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Abstract. In this paper we introduce new in situ observa-
tions of atmospheric aerosols, especially chemical compo-
sition, physical and optical properties, on the eastern brink
of the heavily polluted Highveld area in South Africa. Dur-
ing the observation period between 11 February 2009 and 31
January 2011, the mean particle number concentration (size
range 10–840 nm) was 6310 cm−3 and the estimated volume
of sub-10 µm particles 9.3 µm3 m−3. The aerosol absorp-
tion and scattering coefficients at 637 nm were 8.3 Mm−1 and
49.5 Mm−1, respectively. The mean single-scattering albedo
at 637 nm was 0.84 and the̊Angstr̈om exponent of scattering
was 1.5 over the wavelength range 450–635 nm. The mean
O3, SO2, NOx and H2S-concentrations were 37.1, 11.5, 15.1
and 3.2 ppb, respectively. The observed range of concentra-
tions was large and attributed to the seasonal variation of
sources and regional meteorological effects, especially the
anticyclonic re-circulation and strong winter-time inversions.
In a global context, the levels of gases and particulates were
typical for continental sites with strong anthropogenic influ-
ence, but clearly lower than the most polluted areas of south-
eastern Asia. Of all pollutants observed at the site, ozone
is the most likely to have adverse environmental effects, as
the concentrations were high also during the growing season.
The measurements presented here will help to close existing

gaps in the ground-based global atmosphere observation sys-
tem, since very little long-term data of this nature is available
for southern Africa.

1 Introduction

The direct and indirect radiative effects of aerosol particles
constitute the largest uncertainty in current radiative forcing
estimates of the Earth’s climatic system (Foster et al., 2007;
Hansen et al., 2007). In order to reduce the uncertainties
associated with atmospheric aerosols in climate systems, de-
tailed information on the temporal and spatial variability of
different aerosol properties is required. Such information can
be obtained from a combination of model simulations, re-
mote sensing and continuous in-situ aerosol measurements.

Over the continental Southern Hemisphere, excluding
equatorial Amazonia (Guyon et al., 2003), long-term studies
of atmospheric aerosols are limited compared to the vast area
it covers (Jayaratne and Verma, 2001; Swap et al., 2003; Ross
et al., 2003; Laakso et al., 2006; Suni et al., 2008; Rissler
et al., 2006; Vakkari et al., 2011; Queface et al., 2011; Hir-
sikko et al., 2012; Venter al., 2012). On the African continent
south of the equatorial region, number concentrations and
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especially optical properties of submicron aerosol particles
have mainly been investigated during the SAFARI 1992 and
SAFARI 2000 measurement campaigns (Swap et al., 2003;
Ross et al., 2003; Eck et al., 2003). On a long-term basis, the
South African Weather Service and NOAA-ESRL have con-
ducted observations of aerosol number concentrations and
optical properties such as light scattering and absorption as
part of the Global Atmosphere Watch (GAW) program at the
station in Cape Point (e.g. Brunke et al., 2010). However, at
the time of writing, no publications on the aerosol measure-
ments at Cape Point were available.

In general, these previous studies highlighted the impor-
tance of regional circulation, seasonal pollutant variation and
multiple inversion layers (see also Garstang et al., 1996). The
authors also pointed out that the atmospheric aerosol particle
population originates from a mixture of natural and anthro-
pogenic emission sources (e.g. domestic burning, wild fires,
industry, etc.) and is spatially and temporally highly variable.

Recently, Vakkari et al. (2011) and Laakso et al. (2008,
2012) reported the annual trends of the sub-micron parti-
cle number concentration and associated new particle forma-
tion in a clean background savannah environment in South
Africa, but these observations did not include measurements
of aerosol optical properties. Long-term column aerosol op-
tical properties have since been reported for a Zambian and
South African sites (Queface et al., 2011). However, the need
to improved data further remains, due to the spatial and tem-
poral variability of different aerosol properties across the re-
gion.

The observations described in the present study took place
on the Highveld in central South Africa. This area is among
the top five NO2 emission hotspots in the world and is also a
significant source of CO2, SO2 and sulphate particles (Held,
1996; Fleming and van der Merwe, 2004; Lourens et al.,
2012).

The industrial emissions from this area, along with other
regional emissions (especially from biomass burning) and in-
tense solar radiation create a highly reactive pollution mix-
ture (Swap et al., 2003). As a result, reactive gases are
rapidly converted into more oxidized and low-volatile com-
pounds that produce secondary aerosols via nucleation and
condensation. These particles grow to accumulation mode
sizes and mix with particles from primary emissions. Due
to their long lifetime, these accumulation mode particles can
be transported across the Indian Ocean, as far as Australia
(Wenig et al., 2003), thereby affecting the radiative balance
over large areas.

Due to its global importance, the Highveld was chosen as
one of the EUCAARI project measurement areas outside Eu-
rope (Kulmala et al., 2009). The three other sites outside
Europe were the Amazonian tropical forest near Manaus in
Brazil, the suburban area near New Delhi in India, and the
North China Plain near Beijing. These four sites comprise
globally important regions with previously limited long-
term aerosol measurements. At these four non-European

EUCAARI measurements sites, the scientific emphasis was
placed on aerosol optical properties, direct aerosol effects,
aerosol chemistry, and new particle formation at the surface.
The final goal of these measurements was to obtain contin-
uous long-term in situ data for validation and development
of satellite products and global models. In South Africa,
another specific interest was to stimulate improvement of
the interpretation of remote sensing methods, as current ap-
proaches may not be valid due to the complex layered struc-
ture of the troposphere.

In this paper, results from EUCAARI measurements con-
ducted in the Highveld area will be presented, along with
a detailed description of the site, its regional characteristics,
instrumentation and measurement procedures. The main pur-
pose of this article is to provide a reference for future work,
as well as analyze basic time series of trace gases and aerosol
optical properties.

2 Regional characteristics of the South African
Highveld

2.1 Meteorology

The meteorological situation in South Africa is subject to
a strong seasonal variability. Above the central Highveld,
the atmospheric circulation pattern is dominated by anticy-
clonic circulation during the winter and frequent easterly dis-
turbances during the summer. Westerly disturbances take
place approximately 20 % of the time throughout the year
(Garstang et al., 1996). The precipitation is characterized
by strong seasonal variation with practically all precipita-
tion falling during the wet season typically starting in Oc-
tober and ending in March. The precipitation cycle strongly
affects local pollutant concentrations via primary emissions
from wild fires during the dry season, as well as wet scav-
enging by precipitation and clouds during the wet season.

The cloud cover over the Highveld is often limited due to a
dominant high pressure system, created by the high altitude
and the subtropical subsidence (Tyson and Preston-Whyte,
2000). This, combined with low heat capacity of the soil,
creates frequent inversions that significantly reduce the ver-
tical mixing (Garstang et al., 1996). These inversions are
most pronounced just before sunrise. In the presence of sun-
light, the inversions begin to break down through convective
heating and the height of the mixed layer is increased (Tyson
et al., 1996; Tyson and Preston-Whyte, 2000).

The afore-mentioned meteorological conditions modulate
the pollutant levels above the Highveld. With the high occur-
rence of anticyclonic circulations, pollutants can be trapped
over southern Africa for several days before exiting the sub-
continent, primarily towards the east coast via a well defined
plume (Garstang et al., 1996; Freiman and Piketh, 2002;
Piketh et al., 2000). Example of this circulation is visi-
ble in Fig. 1, which represents the statistical distribution of
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Fig. 1. Overlay back trajectory plot showing the percentage of tra-
jectories arriving at Elandsfontein passing over specific areas for the
period 11 February 2009–31 January 2011.

HYSPLIT 96-h back trajectories (Draxler and Hess, 2004)
for the observational period of this paper.

Aerosol particles which are transported via this circulat-
ing pathway may also be trapped below stable layers found
preferentially at∼850 hPa (over coastal regions),∼700 hPa,
∼500 hPa and∼300 hPa on no-rain days (Tyson and Preston-
Whyte, 2000). The 500 hPa layer is most persistent and usu-
ally caps pollutants in a haze layer over southern Africa. The
layered structure is at its strongest during the dry and cold
winter months.

2.2 Emissions in the Highveld area

Fig. 2 shows the 2010 population density estimate for south-
ern Africa with a 0.25◦ × 0.25◦ spatial resolution (CIESIN,
2010). The population density is an indicator of non-
industrial human activities, as well as the propitiousness of
local ecosystem for human living.

Figure 3 shows the total emissions of SO2 based on the
SAFARI 2000 emission inventory (Fleming and van der
Merwe, 2004). The main point sources of pollutants in the
Highveld are coal-fired power stations, petrochemical indus-
try, as well as mining and metallurgical industries. The ma-
jor pollutants released by these industries include SO2, NOx
and particulate matter (PM), whilst the petrochemical indus-
try additionally emits VOCs, H2S and NH3 (Cardoso et al.,
1997). During winter, a significant contribution of pollutants
originates from domestic burning in informal settlements for
cooking and space heating (June–August), as well as wild
and managed fires (June–September). These emissions con-
tain NOx, CO, VOCs and PM, with significant contribution
from black carbon. In addition, windblown dust from soil

Fig. 2. Population density over southern Africa (CIESIN, 2010). In
South Africa the main national roads are also shown. The measure-
ment site is indicated with a red star. The population hot-spot west
of the measurement site is the Gauteng metropolitan area consisting
of Pretoria, Johannesburg and the Vaal Triangle.

Fig. 3. Total SO2-emissions based on SAFARI2000 emission in-
ventory (Fleming and van der Merwe, 2004). The measurement site
is indicated with a red star.

and the mining industry contribute to high PM concentra-
tions especially during the dry season.

3 The measurement site

The Elandsfontein measurement station (26◦14′43 S,
29◦25′30 E) is located on the top of a hill approximately
200 km east of Johannesburg (Fig. 4) (e.g. Collett et al.,
2010). The average altitude of the area varies between
1400 and 1600 m above mean sea level (a.m.s.l.), while
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Fig. 4. Surroundings of the measurement site. The measurement site is indicated by a star and the major point sources by symbols described
in legend.

the hill top where the measurement station was situated
is 1750 m a.m.s.l. The shortest distance to the Indian
Ocean is approximately 350 km. The Drakensberg Moun-
tains between the ocean and the site reach heights of
2000–3500 m a.m.s.l.

The major pollution sources within a 50 km radius include
six coal-fired power plants to the west and north and a petro-
chemical coal plant to the south-west of the monitoring sta-
tion (Fig. 4). The site is also relatively frequently impacted
by metallurgical plants to the north. However, there are no
major pollution sources within a radius of 20 km of the site
(Lourens et al., 2011). In the sector between north-east and
south-east only one major point source occurs.

The vegetation around the site is typical dry grassland pas-
ture and farmland (Carruthers, 1997), with annual precipi-
tation of about 700 mm. The rain season is during the pe-
riod October–March with very little rain during the winter
(SAWS, 2009). The average maximum daytime temperatures
in summer and winter are 26◦C and 17◦C, respectively, and
the corresponding average low night temperatures are 14◦C
and 1◦C.

4 Measurements and technical solutions

The instrumentation at the Elandsfontein monitoring site was
housed in two small, air conditioned huts. An additional
metal shelter housed the pumps and compressor, whilst a LI-
DAR and Partisol aerosol sampler were in a separate shelter.
In addition to the instrumentation, the site was equipped with
tools and spare parts for routine maintenance and instrument
servicing. The full aerosol measurements were started on 11
February 2009 and continued until 31 January 2011. Dur-
ing that period, measurements operated almost continuously,

except for short time periods when maintenance, instrument
service and power failures occurred.

A summary of the instruments utilised on site is shown in
Table 1.

4.1 Meteorological observations

Basic meteorological parameters were measured on the site
with a Vaisala WXT510 meteorological station (Vaisala,
WTX510 specification sheet, 2010). The observations in-
clude wind direction and -speed with an acoustic anemome-
ter, temperature, relative humidity and rain intensity. In addi-
tion to the weather station observations, solar radiation was
measured with a PAR sensor and the potential temperature
gradient with two Rotronic T-RH sensors stationed at heights
of 2 and 8 m.

4.2 Trace gas observations

The trace gases were measured as a part of ESKOM’s rou-
tine air quality monitoring. SO2, NOx and O3 were mea-
sured with a Thermo Electron 43C SO2 analyser, a Thermo
Electron 42i NOx analyser and a Monitor Europe ML9810B
O3 analyser respectively. H2S was measured with a Thermo
Electron 43A SO2 analyzer with a Thermo Electron 340 con-
verter.

4.3 Aerosol observations

In order to avoid changes in aerosol properties due to hu-
midity variations, all aerosol instruments were connected to
an inlet drier (Tuch et al., 2009). The aerosol sample flow
was kept below 35 % relative humidity to avoid hygroscopic
growth of particles, condensation and also electric sparkover
inside the SMPS instrument. Particles larger than 10 µm in
aerodynamic diameter were excluded using a Rupprecht &

Atmos. Chem. Phys., 12, 1847–1864, 2012 www.atmos-chem-phys.net/12/1847/2012/



L. Laakso et al.: South African EUCAARI measurements 1851

Table 1. Measured parameters and instrumentation.

Measured properties Instrument Period

Meteorology T , p, RH, WD, WS Vaisala WXT510 Oct 2008–Jan 2011
Radiation LiCor LI-190SB Oct 2008–Jan 2011
1T Rotronic MP101A Oct 2008–Jan 2011

Trace gases SO2 Thermo 43C Continuous long-term
NO, NOx Thermo 42i observations
O3 Monitor Europe ML9810B
H2S Thermo model 340 and 43A

Aerosol number size 10–870 nm SMPS Feb 2009–Jan 2011
distribution 0.3–10 µm GRIMM 1.108 OPC May–Aug 2009

0.3–2.2 µm GRIMM 7.309 OPC Sep 2009–May 2010
0.75–10 µm Droplet Measurement

Technique CCNC optics
Sep 2009–Jan 2011

Aerosol absorption Light absorption by
PM10-aerosol

Thermo model 5012 MAAP Feb 2009–Jan 2011

Three wavelength light
absorption by PM10-aerosol

Radiance Research PSAP Feb 2009–Jan 2011

Aerosol scattering Three wavelength light
scattering by PM10-aerosol

Ecotech Aurora 3000 Feb 2009–Jan 2011

Aerosol Optical Depth Sunphotometer Mar 2010–Jan 2011

Aerosol chemical
composition

PM2.5, PM2.5−10 Partisol May 2009–Jan 2010

Aerosol back
scattering

PollyXT Raman lidar Dec 2009–Jan 2011

Patashnick PM10 inlet. Inside the measurement hut, the in-
coming air flow was split between the different instruments.

4.3.1 Number size distributions

A non-commercial Scanning Mobility Particle Sizer (SMPS)
built by the Leibniz Institute for Tropospheric Research
(IfT), Leipzig, Germany, was used. It consisted of a differ-
ential mobility particle sizer with a closed loop arrangement
and a TSI 3010 condensation particle counter. The instru-
ment measured particles between 10 and 870 nm diameter at
a 5-min time resolution. The technical standards and data
evaluation of our instrument complied with the recommen-
dations given in Wiedensohler et al. (2011).

An optical particle counter (OPC, Grimm Model 1.108)
was used in May through August 2009 for measuring the
particle number size distribution in the diameter range 0.3–
20 µm. The flow rate of the OPC was 1.2 l per minute
(LPM). The particle number size distributions obtained from
the OPC were combined with those measured with the SMPS
to cover the diameter range of 10 nm to 10 µm (the upper size
limited by the PM10 inlet). The merging of the data was done
by comparing the data on overlapping size range and scaling
the OPC-concentrations to SMPS data.

In September 2009, the OPC was temporarily replaced
with a Grimm model 7.309 OPC with a maximum particle
diameter of 2.2 µm. In order to cover the missing range be-
tween 2.2 µm and 10 µm, an additional OPC based on the
optics of a DMT-CCNC counter with a measurement range
of 0.7–10 µm was installed.

4.3.2 Aerosol light absorption measurements

Light absorption by particles was measured with two dif-
ferent instruments: a Multi-Angle Absorption Photometer
(MAAP) (Petzold and Scḧonlinner, 2004) atλ = 637 nm and
a 3-wavelength Particle Soot Absorption Photometer (PSAP)
(Virkkula et al., 2005; Virkkula, 2010) atλ = 467, 530, and
660 nm. The PSAP sample was diluted by approximately
1:10 ratio. The performance of the dilution system and the
wavelength dependence of absorption will not be discussed
in the present paper. The MAAP reports Black Carbon (BC)
concentrations but it actually measures light absorption and
uses the mass absorption efficiency 6.6 m2 g−1 to calculate
BC concentrations. We multiplied the BC concentrations by
this efficiency to get the light absorption coefficientσAP at
λ = 637 nm.
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4.3.3 Aerosol light scattering measurements

The scattering of light by aerosol particles was measured
with an Ecotech Aurora 3000 3-wavelength nephelometer.
The original nephelometer light source was replaced with
an opal glass light source (Logan, 2009) in the beginning
of the measurement period and it measured atλ = 450 nm,
525 nm, and 635 nm (M̈uller et al., 2011). As the nephelome-
ter was connected to a common inlet, it had to be modified
to avoid counter flow in the instrument during calibration
checks, which were scheduled to be conducted automatically
every night. The internal blower for the sample flow was re-
placed with an external pump, a pneumatically driven ball
valve was added in the inlet on top of the instrument and a
three-way solenoid valve in the exhaust line connected to the
pump. The internal sample blower power source was used to
control the valves via a relay to keep the valves closed when
the sample blower would be off, i.e. when reference zero or
span air was sampled.

4.3.4 Solar irradiance and aerosol optical depth
measurements

The solar irradiance and sky radiance was measured with a
Cimel multichannel Sunphotometer. The Sunphotometer at
Elandsfontein is part of the global AERONET observation
network (http://aeronet.gsfc.nasa.gov/index.html) (Holben et
al., 1998).

4.3.5 Aerosol sampling and analysis of chemical
composition

In addition to the in situ measurements, aerosol parti-
cles were collected for chemical analysis at a flow rate of
1 m3 h−1 (at ambient conditions) on 47 mm quartz filters us-
ing a dichotomous aerosol sampler (2025 Partisol) equipped
with a PM10 inlet. Quartz and paper filters were not pre-
treated prior to analysis. Fine particles (aerodynamic di-
ameter below 2.5 µm) and coarse particles (aerodynamic di-
ameter between 2.5 and 10 µm) were collected simultane-
ously every 6 days for a collection period of 24 h starting
from 08:00 a.m. LT. To avoid negative sampling artefacts due
to volatilization of ammonium nitrate from the quartz sub-
strates, a Whatman 41 paper filter was sampled on the back
of each quartz filter and the concentration of ammonium and
nitrate were calculated as the sum of quartz and paper con-
centrations (Gilardoni et al., 2009, 2011).

Denuder units were employed to avoid positive sampling
artefacts due to absorption of gas species on the sampling
substrate. VOCs were removed upstream of the filters with
an activated carbon honeycomb denuder, while nitric acid
and ammonia were removed with glass denuders coated by
sodium chloride and citric acid, respectively.

Concentrations of fine and coarse mass were determined
by gravimetric analysis. Organic carbon (OC) and elemental

carbon (EC) were measured by thermo-optical analysis with
a Sunset Laboratory Dual-Optical analyzer (Birch and Cary,
1996). A modified version of the protocol EUSAAR-2 was
employed (Cavalli et al., 2010) with a longer heating step
to guarantee the complete evolution of carbonaceous aerosol
fractions. Concentrations of the major inorganic ions (Na+,
NH+

4 , K+, Mg2+, Ca2+, Cl−, NO−

3 , PO3−

4 , SO2−

4 ) were de-
termined by ion chromatography (IC) after filter extraction
with ultra pure water (Putaud et al., 2002).

Fine and coarse aerosol particles were collected on poly-
carbonate filters for a few weeks during September 2009 to
identify dust chemical profile and quantify dust contribution
to aerosol loading. All the chemical analyses were carried
out by European Union Research centre JRC-Ispra.

4.3.6 Vertical aerosol back scattering profiles

A portable aerosol Raman LIDAR system extended PollyXT
developed at the IfT, Germany (Althausen et al., 2009) was
used. The system is a 3 + 2 Raman LIDAR with a depo-
larization channel. The instrument was completely remotely
controlled and all measurements were performed automati-
cally. For aviation safety purposes, the system was equipped
with an airplane detecting radar which shuts the laser beam
down when an aircraft was detected. The Lidar was installed
at the site in December 2009 and decommissioned in January
2011.

4.4 Data logging systems

Due to the fairly large number of instruments, the data log-
ging system was based on a network of three PCs, as well
as a separate PC for the Lidar. One of the three network
PCs was used to run the SMPS system, another to control the
sample dryer and to log data from the Nephelometer. All the
other instruments except the LIDAR were connected to the
third “Master” PC that used a 3G modem to send the mea-
surement and diagnostics data to a server in Helsinki once a
day. The data transmission from the LIDAR was operated
via a separate 3G modem.

The data from the Nephelometer, MAAP, OPC and the
weather station were collected via serial port connections.
Analog signals for gases, temperature profile, solar radiation
and instrument flow rates were collected with Pico ADC-16
(Pico Technology Ltd.) loggers.

4.5 Power and signal protection

Due to unreliable electricity supply, the occurrence of se-
vere lightning and the location of the site on the top of a
hill, the protection of the instruments was a major concern.
The power and logging system were therefore equipped with
a multi-step power protection system. First, the incoming
power line was equipped with a ground breaker that reduced
the incoming voltages in the event of a lightning surge on the
incoming power line. Next, the incoming power was divided
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into three 3-phase groups. Each group had its own indepen-
dent three-phase under- and over-voltage relay set at 210 and
240 V, respectively. The relays had 1 to 3-min time delays
after a break to protect the instrumentation from repetitive
short-lived irregularities in the power supply. The time delay
of each user group was set differently to ramp up the elec-
trical load more evenly after a power failure. Each group
also has a residual current switch. For additional protection,
the sensitive measurement instruments and computers were
connected to an uninterrupted power supply (UPS) unit. The
grounding of the measurement huts were connected to the
grounding net of a 70 m high microwave link mast at the site.
The mast provided additional protection for the entire mea-
surement site.

In addition to protection against electrical disturbances,
the measurement huts were equipped with temperature con-
trollers to stop the measurements in case of high tempera-
tures, e.g. malfunctioning air conditioner.

The signals from sensors outside the huts were optically
isolated from the measurement computers. The serial port
communication to the weather station, gas analysers, and
solar radiation data loggers were isolated via optical fibre.
These Pico-loggers were also protected with varistors against
high voltages in the analogue signals.

5 Site maintenance and data-analysis methods

5.1 Instrument maintenance and servicing

The site was visited at least once every 12 days for calibra-
tions, instrument servicing and routine maintenance. Dur-
ing the visits, all instruments and data logging were checked.
A HEPA particle filter was placed on the common aerosol
inlet, to verify that all the particle instruments showed zero
concentrations. After this common inlet check, the zero of
the SMPS was checked separately for leaks inside the instru-
ment. The nephelometer automatic zero and span for the pre-
vious day was checked and if the values were out of range,
full calibration and adjustment were performed. Due to po-
tential variation of the CO2 span calibration, the span of the
nephelometer was checked every two months with external
high grade CO2. The flows of all inlets and sheath air were
measured and recorded. If the flows were out of range, they
were adjusted. The PM10-inlets were cleaned and greased
with silicon grease. The filters of the Partisol sampler were
changed and the status values recorded. The gas analyzers
were calibrated once a month and adjusted when needed.

A full maintenance service of the site was carried out ap-
proximately every three months. This included more com-
plicated service procedures such as the SMPS service, mea-
surement instrumentation cell cleaning and other necessary
servicing procedures.

In addition to on-site checks, the data downloaded to the
server was visually inspected a few times per week for qual-

ity assurance. If irregularities were found, extra site visits
and necessary actions were carried out.

5.2 Data corrections and calculations

The measurement data from the site were visualized and cor-
rected with a fit-for-purpose Matlab program set. First, all
data were visually checked and obviously bad data rejected.
Next, all data were corrected based on calibrations, zero
and span, and flow checks. The changes between different
checks were assumed to be linearly changing. All particle
concentrations were corrected to STP conditions (0◦C and
1013 hPa). The entire data set, except the SMPS data was
then averaged for 15 min to provide a consistent and conve-
nient set of data for further analysis.

For the optical observations the following procedures were
applied. First, the scattering coefficients were corrected for
pressure and temperature to ensure that the data discussed
below were collected at 1013 mbar and 273 K, which is the
same as the absorption coefficients. TheÅngstr̈om exponent
of scattering,αSP was calculated for the whole wavelength
range by taking logarithm of scattering coefficients and the
respective wavelengths and fitting the data line to the line
ln(σSP, λ) = −αSPln(λ)+C, whereC is a constant that is ir-
relevant in this work. By using thisαSP the scattering coeffi-
cients were interpolated logarithmically to the MAAP wave-
length 637 nm in order to calculate single-scattering albedo
(SSA, ω0), i.e. the ratio of scattering to extinction coeffi-
cients:ω0 = σSP/(σSP+σAP). The scattering and absorption
coefficients and the single-scattering albedo discussed below
are therefore all atλ = 637 nm.

ω0 is a measure of the darkness of aerosols. At low val-
ues, the aerosol heats the atmosphere and at high values,
it will cool it, depending also on other parameters, such as
the aerosol upscatter fraction, aerosol optical depth and the
albedo of the underlying surface (e.g. Haywood and Shine,
1995; Haywood and Boucher, 2000). For example, for a typ-
ical surface reflectance of grass of 0.2 (e.g. Betts and Ball,
1997) an aerosol may heat the atmosphere ifω0 is less than
∼0.75 and cool it if it is larger than that. For brighter sur-
faces, such as snow, albedo is>0.9 and the limitingω0 is
higher. ω0 is approximately 0.3 for pure black carbon, i.e.
light absorbing carbon particles (e.g. Mikhailov et al., 2006)
so it would heat the atmosphere above both grass and snow
and 1 for purely scattering aerosol, for example ammonium
sulphate, so it cools the atmosphere above both surfaces.

The αSP is not just used in the interpolation above. It is
often used as a qualitative indicator of the particle size distri-
bution (Ångstr̈om, 1929). Large values (αSP> 2) are associ-
ated with anthropogenic aerosols and small values are related
to a strong contribution of sea salt or mineral dust particles
(e.g. Delene and Ogren, 2002). This dependence is not def-
inite, as discussed, e.g. by Schuster et al. (2006), Garland et
al. (2008), and Virkkula et al. (2011).
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6 Results

Due to the large number of observations, the focus of this
paper, in addition to the site description, is on trace gas time
series and basic aerosol properties. Aspects of Lidar observa-
tions, new particle formation, aerosol chemical composition
and detailed optical properties will be published separately.
A summary of all results is presented in Table 2 and dis-
cussed in more detail below. The polluted days in Table 2
and Figs. 9 and 11 were defined based on time the air masses
spent over the most polluted areas of the Highveld and in-
clude 10 % of the trajectories crossing most grid points in
these areas.

6.1 Meteorological data

Figure 5 represents the monthly statistics for (a) temperature,
(b) relative humidity, (c) wind speed and (d) monthly accu-
mulated precipitation. The strong seasonal cycles of temper-
ate, humidity and precipitation are clearly visible. During
the winter, typical daily temperatures were below 10◦C and
relative humidity was around 50 %. The relatively high RH
values are related to the position of the station at the top of the
hill. The summer temperatures typically did not reach values
above 25◦C due to the location – much higher values were
observed at lower altitudes in the surrounding area. In gen-
eral the highest wind speeds were observed during spring.
The most important annual cycle is, however, precipitation
with very limited, if any, rain during the winter. This leads
to widespread wild and man-made grassland fires throughout
the area during winter. In contrast, the rainy season prevents
the fires during summer and reduces windblown dust emis-
sions.

6.2 Trace gases

Ozone concentrations varied mostly between 5 to 80 ppb
(Fig. 6a). The monthly 50 % percentile values indicated
in Fig. 6 were of the same magnitude as average monthly
values reported by Lourens et al. (2011) for several mon-
itoring stations in the Highveld area. Seasonal variations
of O3 were observed, with the highest concentration pe-
riods corresponding to the dry winters (June–August) or
early spring prior to the onset of rains (September–October).
Somewhat similar behaviour was also observed by Venter
et al. (2012) at Marikana in the western Bushveld Igneous
Complex∼100 km west of the Johannesburg Metropolitan
area. In that area, concentrations were somewhat lower than
at Elandsfontein, probably due to stronger local NOx sources
from domestic burning. The generally high ozone levels
measured at the EUCAARI site can most likely be attributed
to the abundance of sunshine and the presence of the O3 pre-
cursor species i.e. NO2 and VOCs in relatively high concen-
trations (Lourens et al., 2011; Collett et al., 2010; Sillman,
1999; Zunckel et al., 2005), due to the very well documented

industrial activities mentioned earlier. Additionally, CO (an-
other known O3 precursor) concentrations are expected to
increase due to wild fire activities during the dry season, ex-
plaining the seasonal O3 behaviour observed. It can be ex-
pected that higher tropospheric O3 will occur further away
from this source region, as the O3-precursors have more time
to be converted to O3 during the transportation. Martins et
al. (2007) and Josipovic et al. (2010) reported much higher
O3 levels at background sites further away from the High-
veld. The current South African ambient air quality stan-
dard for ozone is 61 ppb for an 8-h moving average, which
is calculated from the 1-h moving averages (NEMA: AQA,
39 of 2004, 2009). From the data presented in Fig. 6, it
is clear that regular exceedances of this standard occurred
during the measurement period. Both the studies mentioned
earlier (Martins et al., 2007; Josipovic et al., 2010) utilized
passive sampling and could therefore not comment on ex-
ceedances of the 8-h moving average standard. However,
considering that O3 levels regularly exceeded this standard
at the EUCAARI measurement site and that it is likely to be
much higher as the plume from this source region is trans-
ported, it is evident that similar to e.g. central US (Parrish
et al., 2011) the interior of South Africa has an existing O3
problem. A spatial investigation of O3 pollution levels over
the interior of South Africa, utilizing active samplers, is re-
quired to quantify this issue further. Considering that South
Africa is a semi-arid country, crop damage by O3 (Zunkel et
al., 2005) could in future compound climatic effects.

Both NOx and SO2 (Fig. 6b, c) indicated seasonal varia-
tions, with peak periods in the winter months (June–August).
NOx concentrations also peaked in December 2009, which
was the exception to the rule. The winter peaks can be at-
tributed to trapping of pollutants by several well defined in-
version layers dominating in winter, recirculation patterns
preventing further dispersion (Garstang et al., 1996 Tyson
et al., 1996; Tyson and Preston-Whyte, 2000) and reduced
wet removal due to a lack of precipitation. NOx in winter
may also have been augmented by biomass burning emis-
sions in the region and household combustion, since fuels
consumed in these activities have relatively high nitrogen
contents (Collett et al., 2010). As expected, NO2 and SO2
regularly exceeded South African ambient air quality stan-
dards (NEMA: AQA, 39 of 2004, 2009), especially if the site
was directly impacted by a plume from one of the large point
sources in the area. As mentioned previously, the Highveld
of South Africa is a NO2 hotspot, with satellite retrievals in-
dicating that the Tropospheric NO2 column density of this
area is comparable to that observed for central and northern
Europe, eastern North-America and south-east Asia (Beirle
et al., 2006; Toenges-Schuller et al., 2006; Lourens et al.,
2012). SO2 in this area is emitted with NOx from large
point sources (Lourens et al., 2011; Collett et al., 2010). The
relatively high levels of NO2 and SO2 in this area lead to
the proclamation of this area in 2007 (in terms of the South
African National Environmental Management: Air Quality
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Fig. 5. Meteorological characteristics of the Elandsfontein observation site on the South African Highveld:(a) temperature,(b) relative
humidity, (c) wind speed, and(d) monthly accumulated precipitation for the period 11 February 2009–31 January 2011. The red lines
represent the 50 % percentile, the blue boxes the 25 and 75 % percentiles and the black whiskers the 5 and 95 % percentiles, except in(d).

Act 39 of 2004) as a national air pollution hotspot termed the
Highveld Priority Area (Notice of intention, 2007).

H2S (Fig. 6d) concentrations were generally lower than
that of SO2. This can be attributed to the fact that most
of the large point sources in the area, i.e. the array of coal-
fired power stations, utilise oxidative combustion processes,
favouring the formation of SO2 rather than H2S. Possible
H2S sources in this region include biogenic activities, large
scale cattle farming which is usually conducted in parallel
with maize (corn) production and possibly a contribution
from the petrochemical industry in this area. In this process,
coal is transformed into liquid fuels, which requires less ox-
idative combustion conditions. Seasonal variations of H2S,
with peaks in the dry winters and early spring before the on-
set of rains is similar to the NOx and SO2 seasonal trends
and can be attributed to trapping of pollution by strong inver-
sion layers, recirculation (Garstang et al., 1996; Tyson et al.,
1996; Tyson and Preston-Whyte, 2000) and the lack of wet
removal via precipitation.

In general, levels of the SO2, NOx and O3 were relatively
high, if compared to measurements conducted globally (e.g.
Carmichael, 2003; Beirle et al., 2006), but below the concen-
trations of highly polluted parts of Asia.

6.3 Aerosol number, volume and optical properties

The seasonal behaviour of aerosol volume and number are
shown in Fig. 7. PV10 and PV2.5 were significantly higher
during the second spring period. One possible explanation is
the drier winter that occurred in 2010 with no rain, compared
to the 2009 winter when some, even limited rain showers
potentially limited dust emissions. As a similar trend is not
visible in aerosol absorption (Fig. 8c), it is assumed that the
phenomena was not related to regional burning. However, in
general the windy spring periods, as well as the regionally
polluted dry winter seasons, exhibited increased coarse par-
ticle volumes. The particle number follows a similar pattern
as PV10. Basically one could assume particle number to be
positively related to SO2 concentration and inverse to pre-
existing particle surface. However, as this is not the case, it
is assumed that this strange behaviour have to be related to
variability of seasonal meteorology.

The aerosol optical properties shown in Fig. 8 have a clear
seasonal cycle, and this applies both to the extensive prop-
erties scattering coefficient (σSP) and absorption coefficient
(σAP), as well as the intensive propertiesÅngstr̈om exponent
of scattering (αSP) and single-scattering albedo (ω0). The
largest scattering and absorption coefficients were observed
in the winter and spring months (June–October) and the
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Table 2. Statistical summary of 15-min averaged data during the whole period, periods when trajectories crosses over multiple emission
grid points, in spring (September–November), summer (December–February), autumn (March–May), and winter (June–August). Values are
means.

Parameter Unit Whole
period

Polluted Spring
(Sep–Nov)

Summer
(Dec–Feb)

Autumn
(Mar–May)

Winter
(Jun–Aug)

Temperature
(std)

[◦C] 15.2
(5.5)

16.5
(5.3)

16.9
(5.5)

18.4
(4.1)

17.6
(3.9)

10.2
(4.8)

RH
(std)

[%] 62.0
(24.9)

57.9
(23.0)

44.7
(27.4)

70.6
(19.4)

70.6
(20.4)

53.2
(24.6)

O3
(std)

[ppb] 37.1
(17.3)

41.3
(18.5)

41.3
(17.6)

36.2
(13.9)

30.8
(17.2)

45.1
(18.6)

SO2
(std)

[ppb] 11.5
(13.9)

14.0
(15.8)

14.7
(15.8)

13.1
(14.7)

8.9
(8.2)

12.6
(16.4)

NOx
(std)

[ppb] 15.1
(18.7)

18.6
(21.1)

11.9
(14.3)

13.8
(17.4)

17.9
(17.1)

23.7
(25.4)

H2S
(std)

[ppb] 3.2
(4.6)

5.6
(4.0)

3.7
(4.7)

3.0
(4.2)

2.3
(3.1)

5.2
(7.4)

Ntot
(std)

[cm−3] 6310
(8700)

7000
(7490)

10 050
(12 460)

6260
(8040)

4780
(6800)

6890
(7230)

PV10
(std)

[µm3 m−3] 9.3
(10.8)

12.3
(12.6)

22.8
(17.5)

4.7
(7.0)

8.1
(9.0)

12.6
(11.9)

σAP
(std)

[Mm−1] 8.3
(9.2)

10.4
(10.4)

16.5
(11.8)

2.9
(3.2)

4.8
(4.6)

12.7
(13.0)

σSP
(std)

[Mm−1] 49.5
(55.2)

66.4
(55.8)

80.6
(60.6)

23.0
(22.7)

39.7
(38.9)

63.4
(61.9)

ω0
(std)

0.84
(0.08)

0.86
(0.06)

0.83
(0.05)

0.88
(0.07)

0.88
(0.07)

0.80
(0.10)

αSP
(std)

1.5
(0.4)

1.6
(0.3)

1.4
(0.3)

1.7
(0.3)

1.6
(0.4)

1.5
(0.4)

lowest in summer and autumn (December–March) (Fig. 8b,
c). The seasonality of both the emissions and the meteoro-
logical conditions are likely the cause. In winter the indus-
trial activities (e.g. higher electricity consumption) and do-
mestic space heating are at their most active state. There are
also large emissions due to wildfires in these months. Ad-
ditionally in winter the mixing height of the boundary layer
is lower and the atmospheric residence times due to atmo-
spheric re-circulation and limited wet deposition (Fig. 5d)
are longer, leading to an accumulation of the aerosol par-
ticles. In summer, mixing height is higher, which leads to
lower pollutant concentrations due to more dilution. Other
reasons for lower concentrations are frequent below- and in-
cloud scavenging, and less persistent weather types leading
to advection of pollutants out of the Highveld area.

If the seasonal cycle ofσSPandσAP were due to that of di-
lution mechanisms, for instance the seasonal variation of the

mixing height only, there would be no seasonal cycle ofω0
(Fig. 8d). However, there is a clear seasonal cycle ofω0 so
that the darkest aerosols with monthly medians of approxi-
mately 0.8 during the dry conditions were observed in winter
(Fig. 8d). The average standard deviation was 0.8± 0.1 (Ta-
ble 2). In summer, monthly medianω0 was closer to 0.9 and
above (Fig. 8d), and the average was 0.88± 0.07. This sea-
sonal cycle is likely due to differences in the sources and sea-
sonal source strengths of scattering and absorbing particles.
This includes not only anthropogenic emissions: in sum-
mer the emissions of various biogenic organic compounds
are higher than in winter. This combined with more sun-
light would lead to a larger contribution of secondary organic
aerosols (SOA) in summer than in winter. The seasonal cycle
of ω0 at Elandsfontein resembles that observed at some very
different environments: an Arctic background site in Bar-
row, Alaska (Delene and Ogren, 2002) a boreal forest site
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Fig. 6. Concentrations of gas phase species at Elandsfontein: monthly averages of(a) O3, (b) SO2, (c) NOx, and(d) H2S on the basis of
hourly data for the period 11 February 2009–31 January 2011. The red lines represent the 50 % percentile, the blue boxes the 25 and 75 %
percentiles and the black whiskers the 5 and 95 % percentiles.

in Finland (Virkkula et al., 2011) and several stations, even
though not all, in the free troposphere of the Northern Hemi-
sphere (Andrews et al., 2011). On the other hand, at two
North American continental sites in Illinois and Oklahoma
the seasonal cycle ofω0 was different, with the summer me-
dians lower than in winter (Delene and Ogren, 2002).

The seasonal cycle of the̊Angstr̈om exponent (Fig. 8a) is
the weakest of the cycles shown in Fig. 8. The monthly me-
dians vary from about 1.5 to 1.7, mainly above the overall
average 1.5. These values are somewhat lower than those
reported from North American continental sites in Illinois
and Oklahoma, whereαSP for PM10 particles was 2.03 and
1.94 but higher than at a site dominated by marine aerosols in
Sable Island, Nova Scotia, where the average was 0.77 (De-
lene and Ogren, 2002). Elandsfontein is relatively far from
the oceans so the amount of sea salt particles is negligible.
The lowest values,αSP< 1 observed almost each month may
therefore be an indication of soil dust particles. However, a
more detailed analysis of the relationships betweenαSP and
size distributions is out of the scope of this paper.

Aerosol optical properties are also compared with inde-
pendent measurements with a simple approach. The light
scattering coefficient is known to be highly correlated with
aerosol mass concentration (e.g. Charlson et al., 1967) and
values of mass scattering efficiency have been published for
several sites (e.g. Hand and Malm, 2007; Malm and Hand

2007). The total aerosol volume concentration was therefore
calculated from the size distributions and multiplied with
the density (1.7 g cm−3 was used) to get an estimate of the
aerosol mass concentration in the size rangeDp < 10 µm, i.e.
PM10. It is also of interest to know how large a fraction
of aerosol mass is due to light absorbing carbon, or BC as
the MAAP reports the concentration. The BC concentrations
were compared with the PM10 concentrations obtained from
the volume concentrations. The comparison was done both
by using all the data and separating only data that were asso-
ciated with trajectories that passed over the industrial pollu-
tion sources as discussed earlier.

The linear regression ofσSPvs. PM10 for all data yields the
mass scattering efficiency of 2.3± 1.8 m2 g−1, atλ = 637 nm
(Fig. 9a). The uncertainty is the standard deviation of the
slope obtained from a linear fit. This value is in line with
those obtained from other sites. Hand and Malm (2007)
reviewed the published aerosol mass scattering efficiencies
from numerous ground-based measurements since 1990. The
average total (fine + coarse) specific mass scattering effi-
ciency for mixed aerosol was 2.2± 1.0 m2 g−1 (Hand and
Malm, 2007).

The linear regression of BC vs. PM10 concentrations sug-
gests that in general 6.5± 4.1 % of PM10 is BC (Fig. 9b).
The data are spread at a large range around this regression
line, however. There were periods when BC dominated the
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Fig. 7. Aerosol volume and number at Elandsfontein:(a) volume of<10 µm particles,(b) volume of<2.5 µm particles,(c) volume of
<1 µm particles, and(d) total number of<10 µm particles for the period 11 February 2009–31 January 2011. The red lines represent the
50 % percentile, the blue boxes the 25 and 75 % percentiles and the black whiskers the 5 and 95 % percentiles.

aerosol mass: in 0.9 % of the 15 min data more than 50 % of
PM10 was BC; these data points also have the lowest single-
scattering albedo. It has to be emphasized, however, that the
duration of these periods with high BC mass fraction was al-
ways short, on the average 45 min, the longest was 5 h, and
during these times mass concentration was low. As previ-
ously indicated, filter samples were also taken for OC/EC
analyses; however, the results will be presented in a forth-
coming paper. These samples were taken for 24 h so there
the sample total mass will be dominated by the period when
BC mass fraction was clearly lower than 50 % and the result-
ing EC mass fraction will consequently also be much lower
than 50 %.

In the scatter plots ofσSP vs. PM10 and BC vs. PM10 the
data classified as “polluted” did not differ substantially from
the rest: the ranges of all data are more or less the same,
high concentrations of scattering and absorbing aerosol are
observed in both classes. This may suggest that there are
uncertainties in the back trajectories, in the emission inven-
tories, or in the contribution of local biomass burning on pol-
lutant levels. It may also indicate that in the upper plateau air
masses are so well mixed with aged pollution that the effect
of single sources cannot be observed easily. The only clear
difference can be observed whenω0 andαSP are compared
with the aerosol volume concentration (Fig. 9c, d).

The most absorbing aerosol events, i.e. those data points
with ω0 < 0.6 were practically all associated with those back
trajectories that did not pass over the known emission sources
(Fig. 9c). On the other hand, these data points were associ-
ated with fairly low aerosol volume concentrations, PV10 <

1 µm3 cm−3. Aerosol chemical characterization at the study
site showed that light absorption of BC particles in rela-
tively clean air masses was enhanced by coating effect; this
would increase the contribution of absorption to aerosol ex-
tinction, increasing the single scattering albedo (Gilardoni et
al., 2011). Another explanation could be that some small-
scale combustion sources were located in the vicinity of the
station so that particle volume did not have time to grow
by formation of secondary scattering material (i.e. sulphate).
Unfortunately, due to the short duration of these highly ab-
sorbing aerosol events, no aerosol chemical composition data
are available to discriminate between the two hypotheses.

TheÅngstr̈om exponent of scattering,αSPhad a very weak
correlation with aerosol volume concentration (Fig. 9d).
However, of note was that the largest values were observed
when the volume concentrations were low. On the other
hand, these were the darkest aerosols. The qualitative re-
lationship betweenαSPand particle size is that largeαSPval-
ues are associated with small particles. This further supports
the interpretation that the most absorbing aerosols are some
small particles that have not had time to grow.
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Fig. 8. Aerosol optical parameters at Elandsfontein:(a) Ångstr̈om exponent of scattering (λ = 450 ... 635 nm),(b) scattering coefficient
(λ = 637 nm),(c) absorption coefficient (λ = 637 nm), and(d) single-scattering albedo (λ = 637 nm) for particle diameters<10 µm for the
period 11 February 2009–31 January 2011. The red lines represent the 50 % percentile, the blue boxes the 25 and 75 % percentiles and the
black whiskers the 5 and 95 % percentiles.

Finally, the Elandsfontein aerosol optical data is put in
a global perspective. The average scattering and absorp-
tion coefficients are compared with respective published re-
sults from some other sites by plotting the averages and
standard deviations in a scatter plot (Fig. 10). Delene and
Ogren (2002) presented aerosol optical data from several
North American sites. Three of these sites, Barrow, Alaska
(representing a background site), the Southern Great Plains
Station (SGP), Oklahoma (representing a continental site),
and the anthropogenically influenced site Bondville, Illinois
(BND) are referenced. Delene and Ogren (2002) presented
σSP andσAP atλ = 550 and the averageαSP. Using this,σSP
was interpolated to 637 nm. For absorption, theÅngstr̈om
exponent of 1 was assumed and andσAP at 550 nm was ex-
trapolated to 637 nm. Two European stations were also in-
cluded in the comparison plot. Lyamani et al. (2008) mea-
sured scattering and absorption at an urban site in Granada,
Spain. They also presented averageσSP at 550 nm andαSP,
so similar interpolation to 637 nm could be done. They mea-
sured absorption with a MAAP so theirσAP was used as
such. Virkkula et al. (2011) presented aerosol optical data
measured at the boreal forest site of SMEAR II in Finland.
In this paper both scattering and absorption and respective
Ångstr̈om exponents were presented at three wavelengths
so they were interpolated to 637 nm. As the most polluted

sites the Pearl River Delta and the North China Plain in
China were selected (Garland et al., 2008, 2009). Garland et
al. (2008, 2009) presented averageσSP at three wavelengths
andαSP, so the interpolation to 637 nm could be done. They
presentedσAP at 532 nm. It was extrapolated to 637 nm using
theÅngstr̈om exponent of 1.

The conclusion of the scatter plot (Fig. 10) is that Elands-
fontein is a polluted continental site, as far as scattering and
absorption are concerned. However, it is cleaner than highly
polluted regional sites, especially in China. To quantify this,
the ratios of the average scattering and absorption coeffi-
cients at the sites shown in Fig. 10, to those at Elandsfontein
were calculated. They are 5.9 and 5.2 for Beijing, 3.2 and
4.3 for Guanzhou, 1.3 and 3.4 for Granada, 0.85 and 0.46
for Bondville, 0.72 and 0.25 for Lamont, 0.28 and 0.21 for
Hyytiälä, and 0.17 and 0.04 at Barrow.

6.4 Relationships between particle and sulphur dioxide
concentrations

A simple study on the source of particles was done by com-
paring aerosol number concentrations, aerosol volume con-
centrations and sulphur dioxide concentrations (Fig. 11).
There is a positive correlation between aerosol number con-
centrations and aerosol volume concentration, but the spread
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Fig. 9. Relationships between aerosol optical parameters and integrated volume or mass concentration.(a) Scattering coefficientσSP vs.
PM10 mass concentration calculated from the PM10 volume concentration assuming the particle density 1.5 g cm−3. The error value of the
slope is the standard deviation obtained from a linear regression of scattering versus PM10, (b) black carbon concentrationm(BC) vs. PM10
mass concentration calculated from the PM10 volume concentration assuming the particle density 1.7 g cm−3. The error value of the slope
is the standard deviation calculated as in(a, c) single scattering albedo as a function PV10 concentration, and(d) Ångstr̈om exponent as a
function PV10 concentration.

of the data is very large: for instance number concentra-
tions of 104 cm−3 were observed both in very clean air with
PV10 < 1 µm3 cm−3 and in highly polluted air with PV10 ∼

100 µm3 cm−3 (Fig. 11a). The highest number concentra-
tions, larger than∼4× 104 cm−3 were observed at volume
concentrations of∼10 µm3 cm−3 instead of higher volume
concentrations. This suggests highest number concentrations
resulting from nucleation in cases with relatively high SO2,
but moderate condensation and coagulation sinks by the pre-
existing particles.

The main source of sulphur dioxide (SO2) in this region
is industry. SO2 is oxidized in the atmosphere to sulphuric
acid that forms particles by nucleation or condenses on pre-
existing particles. The nucleation explains the clear positive
relationship between SO2 and particle number concentra-
tions (Fig. 11b). The relationship between SO2 and aerosol
volume concentration is not so clear but one thing is obvious:
the highest volume concentrations, close to 100 µm3 cm−3

were not observed at the highest SO2 concentrations of
larger than 50 ppb but at concentrations of∼1 ppb (Fig. 11c).
This supports the above-mentioned interpretation that the
high aerosol volume concentrations were in aged pollution
plumes.

One more point is worth mentioning in Fig. 11. The main
source of SO2 in the region is industry, but it can be seen
that there is no obvious difference between the SO2 concen-
tration distribution in the data classified as polluted and the
rest of the data. This supports further the explanation that
there are high uncertainties in the back trajectories and/or in
the emission inventories. The latter is not impossible, since
an open access, peer reviewed emission inventory database
is not currently available in South Africa.

7 Conclusions

A large number of long-term aerosol measurements are car-
ried out in the Northern Hemisphere while measurements
are sparse in the Southern Hemisphere. Due to the limited
number of measurements, results from global models are not
compared or validated. This hampers the evaluation of cli-
mate scenarios and development of climate change mitiga-
tion plans. This knowledge gap was partially addressed dur-
ing this study of one of the Southern Hemisphere pollution
hotspots.

The concentrations of industrially related trace gases were
within a global context (Carmichael et al., 2003) relatively
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Fig. 10. Absorption coefficient as a function of scattering coef-
ficient for different location: Barrow, USA (Delene and Ogren,
2002), Hyytïalä, Finland (Virkkula et al., 2011), Lamont, USA (De-
lene and Ogren, 2002), Bondville, USA (Delene and Ogren, 2002),
Elandsfontein, South Africa (this study), Granada, Spain (Lyamani
et al., 2008), Guangzhou, China (Garland et al., 2008), Beijing,
China (Garland et al., 2009). Error bars represent standard devi-
ation, negative values are not shown.

high; with NO2 and SO2 sometimes exceeding the South
African AQ standards, but the major concern was found to
be the high regional ozone levels. O3 is a secondary pol-
lutant, implying that emissions of O3-percursors (e.g. NO2,
VOCs and CO) have to be addressed to rectify the problem.

The aerosol data showed annual cycle of aerosol optical
parameters clearly related to both emission sources such as
industry, wildfires, and biogenic sources, and meteorology.
Both scattering and absorption coefficients were highest in
the Southern Hemisphere winter and spring (June–October)
and lowest in summer and autumn (December–March). The
contribution of anthropogenic emissions and wildfires to the
total extinction is to be studied together with the chemical
composition in forthcoming papers.

In global context, the average aerosol scattering and ab-
sorption values are typical of an anthropogenically influ-
enced continental site, but below that of the highly polluted
areas of e.g. China. For example, published average scatter-
ing and absorption coefficients in Guangzhou and Beijing are
about 3 to 6 times higher than at Elandsfontein.

The measurements reported in this paper represent the
longest published data series of absorption and scattering of
the continental southern African aerosol at the surface level.
The preliminary results presented here, will be augmented in
future by detailed optical studies incorporating the ground-
based measurements with Lidar and satellite observations. It
will be important also to use the data in combination with the
AERONET measurements that provide column-averaged in-
formation on aerosol optical properties. It is worth noting al-

Fig. 11. Relationships between particle number, volume, and SO2
concentrations.(a)Ntot as a function of PV10, (b) Ntot as a function
of SO2, and(c) PV10 as a function of SO2.

ready at this point that the single-scattering albedo retrieved
from the AERONET data at the South African site Skukuza
was 0.90± 0.03 (Queface et al., 2011), clearly higher than
that at the ground level during this work, 0.84± 0.08. This
suggests that the most absorbing aerosols are in the lower
layers of the atmosphere, which may have implications to
modeling the columnar aerosol optics. Further studies are
needed to confirm or reject this. Estimates on the aerosol di-
rect radiative forcing in the region will also be made. In ad-
dition, the data gathered during this project will provide the
global modelling community a reference point on regional
background of the largest industrial area in Africa.
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S., Laakso, H., Kulmala, M., Mirme, A., Mirme, S., Mabaso,
D., Beukes, J. P., and Laakso, L.: Characterisation of sub-
micron particle number concentrations and formation events in
the western Bushveld Igeneous Complex, South Africa, Atmos.
Chem. Phys. Discuss., 12, 1895–1934,doi:10.5194/acpd-12-
1895-2012, 2012.

Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Set-
zer, A., Vermote, E., Reagan, J. A., Kaufman, Y., Nakajima, T.,
Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – A fed-
erated instrument network and data archive for aerosol character-
ization, Remote Sens. Environ., 66, 1–16, 1998.

Jayaratne, E. R. and Verma, T. S.: The impact of biomass burning on
the environmental aerosol concentration in Gaborone, Botswana,
Atmos. Environ., 35, 1821–1828, 2001.

Josipovic, M., Annegarn, H. J., Kneen, M. A., Pienaar, J. J., and
Piketh, S. J.: Concentrations, Distributions and Critical Levels
Exceedance Assessment of SO2, NO2 and O3 in South Africa,
Environ. Monit. Assess., 171, 181–196, 2010.

Kulmala, M., Asmi, A., Lappalainen, H. K., Carslaw, K. S., Pöschl,
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