Supplement materials for

Kanaya et al., Comparisons of observed and modeled OH and HO_2 concentrations during the ambient measurement period of the HOxComp field campaign

No.	Reaction	$k (cm^3 s^{-1})$	Note
Al	ISO+OH → 0.491ISOPBO2 + 0.259ISOPDO2 + 0.25ISOPACO2	2.54×10 ⁻¹¹ ×exp(410/T)	1(RACMR70replaced),ForIsomandIsom_a(HC8)runs, products andyieldsare0.6ISOPBO2+0.3ISOPDO2+0.1ISOPEO2+0.1ISOPEO2
A2	ISOPBO2 + NO \rightarrow 0.928 (MVK + HO2 + NO2 + HCHO) + 0.072ISON	$2.54 \times 10^{-12} \times \exp(360/T)$	2
A3	$ISOPDO2 + NO \rightarrow 0.855 (MACR + HO2 + NO2 + HCHO) + 0.145ISON$	$2.54 \times 10^{-12} \times \exp(360/T)$	2
A4	ISOPACO2 + NO \rightarrow 0.952 (HALD5152 + HO2 + NO2 + HCHO) + 0.044ISON	$2.54 \times 10^{-12} \times \exp(360/T)$	2
A5	$ISOPBO2 + HO2 \rightarrow ISOPBOOH$	$0.706 \times 2.91 \times 10^{-13} \times \exp(1300/T)$	2
A6	$ISOPDO2 + HO2 \rightarrow ISOPDOOH$	$0.706 \times 2.91 \times 10^{-13} \times \exp(1300/T)$	2
A7	$ISOPBOOH+OH \rightarrow IEPOX + OH$	1.9×10 ⁻¹¹ ×exp(390/T)	4
A8	ISOPBOOH+OH \rightarrow 0.7ISOPBO2 + 0.3HCOC5 + 0.3OH	$0.38 \times 10^{-11} \times \exp(200/T)$	4
A9	$ISOPDOOH+OH \rightarrow IEPOX + OH$	1.9×10 ⁻¹¹ ×exp(390/T)	4
A10	ISOPDOOH+OH \rightarrow 0.7ISOPDO2 + 0.3HCOC5 + 0.3OH	$0.38 \times 10^{-11} \times \exp(200/T)$	4
A11	$\text{IEPOX+OH} \rightarrow \text{IEPOXO2}$	$5.78 \times 10^{-11} \times \exp(-400/T)$	4
A12	IEPOXO2+ NO \rightarrow 0.725HKET + 0.275GLY + 0.275GLYALD + 0.275MGLY + 0.375HCHO + 0.074ORA1 + 0.125OH + 0.825HO2 + 0.251CO + NO2	$2.54 \times 10^{-12} \times \exp(360/T)$	4
A13	IEPOXO2+HO2 →0.725HKET + 0.275GLY + 0.275GLYALD + 0.275MGLY + 0.375HCHO + 0.074ORA1 + 1.125OH + 0.825HO2 + 0.251CO	0.074×10 ⁻¹¹ exp(700/T)	4
A14	ISON+OH→HKET+NALD	1.30×10^{-11}	1
A15	MACR+OH → MACP	$1.86 \times 10^{-11} \times \exp(175/T)$	2 (RACM R82 replaced)
A16	MACR+O3→ 0.90MGLY+0.45ORA1+0.32HO2+0.22CO+0.19 OH+0.10ACO3	$1.36 \times 10^{-15} \times \exp(-2112/T)$	2 (RACM R113 replaced)
A17	MACP+NO→NO2+0.25HKET+0.25CO+0.25A CO3+0.50MGLY+0.75HCHO+0.75HO2	$2.54 \times 10^{-12} \times \exp(360/T)$	1
A18	$MACP + HO2 \rightarrow MAHP$	$1.82 \times 10^{-13} \times \exp(1300/T)$	1
A19	$MACP + NO2 \rightarrow MPAN$	$k_0 = 9.7 \times 10^{-29} \times (T/300)^{-5.6}$	1
		$k_{\infty} = 9.3 \times 10^{-12} \times (T/300)^{-1.5}$	
		$k = \{k_0 \times [M]/(1 + k_0 \times [M]/k$	
		$_{\infty}) \} \times 0.6^{\{1 + [\log 10(k0[M]/k\infty)]_2\}_{-1}}$	
A20	$MPAN \rightarrow MACP + NO2$	$k = k(260)/(9.0 \times 10^{-29} \times exp(14000/T))$	1
A21	$MPAN + OH \rightarrow HKET + NO2$	3.60×10 ⁻¹²	1

 Table S1. Revised isoprene degradation chemistry used in this study.

A22	$MAHP + OH \rightarrow MACP$	3.0×10 ⁻¹¹	1
A23	$\rm NALD + OH \rightarrow \rm HCHO + \rm CO + \rm NO2$	5.60×10 ⁻¹² ×exp(270/T)	1
A24	ISO + O ³ 0.39MACR + 0.26MVK + 0.58HCHO + 0.10MACP + 0.10ACO3 + 0.08MO2 + 0.28ORA1 + 0.14CO + 0.09H2O2 + 0.25HO2 + 0.25OH	$7.86 \times 10^{-15} \times \exp(-1913/T)$	1 (RACM R110 replaced)
A25	$MVK + OH \rightarrow MACP$	$4.13 \times 10^{-12} \times \exp(452/T)$	2
A26	MVK + O3→ 0.90MGLY + 0.45ORA1 +	$7.51 \times 10^{-16} \times \exp(-1521/T)$	2
٨27	$0.32\text{HO2} + 0.22\text{CO} + 0.19\text{OH} + 0.10\text{ACO3}$ $\text{MACR} + \text{hv} \rightarrow \text{CO} + \text{HCHO} + \text{HO2} + \text{ACO3}$	$2.192 \times 10^{-5} \times \cos(sza)^{0.526} \times \exp(-0.227 \times sec(sza)^{-5})^{-5} \times \cos(sza)^{-5} \times \exp(-0.227 \times sec(sza)^{-5})^{-5} \times \cos(sza)^{-5} \times \cos(sza)^{-5}$	2 (RACM R22
A28	MVK + hv →0.5OLT + 0.5 ACO3 + 0.5 HCHO + CO + 0.5HO2	sza)) (clear sky, s ⁻¹) 3.672×10 ⁻⁵ ×cos(sza) ^{0.395} ×exp(-0.296×sec(sza)) (clear sky, s ⁻¹)	replaced) 2
A29	$NALD + hv \rightarrow HCHO + CO + NO2 + HO2$	$=J(ALD)(s^{-1})$	1
A30	$MAHP + hv \rightarrow 0.5HKET + 0.5CO + 0.5MGLY + 0.5HCHO + OH + HO2$ $MPAN + hv \rightarrow MACP + NO2$	$=J(OP2)(s^{-1})$	1
A31	$MPAN + nV \rightarrow MACP + NO2$		1
A32	$1SON + hv \rightarrow NO2 + MACR + HCHO + HO2$	$= J(ONII)(s^{-1})$	1
A33	$HCOC5 + hv \rightarrow 2ACO3 + HCHO$	=J(MVK) (s ⁻¹)	2
A34	$OH + HCOC5 \rightarrow C59O2$	3.81×10 ⁻¹¹	2
A35	$C59O2 + NO \rightarrow HKET + ACO3 + NO2$	$2.54 \times 10^{-12} \times \exp(360/T)$	2
A36	$C59O2 + HO2 \rightarrow C59OOH$	$0.706 \times 2.91 \times 10^{-13} \times \exp(1300/T)$	2
A37	$OH + C59OOH \rightarrow C59O2$	9.70×10 ⁻¹²	2
A38	$C59OOH + hv \rightarrow HKET + ACO3 + OH$	$5.804 \times 10^{-6} \times \cos(sza)^{1.092} \times \exp(-0.377 \times \sec(sza)) + V(OP2)$ (clear clus c.1)	2
A39	HALD5152 + hv \rightarrow HO2 + TCO3	$1.140 \times 10^{-5} \times \cos(sza)^{0.396} \times \exp(-0.298 \times sec(sza))$ (clear sky, s ⁻¹)	2
A40	$HALD5152 + hv \rightarrow HKET + 2HO2 + 2CO$	$1.140 \times 10^{-5} \times \cos(sza)^{0.396} \times \exp(-0.298 \times sec(sza))$ (clear sky, s ⁻¹)	2
A41	$HALD5152 + OH \rightarrow 0.48TCO3 + 0.52C58O2$	4.50×10 ⁻¹¹	2
A42	$C58O2 + NO \rightarrow HKET + GLY + HO2 + NO2$	$2.54 \times 10^{-12} \times \exp(360/T)$	2
A43	$C58O2 + HO2 \rightarrow C58OOH$	$0.706 \times 2.91 \times 10^{-13} \times \exp(1300/T)$	2
A44	$OH + C58OOH \rightarrow C58O2$	3.16×10 ⁻¹¹	2
A45	$C58OOH + h\nu \rightarrow HKET + GLY + HO2 + OH$	$=J(OP2)(s^{-1})$	2
A46	ISOPBOOH + h₩ MVK+ 0.75 HCHO + 0.75HO2 + 0.25 MO2 + OH	$=J(OP2)(s^{-1})$	2
A47	ISOPDOOH + $hv \rightarrow MACR + HCHO + HO2 + OH$	$=J(OP2)(s^{-1})$	2
A48	$\begin{array}{l} \text{GLYALD + OH} \rightarrow 0.8 \text{ ACO3 + } 0.2 \text{ GLY + } 0.2 \\ \text{HO2} \end{array}$	1.0×10 ⁻¹¹	2
A49	$GLYALD + h\nu \rightarrow 2HO2 + HCHO + CO$	$2.792 \times 10^{-5} \times \cos(sza)^{0.805} \times \exp(-0.338 \times sec(sza))$ (clear sky, s ⁻¹)	2
A50	ETEP + NO \rightarrow 1.6HCHO + HO2 + NO2 + 0.2GLYALD	9×10 ⁻¹²	2 (RACM R136 replaced)
A51	ISOPBO2 + NO3→0.60MACR + 0.40OLT + 0.686HCHO + HO2 + NO2	1.2×10 ⁻¹²	2
A52	$ISOPDO2 + NO3 \rightarrow 0.60MACR + 0.40OLT + 0.686HCHO + HO2 + NO2$	1.2×10 ⁻¹²	2

A53	ISOPACO2 + NO3→0.60MACR + 0.40OLT + 0.686HCHO + HO2 + NO2	1.2×10 ⁻¹²	2
A54	$ISOPACO2 + HO2 \rightarrow ISOPACOOH$	$0.706 \times 2.91 \times 10^{-13} \times \exp(1300/T)$	2
A55	$ISOPACOOH + OH \rightarrow HALD5152 + OH$	1.07×10^{-10}	2
A56	$ISOPACOOH + hv \rightarrow HALD5152 + HO2 + OH$	$=J(OP2)(s^{-1})$	2
A57	$ISOPBO2 \rightarrow HPALD1 + HO2$	$4.06 \times 10^9 \times \exp(-7302/T) (s^{-1})$	3, 4, Only for Isom and Isom
A58	$ISOPBO2 \rightarrow MVK + HCHO + OH$	2.08×10 ¹¹ ×exp(-8993/T) (s ⁻¹)	3, 4, Only for Isom and Isom
A59	$ISOPDO2 \rightarrow HPALD2 + HO2$	8.5×10 ⁹ ×exp(-7432/T) (s ⁻¹)	3, 4, Only for Isom and Isom
A60	$ISOPDO2 \rightarrow MACR + HCHO + OH$	2.08×10 ¹¹ ×exp(-8993/T) (s ⁻¹)	3, 4, Only for Isom and Isom a(HC8) runs
A61	$HPALD1 + hv \rightarrow OH + HO2 + PACALD1$	=23×J(MACR) (s ⁻¹) (scaled to yield overhead sun value of 5×10^{-4} s ⁻¹)	3, 4
A62	$HPALD2 + hv \rightarrow OH + HO2 + PACALD2$	=23×J(MACR) (s ⁻¹) (scaled to yield overhead sup value of 5×10^{-4} s ⁻¹)	3, 4
A63	PACALD1+ $hv \rightarrow 2OH + 0.5HKET + 0.5 MGLY$ + 0.5 GLYALD + HCHO	$=2\times J(\text{HPALD1}) (s^{-1})$	3
A64	PACALD2+ $hv \rightarrow 2OH + 0.5HKET + 0.5 MGLY$ + 0.5 GLYALD + HCHO	= $2 \times J(\text{HPALD2}) (s^{-1})$	3
A65	$HPALD1 + OH \rightarrow OH$	4.6×10 ⁻¹¹	3
A66	$\mathrm{HPALD2} + \mathrm{OH} \rightarrow \mathrm{OH}$	4.6×10 ⁻¹¹	3
A67	ISOPEO2 + NO \rightarrow 0.952 (CAR + HO2 + NO2 + HCHO) + 0.044ISON	$2.54 \times 10^{-12} \times \exp(360/T)$	2
A68	$CAR + hv \rightarrow HO2 + TCO3$	$1.140 \times 10^{-5} \times \cos(sza)^{0.396} \times \exp(-0.298 \times \sec(sza))$ (clear sky s ⁻¹)	2
A69	$CAR + hv \rightarrow HKET + 2HO2 + 2CO$	1.140×10 ⁻⁵ ×cos(sza) ^{0.396} ×exp(-0.298×sec(sza)) (clear sky, s ⁻¹)	2
A70	$CAR + OH \rightarrow 0.48TCO3 + 0.52C58O2$	4.50×10 ⁻¹¹	2
A71	ISOPEO2 + NO3→0.60MACR + 0.40OLT + 0.686HCHO + HO2 + NO2	1.2×10 ⁻¹²	2
A72	$ISOPEO2 + HO2 \rightarrow ISOPEOOH$	$0.706 \times 2.91 \times 10^{-13} \times \exp(1300/T)$	2
A73	$ISOPEOOH + OH \rightarrow CAR + OH$	1.07×10^{-10}	2
A74	$ISOPEOOH + hv \rightarrow CAR + HO2 + OH$	$=J(OP2)(s^{-1})$	2

Notes: 1: Pöschl et al. (2000), 2: MCM ver. 3.1, 3: Peeters and Müller (2010), 4: Stavrakou et al. (2010)

References to the Notes:

Pöschl, U., von Kuhlmann, R., Poisson, N., and Crutzen, P. J.: Development and intercomparison of condensed isoprene oxidation mechanisms for global atmospheric modeling, J. Atmos. Chem., 37, 29-52, 2000.

Peeters, J. and Müller, J.-F.: HOx radical regeneration in isoprene oxidation via peroxy radical

isomerisations, II: Experimental evidence and global impact, Phys. Chem. Chem. Phys., 12, 14227-14235, 2010.

Stavrakou, T., Peeters, J., and Müller, J.-F.: Improved global modelling of HO_x recycling in isoprene oxidation: evaluation against the GABRIEL and INTEX-A aircraft campaign measurements, Atmos. Chem. Phys., 10, 9863-9878, doi:10.5194/acp-10-9863-2010, 2010.

Species*	Uncertainty factor
O ₃	1.05
NO	1.1
NO_2	1.15
HONO	1.12
CO	1.1
H_2O	1.1
H ₂	1.05
CH ₄	1.05
ETH	1.1
HC3	1.2
HC5	1.2
HC8	1.2
ETE	1.1
OLT	1.2
OLI	1.2
ISO	1.2
TOL	1.2
XYL	1.2
НСНО	1.2
ALD	1.3
KET	1.3
MACR	1.2
MVK	1.2

 Table S2. Uncertainty factors taken into account in the Monte-Carlo model simulations.

*See text and Stockwell et al. (1997) and Table S1 for the definition of model species.

Reference:

Stockwell, W. R., Kirchner, F., Kuhn, M., Seefeld. S.: A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res., 102(D22), 25,847-25,880, 1997.

Table S3. Uncertainty factors taken into account in the Monte-Carlo model simulations.

No.	Reactions*	Uncertainty factor
R1	NO2 + hv	1.2
R2	$O3 + hv \rightarrow O1D + O2$	1.3
R4	HONO + hv	1.2
R5	HNO3 + hv	1.3
R6	HNO4 + hv	2
R7	$NO3 + hv \rightarrow NO + O2$	1.5
R8	$NO3 + hv \rightarrow NO2 + O3P$	1.5
R9	H2O2 + hv	1.3
R10	$HCHO + hv \rightarrow H2 + CO$	1.4
R11	$HCHO + hv \rightarrow 2HO2 + CO$	1.4
R12	ALD + hv	1.4
R13	OP1 + hv	1.5
R14	OP2 + hv	1.5
R15	PAA + hv	1.5
R16	KET + hv	1.5
R17	$GLY + hv \rightarrow 0.13HCHO +$	1.5
R18	$GLY + hv \rightarrow 0.45HCHO +$	1.5
R19	MGLY +hv	1.5
R20	DCB + hv	1.5
R21	ONIT + hv	1.5
R22	MACR + hv	1.5

R23	HKET + hv	1.5
R24	O3P + O2	1.1
R25	O3P + N2	1.15
R26	O1D + N2	1.1
R27	O1D + O2	1.2
R28	O1D + H2O	1.2
R29	O3 + OH	1.2
R30	O3 + HO2	1.15
R31	OH + HO2	1.3
R32	H2O2 + OH	1.15
R33	HO2 + HO2	1.3
R34	HO2 + HO2 + H2O	1.3
R35	O3P + NO	1.3
R36	$O3P + NO2 \rightarrow NO + O2$	1.1
R37	$O3P + NO2 \rightarrow NO3$	1.3
R38	OH + NO	1.3
R39	OH + NO2	1.3
R40	OH + NO3	1.5
R41	HO2 + NO	1.15
R42	HO2 + NO2	2
R43	HNO4	5
R44	HO2 + NO3	1.5
R45	OH + HONO	1.5
R46	OH + HNO3	1.2
R47	OH + HNO4	1.3
R48	O3 + NO	1.1
R49	O3 + NO2	1.15
R51	NO3 + NO	1.3
R52	$NO3 + NO2 \rightarrow NO + NO2 + O2$	1.5
R53	$NO3 + NO2 \rightarrow N2O5$	1.2
R54	N2O5	1.2
R55	NO3 + NO3	1.5
R56	OH + H2	1.1
R57	OH + SO2	1.3
R58	OH + CO	1.3
R59	ISO + O3P	1.3
R60	MACR + O3P	1.3
R61	CH4 + OH	1.1
R62	ETH + OH	1.2
R63	HC3 + OH	1.3
R64	HC5 + OH	1.3
R65	HC8 + OH	1.3
R66	ETE + OH	1.3
R67	OLT + OH	1.3
R68	OLI + OH	1.4
R69	DIEN + OH	1.3
R71	API + OH	1.2
R72	LIM + OH	1.2
R73	TOL + OH	1.3
R74	XYL + OH	1.4
R75	CSL + OH	1.3
R76	HCHO + OH	1.2
R77	ALD + OH	1.2
R78	KET + OH	1.3
R79	HKET + OH	1.3
R80	GLY + OH	1.3
R81	MGLY + OH	1.3
R83	DCB + OH	1.3

R84	UDD + OH	1.3
R85	OP1 + OH	1.4
R86	OP2 + OH	1.4
R87	PAA + OH	1.4
R88	PAN + OH	1.4
R89	TPAN + OH	1.4
R90	ONIT + OH	1.5
R91	HCHO + NO3	13
R92	$\Delta I D + NO3$	1.3
R)2 P03	ALD + NO3	1.5
R93	$OLI \pm NO3$	1.5
R94	MGLY + NO3	1.5
R95	MACK + NO3	1.3
R96	DCB + NO3	1.3
R97	CSL + NO3	1.3
R98-105	olefins + NO3	1.3
R106-115	olefins + O3	1.3
R116-126	PHO, ADDT, ADDX, ADDC reactions	1.3
R127	ACO3 + NO2	1.5
R128	PAN	1.5
R129	TCO3 + NO2	2
R130	TPAN	2
R131-149	BO2 + NO	2
R150-170	RO2 + HO2	2
D171 101	RO2 + MO2	2
R1/1-191	RO2 + MO2	2
R192-209	$RO2 \pm ACO3$	2
R210-212	OLNN and OLND self and cross reactions	2
R213-231	NO3 + RO2	2
R232	XO2 + HO2	2
R233	XO2 + MO2	2
R234	XO2 + ACO3	2
R235	XO2 + XO2	2
R236	XO2 + NO	2
R237	XO2 + NO3	2
A1	ISO+OH	1.2
A2	ISOPBO2 + NO	2
A3	ISOPDO2 + NO	2
A4	ISOPACO2 + NO	2
A5	ISOPBO2 + HO2	2
A6	ISOPDO2 + HO2 ISOPDO2 + HO2	2
A7	ISOPBOOH+OH \rightarrow IEPOX + OH	2
A7	$ SOPDOOL OI \rightarrow III OX + OI $	2
Ao	SOPBOOH+OH = FPON+OH	1.4
A9	$ISOPDOOH+OH \rightarrow IEPOX + OH$	2
AIO	$ISOPDOOH+OH \rightarrow 0.7 ISOPDO2 + 0.3 HCOC5 + 0.3 OH$	1.4
A11	IEPOX+OH	2
A12	IEPOXO2+ NO	2
A13	IEPOXO2+HO2	2
A14	ISON+OH	1.5
A15	MACR+OH	1.3
A16	MACR+O3	1.3
A17	MACP+NO	2
A18	MACP + HO2	2
A19	MACP + NO2	2
A20	MPAN	- 2
A21	MPAN + OH	- 1 /
A21		1. 4 1 <i>1</i>
M22		1.4
A23	NALD + OH	1.2
A24	180 ± 03	1.5
		1.2

A26	MVK + O3	1.3	
A27	MACR + hv	1.5	
A28	MVK + hv	1.5	
A29	NALD + hv	1.5	
A30	MAHP + hv	1.5	
A31	MPAN + hv	1.5	
A32	ISON + hv	1.5	
A33	HCOC5 +hv	1.5	
A34	OH + HCOC5	1.5	
A35	C59O2 + NO	2	
A36	C59O2 + HO2	2	
A37	ОН + С59ООН	1.4	
A38	C59OOH + hv	1.5	
A39	HALD5152 + hv \rightarrow HO2 + TCO3	1.5	
A40	HALD5152 + hv \rightarrow HKET + 2HO2 + 2CO	1.5	
A41	HALD5152 + OH	1.5	
A42	C58O2 + NO	2	
A43	C58O2 + HO2	2	
A44	OH + C58OOH	1.4	
A45	C58OOH + hv	1.5	
A46	ISOPBOOH + hv	1.5	
A47	ISOPDOOH + hv	1.5	
A48	GLYALD + OH	1.3	
A49	GLYALD + hv	1.5	
A50	ETEP + NO	2	
A51	ISOPBO2 + NO3	2	
A52	ISOPDO2 + NO3	2	
A53	ISOPACO2 + NO3	2	
A54	ISOPACO2 + HO2	2	
A55	ISOPACOOH + OH	1.4	
A56	ISOPACOOH + hv	1.5	
A57	$ISOPBO2 \rightarrow HPALD1 + HO2$	1	
A58	$ISOPBO2 \rightarrow MVK + HCHO + OH$	1	
A59	$ISOPDO2 \rightarrow HPALD2 + HO2$	1	
A60	$ISOPDO2 \rightarrow MACR + HCHO + OH$	1	
A61	HPALD1 + hv	1.5	
A62	HPALD2 + hv	1.5	
A63	PACALD1 + hv	1.5	
A64	PACALD2 + hv	1.5	
A65	HPALD1 + OH	1.5	
A66	HPALD2 + OH	1.5	
A67	ISOPEO2 + NO	2	
A68	$CAR + hv \rightarrow HO2 + TCO3$	1.5	
A69	$CAR + hv \rightarrow HKET + 2HO2 + 2CO$	1.5	
A70	CAR + OH	1.5	
A71	ISOPEO2 + NO3	2	
A72	ISOPEO2 + HO2	2	
A73	ISOPEOOH + OH	1.4	
A74	ISOPEOOH + hv	1.5	

*See text and Stockwell et al. (1997) and Table S1 for definitions.

Reference:

Stockwell, W. R., Kirchner, F., Kuhn, M., Seefeld. S.: A new mechanism for regional atmospheric chemistry modeling, J. Geophys. Res., 102(D22), 25,847-25,880, 1997.

Figure S1. Temporal variations of the observed (a) isoprene, and (b) and (c) NO and NO_2 concentrations (in linear and logarithmic scales).

Figure S2. Time series of observed MACR + MVK concentrations and modeled concentrations for different time periods (10, 12, and 20 min), for which isoprene chemistry is active in the model (for details see text).

Figure S3. Breakdown of HO_2 loss, OH production, and radical (OH + HO_2 + RO_2) loss processes in the Base_e(mix)_HO_2_loss run. Gray bars indicate large contributions needed to be explained by the hypothetical HO_2 loss processes introduced in the model runs.