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Abstract. A new methodology for the estimation of smoke-
injection height from wild-land fires is proposed and evalu-
ated. It is demonstrated that the approaches developed for
estimating the plume rise from stacks, such as the formulas
of G. Briggs, can be formally written in terms characterising
the wild-land fires: fire energy, size and temperature. How-
ever, these semi-empirical methods still perform quite poorly
because the physical processes controlling the uplift of the
wildfire plumes differ from those controlling the plume rise
from stacks. The proposed new methodology considers wild-
fire plumes in a way similar to Convective Available Potential
Energy (CAPE) computations. The new formulations are ap-
plied to a dataset collected within the MISR Plume Height
Project for about 2000 fire plumes in North America and
Siberia. The estimates of the new method are compared with
remote-sensing observations of the plume top by the MISR
instrument, with two versions of the Briggs’ plume-rise for-
mulas, with the 1-D plume-rise model BUOYANT, and with
the prescribed plume-top position (the approach widely used
in dispersion modelling). The new method has performed
significantly better than all these approaches. For two-thirds
of the cases, its predictions deviated from the MISR observa-
tions by less than 500 m, which is the uncertainty of the ob-
servations themselves. It is shown that the fraction of “good”
predictions is much higher (>80 %) for the plumes reaching
the free troposphere.

1 Introduction

Biomass burning is one of the major contributors of trace
gases and aerosols to the atmosphere, which significantly af-
fects its chemical and physical properties. In addition to solid
and gaseous material, fires release large amount of heat. The

resulting buoyancy generates strong updrafts above the fire,
which control the tracer distribution through rapid transport
to the upper part of the atmospheric boundary layer (ABL)
and the free troposphere (FT) (Freitas et al., 2007; Labonne
et al., 2007), sometimes reaching the stratosphere (Fromm et
al., 2000; Luderer et al., 2006).

Most of atmospheric composition models distribute the
fire emissions homogeneously starting from the ground up to
prescribed heightHp, which is sometimes region-dependent.
For global chemistry-transport models, Davison (2004);
Forster et al. (2001); and Liousse et al. (1996) set it to about
2 km, whereas Westphal and Toon (1991) used 5–8 km for
regional simulations of smoke from intense Canadian fires.
On the basis of observations from different field experiments,
Lavoúe et al. (2000) found a linear relationship between the
plume height and the fire-line intensity with correlation coef-
ficient of 0.95 and proportionality constant of 0.23 m2 kW−1.
They further showed thatHp is usually about 2–3 km for fires
in the northern latitudes, but can reach 7–8 km for powerful
crown fires. The biomass burning in Central America is usu-
ally less intense, thereforeHp ∼ 0.9–1.5 km was suggested
by Kaufman et al. (2003). Following this estimation, Wang
et al. (2006) used 1.2 km (8th model layer) for the mesoscale
simulations and conducted sensitivity studies showing 15 %
variation of the near-surface concentrations ifHp is varied
plus-minus one model layer (a few hundreds of meters).

Despite the apparent near-consensus among the modellers
in using prescribed fire injection height,Hp is strongly
dependent on meteorological conditions and fire intensity,
which are both highly dynamic. In particular, favourable me-
teorological conditions are necessary for the smoke to reach
the stratosphere (Labonne et al., 2007; Luderer et al., 2006;
Trentmann et al., 2006).
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Recently, remote-sensing observations of the plume
heights became available from the Multi-angle Imaging
SpectroRadiometer (MISR) instrument onboard NASA Terra
satellite (Mazzoni et al., 2007;http://www-misr.jpl.nasa.
gov). Using the database of the MISR Plume Height Project,
Sofiev et al. (2009) showed that more than 80 % of the fires
observed in 2007–2008 over the US injected their smoke
within the ABL. This estimate was supported by the exten-
sive analysis of Val Martin et al. (2010).

One of the widely-known approaches to dynamic eval-
uation of the injection height was developed by Freitas et
al. (2007), who embedded a 1-D plume-rise model into a 3-
D atmospheric dispersion model and demonstrated the im-
portance of the water-condensation heat for plume-rise esti-
mations. The module was included into WRF-Chem model
and used in studies related to biomass burning (Pfister et al.,
2011). However, the system requires integration of a set of
1-D differential equations for each fire, which may be expen-
sive for large-scale applications. Also, Pfister et al. (2011)
pointed out that about 50 % of the fire emissions were at-
tributed to the free troposphere, which is in apparent contra-
diction with the MISR set statistics, where only∼15 % of the
plumes reach FT.

A specific problem of the fire plumes is that the character-
istics of this type of source differ from the parameters con-
sidered by the existing plume-rise formulations and models.
In particular, all such approaches require the diameter of the
buoyant plume at the stack top (considered to have circu-
lar cross-section), temperature and velocity of the outgoing
gases, their density, etc. (Briggs, 1984; Freitas et al., 2007;
Nikmo et al., 1999; Weil, 1988). These quantities are hard to
define for wild-land fires, which have strongly non-circular
shape (rather a bow- or kidney-shape), wide overheated sur-
face area with strongly-varying temperature in different parts
of the burning area, no stack or definite release height, and
strongly-varying initial velocity of fumes in different parts
of the fire. Therefore, the necessity of the development of
an approach adapted to the specifics of the wild-land fires is
evident.

The objective of the current study is to develop and evalu-
ate an approach for computing the plume injection height for
wild-land fires and to compare its performance with the ex-
isting approaches. The method is developed for usage within
3-D chemistry transport models.

The paper is organised as follows. The next section sum-
marises the existing plume-rise formulations used for the
comparison. Section 3 outlines the datasets used by this
study for the development. The new algorithm is derived
in Sect. 4. Section 5 presents the comparison of the new
methodology with the existing approaches. Finally, Sect. 6
considers peculiarities of the new formulations.

2 Existing plume-rise formulations

The most widely known formulations of the plume height
from buoyant sources belong to G. Briggs. In the middle of
the twentieth century he compared nine formulas of this type
using data from sixteen different sources and concluded that
the best fit to the data was obtained using the “2/3 law” with
a certain termination distance. The 2/3 law states that plume
rise is directly proportional to the power 2/3 of the downwind
distance from the sourcex∗. Originally, it was formulated in
the following form (Briggs, 1969; Guldberg, 1975):

HC =

1.6F 1/3(3.5x∗)2/3U−1

2.4(F/Us)1/3

5F 1/4s−3/8

=


[

21.4F 3/4U−1, F < 55 m4 s−3

38.7F 3/5U−1, F ≥ 55 m4 s−3 neutral, unstable

2.4(F/Us)1/3, stable, U > 0.5 m s−1,

5F 1/4s−3/8, stable, U ≤ 0.5 m s−1

(1)

whereHC is final rise of the plume centerline from the stack
top, F = gvsr

2(1−ρp/ρa) is buoyancy flux parameter,g is
acceleration due to gravity,vs is stack gas exit velocity,r
is stack exit radius,ρa is ambient air density,ρp is plume
density,x∗ is distance at which the atmospheric turbulence
begins to dominate over the entrainment,U is mean horizon-
tal wind speed averaged from the top of the stack to the top
of the plume,s =

g
Ta

∂θ
∂z

is buoyancy parameter,θ is potential
air temperature,Ta is absolute air temperature. Hereinafter,
equation-set (1) is referred to as B69.

Numerous subsequent refinements were mainly aiming at
a better reflection of the details of meteorological conditions
and, to some extent, more detailed source description. By
the mid-80s, a set of more sophisticated formulations had
emerged (Briggs, 1984; Weil, 1988):

HC =


2.1

(
rv3

s
N282U

)1/3
, stable

0.76
(

rv3
s

u2
∗8

2U

)
, neutral

4.5

(
rv3

sz
2/3
i

4w2
∗82U

)3/5

, unstable

(2)

HereN is the Brunt-V̈ais̈alä frequency,u∗ is the friction ve-
locity, w∗ is the convection scale velocity,zi is the height
of the nearest inversion layer above the stack top,8 =

vs/
√

gr(1−ρp/ρa) is the Froude number. This version is
further referred to as B84.

These and other formulations (e.g. Berlyand, 1975, Fire
Emission Production Simulator (FEPS), VSMOKE, Lavdas,
1996) have a common weak point: they assume a vertically-
homogeneous atmosphere, which can be described via some
parameters taken (in practice) at the top of the stack. This
can be acceptable only if both the stack top and the plume
injection height are within the ABL or both are in the FT.
The assumption is evidently wrong if the stack is inside the
ABL whereas the plume buoyancy is sufficient to reach the
FT. More discussion and a list of limitations can be found in
Briggs (1984).
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A more sophisticated approach is taken by the 1-D plume-
rise models, such as the BUOYANT (Martin et al., 1997),
BUO-FMI (Nikmo et al., 1999), FIREPLUME (Brown et
al., 1997; Brown, 1997), model of Freitas et al. (2007),
DAYSMOKE (Liu et al., 2010), and others. These systems
still assume the horizontal symmetry of the plume and use
the formulations integrated across it. However, they explic-
itly integrate a system of 1-D equations for energy, mass,
and momentum of the buoyant plume along the trajectory of
the plume centreline. The centreline position and the plume
width are computed as functions of time and/or horizontal
distance from the source point. This approach allows for di-
rect consideration of the vertical structure of the atmosphere,
which is usually simplified by considering only two layers –
ABL and FT – with prescribed temperature and wind speed
gradients in each of them. An additional peculiarity of the
FIREPLUME model is that it considers the latent heat and
phase transition of water vapour, which can significantly in-
crease the plume rise.

3 Input data for plume-rise computations

The input information needed for any plume-rise approach
consists of the data describing the buoyant source and the
meteorological conditions at the place of the fire.

For the current study, the information on the wild-land
fires is obtained from the active-fire observations by MODIS
instrument onboard Aqua and Terra satellites (http://modis.
gsfc.nasa.gov). The MODIS collection 5 of the active fire
characteristics includes the following parameters: (i) radia-
tive temperatures of the overheated pixel and the surround-
ing background pixels; (ii) emission rate of the radiative en-
ergy from the pixel, the Fire Radiative Power (FRP, [W]).
The inter-relations of these parameters were considered by
Sofiev et al. (2009). This dataset is essentially the only ex-
isting collection that covers the whole globe over more than
a decade (the Terra satellite was launched in 2000, Aqua in
2002) and observes the actual on-going fires rather than the
burnt area.

The only source of meteorological information which
would cover the whole globe and could be co-located with
the fire observations, is atmospheric modelling by a global
Numerical Weather Prediction (NWP) system. For the cur-
rent study, we used the operational archives of the European
Centre for Medium-Range Weather Forecast (ECMWF). We
involved the dry-parcel method of the ABL height estimation
after Sofiev et al. (2006).

The observations of the injection height were taken from
the database of the MISR Plume Height Project (Kahn et al.,
2008; Mazzoni et al., 2007). For the current study we used
all information available by its start, which included injec-
tion heights for about 2000 fires that took place in the US,
Canada, and Siberia during 2007–2008 fire seasons. These

datasets were arbitrarily split into “learning” and “control”
subsets in proportion 70–30 %.

Importantly, MISR is onboard the satellite Terra together
with one of the MODIS devices, which provides a perfect
co-location in space and time between the active-fire obser-
vations by MODIS and the fire plume heights measurements
by MISR.

4 Methodology for injection height estimation adapted
to wild-land fires

We shall derive a general form of the dependence of injection
height on fire characteristics and meteorological conditions
using strongly-simplified analytical considerations. The ob-
tained relations will be then turned into a function with sev-
eral empirical constants, which will be found from fitting to
the MISR observations.

An analytical function describing the plume rise from a
wild-land fire can be obtained by assuming that the heat en-
ergy of the fire is spent only against buoyancy forces. Such
an approach changes the criterion for the end of the rise: the
plume comes to equilibrium with the surrounding air when
the energy excess pumped into it by the fire is fully spent
in the uplift. This approach has common features with the
CAPE (Convective Available Potential Energy) formulations
used for describing deep convection and thunderstorms (see
Moncrieff and Miller, 1976 and p. 80–81 of Barry and Chor-
ley, 1998). Importantly, it is totally different from the crite-
rion for the stack plume-rise where the wind-induced bend-
ing is the key factor.

For qualitative analysis of the dependencies let us consider
only two processes: the uplift against the atmospheric strat-
ification and the plume widening due to entrainment of the
surrounding air.

Let the fire energyE0 be pumped into an air volumeV
while it is in contact with the flames. Then the density of
the energy excesse0 in comparison with the undisturbed sur-
rounding air will be:

e0 =
E0

V
=

E0

Sfwτ
=

Pf

Sfw
(3)

Herew is the initial mean vertical velocity of the plume,τ

is the time period during which the volume is in contact with
flames,Sf is the fire area (of any shape), andPf is the fire
power released into the air.

The initial energy excess can be expressed in terms of dif-
ference of initial temperatures of the plumeT 0

p and ambient

air T 0
a : e0 = cpρa(T

0
p −T 0

a ), wherecp is specific heat ca-
pacity at constant pressure of air,ρa is air density. If the

plume rises adiabatically, then
d(Tp−Ta)

dz
= −

dθ
dz

(θ is potential
temperature of the ambient air) and the change of the energy
excesse(z) during the uplift can be written as:

de

dz
= −cpρa

dθ

dz
−

E0

V 2

dV

dz
(4)
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The first term characterizes the change of the temperature
difference between the plume and ambient air, whereas the
second term reflects plume widening. Assuming constant
cross-plume horizontal diffusivityKhor and constant speed
of the upliftw, one obtains linear growth of the plume cross-
section areaS with height (see sections 18.4–18.6 and p. 845
of Seinfeld and Pandis, 2006):

dσ 2

dz
=

2Khor

w
, ⇒ S = πr2

∼ 3πσ 2
=

6πKhor

w
z+Sf (5)

Herer is fire radius andSf is fire area. Introducing Brunt-
Väis̈alä frequencyN instead of dθ /dz and noticing that for
constantw, dV /dz = wτdS/dz, one can write Eq. (4) as:

de

dz
= −

cpρaθ

g
N2

−
6πKhor

w2(Sf +6πzKhor/w)2
Pf (6)

This equation should be integrated with the boundary condi-
tion e(0) = e0. The final height of the plume topHp is then
determined viae(Hp) = 0.

If all parameters in Eq. (6) are assumed to be constant, the
change of the variables from heightzto normalised plume
cross-section areaξ = S/Sf followed by integration renders
quadratic equation forξp(z = Hp):

−
cpρaθS2

f wN2

6πgKhor
ξ2

p +
Pf

w
ξp+

Pf

w
= 0

ξp = 1+
6πHpKhor

Sfw
(7)

Its solution is:

ξp =
Pf

AN2

1+

√
1+

2AN2

Pf

 , A =
cpρaθw2S2

f

3πgKhor
(8)

This solution (Eq. 8) can be turned into a generic formula
for Hp = f (Pf,N,...) with a few unknown constants to be
determined empirically.

Firstly, the variableA has to be taken as a normalising
constant. It incorporates poorly-known parameters, which
cannot be evaluated with the information available in real-life
cases. Its value can be roughly estimated takingSf ∼ 103 m2,
w ∼ 1 m s−1, Khor ∼ 1 m2 s−1. ThenA ∼ 4× 109 Js. This
normalization can formally be written as a ratio of reference
fire powerPf0 and Brunt -V̈ais̈alä frequencyN0:

A =
Pf0

N2
0

, Pf0 = 106 W , N2
0 = 2.5×10−4 s−2 (9)

Secondly, the fire energyPf spent on the air heating and the
FRP observed from space are linearly related to the con-
sumed biomass and close to each other (Kaufman et al.,
1998; Sukhinin et al., 2005), thus allowing us to assume that
Pf FRP.

Thirdly, for typical values of atmospheric and fire parame-
ters,AN2/FRP varies from 1 to 100. From the corresponding

asymptote of the solution (Eq. 8), one can see that the in-
jection height will be proportional to FRP to the power of
0.5. This, however, is the upper limit ofHp because addi-
tional losses to friction and changing atmospheric and plume
parameters (e.g. gradual slowing down of the rise and faster-
than-linear widening of the plume with height) will result in
a smaller powerγ < 0.5.

Fourthly, Brunt-V̈ais̈alä frequency is an external parameter
with regard to fire and varies strongly with altitude. There-
fore, the ratioPf/N

2 in Eq. (8) cannot be expected to stay as
a unique descriptor of the case. We shall consider these vari-
ables separately. To avoid problems withN2

≤ 0 inside the
unstable ABL, we shall take its FT valueN = Nft(z ≈ 2Habl)

but allow for some part of the ABL passed “freely” by adding
a fraction ofHabl to Hp. In addition, instead ofN2

0

/
N2 we

shall use exp(−N2
/
N2

0), which for smallN2 limits theHp

growth by replacingN2
0

/
N2 with 1/(1+N2

/
N2

0). For large
N2 it quickly approaches zero, as one would expect for very
stable stratification.

Finally, introducing the empirical calibration constants,
we obtain the generic formula:

Hp = αHabl+β

(
FRP

Pf0

)γ

exp
(
−δN2

FT/N2
0

)
(10)

Here the constants are:α is the part of ABL passed freely,
β weights the contribution of the fire intensity,γ determines
the power-law dependence on FRP,δ defines the dependence
on stability in the FT. Their ranges follow from the above
considerations:

α < 1 ; β > 0 m; γ < 0.5 ; δ ≥ 0 (11)

4.1 Identification and evaluation of parameters of
Eq. (10)

Identification of the constants in the Eq. (10) was based on
the learning sub-set of the MISR fire observations (70 % of
the MISR collection, 1278 fires).

Since both FRP andHp observations have a noticeable
fraction of outliers, utilization of the standardL2 (least-
squares) fitting criterion is not advisable (Huber, 1981). In-
stead, the ranking sumJR was used:

JR =

Nfires∑
i=1

2
(∣∣∣H obs

p (i)−Hmdl
p (i)

∣∣∣−1h
)

,

2(x) =

[
0 , x ≤ 0
1 , x > 0

(12)

Here1h is the desired accuracy of the prediction, [m],Nfires
is the number of fires in the subset,H obs

p (i) andHmdl
p (i) are

the observed and predicted plume top heights of thei-th fire.
Following Kahn et al. (2007), the MISR actual accuracy

was taken to be 500 m, which was used as the1h value.
As a result, only the predictions indistinguishable from the

Atmos. Chem. Phys., 12, 1995–2006, 2012 www.atmos-chem-phys.net/12/1995/2012/



M. Sofiev et al.: Evaluation of the smoke-injection height 1999
 

0

1000

2000

3000

4000

0 1000 2000 3000 4000

Observed Heights

Ca
lc
ul
at
ed

 H
ei
gh
ts

High:16%
Good:67%

Low:16%

a) Learning subset, eq ( 10), ( 13) 

0

1000

2000

3000

4000

0 1000 2000 3000 4000

Observed heights

Ca
lc
ul
at
ed

 h
ei
gh
ts

High:18%
Good:63%

Low:19%

 
 

 b) Control subset, eq ( 10), ( 13) 

 

 

 

 

 

Figure 1. Comparison of predictions of the formula ( 10) with the observed Hp for the learning 
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(a) Learning subset, Eqs. (10, 13) (b) Control subset, Eqs. (10, 13)

Fig. 1. Comparison of predictions of the formula (10) with the observedHp for the learning (panela) and control (panelb) subsets. Parameter
values (Eq. 13). Unit= [m].

MISR estimates were considered as “good” by the cost func-
tion (Eq. 12), whereas those falling outside the MISR uncer-
tainty range were penalised.

The fitting gave the following parameters:

α = 0.24; β = 170 m; γ = 0.35; δ = 0.6 (13)

The quality of the fit is demonstrated in Fig. 1a, which shows
that the formula (10) with the parameters (Eq. 13) predicts
about two thirds of the learning-set cases within 500 m of the
MISR observations. These values are for the whole learning
subset but the difference between the North American and
Siberian cases did not exceed 5 %.

The formulation (Eqs. 10, 13) was evaluated using the con-
trol MISR subset (Fig. 1b). Comparing the scatterplots in
panels (a) and (b), one can see that the performance of the
suggested procedure over the control dataset is essentially
the same as that over the learning subset. The scores for the
American and Siberian control-set fires differ by less than
10 % (not shown). The heights of the top of the plumes pre-
dicted with this method are within uncertainty of the MISR
observations in two-thirds of the cases for both locations.

For the above calculations, we used all available MISR
observations without filtering out the data with “fair” or
“poor” confidence. If one takes only “good” cases, the scores
grow by about 10 % (>70 % of the predictions appear within
500 m of the observations) but the datasets become three
times smaller, thus raising doubts about statistical signifi-
cance and stability of the obtained coefficients.

5 Comparison with other approaches

In this section, we compare the four approaches (B69, B84,
BUOYANT model, and the new formula 10) using the whole
MISR dataset (1913 fires). The comparison required two
pre-processing steps: (i) extra characteristics of the fires and
meteorological variables were calculated to satisfy the in-
put requirements of BUOYANT; (ii) B69 and B84 formu-
las were rewritten using the variables available from MODIS
and MISR.

5.1 Extra parameters describing wildfire

MODIS observations of temperature and FRP of the burning
pixel at several wavelengths enable estimation of the area
of the fire Sf and its radiative temperatureTf . Following
Dozier (1981), let us consider the burning pixel seen by the
satellite with radiative temperatureTrad as a combination of
two parts: the fire and the undisturbed background with areas
Sf andSb, and temperaturesTf andTb, respectively. These
two sub-areas emit radiative energy recorded by the satellite
at two frequenciesν1 andν2. Using Planck’s law, one can
write:

2hν3
i (Sf +Sb)

c2(exp(hνi/kTrad))
=

2hν3
i Sf

c2(exp(hνi/kTf))

+
2hν3

i Sb

c2(exp(hνi/kTb))
, i = 1,2 (14)

The system (Eq. 14) contains two equations for two frequen-
cies and two unknowns: the ratioSf/Sb andTf . They were
solved using standard products MOD14 of MODIS instru-
ment (channels 21 and 31, which correspond to wavelengths
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of ∼4 and∼11 µm). The total pixel areaSf +Sb is deter-
mined from the MODIS frame geometry, and the background
environment temperatureTb is found from the neighbouring
pixels. The system has to be solved numerically, resulting in
fire radiative temperatureTf and its areaSf . Due to noise in
the data, the solution does not always converge or may lead
to unpredictable results ifTf ∼ Tb (in the later case, however,
the pixel is usually not reported as an active fire). Such cases
(a few % of the total dataset) were filtered out.

5.2 Adaptation of B69 and B84 for wild-land fires

In the equations B69 and B84, the buoyancy fluxF (see Eq. 1
and notations there) has to be expressed in energy and tem-
perature terms to make them applicable to MISR dataset. Ap-
plying the gas-state equation and taking into account that the
plume molar mass is close to that of air, we obtain:

F = gvsr
2 1/Ta−1/Tp

1/Ta
=

g

Tp
vsr

2(Tp−Ta)

=
g

πTp

Pf

cpρa
=

g

πTp

FRP

cpρa
(15)

The plume temperatureTp is the analogy to the stack-top
temperature but, since there is no “top” of the wildfire, its
exact definition is not possible. The actual temperature of
outgoing gases varies from 700–1000 K (Lim et al., 2001)
down to 350–400 K within short distance along the vertical
(Gostintsev et al., 1991). Fortunately,Tp almost always (ex-
cept for B84 neutral case) is taken to the power of 0.25–0.5,
which reduces the impact of its uncertainty. As a rough es-
timation, we linked it to the fire radiative temperatureTf ob-
tained from (Eq. 14):

Tp = Ta+const(Tf −Ta) (16)

The value const= 0.1 was selected to obtain the best esti-
mates of B69 and B84 for the learning MISR dataset.

Since both B69 and B84 predict the centerline heightHC,
conversion to the plume top heightHp has to be made. Fol-
lowing Briggs (1975), the plume thickness is taken equal to
HC, henceHp = 1.5HC.

Taking into account that for fires FRP/Tp > 55 m4 s−1 al-
most always, for B69 we obtain:

Hp =


5.7

(
g FRP

N3Tpcpρ

)1/4
, stable, U ≤ 0.5 m s−1

2.4
(

g FRP
N2UTpcpρ

)1/3
, stable,U > 0.5 m s−1

29
(

g FRP
Tpcpρ

)3/5
U−1

;, neutral,unstable

(17)

The B84 equations will read:

Hp =


2.7

(
g FRP

N2UcpρTp

)1/3
, stable

0.72
(

g FRP
u2

∗UcpρTp

)
, neutral

1.1

(
g FRPH2/3

ABL
w2

∗UcpρTp

)3/5

, unstable

(18)

5.3 Inter-comparison results

The scatterplots for all approaches applied to the whole
MISR dataset are presented in Fig. 2 and the correspond-
ing statistics are summarised in Table 1. Table 1 also in-
cludes the statistics for the persistency approach, which ap-
points the same value to all fires: 1289 m, the mean height
of the learning MISR set. As one can see, the suggested for-
mula performs better than any other approach and much bet-
ter than other semi-empirical formulas. Comparable quality
was demonstrated only by the BUOYANT model, which was
directly solving the 1-D budget equations along the plume
trajectory. Intriguingly, B69 and B84 scored even worse than
the persistency method, which attributed one height (1289 m,
mean over learning subset) to all fires. From one side, bet-
ter performance of the persistency method than the Briggs’
formulations provides certain justification for the prescribed
plume distribution accepted by many atmospheric models.
From another side, it raises questions about the reasons for
the failure of the well-recognised methods in applications to
wild-land fires.

The root-cause of the low scores of B69 and B84 is that
they are based on numerous simplifications and empirical
coefficients, which were selected for stacks rather than for
wildfires. The poor quality of predictions originates from
the inadequacy of these assumptions and, in particular, the
wrong sets of governing parameters. For example, our anal-
ysis showed that the wind speed is unimportant for the wild-
fire plume height, in particular, the error of the formula (10)
is not correlated with wind speed taken at any height (not
shown). Conversely, it is the primary parameter for all ap-
proaches related to stacks. Admittedly, this conclusion is
non-orthodox in comparison with generally accepted strong
dependence of the injection height on wind. Certain insight
into the problem can be found in the recent study of Freitas
et al. (2010), who, based on model simulations, concluded
that the ambient air entrainment due to wind shear can af-
fect the injection height of small-size fire plumes. For wide-
area plumes it had no impact. Assuming that this explanation
holds in the current study, we are forced to conclude that the
accuracy of the MISR plume top data and/or quality of the
modelled wind speed are insufficient to detect the variations
in the injection height of the small-size fires. This variability
only adds to the scatter of the low plumes in the scatterplot
of Fig. 2.

From Fig. 2, one can also notice a tendency towards under-
estimation of the BUOYANT model, which did not allow
any single plume to rise above 3000 m. This is probably
due to the missing latent heat contribution, which, accord-
ing to Freitas et al. (2007), can substantially increase the in-
jection height. The new approach is much less affected by
this caveat: the effects of both sensible and latent heat are
automatically taken into account during the calibration step.
Since the latent heat release is not captured by the satellites
as part of FRP, the calibration implicitly relies on limited
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Figure 2. Comparison of B69 (eq ( 17)), B84 (eq ( 18)), BUOYANT, and formula ( 10), ( 13) for 

the whole MISR set. 
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(c) BUOYANT model (1574 out of 1914 cases) (d) Formula (10) with parameters (Eq. 13)

Fig. 2. Comparison of B69 (Eq. 17), B84 (Eq. 18), BUOYANT, and formula (10, 13) for the whole MISR set.

variability of the latent and sensible heat ratios to FRP. Vio-
lation of this assumption is probably one of the main contrib-
utors to the scatter of the model-measurement comparison.

6 Discussion

Comparison of the relative importance of the atmospheric
and fire characteristics in Eq. (13) makes it evident that
the success of the prediction strongly depends on quality
of the modelled boundary-layer height and on the FRP ob-
servations. The Brunt-V̈ais̈alä frequency contributes only
marginally: in most cases

∣∣δN2
/
N2

0

∣∣ < 0.1. One can ex-

pect, however, that the FT stability is partly reflected by the
boundary-layer height (Zilitinkevich et al., 2007).

The added value of the combination ofHABL and FRP is
demonstrated in Fig. 3, which presents scatterplots of the
observed injection height with regard to these parameters
taken independently. As one can see, neither deepHABL nor
high FRP taken separately can explain the injection height
of the plume. This tendency was also noticed by Labonne
et al. (2007); Luderer et al. (2006); Trentmann et al. (2006)
for stratosphere-reaching plumes: it is the combination of
favourable meteorological conditions and strong fire that re-
sults in high plumes.
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Table 1. Performance of B69, B84, BUOYANT and formula (10) approaches for the MISR dataset.

B69 B84 BUOYANT Persistence Formula (10)

Prediction within 42 37 51 55 65
observational accuracy, %
Low predictions, % 36 43 17 21 17
High predictions, % 14 12 14 24 18
Failed analysis, % 8 8 18 – –
Correlation coefficient 0.15 0.03 0.44 0 0.45
Range representation 2.6 8.0 0.54 0 0.48
RMSE [m] 1764 5555 604 716 646

Parameters:
Prediction within observational accuracy: a fraction (in %) of the predicted plume top heights deviating from the MISR observation by less than the MISR uncertainty of 500 m
Low prediction: fraction (in %) of the predicted plume top heights lower than the MISR observation by more than 500 m
High prediction: fraction (in %) of the predicted plume-top heights higher than the MISR observation by more than 500 m
Failed analysis: fraction (in %) of cases where computations have not converged
Correlation coefficient: Pearson’s sample correlation coefficient taken over the MISR dataset
Range representation: a ratio of the observed and predicted sample standard deviations of the heights:σmdl/σobs
RMSE: root-mean-square error of the predicted heights, [m]
Note: large fraction of failed cases by BUOYANT is related to the model applicability range (computations failed for too low surface pressure in mountains, too high wind speed,
too highTf , etc).

 

0

1000

2000

3000

4000

0 500 1000 1500 2000

FRP, MW

O
bs

er
ve

d 
he

ig
ht

, m

 

0

1000

2000

3000

4000

0 1000 2000 3000 4000

ABL height, m

O
bs

er
ve

d 
he

ig
ht

, m

 

 

 

 

 

 

Figure 3. Correlation of the observed plume height and individual components of the formula ( 

10): boundary layer height and FRP. 
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Fig. 3. Correlation of the observed plume height and individual components of the formula (10, 13): boundary layer height and FRP.

6.1 Prediction of free-troposphere plumes

The scatterplots for the suggested formula (Figs. 1 and 2d)
make it evident that the predictions have noticeably lower
dynamic range than the MISR observations (quantified in Ta-
ble 1). That is, the new formula tends to over-estimate the
low plumes and under-estimates the high ones. There was no
easy way found to improve the range representation: correla-
tion of the error with the basic atmospheric parameters (wind,
temperature, stability, ABL height) is essentially zero.

One can argue that the plume height inside the boundary
layer is quite an uncertain parameter and it is less important
to predict it accurately in comparison with the plumes reach

the FT. Indeed, intensive turbulent mixing quickly distributes
the smoke over the whole ABL, thus making the question
about the plume height rather academic. Prediction of the FT
plumes seems to be more important since the vertical profiles
of the smoke concentration would survive longer under stable
stratification.

To investigate the possibility of predicting the height of the
FT plumes with accuracy higher than that of Table 1, they
were selected from the MISR learning subset (204 cases).
The fitting procedure was then repeated only for these fires
resulting in the following parameter values:

α = 0.93; β = 298 m; γ = 0.13; δ = 0.7 (19)
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Figure 4. Performance of the algorithm ( 10), ( 19) for the free-troposphere plumes extracted 

from the learning (panels a) and control (panels b) MISR datasets. Unit = [m] 
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(a) Learning dataset (b) Control dataset

Fig. 4. Performance of the algorithm (Eq. 10, 19) for the free-troposphere plumes extracted from the learning (panelsa) and control (panels
b) MISR datasets. Unit= [m].

They are substantially different from (Eq. 13). In particu-
lar, the ABL is always passed “almost for free”, whereas the
FRP powerγ has been reduced down to 1/5 reflecting the
necessity of the plume to rise against the FT stable stratifica-
tion. An attempt to refit the ABL-only fires does not lead to
significant changes in the optimal coefficient values (Eq. 13).

The performance of fit (Eq. 19) for the FT cases from
both learning and control sets is comparatively similar and
outstandingly good: 92 and 82 % of the fires appear within
500 m of the observations (Fig. 4) for the learning and the
control set, respectively. The 10 % difference in the scores is
probably due to limited size of the sets.

There is, however, one peculiarity: in Fig. 4 the fit (Eq. 16)
was applied to the plumes, which were known to reach FT:
this information came from the MISR observations. In gen-
eral case such information is not available, which raises the
problem of identifying the above-ABL plumes. A seemingly
evident solution, to computeHp with the generic fit (Eq. 13)
and then compare it toHABL , unfortunately leads to an un-
equivocal outcome. From one side, the scatterplot of Fig. 5
demonstrates that the method performs comparatively well:
the bulk of the cases are correctly recognised to be inside
ABL or to reach FT. But since the fraction of the FT plumes
is barely 15 % and the fit is optimised for the bulk assess-
ment, only 85 out of 204 FT plumes are placed correctly.
Apart from that, 50 ABL plumes are erroneously marked as
the FT ones.

To improve the detection of the FT fires, a third fitting ex-
ercise was performed with the modified quality criterion:
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Figure 5. Comparison of difference between the Habl and the predicted (eqs ( 10), ( 13)) and 

observed fire plume heights. 
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Fig. 5. Comparison of difference between theHabl and the pre-
dicted (Eqs. 10, 13) and observed fire plume heights.

JR =

Nfires∑
i=1

2(−1Hobs) ·2(1Hmdl)

−1.2
Nfires∑
i=1

2(1Hobs) ·2(1Hmdl) (20)

Here 1Hobs = H obs
p (i) − HABL (i), 1Hmdl = Hmdl

p (i) −

HABL (i). Minimisation of this function corresponds to
the minimum fraction of the ABL-plumes misinterpreted as
FT-ones (the first term) and the maximum fraction of the
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Figure 6. Performance of the formulas ( 10), ( 19) for the cases detected as FT with the selection parameters ( 21) (left-hand 

panel) and the general fit ( 13) (right-hand panel). 
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(a) Prediction with selection of ABL-FT cases (b) Prediction with the generic formula (10) and parameters (Eq. 13)

Fig. 6. Performance of the formulas (10, 19) for the cases detected as FT with the selection parameters (Eq. 21) (left-hand panel) and the
general fit (Eq. 13) (right-hand panel).

FT-plumes recognised correctly (the second term). The scal-
ing of 1.2 sets the priority to correct recognition of the FT
cases over the misinterpretation of the ones inside the ABL.

The optimization with the cost function (Eq. 20) results in
the following parameter values:

α = 0.15; β = 102 m; γ = 0.49; δ = 0 (21)

It is seen that for accurate positioning of the plume regarding
the ABL height, the FT stratification is unimportant, whereas
the FRP is taken to power of 1/2, which is much larger than
in all other fits.

Detection skills of this fit are better than those of the
generic one: 110 out of 204 FT plumes are recognised cor-
rectly, with the rate of mis-located ABL plumes still being
small: 70 out of∼1000.

As a result, the following two-step procedure can be con-
sidered:

1. The injection height is evaluated using the formula (10)
with parameters (Eq. 21).

2. The result is compared toHABL and, depending on
Hp < Habl, or Hp > Habl, the final height is evaluated
using the parameters (Eqs. 13 or 19), respectively.

Application of this procedure to the whole MISR set leads
to slightly lower but still similar quality scores as the single-
step computations:∼64 % of the plumes are predicted within
500 m of the observations. This is not surprising because
the bulk of the dataset are the ABL cases where little has
changed.

For the FT plumes, however, the situation changes. As
seen from Fig. 6a, the plumes observed and/or detected as the
FT ones, fall to three clearly distinguishable groups: (i) the
FT-plumes, which are correctly treated with FT-specific fit
(Eq. 19) and predicted well (green dots in Fig. 6a), (ii) FT-
plumes, which are wrongly treated with the ABL fit (Eq. 13)
and under-estimated (blue dots); (iii) the ABL-plumes,
which are erroneously treated with the FT fit (Eq. 19) and
over-estimated (red dots).

The trade-off between the one-step and two-step estima-
tions becomes clear from the comparison of the panels in
Fig. 6. They both show the predictions for the same sub-
set of fires but panel b shows the outcome of the single-step
procedure using the generic coefficient (Eq. 13). As one
can see, single-step predictions are practically free from the
over-estimated cases but the fraction of the under-estimated
plumes is large. However, the formal quality criteria (RMS,
fraction of good predictions, etc.) are better for the one-step
procedure. Therefore, the choice between the one-step and
two-step approaches would depend on goals of the specific
application.

Another peculiarity of the methodology, which would af-
fect its application, is that the FRP is used as the only input
information about the fire. We are not aware about any vari-
able, which could replace FRP in the formulations (Eq. 10)
and which would be as easily available from remote-sensing
instruments as FRP. It can be related to the temperature
anomaly following Sofiev et al. (2009) but the accuracy of
that relation depends on the fire intensity and may be insuffi-
cient for small fires. Relations of FRP and sensible and latent
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heat fluxes assumed for the simplified derivations (Eqs. 3–8)
were used only to obtain a general form of the dependence
and cannot be used for “reverse engineering” of FRP. Possi-
bilities of using these or other proxy variables instead of FRP
are outside this study.

7 Conclusions

The suggested methodology (Eq. 10) with parameters
(Eqs. 13, 19) and the selection fit (Eq. 21) are based on three
input parameters: boundary layer height, fire radiative power,
and Brunt-V̈ais̈alä frequency in the FT.

The inside-ABL injection heights are predicted within
the uncertainty range of the MISR observations (500 m) for
about two thirds of the cases if all MISR data are consid-
ered and for>70 % of the cases if only “good” MISR data
are taken. The existing parameterizations show much lower
scores if a similar level of complexity of the approach is con-
sidered (e.g. Briggs formulas). Comparable, but still lower,
scores were demonstrated only by the 1-D plume rise model
– but with much greater input information and computational
demands.

The FT-plumes comprise about 15 % of all cases and thus
have a low impact upon the optimal parameters if all fires are
considered. However, the fraction of well-predicted plume
heights exceeds 80 % if the free-troposphere plumes are pre-
selected.

The formula with parameters adapted for detection of the
FT cases, is capable of catching about 60 % of the free-
troposphere plumes; but it also mis-detects a few ABL
plumes as belonging to the FT. Until this detection proce-
dure is improved, selection of the single-formula approach
or the two-step computations should be performed on a case-
by-case basis.
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