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Abstract. The effects of future land use and land cover
change on the chemical composition of the atmosphere and
air quality are largely unknown. To investigate the potential
effects associated with future changes in vegetation driven by
atmospheric CO2 concentrations, climate, and anthropogenic
land use over the 21st century, we performed a series of
model experiments combining a general circulation model
with a dynamic global vegetation model and an atmospheric
chemical-transport model. Our results indicate that climate-
and CO2-induced changes in vegetation composition and
density between 2100 and 2000 could lead to decreases in
summer afternoon surface ozone of up to 10 ppb over large
areas of the northern mid-latitudes. This is largely driven by
the substantial increases in ozone dry deposition associated
with increases in vegetation density in a warmer climate with
higher atmospheric CO2 abundance. Climate-driven vegeta-
tion changes over the period 2000–2100 lead to general in-
creases in isoprene emissions, globally by 15 % in 2050 and
36 % in 2100. These increases in isoprene emissions result
in decreases in surface ozone concentrations where the NOx
levels are low, such as in remote tropical rainforests. How-
ever, over polluted regions, such as the northeastern United
States, ozone concentrations are calculated to increase with
higher isoprene emissions in the future. Increases in bio-
genic emissions also lead to higher concentrations of sec-
ondary organic aerosols, which increase globally by 10 % in
2050 and 20 % in 2100. Summertime surface concentrations
of secondary organic aerosols are calculated to increase by
up to 1 µg m−3 and double for large areas in Eurasia over
the period of 2000–2100. When we use a scenario of fu-
ture anthropogenic land use change, we find less increase

in global isoprene emissions due to replacement of higher-
emitting forests by lower-emitting cropland. The global at-
mospheric burden of secondary organic aerosols changes lit-
tle by 2100 when we account for future land use change, but
both secondary organic aerosols and ozone show large re-
gional changes at the surface.

1 Introduction

Changes in land cover may have significant consequences for
atmospheric composition and air quality. For example, bio-
genic volatile organic compounds (VOCs; e.g., isoprene and
monoterpenes) and nitric oxide (NO) emitted from certain
vegetation species are both important precursors for tropo-
spheric ozone (Houweling et al., 1998; Wang et al., 1998),
which is both a potent greenhouse gas and an important air
pollutant. Biogenic VOCs are also important precursors of
secondary organic aerosols (SOA) (Henze et al., 2008; Liao
et al., 2007; Racherla and Adams, 2006), which contribute to
particulate matter (PM) air quality. Changes in VOC and NO
emissions can also affect the abundance of hydroxyl radical
(OH), which, as the main oxidizing agent in the atmosphere,
regulates the lifetimes of both air pollutants and greenhouse
gases. Beyond affecting the emissions of chemically active
species, changing land cover also influences the deposition
of some air pollutants (such as ozone and PM) and their pre-
cursors. For example, denser forests provide more surface
area for dry deposition of chemical compounds.
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In the coming decades, increasing atmospheric greenhouse
gas concentrations and the resulting climate change may
have large impacts on global land cover (Bachelet et al.,
2001, 2003; Cox et al, 2000, 2004; Cramer et al., 2001,
2004). For example, increasing atmospheric CO2 concen-
trations may enhance vegetation growth through CO2 fertil-
ization (Cramer et al., 2001; DeLucia et al., 2005; Nowak et
al., 2004), and warmer climates may lead to enhanced grow-
ing conditions especially in high-latitude ecosystems. On the
other hand, previous studies suggested that decreased pre-
cipitation, especially in the low latitudes, could lead to sig-
nificant dieback of tropical forests (e.g., Cox et al., 2004;
Cramer et al., 2001, 2004; Levy et al., 2004). In addition
to the effects of climate change and CO2 fertilization, direct
human intervention, through, e.g. deforestation and other
land use changes (Houghton et al., 2000; Turner et al., 1994,
1995) will significantly alter global land cover. How and to
what extent changing land cover and land use will affect at-
mospheric chemistry and air quality are not well known.

Sanderson et al. (2003) reported that neglecting potential
future changes in land cover results in overestimates of 6 %
in the projected increase in global isoprene emissions and of
5–30 ppb surface ozone levels due to climate change over the
period 1990–2090. Ganzeveld and Lelieveld (2004) found
significant effects on atmospheric chemistry from Amazo-
nian deforestation, including strong decreases in ozone dry
deposition and isoprene emissions. Lathiere et al. (2005) cal-
culated that tropical deforestation could result in as much as
29 % decrease in global isoprene emissions. Tsigaridis and
Kanakidou (2007) estimated that SOA production from bio-
genic VOCs would triple by 2100 and the SOA burden would
more than double. Heald et al. (2008) found that the anthro-
pogenic land use change by 2100 following the IPCC A2 sce-
nario would reduce the global SOA burden by 14 %. Jiang et
al. (2008) studied the effects of land use change on surface
ozone in the Houston, TX, area and found that the land use
change would increase the number of extreme ozone days
(i.e., those days with daily maximum 8-h ozone exceeding
84 ppb) by 2–3 days per summer. Ganzeveld et al. (2010) cal-
culated decreases in global isoprene emissions and increases
in boundary layer ozone mixing ratios by up to 9 ppb in re-
sponse to 2000–2050 changes in land use and land cover.

Most of the previous studies discussed above, except for
Sanderson et al. (2003) and Ganzeveld et al. (2010), focused
on the effects of anthropogenic land use change on atmo-
spheric chemistry and ignored potential future climate-driven
changes in vegetation cover. In this study, we investigate
how changes in land use and land cover driven by (a) climate
change, (b) increasing atmospheric CO2 concentrations, and
(c) anthropogenic land use change all perturb global atmo-
spheric chemistry and air quality. We focus on the effects of
land cover and land use change on tropospheric ozone and
SOA, since they have important implications for climate and
air quality.

2 Methods: approach and model descriptions

To quantify the effects of potential changes in land use and
land cover on atmospheric chemistry and air quality over the
21st century, we performed a series of offline coupled model
experiments by combining a general circulation model (GISS
GCM 3), a dynamic global vegetation model (LPJ DGVM)
and an atmospheric chemical transport model (GEOS-Chem
CTM). Archived meteorology from the GISS GCM 3 (Rind
et al., 2007; Wu et al., 2007, 2008a,b) was used to drive the
LPJ DGVM to simulate changes in land cover over the pe-
riod 2000–2100 associated with climate change. We used the
IPCC A1B scenario (IPCC, 2001) for trends in both long-
lived greenhouse gases and changes in anthropogenic land
use (IMAGE-Team, 2001; MNP, 2006).

We used the “qflux” version of the GISS GCM, with a
horizontal resolution of 4◦ latitude by 5◦ longitude and 23
vertical layers in a sigma-pressure coordinate system extend-
ing from the surface to 0.002 hPa (Hansen et al., 1984, 1988;
Rind et al., 2008). The lowest three layers extend up to 200,
500, and 1000 m altitude for a column based at sea level.
The same version of the GISS GCM was used in earlier stud-
ies investigating the effects of 2000–2050 global change on
air quality in the United States (Pye et al., 2009; Wu et al.,
2008a,b). Fixed late 20th century land cover was used as
a boundary condition for the GISS GCM (i.e. the potential
feedback to climate from vegetation change is not accounted
for in this study). The LPJ DGVM (Sitch et al., 2003) simu-
lates vegetation cover, density, productivity and a number of
other state variables and fluxes driven by climate, soils and
atmospheric CO2 concentrations. LPJ represents land cover
by simulating the fractional density of nine plant functional
types (PFTs) (Fig. 1) in every gridcell.

Simulated monthly mean meteorological fields of temper-
ature, precipitation and cloud fraction for 2000–2100 calcu-
lated with the GISS GCM were used to drive LPJ to simulate
the changes in land cover due to climate change. Soils data
for LPJ came from the FAO Soil Map of the World (FAO,
2000) and atmospheric CO2 concentrations were those pre-
scribed in the IPCC scenario described above. The same
GISS GCM meteorology was also used to drive the GEOS-
Chem CTM, using the interface described in Wu et al. (2007,
2008ab). Global maps of land cover in the form of PFT
cover fractions simulated by the LPJ model were used as sur-
face conditions in the GEOS-Chem CTM. We separated the
effects of climate- and CO2-induced changes in vegetation
cover from anthropogenic land-use change with a series of
sensitivity experiments.

We used the LPJ model output of fractional vegetation
cover and density (expressed as Leaf Area Index, LAI) at
1◦

× 1◦ resolution in latitude and longitude. The 1◦
× 1◦ out-

put from the LPJ model was then regridded to the 4◦
× 5◦

grid we used as input to GEOS-Chem. Monthly mean val-
ues for LAI are used to reflect the seasonal variation. For
biogenic VOC emissions, we used the MEGAN scheme
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Figure 1. Global (left) and northern mid-latitude (30-60oN) areal coverage of various vegetation 
types for 2000s, 2050s, and 2100s simulated with the LPJ model.

Fig. 1. Global (left) and northern mid-latitude (30-60◦ N) areal coverage of various vegetation types for 2000s, 2050s, and 2100s simulated
with the LPJ model. Temperate broadleaved summergreen trees Boreal needleleaved evergreen trees Isoprene emissions Ozone dry deposition
velocities.

(Guenther et al., 2006), collapsing the 9 LPJ PFTs to the
6 PFTs used by MEGAN (broadleaf trees, needleleaf ever-
green trees, needleleaf deciduous trees, shrubs, crops, grass
and other). For the purpose of examining the future changes
in biogenic emissions associated with land cover change, we
assume that the vegetation composition (in terms of biogenic
emission rates) for each PFT will remain unchanged since
both the MEGAN scheme and the LPJ model resolves the
PFTs but not detailed plant species.

We ran LPJ continuously at monthly timestep for the en-
tire period 2000–2100. Because making a continuous sim-
ulation with GEOS-Chem for 100 years was computation-
ally infeasible, we chose three decade-long time slices to ex-
amine the changes in land use and land cover: 1990–2000,
2040–2050, 2090–2100. Vegetation cover generated by LPJ
for each time slice were averaged over the 10-yr period and
applied to GEOS-Chem.

The GEOS-Chem simulation of ozone and aerosols has
been extensively evaluated and documented in the literature
(e.g., Bey et al., 2001; Fiore et al., 2002a,b, 2003; Hudman
et al., 2007; Li et al., 2002, 2004; Park et al., 2004, 2006).
GEOS-Chem has detailed and fully coupled ozone-NOx-
VOC-aerosol chemistry with aerosol components including
sulfate, nitrate, ammonium, organic carbon, and black car-
bon (Park et al., 2004), sea salt (Alexander et al., 2005), and
dust (Fairlie et al., 2006).

Natural emissions of ozone and aerosol precursors – in-
cluding non-methane VOCs (NMVOCs) from vegetation,
and NOx from lightning and soil – are computed locally
within GEOS-Chem on the basis of driving meteorological
variables. Lightning NOx emissions are parameterized as a
function of deep convective cloud top (Price and Rind, 1992;
Wang et al., 1998) and are distributed vertically following

Pickering et al. (1998). The soil NOx emissions are calcu-
lated as a function of vegetation type, temperature, precip-
itation history, and fertilizer usage following Yienger and
Levy (1995) with an improved formulation of the canopy
reduction factor (Wang et al, 1998). Potential changes in
fertilizer and animal manure application associated with fu-
ture land use change are not considered in this study. The
stratosphere-troposphere exchange (STE) of ozone is repre-
sented by the Synoz flux boundary condition (McLinden et
al., 2000) with an imposed global annual mean STE flux of
500 Tg yr−1. The biogenic emissions of NMVOCs in the
model follow the MEGAN scheme developed by Guenther
et al. (2006) where the emission fluxes are functions of a
number of variables including temperature, solar radiation,
leaf area index (LAI) and PFT. Changes in atmospheric CO2
concentrations are likely to affect the isoprene emissions (Ar-
neth et al., 2007; Centritto et al., 2004; Constable et al., 1999;
Heald et al., 2009; Possell et al., 2005; Rosenstiel et al.,
2003), but these effects are not accounted here.

Dry deposition in GEOS-Chem (Wang et al., 1998; Bey et
al., 2001) is based on a resistance-in-series approach (Wesely
and Hicks, 1977; Wesely, 1989) with a number of improve-
ments including the explicit dependence of canopy stomatal
resistance on LAI (Gao and Wesely, 1995). The dry depo-
sition velocities for each grid box are calculated from the
surface layer turbulence and solar radiation. The effect of
soil moisture stress on dry deposition (Meszaros et al., 2009;
Ganzeveld et al., 2010) is not accounted in this study. Olson
land cover classes (Olson, 1992) are used to calculate dry
deposition in the standard version of GEOS-Chem; in this
study, these ecosystem classes have been reduced to the nine
LPJ PFTs.
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Table 1. Changes in biogenic emissions and atmospheric compositiona,b.

Simulations including climate Simulations including climate
change and CO2 trend change, CO2 trend, and land use change

Model year 2000 2050 2100 2050 2100

Ozone burden (Tg) 305 304 (−0.3 %) 303 (−0.7 %) 306 (+0.3 %) 304 (−0.3 %)
SOA burden (Tg) 0.51 0.55 (+10 %) 0.61 (+20 %) 0.48 (−6 %) 0.51 (−1 %)
Annual isoprene emissions (Tg C) 429 469 (+10 %) 532 (+25 %) 410 (−5 %) 465 (+8 %)
Summerc isoprene emissions(Tg C) 112 130 (+15 %) 152 (+34 %) 112 (+1 %) 133 (+19 %)
Annual monoterpene emissions (Tg C) 80 83 (+4 %) 88 (+10 %) 86 (+7 %) 90 (+12 %)
Summerc monoterpene emissions (Tg C) 27 28 (+3 %) 29 (+8 %) 29 (+8 %) 31 (+13 %)
OH (106 molec cm−3) 1.13 1.11 (−2 %) 1.08 (−4 %) 1.13 (+1 %) 1.11 (−2 %)

a Values are for annual means, unless specified otherwise.
b Values in parentheses denote the percentage change from the 2000 values.
c For Northern Hemisphere summer June–August.

Formation of SOA in the GEOS-Chem model follows
the algorithm developed by (Chung and Seinfeld, 2002)
for gas-particle equilibrium partitioning between SOA and
semivolatile VOC oxidation products. SOA formation from
terpenes, alcohols, sesquiterpenes, and isoprene are consid-
ered in this study. SOA production from isoprene photooxi-
dation follows the work of Henze and Seinfeld (2006), which
is based on chamber experiments of reaction of isoprene with
OH at low NOx condition (Kroll et al., 2006). Further details
about the SOA formation mechanisms in GEOS-Chem are
provided in Liao et al. (2007).

Since this study focuses on the effects due to changes in
land use and land cover, we carried out a suite of sensitivity
simulations with GEOS-Chem by changing the land use and
land cover but not the anthropogenic emissions or climate;
i.e. we always use the present-day anthropogenic emissions
and meteorology to drive GEOS-Chem. This enables us to
separate the effects of land use/land cover change from other
effects due to changes in anthropogenic emissions and cli-
mate that have been extensively studied in literature (e.g.,
Johnson et al., 1999; Stevenson et al., 2000, 2006; Hogrefe
et al., 2004; Hauglustaine et al., 2005; Brasseur et al., 2006;
Racherla and Adams, 2006; Wu et al., 2008ab). Therefore,
the possible changes in natural emissions directly driven by
climate change (e.g. NOx emission from soil is affected by
temperature and precipitation while VOC emission from veg-
etation is sensitive to temperature and solar radiation) are not
accounted for in this study.

3 Results

3.1 Impacts of climate- and CO2-driven
vegetation change

We first considered the impacts on atmospheric composition
from vegetation change over the period 2000–2100 as a result

of climate change and increasing atmospheric CO2 by fixing
the spatial pattern of anthropogenic land use at year 2000
conditions. We find that by 2100 temperate forests domi-
nated by broadleaf trees are replacing conifer forests domi-
nated by needleleaf trees (Fig. 2). Globally, we calculated
a 40 % increase in spatial coverage of temperate broadleaf
trees and a 20 % decrease in boreal needleleaf evergreen
trees. The most significant changes in vegetation cover are
found over the northern mid-latitudes, where we simulated a
∼60 % increase in temperate broadleaf tree cover accompa-
nied by a∼30 % decrease in boreal needleleaf evergreen tree
cover and a 15 % decrease in boreal summergreen tree cover
(Fig. 1). In addition, we find general increases in forest LAI,
except in subtropical regions.

Large increases in global isoprene emissions are calcu-
lated in response to these climate-induced vegetation change.
We find that the Northern Hemisphere summertime (June–
August) global total isoprene emission increases 15 % to
34 % by 2050 and 2100, respectively (Table 1), with the
strongest increase over the northern mid-latitudes. The
global annual total isoprene emission increases by 10 % and
25 % for 2050 and 2100 respectively. Monoterpene emis-
sions are also calculated to increase with global annual total
emissions increasing 4 % to 10 % by 2050 and 2100, respec-
tively (Table 1). These changes in biogenic emissions indi-
cate that the effects from climate-induced land cover change
are comparable to those “direct” effects from climate change
driven by changes in temperature and solar radiation. For
example, with a similar model set up (GEOS-Chem driven
by GISS GCM meteorology), Wu et al. (2008b) previously
found that the 2000–2050 climate change would lead to an
increase in global isoprene emission by 25 %.

Our calculated increase in isoprene emissions is in con-
trast to Sanderson et al. (2003) who reported a slight decrease
of isoprene emissions resulting from climate-driven changes
in vegetation cover. The model simulations of Sanderson et
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Figure 2. Model calculated 2000-2100 changes in (upper left) areal fractional coverage of temperate 

broadleaved trees, (upper right) boreal needleleaved trees, (lower left) isoprene emissions showen as 
differences (in 1011 atmos C cm-2 s-1), (lower right) dry deposition velocities of ozone shown as ratio. 
Isoprene emissions and ozone dry deposition are based on northern hemisphere summer (June-
August) values. Color scales are saturated at maximum values.

Fig. 2. Model calculated 2000–2100 changes in (upper left) areal fractional coverage of temperate broadleaved trees, (upper right) boreal
needleleaved trees, (lower left) isoprene emissions showen as differences (in 1011 atmos C cm−2 s−1), (lower right) dry deposition velocities
of ozone shown as ratio. Isoprene emissions and ozone dry deposition are based on Northern Hemisphere summer (June–August) values.
Color scales are saturated at maximum values.

al. (2003) showed a dieback of large parts of the tropical
forests of the Amazon basin between the 1990s and 2090s
and ascribed this to be the major driver of the decreasing
isoprene emission. We did not see this significant retreat
of the Amazon forest in our simulations. This discrepancy
is attributed to differences in model treatments of tropical
vegetation as well as the simulated meteorology. First, our
version of the LPJ model considers the deeply rooted vegeta-
tion in the tropics, allowing a maximum soil column of 2 m
(Kleidon and Heimann, 1999). Second, our GISS GCM sim-
ulations for 2050 and 2100 do not show substantial decreases
in tropical terrestrial precipitation relative to the present-day.

Figure 3 shows the model calculated summertime surface
ozone for present-day and the anomaly due to climate and
CO2-driven land cover change over the period 2000–2100.
With the vegetation changes we simulated, we found sig-
nificant decreases in surface ozone over large areas of the
northern mid-latitudes, particularly in Eurasia where ozone
decreases locally by up to 5 ppb at 2050 and 10 ppb at 2100.
This appears to be largely driven by the increase in ozone dry
deposition on denser and more broadleaf vegetation (Fig. 2).
For areas with decreasing surface ozone, the ozone dry depo-
sition velocities are generally calculated to increase by 10–
50 % by 2100, with the strongest increases found over north-
ern mid-latitudes. General increases in LAI are calculated
for most areas globally, with the largest increases (by up to

200 % by 2100) found for boreal forests. The increases in
LAI reflect increasing vegetation density in a warmer and
wetter climate with higher atmospheric CO2 abundance. The
increase in LAI is a major factor enhancing the ozone dry
deposition (Gao and Wesely, 1995; Ganzeveld et al., 2010;
Wang et al., 1998). In addition to affecting the ozone dry de-
position, the shifts from needle leaf trees to broad leaf trees
and the increases in LAI also enhance the biogenic emis-
sions of NMVOCs. Increases in isoprene emissions in re-
mote areas also contribute to the ozone decrease. Many re-
mote parts of Eurasia have relatively low NOx abundance,
hence increasing isoprene emissions lead to a decrease in sur-
face ozone levels (Weidinmyer et al., 2006; Wu et al, 2007,
2008). This is in contrast to the Northeastern US where sur-
face ozone increases with stronger isoprene emissions due to
the relatively high ambient NOx levels. The dependence of
ozone’s sensitivity to isoprene emissions on NOx levels will
be further discussed in the final section. The increase in sur-
face ozone over the southern Sahara is driven by increases in
soil NOx emissions associated with increases in vegetation.
Since the southern Sahara is dominated by desert lands with
very low soil NOx emissions (Yienger and Levy, 1995), in-
creasing vegetation coverage there leads to increases in soil
NOx emissions by more than 20 % over the period of 2000–
2100. On the other hand, the global soil NOx emission is cal-
culated to decrease by 3 % due to vegetation change between

www.atmos-chem-phys.net/12/1597/2012/ Atmos. Chem. Phys., 12, 1597–1609, 2012
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Fig. 3. Model simulated (upper left) surface ozone for present–day and the changes in surface ozone due to vegetation change driven by
climate change and increasing atmospheric CO2 abundance between (upper right) 2050 and2000, (lower left) 2100 and 2050, and (lower
right) 2100 and 2000. Ozone values based on summertime (JJA) afternoon (13–17 local time) averages. Color scales are saturated at
maximum and minimum values.

2100 and 2000, reflecting the significant increases in LAI
which enhance the canopy reduction of NOx emissions. Sim-
ilar trends are found for other seasons, although the pertur-
bations have smaller magnitude than that in summer.

The 2000–2100 change in vegetation driven by climate
change has only minor effects on the global burden of tro-
pospheric ozone (less than 1 %; Table 1). Significant per-
turbations to tropospheric OH are calculated, with the global
annual mean tropospheric OH decreases by 2 % and 4 % by
2050 and 2100 respectively (Table 1), which is largely driven
by the increases in isoprene emissions. However, this may
not be a robust result considering that recent field and mech-
anistic studies find no OH depletion from isoprene chemistry
(Lelieveld et al., 2008; Stavrakou et al., 2010).

The perturbations to surface ozone due to changes in land
cover calculated in this study are very different from those
reported in Sanderson et al. (2003). The factors that could
contribute to this discrepancy include: (1) Our climate model
simulations do not show the dieback of Amazon forests as
found in Sanderson et al. (2003), and (2) there are large un-
certainties associated with isoprene chemistry and in partic-
ular the treatment of isoprene nitrates, especially isoprene
nitrate, could be different in different models (Giacopelli et
al., 2005; Horowitz et al., 2007; Paulot et al., 2009). The re-
sponse of ozone to isoprene emissions is highly sensitive to
whether isoprene nitrates represent a terminal or temporary
sink for NOx (Horowitz et al., 2007; Wu et al., 2007). In our
model, isoprene nitrate represents a terminal sink, as shown

in Giacopelli et al. (2005). Therefore, except for areas with
abundant NOx available such as northeastern United States,
the increases in isoprene emissions tend to reduce ozone lev-
els because of (1) sequestration of NOx as isoprene nitrates
(Wu et al., 2007), and (2) direct ozonolysis of isoprene (Fiore
et al., 2005).

Figure 4 shows the effects of land cover change on the
atmospheric concentrations of SOA. Our model simulations
show that oxidation products from isoprene and monoterpene
are dominant contributors to SOA production, accounting for
about 70 % and 20 % of the total atmospheric SOA burden
respectively. We find that the summertime SOA could in-
crease by more than 0.5 µg m−3 by 2100 over large areas in
Eurasia, reflecting the strong increases in biogenic NMVOC
emissions in that region, particularly from isoprene. The an-
nual mean surface SOA concentration doubles by 2100 for
this region. Some decreases in surface SOA concentrations
are calculated for two relatively small regions in northeast-
ern China and west Russia respectively. These decreases are
due to decreases in monoterpenes emissions associated with
the projected retreat in conifer forests (Fig. 2). We find that
the global burden of SOA increases by 10 % to 20 % by 2050
and 2100, respectively (Table 1).

Atmos. Chem. Phys., 12, 1597–1609, 2012 www.atmos-chem-phys.net/12/1597/2012/
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(a)

Fig. 4a.Same as Fig. 3 but for secondary organic aerosols. Color scales saturate.

(b)

Fig. 4b.Same as Fig. 4a but for zonal mean.
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Figure 5. Changes in June-August surface ozone due to vegetation change driven by 

combined effects (changes in climate, CO2 abundance and agricultural land use) for the periods 

of 2000-2050 (left) and 2050-2100 (right). Color scales saturate. 

 

 

 

 

 
Figure 6. Same as Figure 5 but for surface secondary organic aerosols. Color scales saturate. 

 

 

 

Fig. 5. Changes in June–August surface ozone due to vegetation change driven by combined effects (changes in climate, CO2 abundance
and agricultural land use) for the periods of 2000–2050 (left) and 2050–2100 (right). Color scales saturate.

3.2 Combined impacts from agricultural land use
change and climate-driven vegetation change

We followed the IPCC A1B scenario for changes in anthro-
pogenic land use (IPCC 2001; MNP, 2006). Over the pe-
riod 2000–2050, the agricultural land use is projected to de-
crease over some regions including East Asia but increases
over some others such as eastern United States, South Asia,
and Central Africa, which is largely driven by changes in
population, economic developments, energy supply and de-
mand (e.g., energy crops) (MNP, 2006). Isoprene emissions
generally decrease with increasing agricultural land use since
crops are of the lowest isoprene emission rates among all
the plant function types (Guenther et al., 2006). The de-
creases in isoprene emissions associated with anthropogenic
land use change over east United States, South Asia and Cen-
tral Africa more than compensate the increases in isoprene
emissions associated with climate- and CO2-driven vegeta-
tion change (as shown in Sect. 3.1). As a consequence, the
global isoprene emissions for 2050 decrease by 5 % com-
pared to 2000 (Table 1). Associated with the 2000–2050
agricultural land use changes over South Asia and Central
Africa, we find significant increases in surface ozone of up to
5 ppb in those regions (Fig. 5), which appears driven by de-
creases in ozone deposition and isoprene emissions. In con-
trast, over east United States where there is relatively high
NOx abundance, surface ozone decreases with decreasing
isoprene emissions. As discussed in Sect. 3.1, the response
of ozone to biogenic isoprene emissions is highly sensitive
to the chemical mechanism of isoprene oxidation used in the
model.

The projected trends of agricultural land use for South
Asia and Central Africa reverse after 2050; i.e. the total
amount of land under cultivation decreases between 2050
and 2100, reflecting the projected human population max-
imum around 2050 (Nakicenovic and Swart, 2000). As a

consequence, our model simulations over these regions show
increasing isoprene emissions and decreasing surface ozone
for the 2050–2100 period (Fig. 5). Significant increases in
agricultural land use are projected between 2050 and 2100
over the Amazon region where the isoprene would decrease
leading to increasing surface ozone. Global total annual bio-
genic emissions are calculated to increase in 2100 compared
to year 2000, with isoprene emissions up by 8 % and mo-
toterpenes up by 12 %.

The changes in agricultural land use also have large effects
on SOA. We find that when the agricultural land use change
is accounted for, the global SOA burden in 2100 remains al-
most the same as 2000 (Table 1), in contrast to the large in-
crease of 20 % when only climate change and increasing CO2
abundance are considered (as shown in Sect. 3.1). This im-
plies that the projected expansion in agricultural land use be-
tween 2000 and 2100 lowers the global SOA burden by about
20 %, which compensates for the effects of climate- and
CO2-driven changes in vegetation cover and composition.
Heald et al. (2008) calculated a somewhat smaller (−14 %)
perturbation from changes in the anthropogenic land use by
2100, which could reflect difference in the models used and
also scenarios assumed for future changes in anthropogenic
land use. The little change in SOA burden from 2000 to 2100
despite the significant increases in biogenic emissions (Ta-
ble 1) also reflects the changes in seasonality of biogenic
emissions. Increases in cropland imply that the biogenic
emissions would be shifted more to the growth season (such
as summer) when biogenic VOCs have the shortest atmo-
spheric lifetime.

Figure 6 shows the model simulated changes in surface
SOA concentrations due to changes in land use and land
cover driven by the combined effects. We can see that the
SOA increases by up to 1 µg m−3 by 2100 over the Eura-
sia region reflecting the changes in biogenic emissions of
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Figure 5. Changes in June-August surface ozone due to vegetation change driven by 

combined effects (changes in climate, CO2 abundance and agricultural land use) for the periods 

of 2000-2050 (left) and 2050-2100 (right). Color scales saturate. 

 

 

 

 

 
Figure 6. Same as Figure 5 but for surface secondary organic aerosols. Color scales saturate. 

 

 

 

Fig. 6.Same as Fig. 5 but for surface secondary organic aerosols. Color scales saturate.

NMVOCs, in particular isoprene. Decreases in SOA concen-
trations, by up to 0.5 µg m−3 are calculated over the Ama-
zon forest and eastern United States, which is driven by re-
duced biogenic isoprene and monoterpene emissions associ-
ated with increasing agricultural land use.

4 Discussion and conclusions

We investigated the potential effects on atmospheric chem-
istry and air quality from 2000–2100 changes in land use
and land cover driven by climate change, increasing atmo-
spheric CO2 abundance, and agricultural land use change. To
accomplish this, we performed an offline coupling of a gen-
eral circulation model (GISS GCM 3) with a global chemical
transport model (GEOS-Chem CTM) and a dynamic global
vegetation model (LPJ DGVM).

In the absence of future anthropogenic land use change,
the generally warmer and wetter future climate simulated
by the GISS GCM leads to changes in the composition of
forests, chiefly in the northern temperate and boreal latitudes,
which in turn lead to decreases in summer afternoon sur-
face ozone by up to 10 ppb over large areas over the northern
mid-latitudes. This is largely driven by the enhanced ozone
dry deposition associated with the transition from needle-
leaf forests to those dominated by broadleaf trees and by in-
creases in LAI associated with CO2 fertilization. Climate-
driven land cover changes also lead to general increases in
isoprene emissions by forests. Global annual total isoprene
emissions are calculated to increase by 10 % in 2050 and
25 % in 2100 compared to 2000 conditions.

Increasing isoprene emissions contribute to further de-
creases of surface ozone in remote areas but also lead to in-
creases in surface ozone over polluted regions such as north-
eastern United States. Ozone production is generally NOx-
limited in remote areas and higher isoprene emissions en-
hances both direct ozone-isoprene reactions and the seques-

tration of NOx as isoprene nitrates (Fiore et al., 2005; Wei-
dinmyer et al., 2006; Wu et al., 2007). However, there are
large uncertainties associated with our understanding on and
model treatment of isoprene nitrate chemistry, which can af-
fect the sensitivity of ozone responses to isoprene emissions
(Giacopelli et al., 2005; Horowitz et al., 2007; Jacob and
Winner, 2009; Paulot et al., 2009; Wu et al., 2008a).

We note again that the possible CO2 inhabitation effect on
isoprene emissions is not accounted here. Heald et al. (2009)
estimated that this inhabitation effect could imply a 30 % de-
crease in global isoprene emissions by 2100 following the
A1B scenario, but the magnitude of the inhibition is uncer-
tain (Centritto et al., 2004; Possell et al., 2005). In addition,
assigning emission factors to specific PFTs rather than plant
species, as implemented in the MEGAN scheme, could in-
troduce uncertainties in the projected isoprene emissions.

Our results also show that changes in vegetation cover over
the period 2000–2100 would lead to a general increase in
SOA concentrations, driven by increases in biogenic VOC
emissions. The global SOA burden increases by 10 % to
20 % by 2050 and 2100 respectively. The increase in global
SOA burden has important implications for direct radiative
forcing (e.g., Chung and Seinfeld, 2002; Liao et al., 2004).
Increasing SOA concentrations also significantly affect the
particulate matter (PM) air quality with the largest pertur-
bations found over the Eurasia, where locally, summertime
SOA concentrations in surface air are calculated to increase
by as much as 1 µg m−3 by 2100. When we used a scenario
of future anthropogenic land use change, we found compen-
sating effects on isoprene emissions and SOA resulting in
little net change in global SOA burden over the 2000–2100
period.

There are many sources of uncertainty in the projected re-
sponses of future atmospheric composition to the changes
in land use and land cover. The future changes in anthro-
pogenic land use is strongly affected by multiple factors
(such as population and economic growth, development in
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renewable energy and new technology, policy regulations)
which all show large spatial and temporal variability. The
simulation of climate-driven changes in land cover only re-
solves PFTs but not specific vegetation species, introducing
additional sources of uncertainty.

The evolution of atmospheric chemistry and air quality in
the future is affected by many factors in the context of global
change, including the changes in anthropogenic emissions,
climate, as well as land use and land cover. Previous stud-
ies (e.g., Johnson et al., 1999; Stevenson et al., 2000, 2006;
Hauglustaine et al., 2005; Brasseur et al., 2006; Racherla
and Adams, 2006; Wu et al., 2008ab) have shown significant
impacts on natural emissions, deposition, and atmospheric
chemistry directly driven by changes in meteorology (such
as temperature, humidity, solar radiation) associated with cli-
mate change. In order to separate the effects due to changes
in land use/land cover from those due to changes in anthro-
pogenic emissions and climate, we have purposefully used
the present-day anthropogenic emissions and meteorology
for atmospheric chemistry simulations in this study.

Our study does not account for possible changes in veg-
etation caused by changes in the frequency and intensity
of wildfires, which may be substantially affected by cli-
mate change (Flannigan and Harrington, 1988; McKenzie,
et al., 2004; Stocks et al., 1998; Swetnam, 1993). Ad-
ditionally, changes in tropospheric ozone and SOA in re-
sponse to land use and land cover change can further af-
fect climate through radiative forcing, but this feedback is
not considered in our study. Previous studies also indicated
that changes in the chemical composition of the atmosphere
such as increasing ozone concentrations can affect vegetation
and thus the terrestrial carbon cycle (e.g., Felzer et al., 2004)
and produce an indirect radiative forcing effect (Sitch et al.,
2007); these effects were also not considered in this study.
Finally, the changes in anthropogenic emissions could af-
fect the responses of atmospheric composition to vegetation
change. For example, increases in anthropogenic NOx emis-
sions could either increase the sensitivity of ozone to bio-
genic VOC emissions or even switch the ozone production
from NOx-limited regime to VOC-limited regime.The signif-
icant perturbations to ozone and aerosol air quality associated
with future land use and land cover change, as demonstrated
by our results, imply that the effects from vegetation change
driven by both climate change and anthropogenic land use
need to be considered in air quality management and plan-
ning at time scales of decades or longer. It also indicates that
better understanding and quantification of the complicated
interactions and feedbacks between climate and atmospheric
chemistry is greatly needed in the context of global change
research.
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