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Abstract. Statistically significant correlations between in-
crease of asthma attacks in children and elevated concentra-
tions of particulate matter of diameter 10 microns and less
(PM10) were determined for metropolitan Phoenix, Arizona.
Interpolated concentrations from a five-site network provided
spatial distribution of PM10 that was mapped onto census
tracts with population health records. The case-crossover sta-
tistical method was applied to determine the relationship be-
tween PM10 concentration and asthma attacks. For children
ages 5–17, a significant relationship was discovered between
the two, while children ages 0–4 exhibited virtually no rela-
tionship. The risk of adverse health effects was expressed as
a function of the change from the 25th to 75th percentiles of
mean level PM10 (36 µg m−3). This increase in concentra-
tion was associated with a 12.6 % (95 % CI: 5.8 %, 19.4 %)
increase in the log odds of asthma attacks among children
ages 5–17. Neither gender nor other demographic variables
were significant. The results are being used to develop an
asthma early warning system for the study area.

1 Introduction

The prevalence of asthma, the single-most common chronic
childhood disease in developed nations (Janson et al., 1997;
Committee TISoAaAiCIS, 1998; WHO, 2003, 2007), has
been reported as increasing in many countries (Magnus and
Jaakkola, 1997; Akinbami et al., 2002; Burney, 2002; Lin et
al., 2005), including in the United States (Brown et al., 1997;

Vollmer et al., 1998; Holgate, 1999; CDC, 2011). The preva-
lence of asthma in the US has increased 75 % from 1980 un-
til 1994, according the Centers for Disease Control and Pre-
vention (CDC, 1998). Although asthma has become a major
public health problem for Americans of all ages, children are
particularly affected. According to surveys, the most sub-
stantial increase has occurred amongst children of age 0–4 yr
(160 %, from 22.2 per 1000 to 57.8 per 1000) and persons
of age 5–14 yr (74 %, from 42.8 per 1000 to 74.4 per 1000).
Over 10 million US children under age 18 were diagnosed
with asthma in 2008 (CDC, 2008). During the past decade,
the statewide prevalence of asthma in Arizona has contin-
ued to increase, now being higher than the national average
(CDC, 2001, 2010). In Phoenix, Arizona, asthma is a major
public health issue amongst children of age 0–19. In 2009,
21 % of youth and 15 % of adults in Arizona have been di-
agnosed with asthma (ADHS, 2009). Increased asthma is
a menace for many growing cities in arid regions, such as
Phoenix, and hence the United States Environmental Protec-
tion Agency (US EPA) is paying particularly close attention
to its causes.

Many studies have reported that measurable excesses in
pulmonary function decrements, respiratory symptoms, hos-
pital and emergency department admissions, and mortality
in human population are associated with ambient levels of
various indicators of PM exposure, most notably PM10 and
PM2.5 (US EPA, 2004). Environmental exposures may in-
crease the risk of developing asthma, and they may also
increase the frequency and severity of asthma incidents.
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A number of studies have investigated how short-term expo-
sure to PM is related to mortality or to lung functions and res-
piratory symptoms. An increase of PM10 results in a greater
use of asthma medication, frequent visits to medical prac-
titioners and increase of asthma-related hospital admissions
(Schwartz et al., 1993; Lipsett et al., 1997; Peters et al., 1997;
Atkinson et al., 1999; Norris et al., 1999, Delfino et al., 2002;
Maciejczyk et al, 2004, Monteil, 2008; Yeatts et al., 2009;
Scapellato et al., 2009). In these studies the association be-
tween asthma attacks and different triggers as such as PM10,
ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2),
and carbon monoxide (CO) have been investigated. Some re-
ported significant correlations between asthma-related hospi-
tal admissions and concentrations of PM10 and NO2 (Lipsett
et al., 1997), PM10 and SO2 and/or SO4 (Peters et al., 1997;
Atkinson et al., 1999) or PM2.5 or PM10 and CO (Norris
et al., 1999; Sheppard et al., 1999) whereas others, using
multi-pollutant models, contend that asthma is related to PM
concentrations only (Nauenberg and Basu, 1999; Tolbert et
al., 2000). All studies that used single-pollutant models have
reported significant association of particles and asthma ad-
missions (Schwartz et al., 1992; Maciejczyk et al., 2004;
Monteil, 2008; Scapellato et al., 2009). In spite of ozone
being considered as an asthma trigger itself some studies in-
dicate that both PM10 and O3 are associated with increases in
asthma (Karin et al., 2009), whereas others disagree with this
notion (Lipsett et al., 1997; Atkinson et al., 1999; Nauen-
berg and Basu, 1999). Note that high pollution episodes
are largely governed by local conditions, high O3 levels are
typical of the summer (generated by photochemical reac-
tions between oxides of nitrogen and volatile organic com-
pounds VOC) and elevated PM10 levels may occur during
the summer or winter (as in Arizona and California for ex-
ample). Many of the epidemiologic studies on PM10 mor-
bidity have been conducted under relatively high PM10 lev-
els, but there are studies that dealt with PM10 concentra-
tions as low as 50 µg m−3 or below (Jacobs et al., 1997;
Nauenberg and Basu, 1999; Sheppard et al., 1999; Tolbert
et al., 2000), which are much lower than the USEPA’s 24-
h PM10 National Ambient Air Quality Standards (NAAQS)
of 150 µg m−3. Although the causes of childhood asthma are
not well understood, air pollution appears to have a clear role
in triggering attacks.

A review of historical data of “criteria” pollutants in
metropolitan Phoenix shows that PM10 and 8-h ozone con-
centrations sometimes exceed the NAAQS, but that the two
pollutants exhibit distinct seasonal differences. Elevated con-
centrations of ozone occur in the summer, when PM10 con-
centrations are at their lowest. Conversely, in the winter
ozone concentrations are low, while PM10 concentrations
are at their highest. Asthma incidences, expressed as emer-
gency visits and hospitalizations, exhibit the same winter-
summer dichotomy as PM10 concentrations, suggesting that
of the two pollutants, the major asthma trigger is PM10, not
ozone. Other well-known asthma triggers, such as tempera-

ture, humidity, and aeroallergens, were eliminated from con-
sideration in this work for the following reasons. The winter
temperature regimes in Phoenix are of two types: (1) warm,
sunny days with light winds and with clear cold nights,
brought on by strong high pressure systems and (2) windier,
cloudy days, with relatively high humidity and with not in-
frequently with some precipitation, associated with the pas-
sage of Pacific cold fronts. Periods of high pressure dominate
throughout the winter, with the “cold-front” weather com-
prising a small minority of the days (less than 30 % of the
days). Elevated PM10 concentrations occur only in the first
regime. Even though elevated humidity may itself act as an
asthma trigger, the warning system envisioned in this work
is necessarily dependent on continuous monitoring of partic-
ulates concentrations. As far as aeroallergens are concerned,
heavily pollinating trees and shrubs are rare in the desert win-
ter; moreover, their concentrations can only be determined
through grab sampling with subsequent microscopic analy-
sis. Therefore, it is instructive to investigate how asthma
is related to PM10, irrespective of other pollutants. To this
end, the US EPA awarded a challenge grant to Arizona De-
partment of Environmental Quality (ADEQ) to study how
PM10 is correlated with asthma occurrences. PM10 is com-
prised of both fine particles less than 2.5 microns (PM2.5) and
coarse particles (smaller than 10 and larger than 2.5 microns).
Note that PM2.5 also can be a trigger, but insufficient data is
available from the area to study this aspect. Many studies
consider only fine particles, but coarse particles, which are
of mainly geological origin, contribute significantly to the
total mass of PM10 in arid environments. In metropolitan
Phoenix in 2005 and 2006, for example, the four air moni-
toring sites with both PM10 and PM2.5 monitors had an aver-
age ratio of PM2.5 to PM10 of 0.28, considerably higher than
the PM2.5/PM10 mass ratios of 0.1 to 0.17 reported in most
other studies (Cowherd and Kuykendal, 1996; Countess and
Richard, 2003; Pace, 2005; Ono, 2005; MRI, 2005, 2006).
While we acknowledge that a complex mix of gaseous, semi-
volatile, and particulate pollutants and their physicochemical
properties contribute to health outcomes, in the present study
we concentrated on PM10, as this is the principal pollutant
that exceeds NAAQS during late autumn and winter. It was
hoped to develop an association between PM10 and asthma-
related hospital admittances so that an early warning system
could be developed for Phoenix based on predicted PM10
concentrations. The results of the present study are also ap-
plicable to climatologically similar urban areas, for example,
many southern California cities (Cal/EPA, 2006), Salt Lake
City, Utah, Denver, Colorado, El Paso, Texas, and so on.

The interpolation of PM10 measurements from a five-site
network of continuous monitors enabled the use of case-
crossover statistical method to be applied to census-tract-
based health records to determine the relationship between
PM10 and asthma incidences. Spatial concentration fields of
PM10 for 2005 and 2006 were constructed and then linked
with the public health data. Inverse Distance Weighting

Atmos. Chem. Phys., 12, 2479–2490, 2012 www.atmos-chem-phys.net/12/2479/2012/



R. Dimitrova et al.: Relationship between particulate matter and childhood asthma 2481

21 
 

 694 

Fig. 1 695 

 696 

 697 

Fig. 2 698 

Fig. 1. 24-h averaged PM10 from five permanent monitors in cen-
tral Phoenix (Abbreviations: CP – Central Phoenix, DC – Durango
complex, WF – West 43rd Avenue, WP – West Phoenix, SS1 –
Supersite).

(IDW) was used in this study, but it was evaluated and ver-
ified by the more sophisticated Ordinary Kriging (OK) with
additional data from an expanded network in December 2007
through February 2008.

The goal of this study is to clarify the association of inci-
dents of asthma attacks (as identified by the primarily emer-
gency department visits and hospital admissions; however
for brevity are called asthma incidents further) with ele-
vated concentrations of particulate matter 10 microns and
smaller (PM10). It breaks new ground in two ways: it demon-
strates how adequate concentration fields can be derived by
interpolation from a sparse (five site) network of continuous
PM10 monitors; and, it specifically focuses on associations
of childhood asthma with PM10, a focus that could lead to
the development of a warning system for the asthmatic chil-
dren of Phoenix. This work complements numerous previ-
ous studies on health outcomes of air pollution for partic-
ular groups, e.g. pregnant women and infants (Viana et al.,
2008) and by specific causations e.g. congenital defects or
prematurity (Dolk and Vrijheid, 2003; Hansen et al., 2006).

2 Data and methods

2.1 Air quality data

Spatially distributed PM10 concentrations were estimated by
interpolating the measured concentrations from a permanent
network of five continuous monitors (hourly data) in central
Phoenix operated by two public agencies: Maricopa County
Department of Air Quality (MCDAQ) and Air Quality Di-
vision of the Arizona Department of Environmental Quality
(ADEQ). As the only NAAQS of interest here was for the
24-h average of PM10, and the aim was to examine the rela-
tionship between PM10 concentrations and daily asthma inci-
dents, daily averages of PM10 were calculated from reported
hourly averages measured by the permanent monitors. Each
of these permanent sites has its unique combination of local

emission sources and susceptibility to urban transport that to-
gether, along with the desert background, result in the mea-
sured concentrations. Each has its own degree of represen-
tativeness as a footprint: i.e. how far away from the monitor
do the measured concentrations actually prevail? The PM10
variation among these five sites can be seen in their 24-h av-
erages, given as a time series for 2005–2006 (Fig. 1). The
names of the monitoring stations are given in the captions of
Figs. 1 and 2.

West 43rd Avenue (WF) and Durango complex (DC) sites
have PM10 concentrations considerably higher than the other
three, especially in winter, and both have a relatively high
frequency of violations of NAAQS. This pattern can be un-
derstood in light of dense localized emissions from the ex-
tractive and material handling industries along the Salt River
combined with their low-elevation location that places the
area downwind of most nocturnal and early morning urban
emissions. They represent the worst PM10 air quality in
metropolitan Phoenix.

2.2 Asthma data

The primary health data were obtained from the Arizona De-
partment of Health Services (ADHS) for the asthma incidents
reported between 1 January 2004 and 31 December 2006. In-
cident locations are based on the census track of the patient’s
home address. The analysis focuses on school-age children,
and it is assumed that school locations are near the home cen-
sus tract. These data include both hospitalization and emer-
gency room visits throughout the Maricopa County, as well
as patient demographics such as gender and age. In spite of
standard quality control, additional steps were taken to en-
sure the accuracy of the data. For example, there were cases
where the same patient went to an emergency room and was
later admitted to the hospital. This single patient had mul-
tiple records on the same day with his status changing from
emergency to inpatient. Such redundant records were deleted
to leave all but a single asthma incident. Also, those sub-
sequent medical encounters occurring sufficiently long after
the initial visit were considered to be a distinct incident. This
time period is commonly referred to as a “washout” period or
“gap”. Several washout periods were explored in this study.
The change in the number of asthma incidents is minimal
for washout periods of 7 to 28 days (from 10 095 to 9631).
Therefore, a washout period of seven days was selected be-
cause it is a common choice for studies such as this. If the
same person had multiple records within the seven days, only
the initial record was kept.

Preliminary analyses defined the demographic groups,
sample size, data cleaning strategies, and the precise study
area for the final analyses of the work presented here.
The present study focused on asthma incidents within the
168 census tracts of metropolitan Phoenix from 1 Jan-
uary 2005 through 30 September 2006 because of lack of
full records of air quality data for 2004. All asthma events
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Fig. 1 695 

 696 
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Fig. 2 698  Fig. 2. Study domain and location of the monitors: permanent
(data used in the health study) and temporary (data used for valida-
tion of spatial interpolation method). Abbreviations: CP – Central
Phoenix, DC – Durango complex, WF – West 43rd Avenue, WP
– West Phoenix, SS1 – Supersite; GR – Greenwood; SP – South
Phoenix; CSA – Community Service of AZ; MRV - Maryvale; VGC
– Valley Garden Center; WAS – Weaver’s Auto Service).

within five miles of a continuous PM10 monitor were in-
cluded (Fig. 2). This study area accounted for 75 % of the
total asthma incidents of Maricopa County.

2.3 Interpolation of PM10 concentrations

Practical constraints make it impossible to obtain data at ev-
ery desired point. Thus, interpolation is imperative for graph-
ing, analyzing and understanding the spatial distribution of
air pollution throughout the metropolitan area. Inverse dis-
tance weighting (IDW) is one of the simplest interpolation
methods. A neighborhood in the vicinity of the interpolated
point was identified and a weighted average was taken of the
observation values within it. The weights are a decreasing
function of distance. The user has control over the mathe-
matical form of the weighting function, the size of the neigh-
borhood (expressed as a radius or a number of points), in
addition to other options.

As mentioned, Kriging methods were also tested for in-
terpolation, including ordinary kriging. This method utilizes
a variogram model to express the spatial variation of data
points, and then minimize their error. The word “kriging”
is synonymous with “optimal prediction”. Ordinary krig-

ing (OK) is a geostatistical approach to modeling. Instead of
weighting nearby data points by some power of their inverted
distance, it relies on the spatial correlation structure of the
data to determine the weighting values. This is a more rig-
orous approach than IDW, as correlation between data points
determines the estimated value at an unsampled point. Ordi-
nary kriging makes the assumption of normality among the
data points, as well as an unknown constant trend. This dif-
fers from simple or universal kriging that assumes a known
constant trend and/or model.

In our study, IDW interpolation was used due to lack of
enough data points (at least 10) to apply OK. Nevertheless,
as discussed later, the adequacy of IDW was established by
comparing the two methods over a limited time period; for
this, a stop-gap monitoring network was installed to augment
continuous monitors (Fig. 2).

Six additional monitors were placed (marked in blue at
Fig. 2) – four temporary sites and two permanent ones (GR
and SP). The newly established permanent sites began oper-
ating in 2007. The four temporary sites were deployed from
December 2007 through February 2008. These additional
sites enabled the use of OK, and thus enabling evaluation
of IDW for the special deployment period and hence for the
earlier period with five instead of eleven PM10 monitors.

The interpolated 24-h averaged concentrations were linked
to 168 census tract areas in metropolitan Phoenix from 1 Jan-
uary 2005 through 30 September 2006, a period for which
complete air monitoring records were available. These data
were used further for data analyses and linking with the
health data.

2.4 IDW method verification

The surfaces of PM10 obtained by both methods were com-
pared, with Fig. 3 being only one example of such compar-
isons of concentration fields for one particular day 21 De-
cember 2007. Values from five PM10 monitors were used
in IDW and eleven in OK. Differences for the 24-h average
PM10 can be seen in the northwest, where the additional data
led to reduced PM10 concentrations (Fig. 3).

In a comparison between the two interpolation methods
for December 2007 (Fig. 4), it can be seen that better agree-
ment is achieved in the central part of the study area, in close
proximity to the five permanent PM10 monitors. The over-
all difference between the two methods in the central part
of the study domain is less than 8 %. Mean Absolute Er-
ror is in range 0–5 µg m−3 and the average concentration is
64 µg m−3 (in range 56–72 µg m−3). Even though the OK
interpolation had the benefit of two additional monitors in
the central part of the study area (GR and VGC), the differ-
ences between the interpolated surfaces was surprisingly low.
Therefore, the five monitors used with IDW interpolation are
considered representative of the spatial concentration gradi-
ents in central Phoenix. As expected, greater disagreement
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Fig. 3. PM10 24-h concentration obtained (µg m−3) using two dif-
ferent methods: IDW and OK; 21 December 2007.

occurs at the outer edges of the study area, in census tracts
close to the temporary PM10 monitors.

Some statistical measures (description is given in Ap-
pendix A) for IDW interpolation performance, compared
with the OK method, are listed in Table 1. Spatial aver-
aged was made over the entire study area (Fig. 4) in addi-
tion to time averaged, and the minimum and maximum val-
ues within the study domain are also shown. The averaged
bias are positive (IDW slightly overestimates the concentra-
tions provided by OK method), but negative bias (underes-
timation) are also seen for a few census tracts. The average
errors are less than 15 % (NME, MFR) and NMSE is less
than 1 %. The index of agreement between both surfaces is
reasonably high (82.3 %) with a correlation coefficient 0.68.

In all, the IDW was shown to be sufficiently accurate
to produce spatial concentration fields for the health analy-
sis within five miles of each monitoring location, with the
resulting interpolation domain for health study shown in
Fig. 2.

2.5 Methods of analysis

The case-crossover approach (Maclure, 1991), similar to
crossover and matched-pair case-control studies (Hosmer
and Lemeshow, 2000), has been developed to study transient,
short-term exposure effects on the risk of rare acute events.
The “case” is a person with the event of interest at a cer-
tain time called the “hazard period”, while the control (called
the referent) is the same person at a different time called the
“control period”. The key advantage of this design is that
each case comes with its own control. The exposure infor-
mation for each subject during the hazard period is compared
with the exposure information during the control or “refer-
ent” period. With an appropriate referent period, the case-
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Fig. 4 703  Fig. 4. Mean Absolute Error (µg m−3) for December 2007 between
IDW and OK methods – based on daily maps. (Abbreviations: CP
– Central Phoenix, DC – Durango complex, WF – West 43rd Av-
enue, WP – West Phoenix, SS1 – Supersite; GR – Greenwood; SP
– South Phoenix; CSA – Community Service of AZ; MRV – Mary-
vale; VGC – Valley Garden Center; WAS – Weaver’s Auto Service).

crossover analysis controls for long-term trends, seasonal
effects, and other covariates that change slowly with time.

In the bidirectional approach, Bateson and
Schwartz (1999, 2001) examined sampling methods
for the referent to reduce the bias by selecting from either
side of the event. Also, disjoint referent periods have been
recommended for bias concerns (Levy et al., 2001). With
a control close in time to the event, these methods avoid
confounding due to subject differences and other long-term
effects such as seasonality. A balance must be maintained,
however, between a control too close in time that generates
autocorrelation and a control too far removed in time that
confounds long-term effects. Alternatives within a few
weeks of the events have been considered. Neas et al. (1999)
studied daily mortality in Philadelphia where the case
period was the 48 h ending at midnight on the day of death
(Schwartz and Dockery, 1992) and the control period was
the same day of week 7, 14, or 21 days before and after the
case period. Medina-Ramon et al. (2006) used a matching
scheme from Bateson and Schwartz (1999, 2001) and a time-
stratified partition by Lumley and Levy (2000) that chose
control days only in the same month as the hospital admis-
sion for chronic obstructive pulmonary disease (http://www.
nhlbi.nih.gov/health/dci/Diseases/Copd/CopdWhatIs.html).
Lin et al. (2005) calculated a one to seven day exposure
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Table 1. Performance statistics for IDW validation.

Metrics Average Minimum Maximum

Mean Bias – MB (µg m−3) 4.5 −1.5 10.9
Mean Absolute Error – MAE (µg m−3) 5.3 0.5 10.9
Root Mean Squared Error – RMSE (µg m−3) 6.3 0.6 12.5
Normalized Mean Bias – NMB (%) 14.4 −0.5 26.8
Normalized Mean Error – NME (%) 15.8 6.6 27.5
Mean Fractional Bias – MFB (%) 13.4 −3.7 34.8
Mean Fractional Error – MFE (%) 15.1 1.5 34.8
Normalized Mean Square Error – NMSE (%) 0.2 0.001 0.6
Index of Agreement – IA (%) 82.3 50.9 99.8
Coefficient of determination –R2 0.68 0.60 0.80

average ending on the admission date as the exposure in
the case period with control periods of two weeks before
and after the admission date. Peel et al. (2005) studied the
hospital admissions associated with ambient air pollution
levels and respiratory health effects. The case period of
three-day moving averages of pollutant concentration was
selected within two weeks of the case period. The average
was the average of pollutant concentrations on the same day
as the visit, one day before, and two days before.

A case-crossover study was conducted in the present work
with the referent period based on a time-stratified scheme to
control confounding effects from seasonality and time trends.
The referents were selected within a 28-day stratum (four
weeks) at 7, 14, and 21 days before or after the case (same
day of the week), provided they occurred in the same stratum.
Consequently, each case has three controls.

Several potential primary and secondary effects were con-
sidered. The first primary effect was the 24-h average PM10
concentration from the IDW interpolation of the observations
on the day of the asthma event. The second primary effect,
called the “lag”, was the average PM10 concentration one to
five days before the event, here the “lag” being the delay in
days between the exposure and the health effect. For exam-
ple, a one-day lag is the average PM10 of the previous day
and the event day, abbreviated as “lag1”. Secondary effects
were the covariates of age, gender, ethnicity, and place of
service. Place of service is a categorical variable with two
values: emergency and inpatient. Age is encoded into four
categories: 0–4, 5–9, 10–14, and 15–17 yr. Ethnicity fol-
lowed US Census Bureau definitions. Preliminary analysis
detected no differences between places of service; therefore,
this variable was not considered further. Even though the
case-crossover design controls for the main effects of these
patient-level covariates, the interactions of these covariates
with the event-day PM10 concentration and its various lags
were also considered.
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Fig. 6 708 

Fig. 5. Natural logarithm of the odds ratio (log odds) of asthma
incidents versus categories of Dailymean PM10 concentrations
(µg m−3). Categories are defined by quartiles of PM10 and rep-
resented by the median PM10 within the category.

The analysis considered subsets of these covariates
through conditional logistic regression (Hosmer and
Lemeshow, 2000). All-subsets regression was used to
investigate models with demographic variables and with and
without interaction (cross-product) terms. Short description
of terms used in this analysis is listed below.

2.6 Statistical model validation

The model used for the results discussed in the following
section was a conditional linear regression model. The tra-
ditional assumption for a logistic regression model is lin-
ear relationship of the log odds to the predictor variables.
A full explanation of the mathematical formulation is given
in Appendix B. However, to assess the linearity assumption
a model without any linear or monotonic assumptions was
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Fig. 6 708  Fig. 6. Asthma incidences by age within five miles of PM10
monitoring sites.

24 
 

 709 

Fig. 7 710 

 711 

 712 

Fig. 8 713 

Fig. 7. Asthma incidences by month within five miles of PM10
monitoring sites.

employed for validation. A recommended approach is to
use categorical variables to define ranges of PM10 (Steen-
land and Deddens, 2004) and model the log odds. The cate-
gories are defined from the quartiles because results are often
reported as the effect from a change equal to the interquar-
tile range of PM10. The PM10 concentrations were linked
to asthma events by the indicator variables in the regression
models with the first quartile as the baseline. The odds ra-
tio can be readily interpreted as a measure of how likely or
unlikely it is for an asthma incident to be associated with a
daily mean PM10 concentration. Odds ratios greater than 1.0
imply that the asthma event is more likely to be associated
with the PM10 concentration and vice versa. The natural log-
arithm of the odds ratio (log odds) of an asthma incident, “log
odds” of the y-axis, plotted against the median PM10 in the
category in Fig. 5, illustrates the monotonic, approximately
linear relationship of the log odds versus the quartiles of the
daily mean.
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Fig. 8 713 
Fig. 8. Asthma incidences by the day of the week within five miles
of PM10 monitoring sites.

Table 2. Model statistics for each main effect (preschool age group
excluded).

Variable Coefficient Chi Square p-Value

Dailymean 0.00331 11.7859 0.0006
Lag1 0.00272 6.7347 0.0095
Lag2 0.00103 0.9352 0.3335
Lag3 0.00112 1.2531 0.263
Lag4 0.00244 5.7373 0.0166
Lag5 0.00231 4.1032 0.0428
Lag6 0.00212 4.0581 0.044
Lag7 0.00168 2.522 0.1123
Lag8 −0.0001995 0.031 0.8602

3 Results and discussion

Asthma incidents were described by the age group, day of
the week, and month, resulting in a dataset containing about
10 000 events within a five-mile radius from the nearest mon-
itoring station (Figs. 6–8). About two thirds of these events
are for ages 0–17.

The event day PM10, also called “Dailymean”, and lag
variables were considered in a statistical analysis as shown
in Table 2. Only the PM10 on the day of the event (Dai-
lymean) and the lag 1 PM10 are significant at a 1 % signifi-
cance level. Although there variability is thep-values if one
applied a traditional Bonferroni correction to adjust the sig-
nificance level for the nine multiple tests, one might require
a p-value less than 0.05/9 = 0.0056 and only the Dailymean
is significant. Consequently, further analysis was restricted
to the Dailymean as the principal covariate of PM10.

An all-subsets regression considered Dailymean, the de-
mographic variables, and interactions in models for the
health effects. The conditional regression analysis indi-
cated that the Dailymean alone was a sufficient covariate for
asthma incidents, but thatagewas a potential effect modifier.
The ageeffect is discussed further below. No effect due to
gender or the other demographic variables was detected.
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Table 3. Case-crossover statistics relating asthma incidents to PM10 concentrations in Phoenix metropolitan.

Case Coefficient St. Error p-value Adjusted OR* 95 % CI

All events 0.0025 0.00075 0.0010 1.094 (1.041, 1.147)
Preschool only −0.000092 0.00121 0.4457 0.997 (0.911, 1.082)
Preschool excluded 0.0033 0.00096 0.0006 1.126 (1.058, 1.194)

The case-crossover statistics are presented and discussed
for three different samples of the childhood asthma popula-
tion: all events (ages 0–17), preschool events only (ages 0–4)
and events excluding the preschool group (Ages 5–17). The
results from the different samples exhibit certain differences
(Table 3).

The coefficients in Table 3 vary considerably indicat-
ing somewhat different relationships between the increased
probability of an asthma event and the event-day PM10 con-
centrations among different subpopulations, especially for
the case of preschool only (negative coefficient).

The change in 24-h average PM10 from the 25th to
75th percentile, defined as the interquartile range (IQR), is
36 µm−3. A change in PM10 concentration equal to the IQR
is commonly used as the change magnitude to report the ad-
justed odds ratio. As shown in Table 3 the adjusted odds
ratio for all events is estimated to be 1.094, meaning that
every additional 36 µg m−3 of Dailymean PM10 is estimated
to increase the odds ratio of an asthma incident for a per-
son under 17 yr old by 9.4 % (4.1 %, 14.7 %), where the val-
ues in parentheses provide a 95 % confidence interval. In
the preschool group (ages 0–4 yr) only, no effect from Dai-
lymean PM10 was found. The odds ratio was estimated at
0.997 and the estimated change was not significant at−0.3 %
(−8.9 %, 8.2 %) with a 95 % confidence interval that contains
zero. Further analysis detected a stronger relationship be-
tween Dailymean and asthma incidents when the preschool
age group was excluded. All-subsets regression again in-
dicated that Dailymean alone was a sufficient covariate for
asthma incidents. Every additional 36 µg m−3 of Dailymean
PM10 increases the odds ratio of an asthma incident for a
child in ages 5–17 yr old by 12.6 % (5.8 %, 19.4 %) with
95 % confidence intervals in parentheses.

4 Conclusions

PM10 concentrations were found to have statistically signif-
icant associations with asthma incidents in central Phoenix
at the 95 % confidence level. For children ages 5–17 a much
stronger effect was noted than determined by previous stud-
ies, while preschool children ages 0–4 exhibited virtually
no effects. Previous studies have reported the risk of ad-
verse health effects as a function of the change of Daily-
mean PM10 from the 25 % to 75 % percentile; in this study

the corresponding change was 36 µg m−3. This increase in
PM10 is associated with a 13 % increase in the probability of
asthma incidents among children ages 5–17; gender was in-
significant. Note that the concentrations considered are much
lower than the 24-h PM10 standard of 150 µg m−3. The lack
of a preschool effect could be explained by the difficulty of
asthma diagnoses at the younger ages and/or their possible
spending of more time indoors.

With only a sparse network of five monitoring sites in a
large metropolitan area, Inverse Distance Weighting (IDW)
interpolation provided an adequate spatial distribution of ur-
ban PM10 concentrations efficiently and rapidly. There were
differences, but not unacceptably large, between IDW inter-
polated concentrations and those from the more sophisticated
ordinary kriging technique. The kriging interpolation was re-
alized by deploying temporary monitors over a special test
period and utilizing concentrations from two permanent sites
that began operation in 2007, thus increasing the number of
monitors in central Phoenix from five to eleven. Because
the two methods produced comparable distributions, and be-
cause the period of analysis had only five monitoring sites,
inverse distance weighting was the method of choice for this
health analysis.

It has been suggested, based on the present study, to install
neural networks for each of the permanent monitors to pre-
dict PM10 based on several years of prior measurements at
each site as well as meteorological predictions for those sites
based on a deterministic model (Mammarella et al., 2009;
Fernando et al., 2011). The PM10 predictions could be in-
terpolated to a census tract grid, which together with some
forecaster intervention and examining could be used to issue
health warnings for the area. Such a predictive system would
exemplify the use of best-available scientific and technolog-
ical tools for issuance of health warnings. The proposed
methodology has been well-received within the USEPA, as
evident from the issuance of funding to develop a pilot health
warning system.

Appendix A

Definitions of statistics

The following indicators were used for performance evalu-
ation. Here IDW is the value obtained by Inverse Distance
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Weighting method, OK is the value obtained by Ordinary
Kriging method, andIDW andOK are the mean values.

MB =
1

N

N∑
i=1

(IDWi −OKi)

(Mean Bias) (A1)

MAE =
1

N

N∑
i=1

|IDWi −OKi |

(Mean Absolute Error) (A2)

RMSE=

√√√√√ N∑
i=1

(IDWi −OKi)2

N

(Root Mean Square Error) (A3)

NMB =

N∑
i=1

(IDWi−OKi)

N∑
i=1

OKi

100 %

(Normalized Mean Bias) (A4)

NME =

N∑
i=1

|IDWi −OKi |

N∑
i=1

OKi

100 %

(Normalized Mean Error) (A5)

MFB =

N∑
i=1

(
(IDWi −OKi)

0.5∗(IDWi +OKi)

)
100 %

(Mean Fractional Bias) (A6)

MFE=

N∑
i=1

(
|IDWi −OKi |

|IDWi +OKi |∗0.5

)
100 %

(Mean Fractional Error) (A7)

NMSE=

N∑
i=1

(IDWi −OKi)
2

N∑
i=1

IDWi

N∑
i=1

OKi

100 %

(Normalized Mean Square Error) (A8)

IA = 1−

N∑
i=1

(IDWi −OKi)
2

N∑
i=1

((IDWi −OK)2+(OKi −OK)2)

(IA Index of Agreement) (A9)

R
2
=

[
N∑

i=1
(IDWi − IDW)(OKi −OK)

]2

N∑
i=1

(IDWi − IDW)2
N∑

i=1
(OKi −OK)2

(RSQ Coefficient of determination) (A10)

Appendix B

Description of the case-crossover method

Here we present a general discussion of theodds ratiothe
typical statistic employed in reporting the results from the
case-crossover method, and continues with a discussion of
conditional logistic regression, and it concludes with the spe-
cific mathematical formulation of the odds ratio used in the
present work.

Theodds ratiois a measure of effect size particularly im-
portant in logistic regression. It is defined as the ratio of the
odds of an event occurring in one group to the odds of it oc-
curring in another group, or to a sample-based estimate of
that ratio. These groups might be men and women, an exper-
imental group and a control group, or any other dichotomous
classification. If the probabilities of the event in each of the
groups arep (first group) andq (second group), then the odds
ratio is:
p/(1−p)

q/(1−q)
=

p(1−q)

q(1−p)
(B1)

An odds ratio of 1 indicates that the condition or event under
study is equally likely in both groups. An odds ratio greater
than 1 indicates that the condition or event is more likely in
the first group. And an odds ratio less than 1 indicates that
the condition or event is less likely in the first group. The
odds ratio must be greater than or equal to zero. As the odds
of the first group approaches zero, the odds ratio approaches
zero. As the odds of the second group approaches zero, the
odds ratio approaches positive infinity.

The increased use of logistic regression in medical and so-
cial science research means that the odds ratio is commonly
used as a means of expressing the results in some forms of
clinical trials, in survey research, and in epidemiology, such
as in case-control studies. It is often abbreviated ”OR” in re-
ports. When data from multiple surveys is combined, it will
often be expressed as “pooled OR”.

Conditional logistic regressionhas been widely applied to
model stratified data, such as case-crossover analysis and
case-control analysis (Lin et al., 2005, Neas et al., 1999,
Figuerias et al., 2005, and Redelmeier and Tibishirani, 1997).
Logistic regression is a form of regression used when the re-
sponse is binary. Letx be a vector ofk predictor variables
(or covariates). LetY be a binary response (y = 0 or y = 1).
The conditional probability thatY = 1 isP(Y = 1|x) = p(x).
The logit of the logistic regression model is

f (x) = β0+β1x1+ ...+βpxp (B2)
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so the logistic regression model is

p(x) =
ef (x)

1+ef (x)
(B3)

Let consider the system that has a binary responsey and a
two-level covariatex, x = 0 orx = 1. The logit transformation
is defined in terms ofp(x) as

f (x) = ln
[
p(x)

/
(1−p(x))

]
= β0+β1x (B4)

The conditional logistic regression works in similar fashion
as regular logistic regression. It considers the stratification
structure in the data specifying which individuals belong to
which strata. Suppose there areK strata withnk subjects in
the kth-stratum, wherek = 1, 2, 3,. . . ,K There aren1kcase
subjects,n0kcontrol subjects, andnk = n1k + n0k (Hosmer
and Lemeshow, 2000). The logistic regression model can
be shown as

pk(x) =
eβ0k+β ′x

1+eβ0k+β ′x
(B5)

where is a nuisance parameter with the contribution of all
terms constant within thekth-stratum,β ′

= (β1,β2,...,βk)

are the vector of coefficients of covariates,x.
To analyze case-crossover design using conditional logis-

tic regression, the PROC PHREG from SAS® statistical soft-
ware package was used. Conditional logistic regression can
be performed by the PHREG procedure by using the discrete
logistic model and forming a stratum for each matched set.
The dummy survival times are needed to be created so that
all the cases in a matched set have the same event time value,
and the corresponding controls are censored at later times.

From the logistic regression model defined earlier. The
odds ofy = 1 when the covariates have valuesx1 is defined
asp(1)/(1-p(1)) and the odds ofy =v 0 when the covariates
have valuesx0is defined asp(0)/(1- p(0)). The odds ratio
(OR) is defined as the odds forx1 to the odds forx0, odds
ratios (OR) can be shown to be

OR=p(1)/[1−p(1)]
p(0)/[1−p(0)]

=

(
eβ0+β1

1+eβ0+β1

)/(
1

1+eβ0+β1

)
(

eβ0

1+eβ0

)/(
1

1+eβ0

)
=

eβ0+β1

eβ0
= e(β0+β1)−β0 = eβ1

(B6)

The odds ratio is an associate measure of how much more
likely (an odds ratio> 1), unlikely (an odds ratio< 1), or
equally likely (an odds ratio = 1) it is for the response to
present underx1 than under conditionsx0.
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