Atmos. Chem. Phys., 12, 2263288 2012 iy —* -

www.atmos-chem-phys.net/12/2263/2012/ Atmospherlc
doi:10.5194/acp-12-2263-2012 Chemls_try
© Author(s) 2012. CC Attribution 3.0 License. and Phys|cs

B

Global NO, emission estimates derived from an assimilation of OMI
tropospheric NO, columns

K. Miyazaki 12, H. J. Eskeg, and K. Sudc®3

1Royal Netherlands Meteorological Institute (KNMI), Wilhelminalaan 10, 3732 GK, De Bilt, The Netherlands
2Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan
3Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan

Correspondence tK. Miyazaki (miyazaki@knmi.nl)

Received: 4 October 2011 — Published in Atmos. Chem. Phys. Discuss.: 2 December 2011
Revised: 17 February 2012 — Accepted: 20 February 2012 — Published: 1 March 2012

Abstract. A data assimilation system has been developeddependences should be carefully considered for better under-
to estimate global nitrogen oxides (Nemissions using standing NQ sources from top-down approaches.

OMI tropospheric N@ columns (DOMINO product) and a
global chemical transport model (CTM), the Chemical At-
mospheric GCM for Study of Atmospheric Environment and
Radiative Forcing (CHASER). The data assimilation system,1 |ntroduction
based on an ensemble Kalman filter approach, was applied to

optimizg daily NQ emissions with a horizontal resolution of Nitrogen oxides (NQ) are important atmospheric species
2.8 during the years 2005 and 2006. The background ermokna; affect atmospheric chemistry, air quality, and climate
covariance estimated from the ensemble CTM forecasts eX(IPCC, 2007). NOy dominantly controls the tropospheric
plicitly represents non-direct relationships between the emisy ;o (Q) budget, the abundance of the hydroxyl radical
sions and tropospheric columns caused by atmospherictran%:OH)’ and the formation of nitrate aerosol. The reactions
port and chemical processes. In comparison to the a pripetween NQ and hydrocarbons are major sources gfi®

ori emissions based on bottom-up inventories, the optimizegpe troposphere. Tropospherie @cts as a greenhouse gas
emissions were higher over eastern China, the eastern Unitegl,q influences the lifetime of other greenhouse gasses. NO
States, southern Africa, and central-western Europe, suggesjsq produces nitric acid (HN§pby reacting with OH, form-

ing that the anthropogenic emissions are mostly underestimg nitrate aerosols and acid particles. N@s both anthro-
maFed in the i_nvc_antorigs. In addition, the seasona_lity of t.hepogenic and natural sources. Anthropogenic sources gf NO
estimated emissions differed from that of the a priori emis-jncjyde fossil fuel and biofuel combustion, mainly emitted
sion over several biomass burning regions, with a large inom power plants, transport (automobiles, ships, and air-
crease over Southeast Asia in April and over South Amer‘crafts), and industry. Natural sources of N@clude soil,

ica in October. The data assimilation results were validated,jomass burning, and lightning emissions. Dominant sinks
against independent data: SCIAMACHY troposphericaNO ¢ NOy in the troposphere are gas-phase formation of YNO
columns and vertical N@profiles obtained from aircraft and through reaction of N@with OH especially during daytime
lidar measurements. The emission correction greatly im-344 aerosol uptake of NONOs, and NOs. The lifetime of
proved the agreement between the simulated and obserquox is of the order of hours to days in the troposphere de-
NO; fields; this implies that the data assimilation system ef-anding on various factors, including OH concentrations and
ficiently derives NQ emissions from concentration obser- photolysis rate (e.d-amsal et al.2010. The short lifetime
vations. We also demonstrated that biases in the satellitg,q the inhomogeneous source distribution of,N&sult in

retrieval and model settings used in the data assimilation,pyious spatiotemporal variations in the N€oncentration
largely affect the magnitude of estimated emissions. Thesg, he troposphere.
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2264 K. Miyazaki et al.: Global NOx emissions

Bottom-up NQ emission inventories from different assimilation techniquevensen1994 Hunt et al, 2007 in
sources and regions have large uncertainties. The extent afhich the forecast error covariance is advanced by the model
emission-related activities and emission factors used in thétself (i.e. flow-dependent forecast error covariance). These
inventories are sources of error. Emission inventory infor-advanced approaches allow us to fully take advantage of the
mation is often only available on a coarse resolution, suchchemical transport model (CTM). To the best of the authors’
as country totals. In addition, simple multiplication fac- knowledge, no published research has yet been conducted to
tors are sometimes supplied with the emissions to describestimate global NQemissions using EnKF to date.
the diurnal, weekly and seasonal dependence in an average In this study, we apply an EnKF data assimilation sys-
way. Moreover, many emission sources have a large diurtem to estimate daily global NOemissions using OMI
nal, weekly, or seasonal variability that is often poorly repre- satellite retrievals and the Chemical Atmospheric GCM for
sented in the inventories. Examples are the traffic rush hourStudy of Atmospheric Environment and Radiative Forcing
wintertime heating of buildings (e.gtreets et al.2003, (CHASER) CTM Sudo et al.2002h. Using the data assim-
biomass burning events and their mid-day maxima, and thélation, we investigate the global distribution and the seasonal
seasonality and pulses of soil emissions triggered by rainfallvariation of surface NQemissions. Even with such an ad-
(e.g.Velders et al.2001; Wang et al. 2007). vanced assimilation approach, however, the quality of both

Observations of N@concentrations provide importantin- the model and the satellite retrieval will affect the accuracy
formation on NQ emissions. Satellite retrievals provide bet- of emission estimates (e.gan Noije et al. 2006 Lamsal
ter spatial coverage than in situ measurements, which caet al, 2010. Therefore, we will discuss the impact of model
provide constraints on estimates of surface emissions, NOsettings and biases in the satellite retrievals on the estimated
can be measured as a column integral from solar backscaemissions. The methodology is described in Sect. 2. The per-
ter instruments from space, since it absorbs light in the vis-formance of the CTM is validated against satellite retrievals
ible portion of the electromagnetic spectrum. Because theand presented in Sect. 3. An optimal data assimilation set-
satellite measures an area-averaged amount of, N@tel-  ting for NOy emission estimations is discussed in Sect. 4.
lite observations are more representative for the global modeData assimilation and validation results against independent
grid scale emissions than surface in situ local observation®bservations are presented in Sect. 5. The sensitivity of emis-
which depend strongly on (finer scale) local sources and losion estimates to model settings and satellite retrieval are in-
cal removal processes. TroposphericN®lumns retrieved  vestigated in Sect. 6. Concluding remarks and discussions
from satellite measurements, e.g. by Global Ozone Monitor-are provided in Sect. 7.
ing Experiment (GOME), GOME-II, Scanning Imaging Ab-
sorption Spectrometer for Atmospheric Cartography (SCIA-

MACHY), and Ozone Monitoring Instrument (OMI), have 2 Methodology
contributed to map spatiotemporal variations in,N§ources

(e.g.Martin et al, 2003 Richter 2004 van der A et al,2006 Daily OMI tropospheric N@ column observations are used

Boersma et al.2008h Stavrakou et al.2008 Kurokawa tq c.on.stram NG EMISsions. The "T‘Od?' simulation and as-
similation results are validated using independent data, tro-

et al, 2009 Zhao and Wang2009 Lin et al, 2010. For .
instance, analyses of satellite data have identified rapid in_posphenp N@ co'Iumns frqm SCIAMACHY measurements
creases in NQemissions over developing areas (&ighter and vertical profiles obtained during the INTEX-B and the

2004 van der A et al, 2006 2008, DANDELIONS c_ampaigns. In_this secti(_)n,_ we introduce the

; . model, the satellite data used in the assimilation, and the val-
Top-down approaches adjust the emissions to reduce thg,_.
. . ; Idation data sets.
discrepancy between the model and observation, while tak-
ing the errors in both model and retrievals into accolviar-
tin et al.(2003 scaled bottom-up emissions directly based on
the ratio of the local retrieved and model simulated columns.2 1.1  OMI data
This approach has been widely applied to satellite retrievals
owing to its simple implementation (e.@Roersma et al. The Dutch-Finnish OMI instrument, launched aboard the
2008h Zhao and Wang2009 Lamsal et al.2010. How- Aura satellite in July 2004, is a nadir viewing imaging spec-
ever, changes in emissions are not necessarily proportiondatograph Levelt et al, 200§. Auratraces a sun-synchronous,
to the local column changes because of atmospheric propolar orbit with a period of 100 min. The local equator cross-
cesses. For example, the (IO ratio can vary owing to  ing time of Aura is about 13:40. OMI provides measure-
transport and chemical processes. To take these processagnts of both direct and atmosphere-backscattered sunlight
into account, recent studies have employed advanced data ais+ the ultraviolet-visible range from 270 to 500 nm that is
similation techniques including inverse modelling and four- used to retrieve tropospheric N@olumns. OMI pixels are
dimensional variational assimilation (4D-VARM(ller and 13 kmx 24 km at nadir, increasing in size to 24 ki35 km
Stavrakoy 2005 Kurokawa et al.2009 Chai et al, 2009. for the largest viewing angles. OMI retrievals with their
An ensemble Kalman filter (EnKF) is also an advanced datadaily global coverage are effective to constrain globalyNO

2.1 Satellite and aircraft data
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emissions on a daily basis, different from GOME and SCIA- data from the KNMI retrieval algorithm and the observation
MACHY retrievals with poorer spatial and temporal resolu- data were obtained from the TEMIS data senBodrsma
tions and less global coverage. et al, 2004. The ground pixel of the nadir mode is generally

The Dutch OMI tropospheric NO(DOMINO) data prod- 60 by 30 knt, with a global coverage approximately once ev-
uct (Boersma et a).2007 is used in this study. The ery six days. The local overpass time is 10:00. The approach
DOMINO product is provided by the Tropospheric Emis- to calculate the AMF is almost the same as that for DOMINO
sion Monitoring Internet Service (TEMIS) data portal v1 data, while DOMINO v2 is a major update with several
(www.temis.nl). Since the sensitivity of nadir measurementschanges to the AMF computation. Errors in the slant column
varies with height, a priori vertical profile and averaging ker- fitting, the stratospheric corrections, and in the AMFs lead to
nel (AK) information are important for the use of the obser- an overall error in the SCIAMACHY retrieval, as described
vations in data assimilatiofeékes and Boersma003. De- in Boersma et al(2004. The retrieval was validated against
tailed retrieval information is provided in DOMINO product, in situ and aircraft measurements, and was compared with
which allows proper use of observational information in dataregional air quality models (e.§chaub et al.2007 Blond
assimilation (cf. Sect. 2.3.1). et al, 2007).

In the retrieval, the tropospheric air mass factors (AMFs) As discussed byBoersma et al(2007 and Lin et al.
are computed at the time and location of the OMI overpass(2010, systematic errors in OMI (DOMINO v1) and SCIA-
The AMF measures the ratio of the slant column abundancéMACHY retrievals are expected to correlate well with each
to the vertical column abundance calculated from measure@ther, since these retrievals are derived with a very similar
radiances with a radiative transport model. The AMF is de-algorithm. Differences between OMI and SCIAMACHY re-
termined by many factors; e.g. solar and viewing zenith an-trievals thus mainly reflect temporal (diurnal) variations of
gles, cloud fraction and cloud pressure derived usingd chemical processes and emissions. As an exception, the
absorption, surface reflectivity, the a priori N@rofile sim-  improvements in DOMINO v2 may create systematic dif-
ulated by a CTM, and the vertically resolved sensitivity to ferences between the DOMINO v2 and the SCIAMACHY
NO, of the solar radiation backscatter to space. Details ofretrievals. The size of viewing pixels is different between
the retrieval and error estimates are describeBaersma  the retrievals. In comparison with model and assimilation
et al. (2004. The retrieved tropospheric NCcolumn er-  results, both retrievals are gridded to the same resolution
ror is derived from errors in total slant column, its strato- (2.5x 2.5°), using weighting factors for the surface overlap
spheric portion, and the tropospheric AMBoersma et a).  between satellite pixel and grid cell. As a result, the viewing
2004 2007). The error is dominated by the AMF calcula- pixel size difference will not affect the comparison results
tion over polluted areas, whereas it is dominated by spectraloo much.
fitting and stratosphere-troposphere separation over remote )
areas Boersma et a).2007). Only observations with a ra- 2:1.3 INTEX-B aircraft data
diance reflectance of less than 50 % from clouds (i.e. cloudTh L ical profile d _ .
fraction less than about 20 %) are used in this study. € in situ vertical profile data were obtained using the UC

DOMINO v.1.03 data (hereafter DOMINO v1) released Berkeley La_ser—lnduced Flut_)rescence (TP—LIF) instrument
in 2008 generally shows good agreement with independen?n DC-8 during the Intercontinental Chemical Transport Ex-

; periment Phase B (INTEX-B) campaign over the Gulf of
data, but appearsto ha_lveablas between 0 and W$ma Mexico (Singh et al. 2009. Thonton et al.(2003 and
et al, 2011). Errors in the AMF may lead to high val-

ues for the AK and errors in the retrievadersma et al. Bucsela et al(2008 provide a detailed description and dis-

2004 2007 Lamsal et o 2010, Boersma ot azniy ce. 159 18 Peormanee o e measuremert, | e conper
scribes improvements in the OMI retrieval, from DOMINO imiiatl u'ts, w

V1 to DOMINO v2.01 (hereafter DOMINO v2). The im- binned on a pressure grid, with an interval of 30 hPa, whereas

provements include the description of the radiative transferthe model output was mterpolateq tp the t|me. an@ space of
for the lowest atmospheric layers, assumptions made on Sure_ach sample. The standard deviation of variability within

face albedo, terrain height, clouds, and sampling in a pri_a grid cell is cor_lsidered to represent the unce_rtaint_y. Data
ori NO, profile. Tropospheric N@columns retrieved from collected over highly polluted areas (over Mexico City and

DOMINO v2 are about 20 % (10 %) lower in winter (in sum- Houston) have been removed from the comparison, since it

mer) compared to those from DOMINO v1 over polluted re- gg: (?izu?ﬁear:oegglisrgﬂ rtie;e?st?g(\)/ig?:eirr?;elzncghrﬁ C;?;gﬁg_
gions. We mainly use DOMINO v2 data to constrain NO e . P

eMiISSIons were made for morning (08:00a.m.—10:00a.m.) and after-
' noon (02:00 p.m.—04:00 p.m.) conditions in March 2006.

2.1.2 SCIAMACHY data

SCIAMACHY was launched in March 2002 on board EN-
VISAT (Bovensmann et gl1999. We use tropospheric NO
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2.1.4 DANDELIONS lidar data The anthropogenic emissions of l@re based on an in-
ventory of national emissions obtained from the Emission
The Netherlands National Institute for Public Health and thepatabase for Global Atmospheric Research (EDGAR) ver-
Environment (RIVM) NQ lidar uses the Differential Ab-  sjon 3.2 for the year 1995 and 2000liier et al, 2005,
sorption Lidar (DIAL) technique to observe vertical NO  which are reported as yearly means. Emissions from biomass
profiles. Volten et al.(2009 provides a detailed descrip- purning are determined on a monthly basis according to the
tion of the measurement during the Dutch Aerosol and Nitro-satellite-derived carbon emission estimates from the Global
gen Dioxide Experiments for Validation of OMI and SCIA- Fjre Emissions Data base (GFED) version Raigderson
MACHY (DANDELIONS) campaign. In comparison with et al, 2007). NOy emissions from soils are based on Global
the lidar data, the model output was interpolated to each samemissions Inventory Activity (GEIA)Graedel et a).1993,
leng level of the lidar at Cabauw. The results were binn8dwhich are reported as month|y means. ,Néhnissions over
on a height grid, with an interval of 100m. Lidar profiles Asja were obtained from Regional Emission inventory in
have a spatial representation of 2 km in the viewing directionasia (REAS) version 1.1@hara et al.2007) for the year
and approximately 12km in the direction of the wind. The 1995 and 2000. For all emission categories, the emission
model resolution is much coarser and thus the observationames for the simulation years 2005-2006 are obtained by
has a large representativeness error. The model grid pointgxtrapolating the emission inventories from the years 1995
used for the interpolation around Cabauw are located at Beland 2000. Total amounts of these surface,Ngissions
gium, northern-eastern Netherlands, western Germany, angbr January, April, July, and October in 2005 are 42.9, 37.6,
on the North Sea. Boundary layer conditions are very differ-46.3, and 39.2 TgN yr, respectively. The monthly/yearly
entamong the grid points especially between land and ocearsmission data were linearly interpolated at each time step of
To avoid a possible large representativeness error in particlthe CHASER and used in the simulation. The total lightning
lar under the different boundary layer condition, the profiles NO, production is globally scaled to 7.5 TgN'Vk, and its
obtained only before 12:00 p.m. were used for the compariistribution is calculated at each time step of CHASER using

son. the convection scheme in the AGCM and the parameteriza-
) tion of Price and Rind1992. The total aircraft NQ emis-
2.2 Aglobal chemical transport model CHASER sion is 0.55 TgN yr!, which is obtained from the EDGAR
inventory.

A global CTM for the troposphere, CHASER, developed by

Sudo et al(2002h), is used as a forecast model in the data as—d di the dominant cat ¢ h - anth

similation system. CHASER includes detailed chemical and epending on the dominant category for €ach area. antnro-
pogenic, biogenic, and soil emissions. Note that a diurnal

transport processes in the troposphere, including 88 chenf209¢ o .
ical and 25 photolytic reactions with 47 chemical species.Scallng of each emission category separately is a more log-

CHASER is coupled to the atmospheric general circulation'caI approach. However, this approach cannot be applied in

model, Center for Climate System Research/National Insti—thIS study since only the total emission is proce_ssed in the
odel simulation.van der A et al(2008 determined the

tute for Environmental Studies/Frontier Research Center fof! 00 _
Global Change (CCSR/NIES/FRCGC) atmospheric generaij.Omlnant source categories for each area ba§ed on the analy-
circulation model (AGCM) ver. 5.7b, on a horizontal resolu- sis of the seasonality of observed tropospherigRalumn.

tion of T42 (2.8) and 32 vertical levels from the surface to Eollowmg the result okvan der A et al(200§ and th(.:" set-

4 hPa. Meteorological fields are provided by the AGCM at t|_ng of Boe_rsr_na et al@2008l:),_ we gpply ar_lthropog_enlc-type
every time step of CHASER (i.e. every 20 min), in which the dl_urnal variations (with maxima in morning and In evening
AGCM fields are nudged toward National Centers for En- with a factor of gbout.1.4) n Euro-pe, eastern_Chma, Jgpan,
vironmental Prediction/Department of Energy Atmospheric and_ North Amgrlca, bpmass burnllng—type.va.rlatm.ns (W'th.a
Model Intercomparison Project Il (GPS-NCEP/DOE AMIP- rapid increase in morning and maximal emissions |n.the mid-
Il) reanalysesKanamitsu et al.2002 at every time step of day with a maximum factor of about 3) in central Africa and

the AGCM to reproduce past meteorological conditions. ThesoUth America, and soil-type diurnal variations (with maxi-

transport processes include sub grid-scale (parameterizetg‘al emissions in afternoon with a factor of about 1.2) in the
convective transport and vertical diffusion in addition to grid- rasslands or s;_)arsely veggtated areas of Australia, Sahara,
scale advection. A more detailed description of the CHASERand western China. The sql N@mission dependgnce on
model is presented fyudo et al(2002h, Sudo and Akimoto tempgrature a.nd moistur&iénger and Levy1999 IS not
(2007, andNagashima et a(2010. The extensive evalua- explicitly consudered_. The tqtal amount _o_f emissions does
tion of the overall CHASER model performance was per- not change by applying the diurnal variability scheme.

formed bySudo et al(20023. The relative performance of
the CHASER NQ simulation in comparison to other CTMs
is evaluated byan Noije et al(2006.

We apply a diurnal variability scheme to the emissions

2.3 Data assimilation

Data assimilation is a technique to combine observational in-
formation with a model. We employ an ensemble Kalman

Atmos. Chem. Phys., 12, 22632288 2012 www.atmos-chem-phys.net/12/2263/2012/
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filter approach to estimate NCGemissions from N@ data.
The assimilation runs were performed for six individual _
months (starting from 1st to 30th of each month), Januaryy; = H (X?);Yb =y’ —yb, ()
April, July, and October in 2005, and March and Septem-
ber in 2006. The initial conditions for meteorological and where H is the non-linear observational operator that con-
chemical fields were obtained from long-term (about a year)verts anN-dimensional state vector toa (number of ob-
simulation of the CHASER for each month. The results for servation) dimensional observational vector. To compute the
2005 are used to investigate the seasonal variability of theanalysis for each grid point independently, the local analysis
emission, while those for 2006 are used to validate the aserror covariance is estimated in the ensemble space:
similation results against in situ observations. k=1l T 1

+(YP) RYE] 4)

2.3.1 Ensemble Kalman filter _[ 1+A

where R denotes thep x p observation error covariance.

The data assimilation technique employed is a local €N prevent an underestimation of background error covari-

semblg transform Kalman filter (LETKF). There are WO ance and resultant filter divergence (ektputekamer and
types in EnKF approaches, the perturbed observation (PG itchell, 1998 caused by model errors and sampling errors,

meth\c;\;jhans the gnaembllez Os(;quargé?:ot f'ltﬁr éSRF) mMethoghe covariance inflation technigue (with a covariance infla-
(e.g. Whitaker and Hamil 2. methods generate parameter = 0.05 in our setting, see also Sect. 4.2) is

an analys_ls ensemple mean.and covariance that satisfy thzfpplied to inflate the forecast error covariance at each analy-
Kalman filter equations for linear models (e.g. Ott et al., sis step

2004), whereas PO methods introduce an additional source .. = - i

- . UsingP?, the transformation matrix;, is given by,
of sampling errors. The LETKF is related to the SRF method g ¢ y
(e.g.Whitaker and Hamill2002, and it has conceptual and
computational advantages over the original EnKF (@.

et al, 2004 Hunt et al, 2007 Kalnay, 2010. One of the 1 o 4\ 4 matrix which analyzes the variables for each
advantages is that the LETKF performs the analysis IocaIIygrid point (Hunt et al, 2007. The dimensiork is generally

In space and time, .and reducg; sampling errors caused bysffnaller thanv, and calculations of large vectors or matrices
limited ensemble size. In addition, the analyses at differen{, ... '\ qimension are not necessary to obtainThaatrix in
grid points are performed independently, which reduces thg, . LETKF, which is different from the case for the original
computational cost because most calculations are performegnKF Then, we can update the ensemble mean by
in parallel in the LETKF (e.gMiyoshi and Yamang2007). ' ’

Here we briefly introduce the LETKF technique follow- _, _; b ( b)T _1( 0__};)
ing Hunt et al.(2007) andKalnay (2010. The LETKF up- XE=XPHXEPH(YT) Ry =y?), ©)
dates the analysis and transforms a background ensembWherey” represents the observation vector. The new anal-
(xb;i=1,...,k) into an analysis ensembl&’(i = 1,...,k),

h h del ble- the back q ysis ensemble perturbation matrix in the model spAfe
wherex represents the model varia &;the ackgroun is simultaneously obtained by transforming the background
state;a the analysis state; andthe ensemble size. In the

; ensemblex? with a transform matrixT at every grid point
forecast step, a background ensemidg, is globally ob- (X% =XPT), while the new analysis ensemble in the model

tained from the evolution of each ensemble member usin : ; -
gspace,x;‘, is obtained from the combination of the back-

fche forecast_model. The backgroun_d ensemble méaand ground mean and ensemble perturbatiofis{X* + X¢).
its perturbations (spreadf?, are estimated from the ensem- The EnKF approaches always have a spurious long dis-

T= [(k—l)ﬁ“]l/z ®)

ble forecast, tance correlation problem because of imperfect sampling of

1k b b b = the probability distribution due to limited ensembles (e.qg.

X = §in R (1)  Houtekamer and Mitchell2003). To improve the perfor-
i=1

mance of the data assimilation with reducing the ensemble
These areN x k matrices, whereV indicates the system size, the LETKF employs a covariance localization tech-
dimension andk indicates the ensemble size. The back- nique. We assumed that observations located far from the
ground error covariance follows from the assumption thatanalysis point have larger errors and those observations have
background ensemble perturbatiok’é sample the forecast less impact on the analysis (eMiyoshi and Yamang2007).
errors, As a result, the analysis is solved at every grid point by
PP = xP(xh)T, ) choosing nearby observations (depending on the localization

. length, see Sect. 4.2).
bln the analysis step, an ensemble of backg_rounq VECtors, The tropospheric AK provided in the OMI retrieval prod-

y7» and an ensemble of background perturbations in the obyct s used in the assimilation. The use of the average ker-
servation spacé(’, are obtained as follows: nel in the observation operator removes the contribution of

www.atmos-chem-phys.net/12/2263/2012/ Atmos. Chem. Phys., 12, 22688 2012
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the retrieval error due to the a priori profile erréiskes and  solely determined by the difference in the observed and sim-

Boersma2003; ulated concentrations.
; The forecast process also plays important roles in the data
b b b assimilation. It propagates observation information, inflates
.:H(x.): S(x4>, 7 ) . . .
Vi ! ;al I\ ) the analysis spread, and determines the quality of the first

guess. A linearized forecast mod® ) provides a first guess
wheregq; is the components of the AK at theth vertical  of the state vector for data assimilation based on the back-
level. The spatial interpolation operat§r contains a hori-  ground error covariance from the previous analysis tifite
zontal interpolation followed by a mass-conserving vertical the new analysis timg,; 1,
interpolation to the OMI retrieval level and a conversion
to NO, sub-columns. Simulated NGields in this way are p? (th+1) =MP? ()M T+Q. 9)
converted into tropospheric N@olumns using the AK, the
surface pressure obtained from the AGCM simulation, and!n this study, because of the lack of any applicable model, a
the tropopause level used in the OMI retrieval product. persistent forecast mode¥(=1) is used for the NQ emis-

In summary, the LETKF analyzes variables (i.e. NO Ssions. In our setting, without any treatment that prevents
emissions) for every grid point by choosing observationsthe parameter covariance magnitude reduction (e.g. by the
(i.e. OMI retrievals) that determine the observational spaceforecast model error covariance teq@), the analysis can
Then, the analysis is solved independently at every grid poinf10 longer be influenced by the observations, because of an
located at the local volume center using the observational inoverestimation of the confidence in the model. To prevent
formation and background error covariance estimated frorrpovariance Underestimation, the analyzed standard deviation
the ensemble forecast. The new global analysis ensemble df-€. background error) is artificially inflated back to a mini-
the variables (i.e. N@emissions) is then obtained by com- mum predefined value at each analysis step. This minimum
bining the local analysis. The estimated emissions are used iMalue used in this study is chosen as 30 % of the initial stan-
the next step ensemble model simulations (after the forecagiard deviation (see also below). The analysis spread can be
process) and updated at every analysis step. The forecast a¥g8ry small in some cases owing to effective corrections by
ana|ysis processes for N@missions are further described the data assimilation. Because of the inflation in our dally

in Sect. 2.3.2. analysis, the emission analysis can capture short-term varia-
tions of NQ, emissions. This is different from some previous
2.3.2 NG emission estimation studies that estimated emissions based on monthly mean data

(e.g.Martin et al, 2003 Wang et al.2007 Chai et al, 2009
A top-down approach with a bottom-up emission inventory Kurokawa et al.2009. A daily analysis improves upon the
(as a priori) was used to obtain posterior estimates of surfacenonthly-mean inversion by accounting for the variability in
NOx emissions. To accomplish this, we applied the state augthe chemical feedbacks of N@missions and by reducing
mentation method (e.giksoy et al, 2006. In this method, the dependence of the a priori emissioddgo and Wang
the model parameter (i.e. N@mission,e) is estimated by 2009. Small random noises were also added to the analy-
including it as part of the state vector together with the modelsis spread as the random forecast model error after the co-
forecast variable (i.e. Nf£xoncentrationg) using the ensem-  variance inflation at each analysis step, with a magnitude of
ble model simulations and observations. The background en4 % of the initial spread. The minimum predefined ensemble
semble and its perturbations defined in Eq. (1) thus becomespread of 30 % and the random noise magnitude of 4 % used
o in data assimilation were obtained from sensitivity experi-
s [T, b _ - 8 ments by changing the predefined magnitude to 15, 30, 45,
Xi = [ef’} - & | ) and 60 %, and the noise magnitude to 0, 4, 8, and 12 %, re-
spectively. Quantitative criteria for the selection of these val-
This approach allows indirect relationships between,NO ues are the daily Observation-minus-Forecast (OmF) check
concentrations and NGmissions caused by complex chem- and the chi-squareyf) test (see Sect. 4.2 for details). The
ical and transport processes (e.g. changes in the/NQ) optimal values of 30% and 4 % were obtained by minimiz-
ratio) to be considered through the use of the background ering the global mean and root mean square of the OmF and by
ror covariance produced by ensemble CTM forecasts. Thigequiring thaty 2 value approaches 1.
advanced approach differs from methods based on the mod- Uncertainty information on the a priori emission is re-
eled local ratio between concentrations and emissions (e.gquired to create the initial emission error covariance. We
Martin et al, 2003. In our approach, the background error expect large uncertainty in the a priori emission, as a re-
covariance, estimated from the ensemble CTM simulationssult of the neglected seasonality in the anthropogenic emis-
varies with time and space depending on atmospheric consions and large discrepancy between different anthropogenic
ditions. Accordingly, the local analysis increment, which is (e.g. EDGAR vs. REAS) and biomass burning emission in-
the a posteriori emission minus the a priori emission, is notventories (e.g. EDGAR vs. GEIA). The initial error is set to
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40 % of the a priori emission. Note that the emission anal-for generating a super observation) for a super-observation
ysis is generally no longer sensitive to the initial error after grid; i.e. data with high coverage are assumed to be more re-
some (e.g. several weeks) assimilation cycles. Only the comkable (i.e. largenw;). The same weighting factors are applied
bined total emission is optimized in the analysis. This is tofor averaging the AK.

reduce the degree of freedom in the analysis and to avoid The measurement error for the super-observation is com-
the difficulty associated with estimating background errorsputed as irEskes et al(2003,

for each category source separately. The uncertainty in the m m
a posteriori emission is reduced if the analysis converges Qupermean= szal Zw’ l1-¢ fe. (D)
a true state, which is represented by the analysis spread in = = m

the EnKF data assimilation. For instance, in January, the . . . .
: . ... 1n which the observation errow() is averaged over a grid

mean analysis spread becomes about 30-40 % of the initial . : . e
with the weight (v;), and the averaged error is multiplied

spread after some assimilation cycles over northern Europ .
) ; : : y the error correlationc) among data. The error correla-
the United States North, America, eastern China, India, and. . k . .
ion determines the quality of the super-observation, as illus-

northern Africa, demonstrating significant reductions in thetrated in Fig. 1a. We apply 15 % error correlation, although

emission uncertainty through the data assimilation over thEES(?here is no evidence for this value. Errors in for instance the

areas. However, since the analysis spread is artificially in- . .
y P y .cloud, albedo and aerosol treatment in theJN€trieval are

?ypically correlated in space, but a quantitative number for

step in our system, th|§ information is not used to MeasUrGyis correlation is difficult to estimate. The super-observation
the a posteriori uncertainty. Instead, the standard deviations

of the estimated daily emissions during the analysis periodneasurement error also decreases as the number of obser-

are used as the uncertainty information. Detailed analysegat'onS used for the super-observation increases. A typical

. : : . . “number of OMI observations used for a super-observation
on the analysis spread information will be performed using. LS )
. ) ; . . is about 120-250, resulting in about 60 % reduction of the
more advanced inflation techniques in future studies (see alsg
: . ; Mean measurement error.
discussions in Sect. 4.2). : . . .
o . The representativeness error is also considered if the
The surface emission factor is analyzed and updated us- : L .
. : o .. super-observation grid is not fully covered by OMI pixels.
ing observations at an analysis interval of every 100 min (i.e. . .
) . : o A representativeness error as a function of the OMI cov-
every orbit cycle of OMI observations). This setting is use- . : .
. . . _erage was estimated based on grid cells which were well-
ful to reduce the time discrepancy between the observation

i 1 0 -
and the model in the data assimilation. Tropospheri NO cove_red by OMI pixels (i.e. more than 90 % coverage, ex
L . o : : cluding remote areas where the mean concentration is less
shows a distinct diurnal variation, and any time discrepanc

\ . : Ythan 0.5x 1015 molec cm2). For these well-covered cells,
will result in serious model error. g X
we artificially decreased the coverage by randomly reducing
2.3.3 Super-observation approach the number of observations used for constructing a super-

. (12)

observation. Then, a representativeness error fagigy) (s
The spatial resolution of the OMI data (=13 ka4 km) is  estimated based on the relationships between the coverage
much finer than that of the CHASER model grid (9.8 area &, 0 <« < 1) and the super-observation concentration
Thus, there are large representativeness errors in the modas follow;
because of unresolved small-scale variations. To fill the spa- 1 1 axm 1
tial scale gaps and to produce more representative data, frep(a) = = "y — > w =3y
super-observation approach has been developed. The spa- miz axmiDg mia
tial resolqtion of the super-observation was set_to be 2k For coarse grid cells completely covered by OMI observa-
most equivalent to the CHASER model resolution. Note thatiio, footprints ¢ = 1), this representativeness error is zero.
the spatial distribution of the super-ob_servano_n is con_stant,:or cells covered by just one OMI pixel the representativity
whereas the CHASER uses a Gaussian (variable) grid.  Asyror approaches the variability of individual measurements
super-observation is generated by averaging all data locategr,nd the grid cell mean. The mean representativeness error

within a super-observation grid cell; factor averaged over the globe and over a month almost lin-
m m early increases as the coverage decreases, with a steeper in-

y= (Zwlyz) / (sz), (10) crease for coverage area less than 10 % (Fig. 1b). The mean
=1 I=1 averaged function is applied to estimate the representative-

wherey is the super-observation concentratipnis the con-  ness error of each super-observation according to its cover-
centration of individual datay;, is the weighting factor is age areasy):

the number of observations within a super-observation grid.a — Fren(@) X7 (13)
The weighting factor for individual datay;, is estimated as ~ >/Pe"eP™ /eP Y

the ratio of the coverage area by individual data pixels and thevhere the area dependence of the representativeness error
total coverage area (sum of the coverage area by all data usddnction was neglected. Finally, the total super-observation
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1 : : : : l 3.1 Global distribution

os b T A R | Figure 2 compares global distributions of annual-mean tro-

| | | | | pospheric N@ columns obtained from the OMI retrievals,
the SCIAMACHY retrieval, and the CHASER simulation at
the local overpass time of the retrievals (10:00 and 13:30, re-
spectively). The retrievals and the model show very similar
spatial distributions. Large-scale pollution with high con-
centrations is observed over eastern China, Europe, and the
eastern United States. High concentrations are also found
over the Highveld region of southern Africa, central Africa,
Japan, South Korea, India, Southeast Asia, and other mega
cities. Low concentrations, mostly smaller than the OMI
noise level, are observed over the oceans and remote regions.
Note that the annual-mean distribution in both the model

Super obs error factor

(b) and retrievals may be positively biased compared to the true

) 3 annual-mean local time NfOconcentration. This occurs es-
S A0 R o o T pecially over tropical regions, since the sampling under clear
2 j j j j sky condition leads to relatively fewer observations during
D B0 [N oo oo s the wet seasons than during the dry seaseas Koije et al,
2 2006.
T 20 [ g e R - The OMI retrievals agree well with the SCIAMACHY
@ | 1 | | retrieval, with a global spatial correlation of 0.90-0.93, a
S oL N — i global mean root-mean-square error (RMSE) of about 0.35—
o 1 1 1 1 0.66x 10 molec cm~2, and the global mean bias (OMI mi-

0 , , , , nus SCIAMACHY) of —0.02-0.12« 10**molec cm~2 for

0 20 40 60 80 100 the monthly mean concentration. The oMl mean differ-
ence compared to the SCIAMACHY is mostly positive and
is larger for DOMINO v1 than DOMINO v2, whereas the
] ) ) RMSE compared to the SCIAMACHY retrieval is higher for
Fig. 1. (a) The error reduction factor for the super-observation as aDOMINO v2 than DOMINO vi Higher concentrations are
function of number of observations, for different sub-grid error observed in DOMINO v1 than in DOMINO v2 over north-

correlations¢ =0 (dotted line) and 15 % (solid line{b) The rep- .
resentativeness error multiplication factep as a function of the ern Europe, the northern-eastern United States, and eastern

coverage of the grid cell by OMI observations. See Egs. (11) andChina, with a mean difference of about 10-30% (Fig. 2).
(12) and Sect. 2.3.3 for details. Apart from the global mean, the SCIAMACHY retrieval

shows higher N@ concentrations than the OMI retrievals
over urban areas around megacities and lower concentrations
error is computed as a combination of the measurement errasver biomass burning regionBgersma et al20081, prob-
and the representativeness ervgaszupermean +02,perrep ably mainly as a result of the difference in observation time.
Although CHASER reproduces well the general features
of the observed N@ patterns (with a global spatial corre-
3 Simulated and retrieved tropospheric NG columns lation of 0.71-0.89 depending on season and retrieval, sim-
ilar to that estimated using other global CTMsaK Noije
Here we investigate the performance of the model and satelet al, 2006 Huijnen et al, 2010, systematic differences ex-
lite retrievals. The AK has been applied to the CHASER ist between the model and retrievals (Table 1). The model
profiles to compare with satellite retrievals precisely. Theis generally negatively biased relative to the OMI retrievals,
CHASER concentrations are interpolated to the retrieval pix-but is positively biased relative to the SCIAMACHY re-
els at the local overpass time of the satellite, and then bothrieval (except in January) in the global mean. This may
the retrieved and simulated concentrations are mapped ontoe partly due to the bias observed between the SCIA-
a same horizontal resolution of52 2.5°. MACHY and OMI, dominated by the background concentra-
tions smaller than the detection limit of OMI and the strato-
spheric contribution to the column. The model generally un-
derestimates tropospheric M@olumns in industrial areas
(Fig. 2); e.g. over eastern China, the eastern United States,
southwestern Europe, and southern Africa, suggesting that

Coverage area [%]
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anthropogenic emissions in the emission inventories are unAmerica, and Southeast Asia, biomass burning dominates the

derestimated. As an exception, the model largely overestiseasonal variations of N(roncentrations, where the maxi-

mates NQ columns over northern Europe, particularly when mum and minimum concentration occurs almost in the same

compared to DOMINO v2. The model negative bias is alsomonths in the model and retrievals, but with a mean negative

observed over biomass burning areas; e.g. over central Africhias of about 20—40 % in the model.

and South America. In contrast, significant positive model

biases exist in remote areas especially when compared to the3 Diurnal variation

SCIAMACHY data. The RMSE is largest in January in all ] ) ) ] ) )

cases. To improve the simulation, we applied pre-defined functions
By applying the AK, the model generally shows better for thg dlurlnal variations of the sgrfacg I}J@mlss_,lons. As.

agreements with satellite retrievals, as commonly found usgescr|beq n SecF. 2.2, we applied d|ffereqt diurnal vana-

ing other CTMs yan Noije et al, 200§ Huijnen et al, 2010. tion profiles for different sources: maxima in the morning

The application of the AK increased the global spatial cor- and even_ing for anthropogen_ic sodrces, a rapid incr_ease in
relation by 0.02-0.13, decreased the global mean bias pthe morning and maximal emissions at mid-day for biomass

0.01-0.32 (up to about 90%), with larger impacts on the urning sources; and maximal emissions in the afternoon for
comparison with the SCIAMACHY retrieval than that with SCil Sources. By applying the diurnal variability scheme,
the OMI retrievals. The larger impacts with the SCIA- CHASER generally shows better agreement with the satel-
MACHY AK may be attributed to larger differences be- lite retrievals, with a global mean RMSE reduction of about

tween the a priori used in the SCIAMACHY retrieval and 1.0_1? (35._4.?)% co:npared t;) the OMI (SdCIA'r\]AACr:]HYC):ﬁ\;l
the CHASER profiles. The impact was significant over Ey- trevals. Similar results were demonstrated with other S

rope and eastern Asia and was different among season;gvan Noije et al. 200§ Boersma et a].20080. The diur-

For instance, the application of DOMINO v1 AK leads to nal variability scheme generally decreases the; NGncen-
a change of, N@ column up to—1.1 x 10" molec cm-2 tration in the morning, but increases it in the afternoon in

(+1.5 x 10** molec cm~2) over Europe in January (July). the industry and biomass burning areas (Fig. 4). It improves

The increase (decrease) implies a larger (smaller) decreaégﬁ agreerr?ent with DdO't\)/.”NO stata. over E_urgped(Fig. 42)’
of NO; concentration with height in the a priori profile used whereas the increased blomass burning emission during day-

in the retrieval than in the profile simulated by the CHASER. tr']mﬁ caused t:le Nﬁgcol\l;IJInNms ozvzr Cenl;[ral ﬁgicif l:zje too |
For the OMI comparisons, the impact of the AK was weaker Igh compare to . o Ov i ata (Fig. . )'. € diurha
in the case of the DOMINO v2 than the DOMINO v1 over variability for the biomass burning source is highly variable

polluted areas, suggesting that the CHASER profile is more?"d uncertain. Since the diurnal variation OT Né)nlssmns.
similar to the a priori profile used in DOMINO v2 than that strongly influences the model-observation difference, the im-
in DOMINO v1 plementation of a realistic diurnal scheme is important to ob-

tain reasonable emissions. The impact of the diurnal scheme
on surface emission estimations will be further discussed in
Sect. 6.

Figure 3 compares the seasonal variations of the regional

mean tropospheric N©Ocolumns for major pol_luted and 4 Optimizing the data assimilation system

biomass burning areas. The seasonal variations are very

similar among the satellite retrievals, except for clear differ-4.1  Impact of super-observation

ences between DOMINO v1 and v2 over Europe, the east-

ern United States, and southern Africa during winter. In in- By using the super-observations instead of the normal ob-
dustrial regions, the tropospheric M@olumn is higher in  servations, the data assimilation reveals a better agreement
winter than in summer. Biomass burning occurs especiallywith the assimilated DOMINO v2 data. An increasing spa-
during the dry season, in the winter and early spring, lead+ial correlation of 0.03—0.05 and a decreasing global mean
ing to a maximum concentration in these seasons over th&MSE of 30—40 % were observed in an experiment with the
central Africa, Southeast Asia, and South America. The sim-super-observations compared to normal observations. Im-
ulated regional mean tropospheric N@lumns are gener- provements by the super-observation approach were com-
ally lower than the observed ones in most polluted regionsmonly observed at both a resolution of the super-observations
throughout the year. The underestimation is more obvious ini.e. 2.8) and at finer scale (i.e.°L In the case with the
winter than in other seasons over eastern China, the eastenmormal observations, observation data contain large repre-
United States and southern Africa. A most obvious differ- sentativeness error and are noisy especially in polluted areas,
ence is seen over eastern China and southern Africa with avhich may prevent the analysis from efficiently and stably
factor of up to 3. The timing of the seasonal variation is reducing the systematic errors of the model (i.e. analysis in-
well represented, but the amplitude is largely underestimate@rements were sometime very noisy and large). The super-
by the model over these regions. Over central Africa, Southobservation approach generally provides more representative

3.2 Seasonal variation
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DOMINO v2 CHASER w/ DOMINO v2 AK
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I @ I
0.1 03 05 07 ] 2 3 5 7 10 20 -12 -1 08 06 04 -02 02 04 06 08 1 1.2

Fig. 2. Global distributions of annual mean tropospheric Né@lumns (in 18°molec cm~2) obtained from the satellite retrievals (left
columns): DOMINO v2 (upper rows), DOMINO v1 (middle rows), and SCIAMACHY (lower rows), and from the CHASER simulation
estimated using the AK of each retrieval to be compared with the simulation (middle columns) for 2005. The red (blue) colour indicates
relatively high (low) values. The differences between the retrievals and the CHASER simulation (the simulation minus the retrievals) are
shown in the right columns; the red (blue) colour indicates that the CHASER is larger (smaller) than the satellite retrievals.

Table 1. Comparisons of monthly and annual mean tropospherig bilumns between the CHASER simulation (applying the AK of each
retrieval) and the satellite retrievals: DOMINO v1, DOMINO v2, and SCIAMACHY, for 2005. The RMSE is the root-mean-square error.
The bias represents the CHASER simulation minus the retrievals. The units for the RMSE and bids$ areld®cm 2.

JAN APR JUL OCT ANN

Corr 0.71 0.88 0.90 0.88 0.86
vs. DOMINOv2  RMSE 0.79 0.36 0.28 0.41 0.38
Bias -0.01 -0.02 -0.07 -0.08 -0.03

Corr 0.77 0.88 0.89 0.89 0.89
vs. DOMINOv1 RMSE 0.92 0.44 0.31 0.48 0.44
Bias -0.11 -0.07 -0.07 -0.12 -0.06

Corr 0.76 0.82 0.79 0.80 0.86
vs. SCIAMACHY RMSE 1.03 0.57 0.51 0.53 0.53
Bias —0.06 0.06 0.04 0.00 0.01
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vs. SCIAMACHY
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Fig. 3. Seasonal variations of the regional mean tropospherig B@umns (in 185 molec cm_z) for eastern China (110-12&, 30—
40° N, top panels), Europe (2WV-3C° E, 35-60 N, second-top panels), the eastern United States (95A732—-43 N, third-top panels),
South America (70-50W, 20° S—Equator, fourth-top panels), northern Africa{20-4C° E, Equator—20N, fifth-top panels), central Africa
(10-40 E, 2@ S—Equator, sixth-top panels), southern Africa (26-B128-23 S, seventh-top panels), and Southeast Asia (96-EQ50—

20° N, bottom panels) for 2005-2006. TroposphericN®lumns obtained from DOMINO v2 (red lines in left panels), DOMINO v1 (black
lines in left panels), the SCIAMACHY retrieval (black lines in right panels), and the CHASER simulation with the AK (blue and light blue

lines) are plotted for local time 13:30 (left) and 10:00 (right). A 4-day running-mean was applied to the data.
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(a) Europe (b) Central-Africa
1 L 1 1 L 1 L 1 1 L 1 1 L 1 L 1 L 1 L 1 L 1 L 1
47 —— CHASER(dumal) -5 ] — CHASER(dumal) r10
===+ CHASER(constant) r a ] === CHASER(constant) L
c = SCIAMACHY . L c = SCIAMACHY -
E _veeana.. = OMIv2 4 1S = OMIv2 -8
2 31 = OMIv1 [ 2 = OMIv1 r
O 1 N % | Emission factor 3 r3” o 3] e Emission factor [ g
g F3 5 8 Jevewwneee, [ & TN L6 7
= 9 . N 4]
z s Z 4 &
o 27 S o 1 r S
® = . o 5 © 27 [ =
¢ 1 TSy F2 8 2 7 4 B
& 38 1 @ TN . [ S
O . 1  sssesesscsssecsnsensssaen, = 0O - =
Q 1o T e S NN ey [
o ; L1 o 11 : L2
o N U . : oo H L
J e J A priori: 6.4 Tennneeen F ] # Apriori: 4.7 '
| <Emissions> A posteriori (diurnal): 6.3 [ ] eeeennennd A poSteriori (diurnal): 3.7 e, 3
04 A posteriori (constant): 7.6 -0 (o = ICCXUITIIILIIIIII T A posteriori (constant): 6.1 I -0
T T T T T T T T T T T T T T T T T T T T T T T T T T
[0} 4 8 12 16 20 24 0] 4 8 12 16 20 24
Local time Local time

Fig. 4. Monthly mean diurnal variation of tropospheric N@olumns (in 18°molec cm~—2) obtained from the CHASER simulation with
(solid line) and without (broken line) the diurnal variability scheme for surfacg B@issions ove(a) Europe (10 W-=30C° E, 35-60 N)

and(b) central Africa (10-40E, 20° S—Equator) in July 2005. Tropospheric Bl@lumns obtained from the satellite retrievals: DOMINO

v1 (blue), DOMINO v2 (red), and SCIAMACHY (green) are also plotted. The dotted line represents the diurnal variability factor used for
NOyx emissions.

data with a reduced random error (e.g. than the Ir]d'\/'du""l'l'able 2. The performance of the data assimilation for differ-

observation) and results in systematic and smaller analysignt parameters: the horizontal localization length (loc in km), the
increments. Furthermore, the super-observation approach repvariance inflation (inf in%), and the ensemble number (num).
duces the computational cost of the data assimilation, by refive-day mean (averaged over 7-11 January 2005) tropospheric
ducing the number of data processed in the analysis step. NO, columns from the assimilation and from DOMINO v2 are
compared. Corr is the global spatial correlation coefficient and
RMSE is the root-mean-square error in12olec cm™2. The
control (CTL) simulation was conducted with loc =450, inf=5, and

. . num = 32.
Various factors affect the performance and the computational

cost of the data assimilation. We have conducted sensitivity

4.2 Sensitivity to assimilation parameters

8 ) . - ' Corr RMSE

experiments to obtain an optimal setting for the data assim-

ilation, as summarized in Table 2. First, the analysis is sen- CTL 0.906  0.599
sitive to the localization length. The lifetime of NGn the loc=300 0906 0.600
lower troposphere varies from several hours to a day, with a loc=600 0.897 0.625
longer lifetime during winter than during summer. In addi- loc=750 0.885 0.645
tion, long-range transport of, for instance, peroxyacetyl ni- loc=900 0.879  0.655
trate (PAN) can propagate local N@ource information to num=16 0897 0612
remote places. As a result, the N@mission and N@con- num=48 0.906 0.597
centration will have long distance correlations in some cases. num=64 0.905 0597

Remote observations will not affect the analysis if the local-
ization length is short, while the analysis will suffer from se-
rious sampling errors by using a too long localization length
in combination with a small ensemble size. The optimal lo-
calization length was found to be 450 km for the global anal-
ysis in January. The optimal length may depend on the loca-
tion and season because of changes in the M&ime and the analysis together with the conditional covariance infla-
wind patters. Second, a large ensemble size is essential 60N (cf. Sect. 2.3.2), since it reduces the underestimation in
capture background error covariance structures properly, buthe background error covariance. Although there is no clear
also increases the computational cost. The analysis improve@ptimal value, we employ 5 % covariance inflation.

by increasing the ensemble size to 32, whereas it did not vary The performance of the tropospheric N&lumn data as-
significantly by increasing it further. Thus, ensemble size similation with the optimized settings was evaluated from the
of 32 was preferred to remove sampling errors. Finally, thex? test (e.g.Ménard and Chang200Q Zupanski and Zu-
use of the covariance inflation (cf. Eq. 4) slightly improved panskj 2006. The x? is estimated from the ratio of the

inf=0 0.904  0.605
inf=10 0.904  0.607
inf=15 0.905 0.589
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actual OmF to the estimated background covariance. For this
test, the innovation statistics are diagnosed from the OmF

(yY—H (xb)), the estimated error covariance in the observa- g
tional spacgHP’H” +R), and the number of observations, =
m . n
1 1/2 S
-1/

Y:—(HPbHT R ("—H(xb)>. 14

= +R) (v (14)

I ! I ! I ! I ! I

Using this statistics, thg? is defined as follow: 0 40 80 120 160
X2 — tracerYT, (15) Number of orbit from 1st January 2005

whereH is the non-linear observational operator and tthe Fig. 5. Temporal variation of the 2 calculated as values estimated
is the linearization of the observation operator. The mearfn each data a_ssimilation cycle (thin line) and 15-orbit cycle running
values of thex 2 indicate that optimized system is generally Means (bold line).

within 30 % difference from the ideal value of 1 (Fig. 5). The

mean positive bias of thg? is reduced through data assim- Taple 3. The four-month mean (January, April, July, and Oc-
ilation cycles, indicating that the data assimilation tends totober in 2005) global and regional NGmissions (in TgN yr1)
provide the optimal solution. The remaining mean positive obtained from the a priori emissions, the a posteriori emis-
bias of thex? value (~25 %) indicates a persistent under- sions with DOMINO v2 data, and the newer inventories
estimation of the forecast error variance. The magnitude ofEDGAR4.1+GFED3.1+GEIA).

the underestimation varied largely with time and space. Al-

though the conditional covariance inflation to the emissions A priori A posteriori
acted to amplify the forecast spread of the tropospherige NO £ _~ina 31 50
column, the adaptive covariance inflation technique ¢ng. Europe 55 46
derson 2009 may help to more properly introduce the infla-  g.ysa 2.6 3.4
tion to the emissions. S-America 0.7 1.1
N-Africa 3.1 2.6

C-Africa 2.0 1.9

5 Data assimilation results S-Africa 0.2 0.5
SE-Asia 0.4 0.7

5.1 Analyzed NG emissions Northern Hemisphere (20—90!) 27.1 29.3
L . o Tropics (20 S—20 N) 11.9 12.0

The surface NQ emissions obtained from the assimilation  gouthern Hemisphere (20-98) 27 41

of DOMINO v2 data for four months in different seasons are
shown in Fig. 6 and Fig. 7, and summarized in Table 3. The
monthly mean optimized NQglobal source is up to 12%
higher than the a priori emission. Regional differences are
more obvious, with a factor of up to about 2.5. The analy- posteriori emissions over eastern China. However, the win-
sis increment is generally positive over eastern China, Northertime and summertime maxima are not reproduced by both
America, Australia, northern India, and southern Africa. the a priori the newer inventories. The analysis increment
These positive increments are consistent with the generahlso shows significant spatial variations within the regional
underestimation of tropospheric N@olumns in CHASER, domains. The estimated emissions are higher than the a priori
consistent with the results an Noije et al(2006. Anob-  emissions around large cities in eastern Asia, such as Beijing,
vious increment is observed over eastern China, with a factoianjin, Nanjing, Hong Kong, Seoul, and Osaka, whereas it
of up to about 1.7 with maxima in January and July, implying is lower in most remote areas (upper panels in Fig. 8). Con-
that REAS 1.1 (the a priori) largely underestimates the;NO sequently, differences in NGemissions between large cities
emissions over eastern China in 2005, as commonly revealednd underdeveloped areas generally become larger for the
by Kurokawa et al(2009, but for different years. Part of a posteriori emissions than the a priori emissions in eastern
this underestimation may be attributed to the assumed lineafsia.

trend in the a priori emissions calculated based on variations Over the eastern United States, both the a priori and newer
between 1995 and 2000 (cf. Sect. 2.2). As shown in Fig. 7,emission inventories are significantly lower than the esti-
the bottom-up emissions obtained from the newer invento-mated emissions. The EPA 2005 National Emission Inven-
ries (EDGAR ver. 4.1, GFED ver. 3.1, and GEIA) are larger tory (NEI-05) U.S. EPA 2009 showed a larger decrease
than the a priori emissions (REAS 1.1) and are close to the @ anthropogenic NQ emissions for the United States in

Globe 41.6 45.4
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Fig. 6. Global distributions of the surface NG@missions (in kg m2s~1), averaged over the 16—30th of each month, obtained from the a

priori emissions (left columns), the a posteriori emissions (the data assimilation results, center columns), and the difference between them
(the a posteriori emissions minus the a priori emissions, right columns) in January, April, July, and October 2005. The red (blue) colour in
the left and center panels indicates relatively high (low) values. The red (blue) colour in the right panels indicates that the data assimilation
increases (decreases) the surfacg d@issions.

2000-2005 {15.3 %) than in 1995-2000-0.0 %); this ap-  sion ratio between anthropogenic, soil, and biomass burning
pears to be inconsistent with the positive increment obtainecgmissions over the United States estimated fdrang et al.

for 2005 in this study from the a priori emissions created (2012), whereas the a posteriori emissions of 6.90 TgNyr
based on 1995-2000 trends. However, we found that alare even higher than the EPA NEI-05. The a posteriori emis-
though the trend in 1995-2000 is similar between the a pri-sions reveal higher emissions from autumn to spring than
ori emissions £8.5%) and the EPA NEI-05(9.0%), the  during summer, which differs from the seasonal variation
absolute value is 20-30% lower in the a prior emissions.of the a priori emissions. In contrast, the a posterioriyNO
As a result, the a priori emissions obtained for 2005 overemissions over the contiguous United States are maximized
the United States (5.32 TgN'y#) are lower than the EPA in summer with a July/January ratio of 1.2, consistent with
NEI-05 (6.23 TgN yr?, for this estimates we used the emis- the analysis of NQemissions inventories, including the EPA
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Fig. 7. Seasonal variations of the regional and global surfacg Biissions (in TgNyr) obtained from the a priori emissions (black

lines), the a posteriori emissions with DOMINO v2 data (red solid line) and DOMINO v1 data (red dotted line), and the newer inventories
(EDGAR4.1+GFED3.1+GEIA, light blue lines), averaged over the 16th-30th of each month in January, April, July, and October 2005. The
error bars represent the standard deviations of the a posteriori emissions during the analysis period. The results are shown for eastern Chin
(top left panel), Europe (top center panel), the eastern United States (top right panel), South America (middle left panel), northern Africa
(middle center panel), central Africa (middle right panel), southern Africa (bottom left panel), and Southeast Asia (bottom center panel), and
the globe (bottom right panel).

NEI-05, soil emissions fronYienger and Levy(1999, and  temporal extrapolation (based on the 1995 and 2000 inven-
GFED ver. 2, performed b¥hang et al(2012. Within the  tories, see Sect. 2.2) may give spurious results for certain re-
eastern United States domain (lower middle panels in Fig. 8)gions. For instance, the a priori emissions in Spain are unre-
the annual mean a posteriori emissions show higher valuealistically high, and are strongly reduced by the assimilation.
than the a priori emissions around large cities in the easteriThey contributed significantly to the European mean.

United States; e.g. around Chicago, Indianapolis, Atlanta, The seasonal variations in biomass burning emissions may
and the Florida peninsula. In contrast, the a posteriori eMiSyary greatly with year, while the data assimilation corrects
sions are smaller in the northern part of North America (€.9.the timing and the strength of emissions from biomass burn-
around Montreal and Toronto), as well as around Houstonjng for the analysis year. Over central Africa, the a posteriori
with factors of less than 0.6 being observed. A large in-emjssions are larger than the a priori emissions in April (with
crease in NQ emissions also appears in the Highveld region g factor of 2), and smaller in July (with a factor of 0.85),
of southern Africa, with a factor of about 1.7 in October.  yeflecting observed seasonal variations in biomass burning
Different from other industrial areas, the a posteriori emis-activity (e.g. Fig. 3). As a result, the seasonal amplitude
sions are lower than the a priori emissions over Europe, exof the central African emissions in 2005 becomes smaller
cept during summer, and the newer inventories are lower thaim the a posteriori than the a priori emissions. Over north-
both the a priori and the a posteriori emissions. Both the aern Africa, the data assimilation decreases the emissions in
priori and a posteriori emissions reveal maximum emissionslanuary with a factor of 0.7, but increases the emissions in
in summer, but the seasonal amplitude is about 15 % higheduly with a factor of 1.4. Although the annual mean a pri-
for the a posteriori emissions over Europe. The incremenbri and a posteriori emissions values are similar over north-
is mostly positive over northwestern Europe, including Ger-ern Africa, the spatial distribution is largely modified. The
many, France, Switzerland, and southern England, whereaassimilation decreases the emissions in the eastern part of
it is negative over southwestern and Eastern Europe (uppehe northern Africa, but increases the emissions in the west-
middle panels in Fig. 8). It should be noted that the linearern part of northern Africa (lower panels in Fig. 8). Over
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Fig. 8. Same as Fig. 6, but showing the regional distribution over eastern Asia (upper panels), Europe (upper middle panels), the eastern
United States (lower middle panels), and central Africa (lower panels), obtained from the a priori emissions (left panels) and the a posteriori
emissions (right panels), averaged over four months, January, April, July, and October, in 2005. The black square line represents the regior
used for the regional mean analysis; the number shown in the top of the panels represents thectetaldsion for the regional domain.

The red (blue) colour indicates relatively high (low) values.
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Southeast Asia, the data assimilation greatly increasgs NOfor 1 July—15 August 2004Hudman et a].2007) is slightly
emissions, with a largest (a factor of 2.5) increase in April. smaller than our estimates of 0.98 TgN for July 2005. The
Over South America, a large increase occurs in Octobef7.72 TgN (8.0 TgN) estimated for July 2008 (January 2009)
(a factor of 2), reflecting the high concentration observedover east China (103.75-123#5, 19-43 N) from OMI
over the Amazon (monthly mean concentration greater tharand GOME-2 observation&if and McElroy, 2010 is com-
2 x 10> molec cm—2), which is probably a result of forest parable to our estimates of 7.8 TgN (6.5 TgN) for July 2005
fires and was not reproduced by the a priori emission. Ac-(January 2005). The 11.0 TgNVr estimated over East Asia
cordingly, the estimated emissions over Southeast Asia an@B0-150 E, 10-50 N) for July 2007 from OMI observations
South America have a maximum value in spring, while the (Zhao and Wang2009 is comparable to our estimates of
maximum a priori emissions occur during winter (Fig. 7). 11.8 TgNyr ! for July 2005. Differences in analysis years,
The data assimilation may also capture signals related to sotbbgether with those in retrieval data and models used in the
emissions, for which the inventories may have large uncer-analysis, will primarily contribute to the difference in NO
tainties. For example, the regional mean emissions over Ausemission estimates (e.daegé et al, 2005. This will be fur-
tralia are increased by a factor of 1.2—1.4 with a maximumther discussed in Sect. 6.
increase in October. The emissions are also increased over
central China (Fig. 6). These positive increments may in-5.2 Validation with satellite data
dicate the underestimation of soil emissions in the a priori
emission. As illustrated in Fig. 9 and summarized in Table 4, the as-
By assimilating DOMINO v2 data, NQemissions from  similation run shows a better agreement with the satellite re-
ships mostly become smaller than the a priori emissions. Thérieval than the model simulation for most areas. When com-
negative increment may indicate an overestimation of shippared with the OMI data, the spatial correlation of the global
emissions in the a priori. The negative increment can alsdNO distribution becomes 0.04-0.19 higher, and the global
be largely influenced by an underestimation of tropospherionean RMSE is decreased by 25-40 % by the data assimi-
NO, columns in the retrievalBoersma et al(20081 found lation. The improvement is commonly observed even when
that DOMINO v1 data generally have lower columns with a compared with independent SCIAMACHY data, with an in-
mean bias of @ x 10" molec cm—2 over the ocean when crease in the global spatial correlation of about 0.03-0.10 and
compared to aircraft measurements during the INTEX-Ba decrease in the global mean RMSE of about 10-25%. As
campaign. The difference in tropospheric Néblumns be-  an exception, the global mean bias compared to the SCIA-
tween DOMINO v1 and v2 data are generally very small over MACHY is not improved by the data assimilation, likely be-
the ocean Boersma et a).2011), which suggest a similar cause of the systematic bias between the SCIAMACHY and
bias for v2 compared to INTEX-B data. The errors in strato- the assimilated data (DOMINO v2, cf. Sect. 3.1); that is, the
spheric NQ columns could also cause errors in troposphericmean concentration over land is smaller in the DOMINO v2
NO; column retrievals over ocearisgmsal et al.2010. Al-  data than in the SCIAMACHY retrieval.
ternatively, the data assimilation system may have difficulties The regional mean tropospheric N@olumns are com-
in correcting weak emissions, because of the treatment of thpared in Table 5. The negative bias of the model is largely
analysis spread (cf. Sect. 2.3.2) and large observation errorseduced over most industrial areas by the data assimilation,
Also, the fast chemical processing in the exhaust plume ofespecially over eastern China, Europe, southern Africa, and
the ship is a process that is not resolved by the CTM. the eastern United States. For example, the data assimila-
As summarized in Table 3, the data assimilation increasedion removes the negative bias when compared to the OMI
the annual (four-month) mean N@missions by about 8% (SCIAMACHY) retrieval by about 80—90 (60-80) % over
in the Northern Hemisphere (20-98) and by about 50% eastern China. The negative bias is also largely removed
in the Southern Hemisphere (20°3). The impact on the over the eastern United States. The persistent negative bias
tropical total emission is small. The estimated annual mearpver Australia and southern Africa is also largely reduced by
global NQ, emissions of 45.4 TgN yI, increased by about about 10-50%. Over Europe, the data assimilation reveals
9% from the a priori, is somewhat larger than that esti-large reductions in the positive bias in January. Improve-
mated from previous studies (e.g. 42.1 TgNyr(Muller ments are also observed over biomass burning areas. Ob-
and Stavrakou2009, 37.8 TgNyr! (Martin et al, 2003, vious negative biases of the model over South America in
40.3TgNyr?! (Jaegé et al, 2005). In the regional scale, spring and over Southeast Asia in spring-autumn are mostly
the a priori emissions estimated from this study generally(more than 65 %) removed by the data assimilation. These
show agreement with other top-down studies. The 0.465 TgNmprovements are commonly observed even when compared
estimated over the Eastern United States (102¥6422—  with the independent SCIAMACHY data.
50° N) from the OMI observations for March 200Bgersma Because of the effective corrections in N@missions
et al, 20083 is comparable to our estimate of 0.500 TgN for by the data assimilation, the OmF distributions of the tro-
the same period. The 0.73TgN estimated over the Unitecpospheric N@ columns narrows, and its mean value (i.e.
States (130-70W, 25-50 N) from ICARTT observations bias) becomes smaller (Fig. 10). For instance, the standard
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Table 4. Comparisons of tropospheric N@olumns between the data assimilation run and the satellite retrievals DOMINO v2 (OMI) and
SCIAMACHY (SCIA). The results are obtained from 15-day averages (from the 16th to the 30th of each month) provided for four months
in 2005. Shown are the global spatial correlation (Corr), the root-mean-square error (RMSE), and the mean basdtet@m—2. The

model simulation results (without data assimilation) are also shown in brackets.

January April July October
S-Corr 0.92 (0.73) 0.93 (0.87) 0.93 (0.89) 0.95 (0.86)
vs.OMI RMSE 0.50 (0.82) 0.28 (0.38) 0.23 (0.30) 0.29 (0.45)
Bias 0.01¢0.01) 0.02¢0.02) 0.00¢0.04) -0.03(-0.07)
S-Corr 0.87 (0.77) 0.84 (0.81) 0.81 (0.76) 0.86 (0.77)
vs. SCIA  RMSE 0.85(1.11) 0.54 (0.60) 0.52 (0.58) 0.49 (0.61)
Bias —0.01 (0.06) 0.14 (0.09) 0.08 (0.04) 0.10 (0.06)

Table 5. The 15-days mean (averaged over the 16—-30th of each month) bias of regional mean troposphedlui@s; the data assimila-
tion run minus the satellite retrievals (DOMINO v2 (OMI) and SCIAMACHY (SCIA)) int®énolec cm=2, for four months in 2005. The
model simulation results (without data assimilation) are also shown in brackets.

January April July October
E-China vs.OMI  —0.67 (-4.58) —-0.19(1.64) -0.08(0.78) —0.53(-2.42)
vs.SCIA —1.37(7.24) -0.64(-2.54) —-0.77(=1.93) —-1.09 (-2.85)
Europe vs. OMI —0.12(0.84) —0.40(-0.35) —0.09(-0.26) —0.31(-0.25)
P vs. SCIA —0.58 (0.08) —0.21(-0.11) 0.07 £0.04) 0.29 (0.36)
E-USA vs.OMI  —1.92 (2.65) —-0.96(+1.68) —0.04(0.31) -—0.52(1.46)
vs. SCIA —4.79 (-5.40) —-0.92(1.85) —-0.23(-0.52) -0.78(-1.63)
S-America VS oMl 0.02 (-0.03) 0.05(0.02) —0.06 (0.10) 0.0340.43)
vs. SCIA 0.09 (0.05) 0.54 (0.49) 0.03 (0.15)—0.02 (—0.43)
N-Africa vs. OMI 0.12 (0.15) 0.1140.07) -0.11 (-0.22) —0.04 (0.05)
vs. SCIA  —0.07 (-0.07) 0.21(0.19) —-0.12 (-0.21) 0.18 (0.29)
C-Africa vs.OMI  —0.17 (-0.25) 0.13¢0.05) -0.19 0.27) —0.37 (-0.50)
vs. SCIA —0.22 (-0.31) 0.30 (0.02) —0.48 (-0.54) —0.33(-0.43)
S-Africa  VS-OMI —054(-073) -1.17(142) -1.58(-2.80) -074(-1.38)
vs. SCIA —2.16 (-2.47) —-2.74(3.02) —-3.42(-4.73) -0.54(-1.79)
SE-Asia vs.OMI  —0.01(0.32) -0.14(-0.44) 0.16 £0.09) —0.09 (-0.15)

vs.SCIA  0.24(0.21) —0.29 (-0.54) 0.18 (0.16) 0.19 (0.17)

deviations of the OmF and the mean bias become about 30 %data assimilation can be attributed to a large observation er-
and 90 %, respectively, smaller by the data assimilation overor and small amounts of observations for some regions. This
Europe. Also, a large improvement over eastern China is reeccurs over Europe in April and October (large errors), over
lated to the reduction of the negative model bias, or OmFthe eastern United States in January (small number of obser-
values larger than 510> molec cm2. vations), over South America in January and April (large er-

Although the persistent model bias is largely removed by_rors and small number of observations), over northern Africa

the emission correction, there are still large disagreementd! APril (large errors), and over southern Africa in January
between the simulated and observedN@Iumns in some (small number of observations). In add!tlop, the data assimi-
areas. The quality and the abundance of the OMI retrieval2tion run was conducted from the beginning of each month
vary largely with season and area, reflecting observation con{for @ month) starting from the a priori emission. A contin-
ditions (e.g. clouds, aerosols, and surface albedo), as summ4OUS run over a few months may further improve the anal-
rized in Table 6. The observation does not effectively correctySiS Py accumulating observational information with time,

the model state when the observation error is large compare@!though the computational cost becomes high. The agree-
to the background error. Insufficient improvements by theMent between the simulated and observed;Ni€lds may
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Fig. 9. Global distributions of the tropospheric N@olumns (in 18° molec cm=2), averaged over the 16—-30th of each month, obtained
from the CHASER simulation (w/o data assimilation, left columns), the data assimilation run (center columns), and DOMINO v2 (right
columns) in January, April, July, and October 2005. The red (blue) colour indicates relatively high (low) values.

be further improved by a more realistic diurnal variability 5.3 Validation with profile data
scheme especially over biomass burning regions (e.g. over
central Africa; cf. Sects. 3.3 and 6). Figure 11 shows a comparison of the vertical profiles of the
Unlike the mean bias reduction, the data assimilation didmodel simulation, the data assimilation analysis, and the air-
not improve the temporal correlation significantly (figure not craft observations during the INTEX-B campaign. High NO
shown). The data assimilation accumulates observational ineoncentrations are observed in the boundary layer at pres-
formation with time and gradually changes the emissions resures higher than 950 hPa in the morning (08:00-10:00 a.m.)
flecting the OmF, the background spread, and the observationp to 5 parts per billion by volume (ppbv), and at pressures
error. To reproduce rapid changes in concentrations, mordigher than 900 hPa in the afternoon (02:00-04:00 p.m.) up
constraints from observations and larger inflation to the backto 0.6 ppbv. The lower concentration in the afternoon is
ground spread (cf. Sect. 2.3.2) are required. Meanwhile, thenainly caused by chemical loss through the reaction with OH
analysis increments are also sensitive to the error correlatioand vertical mixing in the planetary boundary layer (PBL)
assumed in the super observation (e.g. Sect. 2.3.3). during day time. Both in the morning and in the afternoon,
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Europe East China Table 6. The 15-day mean (16-30th of each month) and regional
;a""sgdﬁ"zz 100} ;a"’;‘idg'u 1 mean relative observation error for DOMINO v2. The relative error
600 stdev=3.45 ] 8ol stdev=9.38 | was estimated by dividing the mean observation error by the mean
5 Thssimiation) T hssimiation observation concentration for each super-observation. The mean
£ 4001 stdev=236 | & ©0f stdev=7.32 ] number of OMI pixels (per day per.@® x 1.0°) used for making
z = the super-observation is shown in brackets. Note that during the
200} ol calculation of the relative error, 0:2101° molec cm~2 was added
to both the denominator and the numerator to avoid the divergence
010 . . A o 020 s caused by near-zero concentrations and to reduce the influence of
NO2 column NO2 column remote site data.
Fig. 10. Observation minus forecast (OmF) distributions of tro- January April July  October
pospheric N@ columns (in 18°molec cm~2) calculated from E-China 1.1(86) 0.9(17.0)0 05(9.2) 1.0(14.3)
the model simulation (black line) and the data assimilation run Europe 1.1(9.8) 15(13.7) 1.0(15.6) 1.5(15.0)

(red line) over Europe (FON-3C° E, 35-60 N, left panel) and E-USA 0.7(10.5) 0.9(13.4) 0.5(17.3) 0.9(16.5)
eastern China (110-12&, 30-44 N, right panel) for the period S-America 1.5(5.4) 2.0(6.2) 1.6(20.5) 1.2(7.9)
16-30 January 2005. The numbers shown in the figures are the N_africa 1.2(22.7) 14(17.2) 0.9(15.9) 1.2(20.2)
mean value (bias) and the standard deviation (stdev) of the OmF c_africa 1.3(10.8) 1.5(14.9) 0.9(19.7) 0.8(10.1)
in 10*>molec cm~? for the model simulation (black) and for the  5_africa 1.0(6.3) 1.0(13.6) 0.9(25.5) 0.8(15.9)

assimilation run (red). SE-Asia 1.0(24.4) 0.9(16.1) 1.9(29) 1.3(11.1)

the lowest part of the profile is well reproduced by the data
assimilation run, whereas the model simulation underestition and transport. The scatter plots (Fig. 12b, c) demonstrate
mates it by about 30—40%. The assimilation of DOMINO that the data assimilation also improves the variability of the
v2 (DOMINO v1) revealed a significant increase in surface NO2 concentration especially below 500 m. The slope is 0.46
NOy emissions by a factor of about 1.3-1.6 (1.6—1.9) aroundn the case of the model simulation, whereas it is much larger
Mexico. Boersma et ak2008H showed a similar increase in  (0.99) in the data assimilation run. The assimilation does not
NO, emissions in their top-down estimate using DOMINO change the model profile in the free troposphere.
vl data by a factor of about 2.0 for Mexico. Above the Changes in the NQfields affect the concentrations of
PBL, the NQ concentrations decrease with height, mainly various chemical species through chemical processes dur-
due to he relatively short lifetime of the NG@amily. Both ing the forecast step. The impact on ozone is analyzed for
the model and assimilation run have lower Néncentra- the INTEX-B campaign at Mexico City, by comparing sim-
tions with differences of up to 0.1 ppbv when compared toulated Q fields with vertical Q profiles measured from the
the observed value in the free troposphere. This discrepancgzone sonde. Figure 11c¢ shows that the assimilation of OMI
may be attributed to errors in the model, such as too muciNO, data reduces the discrepancy ig €ncentrations be-
chemical loss of N@, too small lightning productions, un- tween the model and observations for the lower troposphere.
realistic representations of the NlGpecies partitioning, and The enhanced NQemissions by the data assimilation in-
atmospheric transport. crease chemical production ofsO Thus, NGQ emissions
The comparison with lidar profiles obtained during the updated by the data assimilation have the potential to im-
DANDELIONS campaign is shown in Fig. 12. Cabauw is prove the ozone chemistry in the model, although its impact
surrounded by major populated areas within a distance obn the free tropospheric ozone is not obvious in this case.
a few 100 km, and the model grid concentration is consid-The free tropospheric ozone is too low by about 10 parts per
ered to be representative for the observation data. Both thé&illion by volume (pptv) in both the simulation and the as-
simulated and the observed values show a rapid decrease similation. An underestimation of nearly 10 pptv was com-
NO, concentrations within the PBL from the surface to about monly observed for a GEOS-Chem model simulation over
600 m (Fig. 12a). The assimilation improves the amount ofthe United States during the International Consortium on At-
NO; in the boundary layer, but provides concentrations thatmospheric Transport and Transformation (ICARTT) aircraft
are too high near the surface. The grid cells used for thecampaign KHudman et al.2007). Hudman demonstrated
interpolation to the Cabauw tower partially cover the North that an enhanced lightning NGource (0.27 TgN over the
Sea, and have very different boundary layer heights, whicHJnited States from 1 July to 15 August 2004) removed most
may explain the concentration gradient in the model profiles.of the upper tropospheric ozone bias in their standard sim-
A positive intercept near the ground surface indicates thaulation (which had only 0.068 TgN from lightning). The
the model has problems representing the measurement Isimilar magnitude of the ozone underestimation and light-
cation. The near-surface concentration will be sensitive toning source (0.061 TgN) in our CHASER simulation shows
the model resolution owing to fine-scale emission distribu-that although the global total lightning source is similar for
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Fig. 11. Vertical profiles of the N@ concentrations (in ppbv) ita) the morning (08:00 a.m.—10:00 a.m.) gl the afternoon (02:00 p.m.—

04:00 p.m.) andc) the O3 concentrations (in ppbv) obtained during the INTEX-B campaign in March 2006. The black lines represent the
observed profile; the green lines represent the model simulation; the red line represents the data assimilation run. The error bars represer
the standard deviation of all the data within one grid cell.

G stratospheric ozone transport into the troposphere may also
1500 o~ Lidar obs contribute to the ozone underestimation.
€ I —e— Assimilation
% 1000+
- SOOAE 6 Sensitivity to the retrieval and model setting
Y Independent retrievals have different qualities, vertical sen-
NO2 (ug/ms) sitivities, and overpass times. These differences may result

7 ® in obvious changes in the emission estimates. In addition,

the performance of the model plays an important role in the
emission estimates because it provides the relationship be-
tween surface fluxes and atmospheric concentrations. Thus,

1=0.59
y=0.99x+5.23

1=0.52
y=0.46x+3.61

Assimilation

o oswom o gdom it is important to consider the effects of these factors on the
g o loosoom B o So0:4000m estimated emissions. Here, we investigate the sensitivity of
" ® 1000m- - e 1000m- . ) . .
L e opee the emission estimates to the retrieval product and model set-
o 5 10 15 20 25 30 o 5 10 15 20 25 30 . P
Lidar obs. Lidar obs. tings. The sensitivities are shown for a season when the sen-

. . . . sitivity is largest (Fig. 13); January for the DOMINO 1 and
Fig. 12. (a) Mean vertical profiles of the N§concentrations  SCIAMACHY data assimilation experiments and July for the
(Mg ) obtained during the DANDELIONS campaign in Septem- jightning NG, production and the diurnal variability scheme
ber 2006. The black lines represent the lidar observation; the gree@xperiments as described below.

lines represent the model simulation; the red line represents the data Lo .
assimilation run. The error bars represent the standard deviation of By assimilating DOMINO v1 data instead of DOMINO

all the data within one grid. Lower panels show scatter plots 0§ NO v2 data, the a posterlorl emlsspns_lncr_ease by 5-459% over
concentrations (ug A for (b) the model simulation angt) the data most areas (Fig. 13). The emission increase corresponds
assimilation run during the DANDELIONS campaign. The straight t0 higher concentrations in DOMINO v1 as compared to
lines represent linear regression lines for each level. Each line repPOMINO v2. This difference is obvious in January over
resents a linear fit to the points of the same colour, and the colourgastern China, the eastern United States, Europe, northern
represent the altitude level. The black line shows a linear fit to all Africa, and Southeast Asia. The comparison indicates that
of the data. errors in the retrieval algorithm lead to large uncertainties in
top-down emissions. The assimilation of the SCIAMACHY
columns also shows significant differences especially over
our simulation (7.5 TgNyr!) and estimates from chemical South America, southern Africa, and Southeast Asia, with
observations (mostly 6-8 TgN'y#) (e.g.Martin et al, 2007 relative changes of about 30-80 %. The differences between
Sauvage et al2007), CHASER may underestimate lightning the emissions estimated using the OMI and SCIAMACHY
NOy sources and their-induced ozone production in the freeretrievals can be partly attributed to errors related to the
troposphere over Mexico and North America. Errors in the simplified description of the diurnal variability in the model

www.atmos-chem-phys.net/12/2263/2012/ Atmos. Chem. Phys., 12, 22688 2012



2284 K. Miyazaki et al.: Global NOx emissions

2 1.8 alistic representations of atmospheric processes in the model

E 1.6 are required to improve the emissions estimates. Simultane-

g 144 ous optimization of atmospheric (e.g. lightning) and surface

ﬁ 1o NOy sources will be performed in future studies.

R _].Il]_ll The .implementation qf t.he diu_rnal variabi!ity scheme

& 0.6 - DOMING vi (JAN) largely |anuen9e§ the emission estimates (cf. F|g..4).. For ex-

é : = SCIAMACHY (JAN) ample, the emission was decreasgd from the apriori py 22%

2 0.6+ - 'c‘ggsf;gz‘tnms(ggh)( L) over central Africa in the data assimilation with the diurnal

w 0.4 i : : variability scheme, whereas it was increased by 30 % in the
E-China Europe E-USA S. Ameri.N-Africa C-Africa S-Africa SE-Asia data assimilation with a constant emission. Similar differ-

_ _ ) o ences between the experiments with and without the diurnal
Fig. 13. Ratios of the regional mean NGemissions between the 5riation scheme were also found over industrial areas (e.g.

g oo ot s OUer EUope). Alhough he stimated emission vas lrgely
ucts: the DOMINO v1 retrieval (black bars) and the SCIAMACHY affected by the diurnal variability scheme, the prescribed di-

retrieval (red bars) in January. Also shown are the emission ra_urnal variation profile is highly simplified, and it will not ac-

tios between the standard assimilation experiments and experimenfrately represent the temporal variations of emissions. An
conducted using different model settings: a 50 % reduction of NO alternative approach is required to determine the diurnal vari-
emissions by lightning (blue bars) and without the diurnal variabil- ability profile from analyses of multiple polar or future geo-
ity scheme for the surface emissions (green bars) in July. The ratigtationary satellite instruments.

greater (less) than one indicates that theyNhissions are higher

(lower) in the sensitivity experiments than in the standard assimila-

tion experiments. 7 Conclusions

We have developed an advanced data assimilation system to
along with systematic differences between the retrievals. Weestimate global NQ emissions. An ensemble Kalman fil-
note that the SCIAMACHY and DOMINO v1 products are ter approach was developed, in which the state augmenta-
based on a very similar algorithm, and one could expect a&ion method was employed to estimate daily global surface
similar behavior for these products compared to DOMINO emissions of N@ with a horizontal resolution of 2°8us-
v2. However, Fig. 13 shows that the emission ratios are quitdng OMI tropospheric N@ column retrievals. This approach
different in different regions. The difference may be largely allows us to (1) accumulate observational information with
attributed to the simplified diurnal variability scheme espe-time and (2) reflect the non-direct relationship between the
cially over biomass burning regions. In addition, the pooreremissions and tropospheric columns because of the use of the
spatial and temporal resolutions and less global coverage ibackground error covariance dynamically estimated from the
the SCIAMACHY retrieval than in the OMI retrieval may ensemble of CTM forecasts. A super-observation approach

also cause the differences. was employed to produce data representative for a model grid
The bias in NQ columns is also influenced by NO cell, which helped improve the assimilation analyses.
processes in the upper troposphere in remote aféage The inversion increased the NGemissions in eastern
lenok et al, 2008. Boersma et al(2005 suggested that China, the eastern United States, southern Africa, and
the contribution of lightning to the tropospheric M@ol- central-eastern Europe, suggesting that the anthropogenic

umn is strongest in the tropics, with a contribution o4 2 emissions are mostly underestimated in the a priori emis-
10 molec cm~2. We found that changes in the lightning sions that were constructed based on bottom-up inventories.
emissions have a large effect on the estimated, M@is-  An obvious increase in the emission was observed over east-
sions. Specifically, by reducing the global lightning pro- ern China, with a factor of up to 1.7. A large increase in
ductions by half (from 7.5 to 3.75TgN), the NGemis- NOy emissions also appears in the Highveld region of south-
sions increased by about 30-80 % over the eastern Unitedrn Africa and over the eastern United States, with a factor
States, northern Africa, and Southeast Asia in July, as simef about 1.4-2.5. Different from other industrial areas, the
ilarly demonstrated byin et al. (2010. The performance regional mean a posteriori emissions were lower than the a
of the mixing scheme may also affect the tropospherigNO priori emissions over Europe, although the analysis incre-
columns. Atoo diffusive PBL mixing may resultin an under- ment showed obvious spatial variations (e.g. mostly posi-
estimation of the N@ columns because of the reduction in tive over northwestern Europe and negative over eastern and
the NG/NO ratio with height. As demonstrated in Sect. 5.3, southwestern Europe). The data assimilation also corrected
the model used shows an underestimation in the free tropothe timing and the amplitude of the emissions from biomass
spheric NQ concentration during the INTEX-B campaign. burning, with a large increase over central Africa (with a fac-
This underestimation may lead to an overestimation of the estor of 2) and Southeast Asia (with a factor of 2.5) in April
timated surface emissions in the data assimilation. Thus, reand over South America (with a factor of 2) in October. As a
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result, the a posteriori emissions over these biomass burningon of atmospheric (e.g. lightning) and surface ;Némis-
areas showed the maximum value in spring in the analysisions, which impact the vertical distribution of N®ources.
year 2005, which differed from the wintertime maximum for Advanced chemical data assimilation systems, such as de-
the emission inventories. The estimated emissions are geneloped by this study, make it possible to combine vari-
erally more similar to the newer inventories obtained from ous data sets and to simultaneously optimize multiple model
the EDGAR 4.1, GFED 3.1, and GEIA data sets than the avariables, including the atmospheric distribution of polluting
priori emissions constructed based on older inventories, altrace gases and their precursor emissions.

though there are large discrepancies between the estimated
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