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Abstract. A data assimilation system has been developed
to estimate global nitrogen oxides (NOx) emissions using
OMI tropospheric NO2 columns (DOMINO product) and a
global chemical transport model (CTM), the Chemical At-
mospheric GCM for Study of Atmospheric Environment and
Radiative Forcing (CHASER). The data assimilation system,
based on an ensemble Kalman filter approach, was applied to
optimize daily NOx emissions with a horizontal resolution of
2.8◦ during the years 2005 and 2006. The background error
covariance estimated from the ensemble CTM forecasts ex-
plicitly represents non-direct relationships between the emis-
sions and tropospheric columns caused by atmospheric trans-
port and chemical processes. In comparison to the a pri-
ori emissions based on bottom-up inventories, the optimized
emissions were higher over eastern China, the eastern United
States, southern Africa, and central-western Europe, suggest-
ing that the anthropogenic emissions are mostly underesti-
mated in the inventories. In addition, the seasonality of the
estimated emissions differed from that of the a priori emis-
sion over several biomass burning regions, with a large in-
crease over Southeast Asia in April and over South Amer-
ica in October. The data assimilation results were validated
against independent data: SCIAMACHY tropospheric NO2
columns and vertical NO2 profiles obtained from aircraft and
lidar measurements. The emission correction greatly im-
proved the agreement between the simulated and observed
NO2 fields; this implies that the data assimilation system ef-
ficiently derives NOx emissions from concentration obser-
vations. We also demonstrated that biases in the satellite
retrieval and model settings used in the data assimilation
largely affect the magnitude of estimated emissions. These

dependences should be carefully considered for better under-
standing NOx sources from top-down approaches.

1 Introduction

Nitrogen oxides (NOx) are important atmospheric species
that affect atmospheric chemistry, air quality, and climate
(IPCC, 2007). NOx dominantly controls the tropospheric
ozone (O3) budget, the abundance of the hydroxyl radical
(OH), and the formation of nitrate aerosol. The reactions
between NOx and hydrocarbons are major sources of O3 in
the troposphere. Tropospheric O3 acts as a greenhouse gas
and influences the lifetime of other greenhouse gasses. NO2
also produces nitric acid (HNO3) by reacting with OH, form-
ing nitrate aerosols and acid particles. NOx has both anthro-
pogenic and natural sources. Anthropogenic sources of NOx
include fossil fuel and biofuel combustion, mainly emitted
from power plants, transport (automobiles, ships, and air-
crafts), and industry. Natural sources of NOx include soil,
biomass burning, and lightning emissions. Dominant sinks
of NOx in the troposphere are gas-phase formation of HNO3
through reaction of NO2 with OH especially during daytime
and aerosol uptake of NO2, NO3, and N2O5. The lifetime of
NOx is of the order of hours to days in the troposphere de-
pending on various factors, including OH concentrations and
photolysis rate (e.g.Lamsal et al., 2010). The short lifetime
and the inhomogeneous source distribution of NOx result in
obvious spatiotemporal variations in the NO2 concentration
in the troposphere.
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Bottom-up NOx emission inventories from different
sources and regions have large uncertainties. The extent of
emission-related activities and emission factors used in the
inventories are sources of error. Emission inventory infor-
mation is often only available on a coarse resolution, such
as country totals. In addition, simple multiplication fac-
tors are sometimes supplied with the emissions to describe
the diurnal, weekly and seasonal dependence in an average
way. Moreover, many emission sources have a large diur-
nal, weekly, or seasonal variability that is often poorly repre-
sented in the inventories. Examples are the traffic rush hour,
wintertime heating of buildings (e.g.Streets et al., 2003),
biomass burning events and their mid-day maxima, and the
seasonality and pulses of soil emissions triggered by rainfall
(e.g.Velders et al., 2001; Wang et al., 2007).

Observations of NO2 concentrations provide important in-
formation on NOx emissions. Satellite retrievals provide bet-
ter spatial coverage than in situ measurements, which can
provide constraints on estimates of surface emissions. NO2
can be measured as a column integral from solar backscat-
ter instruments from space, since it absorbs light in the vis-
ible portion of the electromagnetic spectrum. Because the
satellite measures an area-averaged amount of NO2, satel-
lite observations are more representative for the global model
grid scale emissions than surface in situ local observations
which depend strongly on (finer scale) local sources and lo-
cal removal processes. Tropospheric NO2 columns retrieved
from satellite measurements, e.g. by Global Ozone Monitor-
ing Experiment (GOME), GOME-II, Scanning Imaging Ab-
sorption Spectrometer for Atmospheric Cartography (SCIA-
MACHY), and Ozone Monitoring Instrument (OMI), have
contributed to map spatiotemporal variations in NOx sources
(e.g.Martin et al., 2003; Richter, 2004; van der A et al., 2006;
Boersma et al., 2008b; Stavrakou et al., 2008; Kurokawa
et al., 2009; Zhao and Wang, 2009; Lin et al., 2010). For
instance, analyses of satellite data have identified rapid in-
creases in NOx emissions over developing areas (e.g.Richter,
2004; van der A et al., 2006, 2008).

Top-down approaches adjust the emissions to reduce the
discrepancy between the model and observation, while tak-
ing the errors in both model and retrievals into account.Mar-
tin et al.(2003) scaled bottom-up emissions directly based on
the ratio of the local retrieved and model simulated columns.
This approach has been widely applied to satellite retrievals
owing to its simple implementation (e.g.Boersma et al.,
2008b; Zhao and Wang, 2009; Lamsal et al., 2010). How-
ever, changes in emissions are not necessarily proportional
to the local column changes because of atmospheric pro-
cesses. For example, the NO2/NOx ratio can vary owing to
transport and chemical processes. To take these processes
into account, recent studies have employed advanced data as-
similation techniques including inverse modelling and four-
dimensional variational assimilation (4D-VAR) (Müller and
Stavrakou, 2005; Kurokawa et al., 2009; Chai et al., 2009).
An ensemble Kalman filter (EnKF) is also an advanced data

assimilation technique (Evensen, 1994; Hunt et al., 2007) in
which the forecast error covariance is advanced by the model
itself (i.e. flow-dependent forecast error covariance). These
advanced approaches allow us to fully take advantage of the
chemical transport model (CTM). To the best of the authors’
knowledge, no published research has yet been conducted to
estimate global NOx emissions using EnKF to date.

In this study, we apply an EnKF data assimilation sys-
tem to estimate daily global NOx emissions using OMI
satellite retrievals and the Chemical Atmospheric GCM for
Study of Atmospheric Environment and Radiative Forcing
(CHASER) CTM (Sudo et al., 2002b). Using the data assim-
ilation, we investigate the global distribution and the seasonal
variation of surface NOx emissions. Even with such an ad-
vanced assimilation approach, however, the quality of both
the model and the satellite retrieval will affect the accuracy
of emission estimates (e.g.van Noije et al., 2006; Lamsal
et al., 2010). Therefore, we will discuss the impact of model
settings and biases in the satellite retrievals on the estimated
emissions. The methodology is described in Sect. 2. The per-
formance of the CTM is validated against satellite retrievals
and presented in Sect. 3. An optimal data assimilation set-
ting for NOx emission estimations is discussed in Sect. 4.
Data assimilation and validation results against independent
observations are presented in Sect. 5. The sensitivity of emis-
sion estimates to model settings and satellite retrieval are in-
vestigated in Sect. 6. Concluding remarks and discussions
are provided in Sect. 7.

2 Methodology

Daily OMI tropospheric NO2 column observations are used
to constrain NOx emissions. The model simulation and as-
similation results are validated using independent data, tro-
pospheric NO2 columns from SCIAMACHY measurements
and vertical profiles obtained during the INTEX-B and the
DANDELIONS campaigns. In this section, we introduce the
model, the satellite data used in the assimilation, and the val-
idation data sets.

2.1 Satellite and aircraft data

2.1.1 OMI data

The Dutch-Finnish OMI instrument, launched aboard the
Aura satellite in July 2004, is a nadir viewing imaging spec-
trograph (Levelt et al., 2006). Aura traces a sun-synchronous,
polar orbit with a period of 100 min. The local equator cross-
ing time of Aura is about 13:40. OMI provides measure-
ments of both direct and atmosphere-backscattered sunlight
in the ultraviolet-visible range from 270 to 500 nm that is
used to retrieve tropospheric NO2 columns. OMI pixels are
13 km× 24 km at nadir, increasing in size to 24 km× 135 km
for the largest viewing angles. OMI retrievals with their
daily global coverage are effective to constrain global NOx
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emissions on a daily basis, different from GOME and SCIA-
MACHY retrievals with poorer spatial and temporal resolu-
tions and less global coverage.

The Dutch OMI tropospheric NO2 (DOMINO) data prod-
uct (Boersma et al., 2007) is used in this study. The
DOMINO product is provided by the Tropospheric Emis-
sion Monitoring Internet Service (TEMIS) data portal
(www.temis.nl). Since the sensitivity of nadir measurements
varies with height, a priori vertical profile and averaging ker-
nel (AK) information are important for the use of the obser-
vations in data assimilation (Eskes and Boersma, 2003). De-
tailed retrieval information is provided in DOMINO product,
which allows proper use of observational information in data
assimilation (cf. Sect. 2.3.1).

In the retrieval, the tropospheric air mass factors (AMFs)
are computed at the time and location of the OMI overpass.
The AMF measures the ratio of the slant column abundance
to the vertical column abundance calculated from measured
radiances with a radiative transport model. The AMF is de-
termined by many factors; e.g. solar and viewing zenith an-
gles, cloud fraction and cloud pressure derived using O2-O2
absorption, surface reflectivity, the a priori NO2 profile sim-
ulated by a CTM, and the vertically resolved sensitivity to
NO2 of the solar radiation backscatter to space. Details of
the retrieval and error estimates are described inBoersma
et al. (2004). The retrieved tropospheric NO2 column er-
ror is derived from errors in total slant column, its strato-
spheric portion, and the tropospheric AMF (Boersma et al.,
2004, 2007). The error is dominated by the AMF calcula-
tion over polluted areas, whereas it is dominated by spectral
fitting and stratosphere-troposphere separation over remote
areas (Boersma et al., 2007). Only observations with a ra-
diance reflectance of less than 50 % from clouds (i.e. cloud
fraction less than about 20 %) are used in this study.

DOMINO v.1.03 data (hereafter DOMINO v1) released
in 2008 generally shows good agreement with independent
data, but appears to have a bias between 0 and 40 % (Boersma
et al., 2011). Errors in the AMF may lead to high val-
ues for the AK and errors in the retrieval (Boersma et al.,
2004, 2007; Lamsal et al., 2010). Boersma et al.(2011) de-
scribes improvements in the OMI retrieval, from DOMINO
v1 to DOMINO v2.01 (hereafter DOMINO v2). The im-
provements include the description of the radiative transfer
for the lowest atmospheric layers, assumptions made on sur-
face albedo, terrain height, clouds, and sampling in a pri-
ori NO2 profile. Tropospheric NO2 columns retrieved from
DOMINO v2 are about 20 % (10 %) lower in winter (in sum-
mer) compared to those from DOMINO v1 over polluted re-
gions. We mainly use DOMINO v2 data to constrain NOx
emissions.

2.1.2 SCIAMACHY data

SCIAMACHY was launched in March 2002 on board EN-
VISAT (Bovensmann et al., 1999). We use tropospheric NO2

data from the KNMI retrieval algorithm and the observation
data were obtained from the TEMIS data server (Boersma
et al., 2004). The ground pixel of the nadir mode is generally
60 by 30 km2, with a global coverage approximately once ev-
ery six days. The local overpass time is 10:00. The approach
to calculate the AMF is almost the same as that for DOMINO
v1 data, while DOMINO v2 is a major update with several
changes to the AMF computation. Errors in the slant column
fitting, the stratospheric corrections, and in the AMFs lead to
an overall error in the SCIAMACHY retrieval, as described
in Boersma et al.(2004). The retrieval was validated against
in situ and aircraft measurements, and was compared with
regional air quality models (e.g.Schaub et al., 2007; Blond
et al., 2007).

As discussed byBoersma et al.(2007) and Lin et al.
(2010), systematic errors in OMI (DOMINO v1) and SCIA-
MACHY retrievals are expected to correlate well with each
other, since these retrievals are derived with a very similar
algorithm. Differences between OMI and SCIAMACHY re-
trievals thus mainly reflect temporal (diurnal) variations of
chemical processes and emissions. As an exception, the
improvements in DOMINO v2 may create systematic dif-
ferences between the DOMINO v2 and the SCIAMACHY
retrievals. The size of viewing pixels is different between
the retrievals. In comparison with model and assimilation
results, both retrievals are gridded to the same resolution
(2.5×2.5◦), using weighting factors for the surface overlap
between satellite pixel and grid cell. As a result, the viewing
pixel size difference will not affect the comparison results
too much.

2.1.3 INTEX-B aircraft data

The in situ vertical profile data were obtained using the UC
Berkeley Laser-Induced Fluorescence (TD-LIF) instrument
on DC-8 during the Intercontinental Chemical Transport Ex-
periment Phase B (INTEX-B) campaign over the Gulf of
Mexico (Singh et al., 2009). Thornton et al.(2003) and
Bucsela et al.(2008) provide a detailed description and dis-
cuss the performance of the measurement. In the compar-
ison between model and assimilation results, the data were
binned on a pressure grid, with an interval of 30 hPa, whereas
the model output was interpolated to the time and space of
each sample. The standard deviation of variability within
a grid cell is considered to represent the uncertainty. Data
collected over highly polluted areas (over Mexico City and
Houston) have been removed from the comparison, since it
can cause a serious representativeness error in the compari-
son (i.e. the model resolution is too coarse). The comparisons
were made for morning (08:00 a.m.–10:00 a.m.) and after-
noon (02:00 p.m.–04:00 p.m.) conditions in March 2006.
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2.1.4 DANDELIONS lidar data

The Netherlands National Institute for Public Health and the
Environment (RIVM) NO2 lidar uses the Differential Ab-
sorption Lidar (DIAL) technique to observe vertical NO2
profiles. Volten et al. (2009) provides a detailed descrip-
tion of the measurement during the Dutch Aerosol and Nitro-
gen Dioxide Experiments for Validation of OMI and SCIA-
MACHY (DANDELIONS) campaign. In comparison with
the lidar data, the model output was interpolated to each sam-
pling level of the lidar at Cabauw. The results were binned
on a height grid, with an interval of 100 m. Lidar profiles
have a spatial representation of 2 km in the viewing direction
and approximately 12 km in the direction of the wind. The
model resolution is much coarser and thus the observation
has a large representativeness error. The model grid points
used for the interpolation around Cabauw are located at Bel-
gium, northern-eastern Netherlands, western Germany, and
on the North Sea. Boundary layer conditions are very differ-
ent among the grid points especially between land and ocean.
To avoid a possible large representativeness error in particu-
lar under the different boundary layer condition, the profiles
obtained only before 12:00 p.m. were used for the compari-
son.

2.2 A global chemical transport model CHASER

A global CTM for the troposphere, CHASER, developed by
Sudo et al.(2002b), is used as a forecast model in the data as-
similation system. CHASER includes detailed chemical and
transport processes in the troposphere, including 88 chem-
ical and 25 photolytic reactions with 47 chemical species.
CHASER is coupled to the atmospheric general circulation
model, Center for Climate System Research/National Insti-
tute for Environmental Studies/Frontier Research Center for
Global Change (CCSR/NIES/FRCGC) atmospheric general
circulation model (AGCM) ver. 5.7b, on a horizontal resolu-
tion of T42 (2.8◦) and 32 vertical levels from the surface to
4 hPa. Meteorological fields are provided by the AGCM at
every time step of CHASER (i.e. every 20 min), in which the
AGCM fields are nudged toward National Centers for En-
vironmental Prediction/Department of Energy Atmospheric
Model Intercomparison Project II (GPS-NCEP/DOE AMIP-
II) reanalyses (Kanamitsu et al., 2002) at every time step of
the AGCM to reproduce past meteorological conditions. The
transport processes include sub grid-scale (parameterized)
convective transport and vertical diffusion in addition to grid-
scale advection. A more detailed description of the CHASER
model is presented bySudo et al.(2002b), Sudo and Akimoto
(2007), andNagashima et al.(2010). The extensive evalua-
tion of the overall CHASER model performance was per-
formed bySudo et al.(2002a). The relative performance of
the CHASER NO2 simulation in comparison to other CTMs
is evaluated byvan Noije et al.(2006).

The anthropogenic emissions of NOx are based on an in-
ventory of national emissions obtained from the Emission
Database for Global Atmospheric Research (EDGAR) ver-
sion 3.2 for the year 1995 and 2000 (Olivier et al., 2005),
which are reported as yearly means. Emissions from biomass
burning are determined on a monthly basis according to the
satellite-derived carbon emission estimates from the Global
Fire Emissions Data base (GFED) version 2.1 (Randerson
et al., 2007). NOx emissions from soils are based on Global
Emissions Inventory Activity (GEIA) (Graedel et al., 1993),
which are reported as monthly means. NOx emissions over
Asia were obtained from Regional Emission inventory in
Asia (REAS) version 1.1 (Ohara et al., 2007) for the year
1995 and 2000. For all emission categories, the emission
values for the simulation years 2005–2006 are obtained by
extrapolating the emission inventories from the years 1995
and 2000. Total amounts of these surface NOx emissions
for January, April, July, and October in 2005 are 42.9, 37.6,
46.3, and 39.2 TgN yr−1, respectively. The monthly/yearly
emission data were linearly interpolated at each time step of
the CHASER and used in the simulation. The total lightning
NOx production is globally scaled to 7.5 TgN yr−1, and its
distribution is calculated at each time step of CHASER using
the convection scheme in the AGCM and the parameteriza-
tion of Price and Rind(1992). The total aircraft NOx emis-
sion is 0.55 TgN yr−1, which is obtained from the EDGAR
inventory.

We apply a diurnal variability scheme to the emissions
depending on the dominant category for each area: anthro-
pogenic, biogenic, and soil emissions. Note that a diurnal
scaling of each emission category separately is a more log-
ical approach. However, this approach cannot be applied in
this study since only the total emission is processed in the
model simulation. van der A et al.(2008) determined the
dominant source categories for each area based on the analy-
sis of the seasonality of observed tropospheric NO2 column.
Following the result ofvan der A et al.(2008) and the set-
ting of Boersma et al.(2008b), we apply anthropogenic-type
diurnal variations (with maxima in morning and in evening
with a factor of about 1.4) in Europe, eastern China, Japan,
and North America; biomass burning-type variations (with a
rapid increase in morning and maximal emissions in the mid-
day with a maximum factor of about 3) in central Africa and
South America; and soil-type diurnal variations (with maxi-
mal emissions in afternoon with a factor of about 1.2) in the
grasslands or sparsely vegetated areas of Australia, Sahara,
and western China. The soil NOx emission dependence on
temperature and moisture (Yienger and Levy, 1999) is not
explicitly considered. The total amount of emissions does
not change by applying the diurnal variability scheme.

2.3 Data assimilation

Data assimilation is a technique to combine observational in-
formation with a model. We employ an ensemble Kalman
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filter approach to estimate NOx emissions from NO2 data.
The assimilation runs were performed for six individual
months (starting from 1st to 30th of each month), January,
April, July, and October in 2005, and March and Septem-
ber in 2006. The initial conditions for meteorological and
chemical fields were obtained from long-term (about a year)
simulation of the CHASER for each month. The results for
2005 are used to investigate the seasonal variability of the
emission, while those for 2006 are used to validate the as-
similation results against in situ observations.

2.3.1 Ensemble Kalman filter

The data assimilation technique employed is a local en-
semble transform Kalman filter (LETKF). There are two
types in EnKF approaches, the perturbed observation (PO)
method and the ensemble square root filter (SRF) method
(e.g. Whitaker and Hamill, 2002). SRF methods generate
an analysis ensemble mean and covariance that satisfy the
Kalman filter equations for linear models (e.g. Ott et al.,
2004), whereas PO methods introduce an additional source
of sampling errors. The LETKF is related to the SRF method
(e.g.Whitaker and Hamill, 2002), and it has conceptual and
computational advantages over the original EnKF (e.g.Ott
et al., 2004; Hunt et al., 2007; Kalnay, 2010). One of the
advantages is that the LETKF performs the analysis locally
in space and time, and reduces sampling errors caused by a
limited ensemble size. In addition, the analyses at different
grid points are performed independently, which reduces the
computational cost because most calculations are performed
in parallel in the LETKF (e.g.Miyoshi and Yamane, 2007).

Here we briefly introduce the LETKF technique follow-
ing Hunt et al.(2007) andKalnay (2010). The LETKF up-
dates the analysis and transforms a background ensemble
(xb

i ;i = 1,...,k) into an analysis ensemble (xa
i ;i = 1,...,k),

where x represents the model variable;b the background
state;a the analysis state; andk the ensemble size. In the
forecast step, a background ensemble,xb

i , is globally ob-
tained from the evolution of each ensemble member using
the forecast model. The background ensemble mean,xb, and
its perturbations (spread),Xb, are estimated from the ensem-
ble forecast,

xb =
1

k

k∑
i=1

xb
i ; Xb

i = xb
i −xb. (1)

These areN × k matrices, whereN indicates the system
dimension andk indicates the ensemble size. The back-
ground error covariance follows from the assumption that
background ensemble perturbationsXb sample the forecast
errors,

Pb
= Xb(Xb)T . (2)

In the analysis step, an ensemble of background vectors,
yb
i , and an ensemble of background perturbations in the ob-

servation space,Yb, are obtained as follows:

yb
i = H

(
xb
i

)
;Yb

= yb
i −yb, (3)

whereH is the non-linear observational operator that con-
verts anN -dimensional state vector to ap- (number of ob-
servation) dimensional observational vector. To compute the
analysis for each grid point independently, the local analysis
error covariance is estimated in the ensemble space:

P̃a
=

[ (k−1)I
1+1

+

(
Yb
)T

R−1Yb
]−1

, (4)

where R denotes thep × p observation error covariance.
To prevent an underestimation of background error covari-
ance and resultant filter divergence (e.g.Houtekamer and
Mitchell, 1998) caused by model errors and sampling errors,
the covariance inflation technique (with a covariance infla-
tion parameter1 = 0.05 in our setting, see also Sect. 4.2) is
applied to inflate the forecast error covariance at each analy-
sis step.

UsingP̃a , the transformation matrix,T, is given by,

T =

[
(k−1)P̃a

]1/2
(5)

T is a k × k matrix which analyzes the variables for each
grid point (Hunt et al., 2007). The dimensionk is generally
smaller thanN , and calculations of large vectors or matrices
with N dimension are not necessary to obtain theT matrix in
the LETKF, which is different from the case for the original
EnKF. Then, we can update the ensemble mean by

xa
= xb

+XbP̃a
(
Yb
)T

R−1
(
yo

−yb
)
, (6)

whereyo represents the observation vector. The new anal-
ysis ensemble perturbation matrix in the model spaceXa

is simultaneously obtained by transforming the background
ensembleXb with a transform matrixT at every grid point
(Xa

= XbT), while the new analysis ensemble in the model
space,xa

i , is obtained from the combination of the back-
ground mean and ensemble perturbations (xa

i = xa
+Xa

i ).
The EnKF approaches always have a spurious long dis-

tance correlation problem because of imperfect sampling of
the probability distribution due to limited ensembles (e.g.
Houtekamer and Mitchell, 2001). To improve the perfor-
mance of the data assimilation with reducing the ensemble
size, the LETKF employs a covariance localization tech-
nique. We assumed that observations located far from the
analysis point have larger errors and those observations have
less impact on the analysis (e.g.Miyoshi and Yamane, 2007).
As a result, the analysis is solved at every grid point by
choosing nearby observations (depending on the localization
length, see Sect. 4.2).

The tropospheric AK provided in the OMI retrieval prod-
uct is used in the assimilation. The use of the average ker-
nel in the observation operator removes the contribution of
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the retrieval error due to the a priori profile error (Eskes and
Boersma, 2003);

yb
i = H

(
xb
i

)
=

L∑
l=1

alSl

(
xb
i

)
, (7)

whereal is the components of the AK at thel-th vertical
level. The spatial interpolation operatorSl contains a hori-
zontal interpolation followed by a mass-conserving vertical
interpolation to the OMI retrieval levell and a conversion
to NO2 sub-columns. Simulated NO2 fields in this way are
converted into tropospheric NO2 columns using the AK, the
surface pressure obtained from the AGCM simulation, and
the tropopause levelL used in the OMI retrieval product.

In summary, the LETKF analyzes variables (i.e. NOx
emissions) for every grid point by choosing observations
(i.e. OMI retrievals) that determine the observational space.
Then, the analysis is solved independently at every grid point
located at the local volume center using the observational in-
formation and background error covariance estimated from
the ensemble forecast. The new global analysis ensemble of
the variables (i.e. NOx emissions) is then obtained by com-
bining the local analysis. The estimated emissions are used in
the next step ensemble model simulations (after the forecast
process) and updated at every analysis step. The forecast and
analysis processes for NOx emissions are further described
in Sect. 2.3.2.

2.3.2 NOx emission estimation

A top-down approach with a bottom-up emission inventory
(as a priori) was used to obtain posterior estimates of surface
NOx emissions. To accomplish this, we applied the state aug-
mentation method (e.g.Aksoy et al., 2006). In this method,
the model parameter (i.e. NOx emission,e) is estimated by
including it as part of the state vector together with the model
forecast variable (i.e. NO2 concentration,c) using the ensem-
ble model simulations and observations. The background en-
semble and its perturbations defined in Eq. (1) thus become,

xb
i =

[
cb
i

eb
i

]
; Xb

i =

[
cb
i −cb

i

eb
i −eb

i

]
. (8)

This approach allows indirect relationships between NO2
concentrations and NOx emissions caused by complex chem-
ical and transport processes (e.g. changes in the NO2/NOx
ratio) to be considered through the use of the background er-
ror covariance produced by ensemble CTM forecasts. This
advanced approach differs from methods based on the mod-
eled local ratio between concentrations and emissions (e.g.
Martin et al., 2003). In our approach, the background error
covariance, estimated from the ensemble CTM simulations,
varies with time and space depending on atmospheric con-
ditions. Accordingly, the local analysis increment, which is
the a posteriori emission minus the a priori emission, is not

solely determined by the difference in the observed and sim-
ulated concentrations.

The forecast process also plays important roles in the data
assimilation. It propagates observation information, inflates
the analysis spread, and determines the quality of the first
guess. A linearized forecast model (M ) provides a first guess
of the state vector for data assimilation based on the back-
ground error covariance from the previous analysis timetn to
the new analysis timetn+1,

Pb (tn+1) = MPa (tn)MT
+Q. (9)

In this study, because of the lack of any applicable model, a
persistent forecast model (M = I ) is used for the NOx emis-
sions. In our setting, without any treatment that prevents
the parameter covariance magnitude reduction (e.g. by the
forecast model error covariance termQ), the analysis can
no longer be influenced by the observations, because of an
overestimation of the confidence in the model. To prevent
covariance underestimation, the analyzed standard deviation
(i.e. background error) is artificially inflated back to a mini-
mum predefined value at each analysis step. This minimum
value used in this study is chosen as 30 % of the initial stan-
dard deviation (see also below). The analysis spread can be
very small in some cases owing to effective corrections by
the data assimilation. Because of the inflation in our daily
analysis, the emission analysis can capture short-term varia-
tions of NOx emissions. This is different from some previous
studies that estimated emissions based on monthly mean data
(e.g.Martin et al., 2003; Wang et al., 2007; Chai et al., 2009;
Kurokawa et al., 2009). A daily analysis improves upon the
monthly-mean inversion by accounting for the variability in
the chemical feedbacks of NOx emissions and by reducing
the dependence of the a priori emissions (Zhao and Wang,
2009). Small random noises were also added to the analy-
sis spread as the random forecast model error after the co-
variance inflation at each analysis step, with a magnitude of
4 % of the initial spread. The minimum predefined ensemble
spread of 30 % and the random noise magnitude of 4 % used
in data assimilation were obtained from sensitivity experi-
ments by changing the predefined magnitude to 15, 30, 45,
and 60 %, and the noise magnitude to 0, 4, 8, and 12 %, re-
spectively. Quantitative criteria for the selection of these val-
ues are the daily Observation-minus-Forecast (OmF) check
and the chi-square (χ2) test (see Sect. 4.2 for details). The
optimal values of 30 % and 4 % were obtained by minimiz-
ing the global mean and root mean square of the OmF and by
requiring thatχ2 value approaches 1.

Uncertainty information on the a priori emission is re-
quired to create the initial emission error covariance. We
expect large uncertainty in the a priori emission, as a re-
sult of the neglected seasonality in the anthropogenic emis-
sions and large discrepancy between different anthropogenic
(e.g. EDGAR vs. REAS) and biomass burning emission in-
ventories (e.g. EDGAR vs. GEIA). The initial error is set to
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40 % of the a priori emission. Note that the emission anal-
ysis is generally no longer sensitive to the initial error after
some (e.g. several weeks) assimilation cycles. Only the com-
bined total emission is optimized in the analysis. This is to
reduce the degree of freedom in the analysis and to avoid
the difficulty associated with estimating background errors
for each category source separately. The uncertainty in the
a posteriori emission is reduced if the analysis converges to
a true state, which is represented by the analysis spread in
the EnKF data assimilation. For instance, in January, the
mean analysis spread becomes about 30–40 % of the initial
spread after some assimilation cycles over northern Europe,
the United States North, America, eastern China, India, and
northern Africa, demonstrating significant reductions in the
emission uncertainty through the data assimilation over these
areas. However, since the analysis spread is artificially in-
flated to the predefined constant value during the analysis
step in our system, this information is not used to measure
the a posteriori uncertainty. Instead, the standard deviations
of the estimated daily emissions during the analysis period
are used as the uncertainty information. Detailed analyses
on the analysis spread information will be performed using
more advanced inflation techniques in future studies (see also
discussions in Sect. 4.2).

The surface emission factor is analyzed and updated us-
ing observations at an analysis interval of every 100 min (i.e.
every orbit cycle of OMI observations). This setting is use-
ful to reduce the time discrepancy between the observation
and the model in the data assimilation. Tropospheric NO2
shows a distinct diurnal variation, and any time discrepancy
will result in serious model error.

2.3.3 Super-observation approach

The spatial resolution of the OMI data (=13 km× 24 km) is
much finer than that of the CHASER model grid (=2.8◦).
Thus, there are large representativeness errors in the model
because of unresolved small-scale variations. To fill the spa-
tial scale gaps and to produce more representative data, a
super-observation approach has been developed. The spa-
tial resolution of the super-observation was set to be 2.5◦, al-
most equivalent to the CHASER model resolution. Note that
the spatial distribution of the super-observation is constant,
whereas the CHASER uses a Gaussian (variable) grid. A
super-observation is generated by averaging all data located
within a super-observation grid cell;

y =

(
m∑

l=1

wlyl

)/(
m∑

l=1

wl

)
, (10)

wherey is the super-observation concentration;yl is the con-
centration of individual data;wl is the weighting factor;m is
the number of observations within a super-observation grid.
The weighting factor for individual data,wl , is estimated as
the ratio of the coverage area by individual data pixels and the
total coverage area (sum of the coverage area by all data used

for generating a super observation) for a super-observation
grid; i.e. data with high coverage are assumed to be more re-
liable (i.e. largerwl). The same weighting factors are applied
for averaging the AK.

The measurement error for the super-observation is com-
puted as inEskes et al.(2003),

σsuper,mean=

((
m∑

l=1

wlσl

)/(
m∑

l=1

wl

))√
1−c

m
+c, (11)

in which the observation error (σl) is averaged over a grid
with the weight (wl), and the averaged error is multiplied
by the error correlation (c) among data. The error correla-
tion determines the quality of the super-observation, as illus-
trated in Fig. 1a. We apply 15 % error correlation, although
there is no evidence for this value. Errors in for instance the
cloud, albedo and aerosol treatment in the NO2 retrieval are
typically correlated in space, but a quantitative number for
this correlation is difficult to estimate. The super-observation
measurement error also decreases as the number of obser-
vations used for the super-observation increases. A typical
number of OMI observations used for a super-observation
is about 120–250, resulting in about 60 % reduction of the
mean measurement error.

The representativeness error is also considered if the
super-observation grid is not fully covered by OMI pixels.
A representativeness error as a function of the OMI cov-
erage was estimated based on grid cells which were well-
covered by OMI pixels (i.e. more than 90 % coverage, ex-
cluding remote areas where the mean concentration is less
than 0.5× 1015 molec. cm−2). For these well-covered cells,
we artificially decreased the coverage by randomly reducing
the number of observations used for constructing a super-
observation. Then, a representativeness error factor (frep) is
estimated based on the relationships between the coverage
area (α, 0< α ≤ 1) and the super-observation concentration
as follow;

frep(α) =

∣∣∣∣∣
(

1

m

m∑
l=1

yl −
1

α×m

α×m∑
l=1

yl

)/(
1

m

m∑
l=1

yl

)∣∣∣∣∣. (12)

For coarse grid cells completely covered by OMI observa-
tion footprints (α = 1), this representativeness error is zero.
For cells covered by just one OMI pixel the representativity
error approaches the variability of individual measurements
around the grid cell mean. The mean representativeness error
factor averaged over the globe and over a month almost lin-
early increases as the coverage decreases, with a steeper in-
crease for coverage area less than 10 % (Fig. 1b). The mean
averaged function is applied to estimate the representative-
ness error of each super-observation according to its cover-
age areas (α):

σsuper,rep= frep(α)×y (13)

where the area dependence of the representativeness error
function was neglected. Finally, the total super-observation
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Fig. 1. (a)The error reduction factor for the super-observation as a
function of number of observations,m, for different sub-grid error
correlations,c = 0 (dotted line) and 15 % (solid line).(b) The rep-
resentativeness error multiplication factorfrep as a function of the
coverage of the grid cell by OMI observations. See Eqs. (11) and
(12) and Sect. 2.3.3 for details.

error is computed as a combination of the measurement error

and the representativeness error,
√

σ 2
super,mean+σ 2

super,rep.

3 Simulated and retrieved tropospheric NO2 columns

Here we investigate the performance of the model and satel-
lite retrievals. The AK has been applied to the CHASER
profiles to compare with satellite retrievals precisely. The
CHASER concentrations are interpolated to the retrieval pix-
els at the local overpass time of the satellite, and then both
the retrieved and simulated concentrations are mapped onto
a same horizontal resolution of 2.5×2.5◦.

3.1 Global distribution

Figure 2 compares global distributions of annual-mean tro-
pospheric NO2 columns obtained from the OMI retrievals,
the SCIAMACHY retrieval, and the CHASER simulation at
the local overpass time of the retrievals (10:00 and 13:30, re-
spectively). The retrievals and the model show very similar
spatial distributions. Large-scale pollution with high con-
centrations is observed over eastern China, Europe, and the
eastern United States. High concentrations are also found
over the Highveld region of southern Africa, central Africa,
Japan, South Korea, India, Southeast Asia, and other mega
cities. Low concentrations, mostly smaller than the OMI
noise level, are observed over the oceans and remote regions.
Note that the annual-mean distribution in both the model
and retrievals may be positively biased compared to the true
annual-mean local time NO2 concentration. This occurs es-
pecially over tropical regions, since the sampling under clear
sky condition leads to relatively fewer observations during
the wet seasons than during the dry seasons (van Noije et al.,
2006).

The OMI retrievals agree well with the SCIAMACHY
retrieval, with a global spatial correlation of 0.90–0.93, a
global mean root-mean-square error (RMSE) of about 0.35–
0.66× 1015 molec. cm−2, and the global mean bias (OMI mi-
nus SCIAMACHY) of −0.02–0.12× 1015 molec. cm−2 for
the monthly mean concentration. The OMI mean differ-
ence compared to the SCIAMACHY is mostly positive and
is larger for DOMINO v1 than DOMINO v2, whereas the
RMSE compared to the SCIAMACHY retrieval is higher for
DOMINO v2 than DOMINO v1. Higher concentrations are
observed in DOMINO v1 than in DOMINO v2 over north-
ern Europe, the northern-eastern United States, and eastern
China, with a mean difference of about 10–30 % (Fig. 2).
Apart from the global mean, the SCIAMACHY retrieval
shows higher NO2 concentrations than the OMI retrievals
over urban areas around megacities and lower concentrations
over biomass burning regions (Boersma et al., 2008b), prob-
ably mainly as a result of the difference in observation time.

Although CHASER reproduces well the general features
of the observed NO2 patterns (with a global spatial corre-
lation of 0.71–0.89 depending on season and retrieval, sim-
ilar to that estimated using other global CTMs (van Noije
et al., 2006; Huijnen et al., 2010), systematic differences ex-
ist between the model and retrievals (Table 1). The model
is generally negatively biased relative to the OMI retrievals,
but is positively biased relative to the SCIAMACHY re-
trieval (except in January) in the global mean. This may
be partly due to the bias observed between the SCIA-
MACHY and OMI, dominated by the background concentra-
tions smaller than the detection limit of OMI and the strato-
spheric contribution to the column. The model generally un-
derestimates tropospheric NO2 columns in industrial areas
(Fig. 2); e.g. over eastern China, the eastern United States,
southwestern Europe, and southern Africa, suggesting that

Atmos. Chem. Phys., 12, 2263–2288, 2012 www.atmos-chem-phys.net/12/2263/2012/



K. Miyazaki et al.: Global NO x emissions 2271

anthropogenic emissions in the emission inventories are un-
derestimated. As an exception, the model largely overesti-
mates NO2 columns over northern Europe, particularly when
compared to DOMINO v2. The model negative bias is also
observed over biomass burning areas; e.g. over central Africa
and South America. In contrast, significant positive model
biases exist in remote areas especially when compared to the
SCIAMACHY data. The RMSE is largest in January in all
cases.

By applying the AK, the model generally shows better
agreements with satellite retrievals, as commonly found us-
ing other CTMs (van Noije et al., 2006; Huijnen et al., 2010).
The application of the AK increased the global spatial cor-
relation by 0.02–0.13, decreased the global mean bias by
0.01–0.32 (up to about 90 %), with larger impacts on the
comparison with the SCIAMACHY retrieval than that with
the OMI retrievals. The larger impacts with the SCIA-
MACHY AK may be attributed to larger differences be-
tween the a priori used in the SCIAMACHY retrieval and
the CHASER profiles. The impact was significant over Eu-
rope and eastern Asia and was different among seasons.
For instance, the application of DOMINO v1 AK leads to
a change of NO2 column up to−1.1× 1015 molec. cm−2

(+1.5× 1015 molec. cm−2) over Europe in January (July).
The increase (decrease) implies a larger (smaller) decrease
of NO2 concentration with height in the a priori profile used
in the retrieval than in the profile simulated by the CHASER.
For the OMI comparisons, the impact of the AK was weaker
in the case of the DOMINO v2 than the DOMINO v1 over
polluted areas, suggesting that the CHASER profile is more
similar to the a priori profile used in DOMINO v2 than that
in DOMINO v1.

3.2 Seasonal variation

Figure 3 compares the seasonal variations of the regional
mean tropospheric NO2 columns for major polluted and
biomass burning areas. The seasonal variations are very
similar among the satellite retrievals, except for clear differ-
ences between DOMINO v1 and v2 over Europe, the east-
ern United States, and southern Africa during winter. In in-
dustrial regions, the tropospheric NO2 column is higher in
winter than in summer. Biomass burning occurs especially
during the dry season, in the winter and early spring, lead-
ing to a maximum concentration in these seasons over the
central Africa, Southeast Asia, and South America. The sim-
ulated regional mean tropospheric NO2 columns are gener-
ally lower than the observed ones in most polluted regions
throughout the year. The underestimation is more obvious in
winter than in other seasons over eastern China, the eastern
United States and southern Africa. A most obvious differ-
ence is seen over eastern China and southern Africa with a
factor of up to 3. The timing of the seasonal variation is
well represented, but the amplitude is largely underestimated
by the model over these regions. Over central Africa, South

America, and Southeast Asia, biomass burning dominates the
seasonal variations of NO2 concentrations, where the maxi-
mum and minimum concentration occurs almost in the same
months in the model and retrievals, but with a mean negative
bias of about 20–40 % in the model.

3.3 Diurnal variation

To improve the simulation, we applied pre-defined functions
for the diurnal variations of the surface NOx emissions. As
described in Sect. 2.2, we applied different diurnal varia-
tion profiles for different sources: maxima in the morning
and evening for anthropogenic sources; a rapid increase in
the morning and maximal emissions at mid-day for biomass
burning sources; and maximal emissions in the afternoon for
soil sources. By applying the diurnal variability scheme,
CHASER generally shows better agreement with the satel-
lite retrievals, with a global mean RMSE reduction of about
10–15 (30–40) % compared to the OMI (SCIAMACHY) re-
trievals. Similar results were demonstrated with other CTMs
(van Noije et al., 2006; Boersma et al., 2008b). The diur-
nal variability scheme generally decreases the NO2 concen-
tration in the morning, but increases it in the afternoon in
the industry and biomass burning areas (Fig. 4). It improves
the agreement with DOMINO v2 data over Europe (Fig. 4a),
whereas the increased biomass burning emission during day-
time caused the NO2 columns over Central Africa to be too
high compared to DOMINO v2 data (Fig. 4b). The diurnal
variability for the biomass burning source is highly variable
and uncertain. Since the diurnal variation of NOx emissions
strongly influences the model-observation difference, the im-
plementation of a realistic diurnal scheme is important to ob-
tain reasonable emissions. The impact of the diurnal scheme
on surface emission estimations will be further discussed in
Sect. 6.

4 Optimizing the data assimilation system

4.1 Impact of super-observation

By using the super-observations instead of the normal ob-
servations, the data assimilation reveals a better agreement
with the assimilated DOMINO v2 data. An increasing spa-
tial correlation of 0.03–0.05 and a decreasing global mean
RMSE of 30–40 % were observed in an experiment with the
super-observations compared to normal observations. Im-
provements by the super-observation approach were com-
monly observed at both a resolution of the super-observations
(i.e. 2.5◦) and at finer scale (i.e. 1◦). In the case with the
normal observations, observation data contain large repre-
sentativeness error and are noisy especially in polluted areas,
which may prevent the analysis from efficiently and stably
reducing the systematic errors of the model (i.e. analysis in-
crements were sometime very noisy and large). The super-
observation approach generally provides more representative
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Fig. 2. Global distributions of annual mean tropospheric NO2 columns (in 1015molec. cm−2) obtained from the satellite retrievals (left
columns): DOMINO v2 (upper rows), DOMINO v1 (middle rows), and SCIAMACHY (lower rows), and from the CHASER simulation
estimated using the AK of each retrieval to be compared with the simulation (middle columns) for 2005. The red (blue) colour indicates
relatively high (low) values. The differences between the retrievals and the CHASER simulation (the simulation minus the retrievals) are
shown in the right columns; the red (blue) colour indicates that the CHASER is larger (smaller) than the satellite retrievals.

Table 1. Comparisons of monthly and annual mean tropospheric NO2 columns between the CHASER simulation (applying the AK of each
retrieval) and the satellite retrievals: DOMINO v1, DOMINO v2, and SCIAMACHY, for 2005. The RMSE is the root-mean-square error.
The bias represents the CHASER simulation minus the retrievals. The units for the RMSE and bias are 1015molec. cm−2.

JAN APR JUL OCT ANN

vs. DOMINO v2
Corr 0.71 0.88 0.90 0.88 0.86

RMSE 0.79 0.36 0.28 0.41 0.38
Bias −0.01 −0.02 −0.07 −0.08 −0.03

vs. DOMINO v1
Corr 0.77 0.88 0.89 0.89 0.89

RMSE 0.92 0.44 0.31 0.48 0.44
Bias −0.11 −0.07 −0.07 −0.12 −0.06

vs. SCIAMACHY
Corr 0.76 0.82 0.79 0.80 0.86

RMSE 1.03 0.57 0.51 0.53 0.53
Bias −0.06 0.06 0.04 0.00 0.01
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E-China E-China

Europe Europe

E-USA E-USA

N-Africa N-Africa

S-America S-America

S-Africa S-Africa

SE-Asia SE-Asia

C-Africa C-Africa

DOMINO v1 CHASER w/ AK (DOMINO v1)
CHASER w/ AK (DOMNO v2)DOMINO v2

SCIAMACHY CHASER w/ AK (SCIAMACHY)

vs. OMI vs. SCIAMACHY

Fig. 3. Seasonal variations of the regional mean tropospheric NO2 columns (in 1015molec. cm−2) for eastern China (110–123◦ E, 30–
40◦ N, top panels), Europe (10◦ W–30◦ E, 35–60◦ N, second-top panels), the eastern United States (95–71◦ W, 32–43◦ N, third-top panels),
South America (70–50◦ W, 20◦ S–Equator, fourth-top panels), northern Africa (20◦ W–40◦ E, Equator–20◦ N, fifth-top panels), central Africa
(10–40◦ E, 20◦ S–Equator, sixth-top panels), southern Africa (26–31◦ E, 28–23◦ S, seventh-top panels), and Southeast Asia (96–105◦ E, 10–
20◦ N, bottom panels) for 2005–2006. Tropospheric NO2 columns obtained from DOMINO v2 (red lines in left panels), DOMINO v1 (black
lines in left panels), the SCIAMACHY retrieval (black lines in right panels), and the CHASER simulation with the AK (blue and light blue
lines) are plotted for local time 13:30 (left) and 10:00 (right). A 4-day running-mean was applied to the data.
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Fig. 4. Monthly mean diurnal variation of tropospheric NO2 columns (in 1015molec. cm−2) obtained from the CHASER simulation with
(solid line) and without (broken line) the diurnal variability scheme for surface NOx emissions over(a) Europe (10◦ W–30◦ E, 35–60◦ N)
and(b) central Africa (10–40◦ E, 20◦ S–Equator) in July 2005. Tropospheric NO2 columns obtained from the satellite retrievals: DOMINO
v1 (blue), DOMINO v2 (red), and SCIAMACHY (green) are also plotted. The dotted line represents the diurnal variability factor used for
NOx emissions.

data with a reduced random error (e.g. than the individual
observation) and results in systematic and smaller analysis
increments. Furthermore, the super-observation approach re-
duces the computational cost of the data assimilation, by re-
ducing the number of data processed in the analysis step.

4.2 Sensitivity to assimilation parameters

Various factors affect the performance and the computational
cost of the data assimilation. We have conducted sensitivity
experiments to obtain an optimal setting for the data assim-
ilation, as summarized in Table 2. First, the analysis is sen-
sitive to the localization length. The lifetime of NOx in the
lower troposphere varies from several hours to a day, with a
longer lifetime during winter than during summer. In addi-
tion, long-range transport of, for instance, peroxyacetyl ni-
trate (PAN) can propagate local NOx source information to
remote places. As a result, the NOx emission and NO2 con-
centration will have long distance correlations in some cases.
Remote observations will not affect the analysis if the local-
ization length is short, while the analysis will suffer from se-
rious sampling errors by using a too long localization length
in combination with a small ensemble size. The optimal lo-
calization length was found to be 450 km for the global anal-
ysis in January. The optimal length may depend on the loca-
tion and season because of changes in the NO2 lifetime and
wind patters. Second, a large ensemble size is essential to
capture background error covariance structures properly, but
also increases the computational cost. The analysis improved
by increasing the ensemble size to 32, whereas it did not vary
significantly by increasing it further. Thus, ensemble size
of 32 was preferred to remove sampling errors. Finally, the
use of the covariance inflation (cf. Eq. 4) slightly improved

Table 2. The performance of the data assimilation for differ-
ent parameters: the horizontal localization length (loc in km), the
covariance inflation (inf in %), and the ensemble number (num).
Five-day mean (averaged over 7–11 January 2005) tropospheric
NO2 columns from the assimilation and from DOMINO v2 are
compared. Corr is the global spatial correlation coefficient and
RMSE is the root-mean-square error in 1015molec. cm−2. The
control (CTL) simulation was conducted with loc = 450, inf = 5, and
num = 32.

Corr RMSE

CTL 0.906 0.599

loc = 300 0.906 0.600
loc = 600 0.897 0.625
loc = 750 0.885 0.645
loc = 900 0.879 0.655

num = 16 0.897 0.612
num = 48 0.906 0.597
num = 64 0.905 0.597

inf = 0 0.904 0.605
inf = 10 0.904 0.607
inf = 15 0.905 0.589

the analysis together with the conditional covariance infla-
tion (cf. Sect. 2.3.2), since it reduces the underestimation in
the background error covariance. Although there is no clear
optimal value, we employ 5 % covariance inflation.

The performance of the tropospheric NO2 column data as-
similation with the optimized settings was evaluated from the
χ2 test (e.g.Ménard and Chang, 2000; Zupanski and Zu-
panski, 2006). The χ2 is estimated from the ratio of the
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actual OmF to the estimated background covariance. For this
test, the innovation statistics are diagnosed from the OmF(
yo

−H
(
xb
))

, the estimated error covariance in the observa-
tional space

(
HPbHT

+R
)
, and the number of observations,

m .

Y =
1

√
m

(
HPbHT

+R
)−1/2(

yo
−H

(
xb
))

. (14)

Using this statistics, theχ2 is defined as follow:

χ2
= traceYYT , (15)

whereH is the non-linear observational operator and theH
is the linearization of the observation operator. The mean
values of theχ2 indicate that optimized system is generally
within 30 % difference from the ideal value of 1 (Fig. 5). The
mean positive bias of theχ2 is reduced through data assim-
ilation cycles, indicating that the data assimilation tends to
provide the optimal solution. The remaining mean positive
bias of theχ2 value (∼25 %) indicates a persistent under-
estimation of the forecast error variance. The magnitude of
the underestimation varied largely with time and space. Al-
though the conditional covariance inflation to the emissions
acted to amplify the forecast spread of the tropospheric NO2
column, the adaptive covariance inflation technique (e.g.An-
derson, 2009) may help to more properly introduce the infla-
tion to the emissions.

5 Data assimilation results

5.1 Analyzed NOx emissions

The surface NOx emissions obtained from the assimilation
of DOMINO v2 data for four months in different seasons are
shown in Fig. 6 and Fig. 7, and summarized in Table 3. The
monthly mean optimized NOx global source is up to 12 %
higher than the a priori emission. Regional differences are
more obvious, with a factor of up to about 2.5. The analy-
sis increment is generally positive over eastern China, North
America, Australia, northern India, and southern Africa.
These positive increments are consistent with the general
underestimation of tropospheric NO2 columns in CHASER,
consistent with the results byvan Noije et al.(2006). An ob-
vious increment is observed over eastern China, with a factor
of up to about 1.7 with maxima in January and July, implying
that REAS 1.1 (the a priori) largely underestimates the NOx
emissions over eastern China in 2005, as commonly revealed
by Kurokawa et al.(2009), but for different years. Part of
this underestimation may be attributed to the assumed linear
trend in the a priori emissions calculated based on variations
between 1995 and 2000 (cf. Sect. 2.2). As shown in Fig. 7,
the bottom-up emissions obtained from the newer invento-
ries (EDGAR ver. 4.1, GFED ver. 3.1, and GEIA) are larger
than the a priori emissions (REAS 1.1) and are close to the a
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Fig. 5. Temporal variation of theχ2 calculated as values estimated
in each data assimilation cycle (thin line) and 15-orbit cycle running
means (bold line).

Table 3. The four-month mean (January, April, July, and Oc-
tober in 2005) global and regional NOx emissions (in TgN yr−1)
obtained from the a priori emissions, the a posteriori emis-
sions with DOMINO v2 data, and the newer inventories
(EDGAR4.1+GFED3.1+GEIA).

A priori A posteriori

E-China 3.1 5.0
Europe 5.5 4.6
E-USA 2.6 3.4
S-America 0.7 1.1
N-Africa 3.1 2.6
C-Africa 2.0 1.9
S-Africa 0.2 0.5
SE-Asia 0.4 0.7

Northern Hemisphere (20–90◦ N) 27.1 29.3
Tropics (20◦ S–20◦ N) 11.9 12.0
Southern Hemisphere (20–90◦ S) 2.7 4.1

Globe 41.6 45.4

posteriori emissions over eastern China. However, the win-
tertime and summertime maxima are not reproduced by both
the a priori the newer inventories. The analysis increment
also shows significant spatial variations within the regional
domains. The estimated emissions are higher than the a priori
emissions around large cities in eastern Asia, such as Beijing,
Tianjin, Nanjing, Hong Kong, Seoul, and Osaka, whereas it
is lower in most remote areas (upper panels in Fig. 8). Con-
sequently, differences in NOx emissions between large cities
and underdeveloped areas generally become larger for the
a posteriori emissions than the a priori emissions in eastern
Asia.

Over the eastern United States, both the a priori and newer
emission inventories are significantly lower than the esti-
mated emissions. The EPA 2005 National Emission Inven-
tory (NEI-05) (U.S. EPA, 2009) showed a larger decrease
in anthropogenic NOx emissions for the United States in
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A priori: April A posteriori: April
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42.9 TgN/yr

37.6 TgN/yr 40.4 TgN/yr

42.1 TgN/yr

A priori: October A posteriori: October

A priori: July A posteriori: July A posteriori - A priori: July

A posteriori - A priori: October

0.05 3 75210.5 4 6 -4 -0.5 3210.05-1-2-3 -0.05 0.5 4
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53.9 TgN/yr

45.2 TgN/yr

Fig. 6. Global distributions of the surface NOx emissions (in kg m−2 s−1), averaged over the 16–30th of each month, obtained from the a
priori emissions (left columns), the a posteriori emissions (the data assimilation results, center columns), and the difference between them
(the a posteriori emissions minus the a priori emissions, right columns) in January, April, July, and October 2005. The red (blue) colour in
the left and center panels indicates relatively high (low) values. The red (blue) colour in the right panels indicates that the data assimilation
increases (decreases) the surface NOx emissions.

2000–2005 (−15.3 %) than in 1995–2000 (−9.0 %); this ap-
pears to be inconsistent with the positive increment obtained
for 2005 in this study from the a priori emissions created
based on 1995–2000 trends. However, we found that al-
though the trend in 1995–2000 is similar between the a pri-
ori emissions (−8.5 %) and the EPA NEI-05 (−9.0 %), the
absolute value is 20–30 % lower in the a prior emissions.
As a result, the a priori emissions obtained for 2005 over
the United States (5.32 TgN yr−1) are lower than the EPA
NEI-05 (6.23 TgN yr−1, for this estimates we used the emis-

sion ratio between anthropogenic, soil, and biomass burning
emissions over the United States estimated fromZhang et al.
(2012)), whereas the a posteriori emissions of 6.90 TgN yr−1

are even higher than the EPA NEI-05. The a posteriori emis-
sions reveal higher emissions from autumn to spring than
during summer, which differs from the seasonal variation
of the a priori emissions. In contrast, the a posteriori NOx
emissions over the contiguous United States are maximized
in summer with a July/January ratio of 1.2, consistent with
the analysis of NOx emissions inventories, including the EPA
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Fig. 7. Seasonal variations of the regional and global surface NOx emissions (in TgN yr−1) obtained from the a priori emissions (black
lines), the a posteriori emissions with DOMINO v2 data (red solid line) and DOMINO v1 data (red dotted line), and the newer inventories
(EDGAR4.1+GFED3.1+GEIA, light blue lines), averaged over the 16th-30th of each month in January, April, July, and October 2005. The
error bars represent the standard deviations of the a posteriori emissions during the analysis period. The results are shown for eastern China
(top left panel), Europe (top center panel), the eastern United States (top right panel), South America (middle left panel), northern Africa
(middle center panel), central Africa (middle right panel), southern Africa (bottom left panel), and Southeast Asia (bottom center panel), and
the globe (bottom right panel).

NEI-05, soil emissions fromYienger and Levy(1999), and
GFED ver. 2, performed byZhang et al.(2012). Within the
eastern United States domain (lower middle panels in Fig. 8),
the annual mean a posteriori emissions show higher values
than the a priori emissions around large cities in the eastern
United States; e.g. around Chicago, Indianapolis, Atlanta,
and the Florida peninsula. In contrast, the a posteriori emis-
sions are smaller in the northern part of North America (e.g.
around Montreal and Toronto), as well as around Houston,
with factors of less than 0.6 being observed. A large in-
crease in NOx emissions also appears in the Highveld region
of southern Africa, with a factor of about 1.7 in October.

Different from other industrial areas, the a posteriori emis-
sions are lower than the a priori emissions over Europe, ex-
cept during summer, and the newer inventories are lower than
both the a priori and the a posteriori emissions. Both the a
priori and a posteriori emissions reveal maximum emissions
in summer, but the seasonal amplitude is about 15 % higher
for the a posteriori emissions over Europe. The increment
is mostly positive over northwestern Europe, including Ger-
many, France, Switzerland, and southern England, whereas
it is negative over southwestern and Eastern Europe (upper
middle panels in Fig. 8). It should be noted that the linear

temporal extrapolation (based on the 1995 and 2000 inven-
tories, see Sect. 2.2) may give spurious results for certain re-
gions. For instance, the a priori emissions in Spain are unre-
alistically high, and are strongly reduced by the assimilation.
They contributed significantly to the European mean.

The seasonal variations in biomass burning emissions may
vary greatly with year, while the data assimilation corrects
the timing and the strength of emissions from biomass burn-
ing for the analysis year. Over central Africa, the a posteriori
emissions are larger than the a priori emissions in April (with
a factor of 2), and smaller in July (with a factor of 0.85),
reflecting observed seasonal variations in biomass burning
activity (e.g. Fig. 3). As a result, the seasonal amplitude
of the central African emissions in 2005 becomes smaller
in the a posteriori than the a priori emissions. Over north-
ern Africa, the data assimilation decreases the emissions in
January with a factor of 0.7, but increases the emissions in
July with a factor of 1.4. Although the annual mean a pri-
ori and a posteriori emissions values are similar over north-
ern Africa, the spatial distribution is largely modified. The
assimilation decreases the emissions in the eastern part of
the northern Africa, but increases the emissions in the west-
ern part of northern Africa (lower panels in Fig. 8). Over
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Fig. 8. Same as Fig. 6, but showing the regional distribution over eastern Asia (upper panels), Europe (upper middle panels), the eastern
United States (lower middle panels), and central Africa (lower panels), obtained from the a priori emissions (left panels) and the a posteriori
emissions (right panels), averaged over four months, January, April, July, and October, in 2005. The black square line represents the region
used for the regional mean analysis; the number shown in the top of the panels represents the total NOx emission for the regional domain.
The red (blue) colour indicates relatively high (low) values.
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Southeast Asia, the data assimilation greatly increases NOx
emissions, with a largest (a factor of 2.5) increase in April.
Over South America, a large increase occurs in October
(a factor of 2), reflecting the high concentration observed
over the Amazon (monthly mean concentration greater than
2×1015 molec. cm−2), which is probably a result of forest
fires and was not reproduced by the a priori emission. Ac-
cordingly, the estimated emissions over Southeast Asia and
South America have a maximum value in spring, while the
maximum a priori emissions occur during winter (Fig. 7).
The data assimilation may also capture signals related to soil
emissions, for which the inventories may have large uncer-
tainties. For example, the regional mean emissions over Aus-
tralia are increased by a factor of 1.2–1.4 with a maximum
increase in October. The emissions are also increased over
central China (Fig. 6). These positive increments may in-
dicate the underestimation of soil emissions in the a priori
emission.

By assimilating DOMINO v2 data, NOx emissions from
ships mostly become smaller than the a priori emissions. The
negative increment may indicate an overestimation of ship
emissions in the a priori. The negative increment can also
be largely influenced by an underestimation of tropospheric
NO2 columns in the retrieval.Boersma et al.(2008b) found
that DOMINO v1 data generally have lower columns with a
mean bias of 0.6× 1015 molec. cm−2 over the ocean when
compared to aircraft measurements during the INTEX-B
campaign. The difference in tropospheric NO2 columns be-
tween DOMINO v1 and v2 data are generally very small over
the ocean (Boersma et al., 2011), which suggest a similar
bias for v2 compared to INTEX-B data. The errors in strato-
spheric NO2 columns could also cause errors in tropospheric
NO2 column retrievals over oceans (Lamsal et al., 2010). Al-
ternatively, the data assimilation system may have difficulties
in correcting weak emissions, because of the treatment of the
analysis spread (cf. Sect. 2.3.2) and large observation errors.
Also, the fast chemical processing in the exhaust plume of
the ship is a process that is not resolved by the CTM.

As summarized in Table 3, the data assimilation increased
the annual (four-month) mean NOx emissions by about 8 %
in the Northern Hemisphere (20–90◦ N) and by about 50 %
in the Southern Hemisphere (20–90◦ S). The impact on the
tropical total emission is small. The estimated annual mean
global NOx emissions of 45.4 TgN yr−1, increased by about
9 % from the a priori, is somewhat larger than that esti-
mated from previous studies (e.g. 42.1 TgN yr−1 (Müller
and Stavrakou, 2005), 37.8 TgN yr−1 (Martin et al., 2003),
40.3 TgN yr−1 (Jaegĺe et al., 2005)). In the regional scale,
the a priori emissions estimated from this study generally
show agreement with other top-down studies. The 0.465 TgN
estimated over the Eastern United States (102–64◦ W, 22–
50◦ N) from the OMI observations for March 2006 (Boersma
et al., 2008a) is comparable to our estimate of 0.500 TgN for
the same period. The 0.73 TgN estimated over the United
States (130–70◦ W, 25–50◦ N) from ICARTT observations

for 1 July–15 August 2004 (Hudman et al., 2007) is slightly
smaller than our estimates of 0.98 TgN for July 2005. The
7.72 TgN (8.0 TgN) estimated for July 2008 (January 2009)
over east China (103.75–123.75◦ E, 19–45◦ N) from OMI
and GOME-2 observations (Lin and McElroy, 2010) is com-
parable to our estimates of 7.8 TgN (6.5 TgN) for July 2005
(January 2005). The 11.0 TgN yr−1 estimated over East Asia
(80–150◦ E, 10–50◦ N) for July 2007 from OMI observations
(Zhao and Wang, 2009) is comparable to our estimates of
11.8 TgN yr−1 for July 2005. Differences in analysis years,
together with those in retrieval data and models used in the
analysis, will primarily contribute to the difference in NOx
emission estimates (e.g.Jaegĺe et al., 2005). This will be fur-
ther discussed in Sect. 6.

5.2 Validation with satellite data

As illustrated in Fig. 9 and summarized in Table 4, the as-
similation run shows a better agreement with the satellite re-
trieval than the model simulation for most areas. When com-
pared with the OMI data, the spatial correlation of the global
NO2 distribution becomes 0.04–0.19 higher, and the global
mean RMSE is decreased by 25–40 % by the data assimi-
lation. The improvement is commonly observed even when
compared with independent SCIAMACHY data, with an in-
crease in the global spatial correlation of about 0.03–0.10 and
a decrease in the global mean RMSE of about 10–25 %. As
an exception, the global mean bias compared to the SCIA-
MACHY is not improved by the data assimilation, likely be-
cause of the systematic bias between the SCIAMACHY and
the assimilated data (DOMINO v2, cf. Sect. 3.1); that is, the
mean concentration over land is smaller in the DOMINO v2
data than in the SCIAMACHY retrieval.

The regional mean tropospheric NO2 columns are com-
pared in Table 5. The negative bias of the model is largely
reduced over most industrial areas by the data assimilation,
especially over eastern China, Europe, southern Africa, and
the eastern United States. For example, the data assimila-
tion removes the negative bias when compared to the OMI
(SCIAMACHY) retrieval by about 80–90 (60–80) % over
eastern China. The negative bias is also largely removed
over the eastern United States. The persistent negative bias
over Australia and southern Africa is also largely reduced by
about 10–50 %. Over Europe, the data assimilation reveals
large reductions in the positive bias in January. Improve-
ments are also observed over biomass burning areas. Ob-
vious negative biases of the model over South America in
spring and over Southeast Asia in spring-autumn are mostly
(more than 65 %) removed by the data assimilation. These
improvements are commonly observed even when compared
with the independent SCIAMACHY data.

Because of the effective corrections in NOx emissions
by the data assimilation, the OmF distributions of the tro-
pospheric NO2 columns narrows, and its mean value (i.e.
bias) becomes smaller (Fig. 10). For instance, the standard
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Table 4. Comparisons of tropospheric NO2 columns between the data assimilation run and the satellite retrievals DOMINO v2 (OMI) and
SCIAMACHY (SCIA). The results are obtained from 15-day averages (from the 16th to the 30th of each month) provided for four months
in 2005. Shown are the global spatial correlation (Corr), the root-mean-square error (RMSE), and the mean bias in 1015molec. cm−2. The
model simulation results (without data assimilation) are also shown in brackets.

January April July October

vs. OMI
S-Corr 0.92 (0.73) 0.93 (0.87) 0.93 (0.89) 0.95 (0.86)
RMSE 0.50 (0.82) 0.28 (0.38) 0.23 (0.30) 0.29 (0.45)
Bias 0.01 (−0.01) 0.02 (−0.02) 0.00 (−0.04) −0.03 (−0.07)

vs. SCIA
S-Corr 0.87 (0.77) 0.84 (0.81) 0.81 (0.76) 0.86 (0.77)
RMSE 0.85 (1.11) 0.54 (0.60) 0.52 (0.58) 0.49 (0.61)
Bias −0.01 (−0.06) 0.14 (0.09) 0.08 (0.04) 0.10 (0.06)

Table 5. The 15-days mean (averaged over the 16–30th of each month) bias of regional mean tropospheric NO2 columns; the data assimila-
tion run minus the satellite retrievals (DOMINO v2 (OMI) and SCIAMACHY (SCIA)) in 1015molec. cm−2, for four months in 2005. The
model simulation results (without data assimilation) are also shown in brackets.

January April July October

E-China
vs. OMI −0.67 (−4.58) −0.19 (−1.64) −0.08 (−0.78) −0.53 (−2.42)
vs. SCIA −1.37 (−7.24) −0.64 (−2.54) −0.77 (−1.93) −1.09 (−2.85)

Europe
vs. OMI −0.12 (0.84) −0.40 (−0.35) −0.09 (−0.26) −0.31 (−0.25)
vs. SCIA −0.58 (0.08) −0.21 (−0.11) 0.07 (−0.04) 0.29 (0.36)

E-USA
vs. OMI −1.92 (−2.65) −0.96 (−1.68) −0.04 (−0.31) −0.52 (−1.46)
vs. SCIA −4.79 (−5.40) −0.92 (−1.85) −0.23 (−0.52) −0.78 (−1.63)

S-America
vs. OMI 0.02 (−0.03) 0.05 (0.02) −0.06 (0.10) 0.03 (−0.43)
vs. SCIA 0.09 (0.05) 0.54 (0.49) 0.03 (0.15)−0.02 (−0.43)

N-Africa
vs. OMI 0.12 (0.15) 0.11 (−0.07) −0.11 (−0.22) −0.04 (0.05)
vs. SCIA −0.07 (−0.07) 0.21 (0.19) −0.12 (−0.21) 0.18 (0.29)

C-Africa
vs. OMI −0.17 (−0.25) 0.13 (−0.05) −0.19 (−0.27) −0.37 (−0.50)
vs. SCIA −0.22 (−0.31) 0.30 (0.02) −0.48 (−0.54) −0.33 (−0.43)

S-Africa
vs. OMI −0.54 (−0.73) −1.17 (−1.42) −1.58 (−2.80) −0.74 (−1.38)
vs. SCIA −2.16 (−2.47) −2.74 (−3.02) −3.42 (−4.73) −0.54 (−1.79)

SE-Asia
vs. OMI −0.01 (−0.32) −0.14 (−0.44) 0.16 (−0.09) −0.09 (−0.15)
vs. SCIA 0.24 (−0.21) −0.29 (−0.54) 0.18 (0.16) 0.19 (0.17)

deviations of the OmF and the mean bias become about 30 %
and 90 %, respectively, smaller by the data assimilation over
Europe. Also, a large improvement over eastern China is re-
lated to the reduction of the negative model bias, or OmF
values larger than 5×1015 molec. cm−2.

Although the persistent model bias is largely removed by
the emission correction, there are still large disagreements
between the simulated and observed NO2 columns in some
areas. The quality and the abundance of the OMI retrieval
vary largely with season and area, reflecting observation con-
ditions (e.g. clouds, aerosols, and surface albedo), as summa-
rized in Table 6. The observation does not effectively correct
the model state when the observation error is large compared
to the background error. Insufficient improvements by the

data assimilation can be attributed to a large observation er-
ror and small amounts of observations for some regions. This
occurs over Europe in April and October (large errors), over
the eastern United States in January (small number of obser-
vations), over South America in January and April (large er-
rors and small number of observations), over northern Africa
in April (large errors), and over southern Africa in January
(small number of observations). In addition, the data assimi-
lation run was conducted from the beginning of each month
(for a month) starting from the a priori emission. A contin-
uous run over a few months may further improve the anal-
ysis by accumulating observational information with time,
although the computational cost becomes high. The agree-
ment between the simulated and observed NO2 fields may
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Fig. 9. Global distributions of the tropospheric NO2 columns (in 1015molec. cm−2), averaged over the 16–30th of each month, obtained
from the CHASER simulation (w/o data assimilation, left columns), the data assimilation run (center columns), and DOMINO v2 (right
columns) in January, April, July, and October 2005. The red (blue) colour indicates relatively high (low) values.

be further improved by a more realistic diurnal variability
scheme especially over biomass burning regions (e.g. over
central Africa; cf. Sects. 3.3 and 6).

Unlike the mean bias reduction, the data assimilation did
not improve the temporal correlation significantly (figure not
shown). The data assimilation accumulates observational in-
formation with time and gradually changes the emissions re-
flecting the OmF, the background spread, and the observation
error. To reproduce rapid changes in concentrations, more
constraints from observations and larger inflation to the back-
ground spread (cf. Sect. 2.3.2) are required. Meanwhile, the
analysis increments are also sensitive to the error correlation
assumed in the super observation (e.g. Sect. 2.3.3).

5.3 Validation with profile data

Figure 11 shows a comparison of the vertical profiles of the
model simulation, the data assimilation analysis, and the air-
craft observations during the INTEX-B campaign. High NO2
concentrations are observed in the boundary layer at pres-
sures higher than 950 hPa in the morning (08:00–10:00 a.m.)
up to 5 parts per billion by volume (ppbv), and at pressures
higher than 900 hPa in the afternoon (02:00–04:00 p.m.) up
to 0.6 ppbv. The lower concentration in the afternoon is
mainly caused by chemical loss through the reaction with OH
and vertical mixing in the planetary boundary layer (PBL)
during day time. Both in the morning and in the afternoon,
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Fig. 10. Observation minus forecast (OmF) distributions of tro-
pospheric NO2 columns (in 1015molec. cm−2) calculated from
the model simulation (black line) and the data assimilation run
(red line) over Europe (10◦ W–30◦ E, 35–60◦ N, left panel) and
eastern China (110–123◦ E, 30–44◦ N, right panel) for the period
16–30 January 2005. The numbers shown in the figures are the
mean value (bias) and the standard deviation (stdev) of the OmF
in 1015molec. cm−2 for the model simulation (black) and for the
assimilation run (red).

the lowest part of the profile is well reproduced by the data
assimilation run, whereas the model simulation underesti-
mates it by about 30–40 %. The assimilation of DOMINO
v2 (DOMINO v1) revealed a significant increase in surface
NOx emissions by a factor of about 1.3–1.6 (1.6–1.9) around
Mexico. Boersma et al.(2008b) showed a similar increase in
NOx emissions in their top-down estimate using DOMINO
v1 data by a factor of about 2.0 for Mexico. Above the
PBL, the NO2 concentrations decrease with height, mainly
due to he relatively short lifetime of the NOx family. Both
the model and assimilation run have lower NO2 concentra-
tions with differences of up to 0.1 ppbv when compared to
the observed value in the free troposphere. This discrepancy
may be attributed to errors in the model, such as too much
chemical loss of NO2, too small lightning productions, un-
realistic representations of the NOy species partitioning, and
atmospheric transport.

The comparison with lidar profiles obtained during the
DANDELIONS campaign is shown in Fig. 12. Cabauw is
surrounded by major populated areas within a distance of
a few 100 km, and the model grid concentration is consid-
ered to be representative for the observation data. Both the
simulated and the observed values show a rapid decrease in
NO2 concentrations within the PBL from the surface to about
600 m (Fig. 12a). The assimilation improves the amount of
NO2 in the boundary layer, but provides concentrations that
are too high near the surface. The grid cells used for the
interpolation to the Cabauw tower partially cover the North
Sea, and have very different boundary layer heights, which
may explain the concentration gradient in the model profiles.
A positive intercept near the ground surface indicates that
the model has problems representing the measurement lo-
cation. The near-surface concentration will be sensitive to
the model resolution owing to fine-scale emission distribu-

Table 6. The 15-day mean (16–30th of each month) and regional
mean relative observation error for DOMINO v2. The relative error
was estimated by dividing the mean observation error by the mean
observation concentration for each super-observation. The mean
number of OMI pixels (per day per 1.0◦

×1.0◦) used for making
the super-observation is shown in brackets. Note that during the
calculation of the relative error, 0.1×1015molec. cm−2 was added
to both the denominator and the numerator to avoid the divergence
caused by near-zero concentrations and to reduce the influence of
remote site data.

January April July October

E-China 1.1 (8.6) 0.9 (17.0) 0.5 (9.2) 1.0 (14.3)
Europe 1.1 (9.8) 1.5 (13.7) 1.0 (15.6) 1.5 (15.0)
E-USA 0.7 (10.5) 0.9 (13.4) 0.5 (17.3) 0.9 (16.5)
S-America 1.5 (5.4) 2.0 (6.2) 1.6 (20.5) 1.2 (7.9)
N-Africa 1.2 (22.7) 1.4 (17.2) 0.9 (15.9) 1.2 (20.2)
C-Africa 1.3 (10.8) 1.5 (14.9) 0.9 (19.7) 0.8 (10.1)
S-Africa 1.0 (6.3) 1.0 (13.6) 0.9 (25.5) 0.8 (15.9)
SE-Asia 1.0 (24.4) 0.9 (16.1) 1.9 (2.9) 1.3 (11.1)

tion and transport. The scatter plots (Fig. 12b, c) demonstrate
that the data assimilation also improves the variability of the
NO2 concentration especially below 500 m. The slope is 0.46
in the case of the model simulation, whereas it is much larger
(0.99) in the data assimilation run. The assimilation does not
change the model profile in the free troposphere.

Changes in the NOx fields affect the concentrations of
various chemical species through chemical processes dur-
ing the forecast step. The impact on ozone is analyzed for
the INTEX-B campaign at Mexico City, by comparing sim-
ulated O3 fields with vertical O3 profiles measured from the
ozone sonde. Figure 11c shows that the assimilation of OMI
NO2 data reduces the discrepancy in O3 concentrations be-
tween the model and observations for the lower troposphere.
The enhanced NOx emissions by the data assimilation in-
crease chemical production of O3. Thus, NOx emissions
updated by the data assimilation have the potential to im-
prove the ozone chemistry in the model, although its impact
on the free tropospheric ozone is not obvious in this case.
The free tropospheric ozone is too low by about 10 parts per
trillion by volume (pptv) in both the simulation and the as-
similation. An underestimation of nearly 10 pptv was com-
monly observed for a GEOS-Chem model simulation over
the United States during the International Consortium on At-
mospheric Transport and Transformation (ICARTT) aircraft
campaign (Hudman et al., 2007). Hudman demonstrated
that an enhanced lightning NOx source (0.27 TgN over the
United States from 1 July to 15 August 2004) removed most
of the upper tropospheric ozone bias in their standard sim-
ulation (which had only 0.068 TgN from lightning). The
similar magnitude of the ozone underestimation and light-
ning source (0.061 TgN) in our CHASER simulation shows
that although the global total lightning source is similar for
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Fig. 11. Vertical profiles of the NO2 concentrations (in ppbv) in(a) the morning (08:00 a.m.–10:00 a.m.) and(b) the afternoon (02:00 p.m.–
04:00 p.m.) and(c) the O3 concentrations (in ppbv) obtained during the INTEX-B campaign in March 2006. The black lines represent the
observed profile; the green lines represent the model simulation; the red line represents the data assimilation run. The error bars represent
the standard deviation of all the data within one grid cell.
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Fig. 12. (a) Mean vertical profiles of the NO2 concentrations
(µg m3) obtained during the DANDELIONS campaign in Septem-
ber 2006. The black lines represent the lidar observation; the green
lines represent the model simulation; the red line represents the data
assimilation run. The error bars represent the standard deviation of
all the data within one grid. Lower panels show scatter plots of NO2
concentrations (µg m3) for (b) the model simulation and(c) the data
assimilation run during the DANDELIONS campaign. The straight
lines represent linear regression lines for each level. Each line rep-
resents a linear fit to the points of the same colour, and the colours
represent the altitude level. The black line shows a linear fit to all
of the data.

our simulation (7.5 TgN yr−1) and estimates from chemical
observations (mostly 6–8 TgN yr−1) (e.g.Martin et al., 2007;
Sauvage et al., 2007), CHASER may underestimate lightning
NOx sources and their-induced ozone production in the free
troposphere over Mexico and North America. Errors in the

stratospheric ozone transport into the troposphere may also
contribute to the ozone underestimation.

6 Sensitivity to the retrieval and model setting

Independent retrievals have different qualities, vertical sen-
sitivities, and overpass times. These differences may result
in obvious changes in the emission estimates. In addition,
the performance of the model plays an important role in the
emission estimates because it provides the relationship be-
tween surface fluxes and atmospheric concentrations. Thus,
it is important to consider the effects of these factors on the
estimated emissions. Here, we investigate the sensitivity of
the emission estimates to the retrieval product and model set-
tings. The sensitivities are shown for a season when the sen-
sitivity is largest (Fig. 13); January for the DOMINO 1 and
SCIAMACHY data assimilation experiments and July for the
lightning NOx production and the diurnal variability scheme
experiments, as described below.

By assimilating DOMINO v1 data instead of DOMINO
v2 data, the a posteriori emissions increase by 5–45 % over
most areas (Fig. 13). The emission increase corresponds
to higher concentrations in DOMINO v1 as compared to
DOMINO v2. This difference is obvious in January over
eastern China, the eastern United States, Europe, northern
Africa, and Southeast Asia. The comparison indicates that
errors in the retrieval algorithm lead to large uncertainties in
top-down emissions. The assimilation of the SCIAMACHY
columns also shows significant differences especially over
South America, southern Africa, and Southeast Asia, with
relative changes of about 30–80 %. The differences between
the emissions estimated using the OMI and SCIAMACHY
retrievals can be partly attributed to errors related to the
simplified description of the diurnal variability in the model
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Fig. 13. Ratios of the regional mean NOx emissions between the
standard assimilation experiments using the DOMINO v2 obser-
vations and experiments conducted using different satellite prod-
ucts: the DOMINO v1 retrieval (black bars) and the SCIAMACHY
retrieval (red bars) in January. Also shown are the emission ra-
tios between the standard assimilation experiments and experiments
conducted using different model settings: a 50 % reduction of NOx
emissions by lightning (blue bars) and without the diurnal variabil-
ity scheme for the surface emissions (green bars) in July. The ratio
greater (less) than one indicates that the NOx emissions are higher
(lower) in the sensitivity experiments than in the standard assimila-
tion experiments.

along with systematic differences between the retrievals. We
note that the SCIAMACHY and DOMINO v1 products are
based on a very similar algorithm, and one could expect a
similar behavior for these products compared to DOMINO
v2. However, Fig. 13 shows that the emission ratios are quite
different in different regions. The difference may be largely
attributed to the simplified diurnal variability scheme espe-
cially over biomass burning regions. In addition, the poorer
spatial and temporal resolutions and less global coverage in
the SCIAMACHY retrieval than in the OMI retrieval may
also cause the differences.

The bias in NO2 columns is also influenced by NOx
processes in the upper troposphere in remote areas (Nape-
lenok et al., 2008). Boersma et al.(2005) suggested that
the contribution of lightning to the tropospheric NO2 col-
umn is strongest in the tropics, with a contribution of 0.4×

1015 molec. cm−2. We found that changes in the lightning
emissions have a large effect on the estimated NOx emis-
sions. Specifically, by reducing the global lightning pro-
ductions by half (from 7.5 to 3.75 TgN), the NOx emis-
sions increased by about 30–80 % over the eastern United
States, northern Africa, and Southeast Asia in July, as sim-
ilarly demonstrated byLin et al. (2010). The performance
of the mixing scheme may also affect the tropospheric NO2
columns. A too diffusive PBL mixing may result in an under-
estimation of the NO2 columns because of the reduction in
the NO2/NO ratio with height. As demonstrated in Sect. 5.3,
the model used shows an underestimation in the free tropo-
spheric NO2 concentration during the INTEX-B campaign.
This underestimation may lead to an overestimation of the es-
timated surface emissions in the data assimilation. Thus, re-

alistic representations of atmospheric processes in the model
are required to improve the emissions estimates. Simultane-
ous optimization of atmospheric (e.g. lightning) and surface
NOx sources will be performed in future studies.

The implementation of the diurnal variability scheme
largely influences the emission estimates (cf. Fig. 4). For ex-
ample, the emission was decreased from the a priori by 22 %
over central Africa in the data assimilation with the diurnal
variability scheme, whereas it was increased by 30 % in the
data assimilation with a constant emission. Similar differ-
ences between the experiments with and without the diurnal
variation scheme were also found over industrial areas (e.g.
over Europe). Although the estimated emission was largely
affected by the diurnal variability scheme, the prescribed di-
urnal variation profile is highly simplified, and it will not ac-
curately represent the temporal variations of emissions. An
alternative approach is required to determine the diurnal vari-
ability profile from analyses of multiple polar or future geo-
stationary satellite instruments.

7 Conclusions

We have developed an advanced data assimilation system to
estimate global NOx emissions. An ensemble Kalman fil-
ter approach was developed, in which the state augmenta-
tion method was employed to estimate daily global surface
emissions of NOx with a horizontal resolution of 2.8◦ us-
ing OMI tropospheric NO2 column retrievals. This approach
allows us to (1) accumulate observational information with
time and (2) reflect the non-direct relationship between the
emissions and tropospheric columns because of the use of the
background error covariance dynamically estimated from the
ensemble of CTM forecasts. A super-observation approach
was employed to produce data representative for a model grid
cell, which helped improve the assimilation analyses.

The inversion increased the NOx emissions in eastern
China, the eastern United States, southern Africa, and
central-eastern Europe, suggesting that the anthropogenic
emissions are mostly underestimated in the a priori emis-
sions that were constructed based on bottom-up inventories.
An obvious increase in the emission was observed over east-
ern China, with a factor of up to 1.7. A large increase in
NOx emissions also appears in the Highveld region of south-
ern Africa and over the eastern United States, with a factor
of about 1.4–2.5. Different from other industrial areas, the
regional mean a posteriori emissions were lower than the a
priori emissions over Europe, although the analysis incre-
ment showed obvious spatial variations (e.g. mostly posi-
tive over northwestern Europe and negative over eastern and
southwestern Europe). The data assimilation also corrected
the timing and the amplitude of the emissions from biomass
burning, with a large increase over central Africa (with a fac-
tor of 2) and Southeast Asia (with a factor of 2.5) in April
and over South America (with a factor of 2) in October. As a
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result, the a posteriori emissions over these biomass burning
areas showed the maximum value in spring in the analysis
year 2005, which differed from the wintertime maximum for
the emission inventories. The estimated emissions are gen-
erally more similar to the newer inventories obtained from
the EDGAR 4.1, GFED 3.1, and GEIA data sets than the a
priori emissions constructed based on older inventories, al-
though there are large discrepancies between the estimated
emissions and the newer inventories over Europe, the eastern
United States, Central Africa, and Southeast Asia.

The data assimilation results were validated by compar-
ing the simulated NO2 concentrations with independent data:
the SCIAMACHY satellite retrieval and vertical profiles ob-
tained during the INTEX-B and DANDELIONS campaigns.
The emission correction led to significant reductions in the
disagreement between the simulated and observed NO2, sug-
gesting that the data assimilation improves the representa-
tion of surface NOx emissions. The emission correction im-
proved the NO2 profiles within the boundary layer below
about 500 m, whereas its impact was small in the free tro-
posphere. Thus, more constraints on the free tropospheric
processes (e.g. lightning productions) are required for fur-
ther improving the vertical distribution of the NOx sources.
Meanwhile, although OMI provides global coverage of NO2
concentrations, the effectiveness of the data assimilation was
largely determined by the quality and the frequency of the
observation.

Because of various error sources in both the model and
the satellite retrieval, there are large uncertainties in the esti-
mated emissions. In fact, the emissions estimates were sen-
sitive to both the retrieval data and the model setting used for
the data assimilation. Different retrievals resulted in large
discrepancies in the analyzed NOx emissions. Thus, pos-
sible biases in the retrieval seriously degrade the emission
analysis, with mean differences up to 60–70 % depending
on the region. Furthermore, the observation minus forecast
statistics showed significant diurnal variations. As a result of
the uncertainty in the retrievals and in the diurnal variability
scheme of the model, the use of different satellite products
obtained at different overpass times causes large discrepan-
cies in the emission estimates. In addition, the model per-
formance in the upper troposphere (e.g. lightning NO2 pro-
duction) largely affected the emission estimation. Thus, it
is important to consider both the model performance and re-
trieval dependence for better constraints on the NOx sources.

In this study, only NO2 data were assimilated to constrain
the surface NOx emissions. Multiple-species (e.g. HNO3 and
O3) data obtained from various platforms can provide addi-
tional constraints through their chemical interactions. Mean-
while, only total emissions were adjusted from the data as-
similation in this study. Sector-specific adjustments may
help to explore the change in contributions of each emission
source. It is also interesting to investigate the long-term vari-
ations of the emissions. Moreover, the surface NOx emission
estimate may be further improved by simultaneous optimiza-

tion of atmospheric (e.g. lightning) and surface NOx emis-
sions, which impact the vertical distribution of NOx sources.
Advanced chemical data assimilation systems, such as de-
veloped by this study, make it possible to combine vari-
ous data sets and to simultaneously optimize multiple model
variables, including the atmospheric distribution of polluting
trace gases and their precursor emissions.
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