, T. M., Rissman, T. A., Varutbangkul, V.,
teractions in an inverse framework using real measurements 3 . . o
. . onsson, H. H., Nenes, A., Jimenez, J. L., Delia, A. E., Bahreini,
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