
Atmos. Chem. Phys., 12, 1367–1376, 2012
www.atmos-chem-phys.net/12/1367/2012/
doi:10.5194/acp-12-1367-2012
© Author(s) 2012. CC Attribution 3.0 License.

Atmospheric
Chemistry

and Physics

Seasonal variations of stable carbon isotopic composition and
biogenic tracer compounds of water-soluble organic aerosols in a
deciduous forest

Y. Miyazaki 1, P. Q. Fu1,*, K. Kawamura1, Y. Mizoguchi2, and K. Yamanoi2

1Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
2Hokkaido Research Center, Forestry and Forest Products Research Institute, Sapporo, Japan
* now at: Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Correspondence to:Y. Miyazaki (yuzom@lowtem.hokudai.ac.jp)

Received: 31 October 2011 – Published in Atmos. Chem. Phys. Discuss.: 16 November 2011
Revised: 17 January 2012 – Accepted: 27 January 2012 – Published: 3 February 2012

Abstract. To investigate the seasonal changes in biogenic
water-soluble organic carbon (WSOC) aerosols in a bo-
real forest, aerosol samples were collected continuously in
the canopy of a deciduous forest in northern Japan during
2009–2010. Stable carbon isotopic composition of WSOC
(δ13CWSOC) in total suspended particulate matter (TSP) ex-
hibited a distinct seasonal cycle, with lower values from
June through September (−25.5±0.5 ‰). This cycle fol-
lows the net CO2 exchange between the forest ecosystem
and the atmosphere, indicating thatδ13CWSOC likely reflects
the biological activity at the forest site. WSOC concentra-
tions showed the highest values in early summer and au-
tumn. Positive matrix factorization (PMF) analysis indicated
that the factor in which biogenic secondary organic aerosols
(BSOAs) dominated accounted for∼40 % of the highest con-
centrations of WSOC, where BSOAs mostly consisted ofα-
/β-pinene SOA. In addition, primary biological aerosol par-
ticles (PBAPs) made similar contributions (∼57 %) to the
WSOC near the forest floor in early summer. This finding
indicates that the production of both primary and secondary
WSOC aerosols is important during the growing season in
a deciduous forest. The methanesulfonic acid (MSA) maxi-
mum was also found in early summer and had a distinct ver-
tical gradient with larger concentrations near the forest floor.
Together with the similar vertical gradients found for WSOC
andδ13CWSOC as well as theα-/β-pinene SOA tracers, our
results indicate that the forest floor, including ground vege-
tation and soil, acts as a significant source of WSOC in TSP
within a forest canopy at the study site.

1 Introduction

Forest ecosystems act as a major sink of atmospheric CO2
and a source of atmospheric organic aerosols (Kavouras et
al., 1998; Kulmala et al., 2004; Tunved et al., 2006). For-
est vegetation contributes substantially to emissions of a va-
riety of biogenic volatile organic compounds (BVOCs) via
processes that are closely linked to photosynthesis (e.g.,
Pẽnuelas and Staudt, 2010). In boreal forests, photosynthesis
is inhibited in winter and occurs predominantly in sunlight
during the growing season. Although forest–atmosphere in-
teractions are potentially important for climate change as-
sessments (Kulmala et al., 2004; Mahowald, 2011), such in-
teractions are complicated and poorly represented in current
global models (Bonan, 2008).

Newly formed particles in forested areas contain a large
fraction of water-soluble organic carbon (WSOC) (e.g., Cav-
alli et al., 2006; Hallquist et al., 2009), which can signifi-
cantly alter the hygroscopic property of aerosols and act as
cloud condensation nuclei (CCN). Nucleation events were
frequently observed in a European boreal forest, and inves-
tigation of these events demonstrate a straightforward re-
lation between monoterpene emissions and gas-to-particle
formation (Tunved et al., 2006). However, previous ob-
servations have often been made in limited periods during
intensive campaign studies. Long-term continuous mea-
surements in forested regions are lacking and simultaneous
ecosystem-scale measurements of WSOC and CO2 fluxes
over several months to years are particularly scarce. Clari-
fying the seasonal evolution of WSOC in relation to forest
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biological activity is crucial for a better understanding of the
WSOC formation processes in forests. Besides biogenic sec-
ondary organic aerosol (BSOA) fractions, primary biological
aerosol particles (PBAPs) (Medeiros et al., 2006; Rogge et
al., 2007; Jia et al., 2010) contribute to the budget of WSOC
in aerosols, although this budget is still poorly characterized.
In addition, the relative importance of the canopy floor within
forests is not well understood in terms of WSOC formation.

The stable carbon isotope ratio (δ13C) is a powerful tool
for source determination based on the distinctive signals of
different aerosol carbon fractions. For example, C3 plants,
which use the Calvin-Benson cycle as a metabolic pathway
for carbon fixation in photosynthesis, haveδ13C values typ-
ically in the range of−23 to−30 ‰ (Gelencśer, 2004). All
trees and most shrubs, grasses, and sedges in mid-latitude
and boreal regions belong to the C3 class of plants. The
most common application of carbon isotopic measurements
for aerosols is for the measurement of total carbon (TC)
(e.g., Cachier et al., 1986; Turekian et al., 2003). In con-
trast, very few studies have used theδ13C of WSOC for
source apportionment (Fisseha et al., 2009; Kirillova et al.,
2010). The WSOC-specificδ13C analysis, combined with
biogenic molecular markers, allows for source apportion-
ment of aerosol WSOC in forested areas.

In this paper, we present seasonal changes in biogenic
WSOC within the canopy of a broadleaf deciduous for-
est over an 18-month period. We provide measurements
of WSOC andδ13CWSOC in relation to the net CO2 ex-
change between the forest ecosystem and the atmosphere.
We also present the relative contributions of potential sources
to WSOC formation in the forest canopy usingδ13CWSOC,
BSOA tracers, and PBAP tracers. Moreover, methanesul-
fonic acid (MSA) was found at the forest site, and its possible
sources are discussed. MSA is formed by the photooxidation
of dimethylsulfide (DMS) and is typically found in marine-
biologically influenced aerosols; measurements of MSA in
terrestrial regions are limited (e.g., Lukács et al., 2009). On
the basis of these data sets, we discuss the relative impor-
tance of the forest floor in WSOC formation at a deciduous
forest site.

2 Experimental

2.1 Aerosol sampling

Aerosol sampling was conducted at the Sapporo forest me-
teorology research site (42◦59′ N, 141◦23′ E, 182 m a.s.l.),
which is a secondary hardwood forest site located in the
western part of Hokkaido, the northernmost major island of
Japan. The experimental site is covered with broadleaf decid-
uous trees in a transitional stage from mature birch (Betula
platyphylla) to climax species, mainly Mizunara oak (Quer-
cus crispula). Needle-leaf evergreen trees are also found in
the surrounding area. The understory consists of evergreen

Sasa bamboo (Sasa kurilensisandSasa senanensis), which
widely covers the ground surface. Nakai et al. (2003) ex-
amined the seasonal variations in the leaf area index (LAI)
at this forest site, showing that the initial foliating period is
completed by the end of June, after which the LAI remains
almost constant until September. They also reported that the
evolution pattern of the LAI at this site is similar to that at
other temperate deciduous forests (e.g., Greco and Baldoc-
chi, 1996). The soil is loamy, originating from volcanic ash.
The mean canopy height at the site is approximately 20 m
(Nakai et al., 2003). Snow cover reaches approximately 1 m
in depth and continues for more than 120 days per year, from
December to mid-April.

Total suspended particulate matter (TSP) samplings were
conducted continuously using high-volume air samplers.
The samples were collected using prebaked quartz fiber fil-
ters (25×20 cm) at a flow rate of 40 m3 h−1 at two levels
above the forest floor:∼2 m (June 2009–December 2010)
and∼15 m (June 2010–December 2010). Each aerosol sam-
ple was integrated usually over a 1-week period, correspond-
ing to a sampled air volume of approximately 6700 m3. Lo-
cal meteorological parameters were measured every 10 min
by a weather transmitter (WXT-510, Vaisala, Helsinki, Fin-
land).

Figure 1 shows the location of the sampling site and the
surrounding area, as well as the observed frequencies of lo-
cal wind directions with wind speed greater than 0.5 m s−1 at
the sampling site. The predominant local wind direction in
summer and autumn (May–October) was from the south to
southwest, corresponding to the forested area. Moreover, the
meteorological data show that 68 % of the local wind speed
was<0.5 m s−1. Consequently, the majority of aerosol sam-
pled during this period was likely influenced by emissions
from forested areas. In contrast, fractions of air transported
from the northwest (sea and urban region) existed in winter
and spring (November–April), with 64 % of the local wind
speed>0.5 m s−1.

2.2 Chemical analysis

To determine the WSOC concentration, a filter cut of
1.54 cm2 was extracted with ultrapure Milli-Q water using
an ultrasonic bath. The total extracts were then filtrated with
a disc filter (Millex-GV, 0.22 µm, Millipore, Billerica, MA,
USA) followed by injection of dissolved OC in the extracts
into a total organic carbon analyzer (Model TOC-Vcsh, Shi-
madzu, Kyoto, Japan) (Miyazaki et al., 2011). The WSOC
value for a filter punch of a field blank corresponds to∼7 %
of the average WSOC concentration of the ambient samples.
All WSOC data presented here have been corrected against
field blanks.

For the determination ofδ13CWSOC, a filter (14.13 cm2)
for each sample was acidified to pH 2 with hydrochloric
acid (HCl) to remove inorganic carbon prior to extraction.
The samples were then dried with a nitrogen stream for
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Fig. 1. Location of the sampling site (the Sapporo forest meteo-
rology research site). Also shown is the observed frequency of lo-
cal wind directions with wind speed>0.5 m s−1 in winter–spring
(November–April) and summer–autumn(May–October).

approximately 2 h. WSOC was extracted from the decar-
bonated filters in 20 ml of Milli-Q water, using the same
method as described above for measuring the WSOC con-
centration. The extracted samples were concentrated by ro-
tary evaporation, and 40 µl of each sample were transferred
to be absorbed onto 10 mg of pre-combusted Chromosorb in
a pre-cleaned tin cup. Theδ13CWSOC was then measured us-
ing an elemental analyzer (EA) (NA 1500, Carlo Erba, Mi-
lan, Italy) interfaced to an isotope ratio mass spectrometer
(Finnigan MAT Delta Plus, Thermo Finnigan, San Jose, CA,
USA) (Kawamura et al., 2004). The recoveries of WSOC
using chemical standards (oxalic acid and Suwannee River
fulvic acid) and ambient aerosols after the analytical steps
were 90 % and 82 %, respectively.

We also determined the concentrations of BSOA tracers
for α-/β-pinene (3-methyl-1,2,3-butanetricarboxylic acid; 3-
MBTCA, 3-hydroxyglutaric acid; 3-HGA, pinic acid, and
pinonic acid) and those for isoprene (2-methylerythritol and
2-methylthreitol). In addition, sucrose and trehalose were
identified as possible tracers for PBAPs. Briefly, a filter
cut was extracted with dichloromethane/methanol and the -
COOH and -OH functional groups in the extracted samples
were converted to TMS esters and TMS ethers, respectively.
The TMS derivatives were then analyzed for the above com-
pounds using a gas chromatograph (HP GC6890N, Hewlett-
Packard, Palo Alto, CA, USA) equipped with a fused sil-
ica capillary column (DB-5MS, Agilent Technologies, Santa
Clara, CA, USA) and coupled to a mass spectrometer (5973
MSD, Agilent Technologies, Santa Clara, CA, USA) (Fu et
al., 2009).
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Fig. 2. Temporal variations of(a) WSOC,(b) δ13CWSOC(red solid
squares) and NEE (blue dots),(c) MSA, and(d) ambient tempera-
ture and rainfall near the ground surface at a boreal forest site during
the period June 2009–December 2010. The red solid circles in(a),
(c), and (d) indicate average monthly values. Negative values of
NEE in (b) indicate uptake of CO2 by the forest ecosystem.

For determination of inorganic ions, another filter cut was
extracted with Milli-Q water. The total extract was filtrated
through a membrane disc filter, and major anions and cations
as well as MSA were determined using a Metrohm ion
chromatograph (Model 761 compact IC; Metrohm, Herisau,
Switzerland) (Miyazaki et al., 2009).

2.3 Net ecosystem exchange of CO2

Besides the aerosol measurements, we derived the net CO2
exchange between the forest ecosystem and the atmosphere
(net ecosystem exchange, NEE) to characterize the carbon
content in the aerosols in terms of forest biological activity.
NEE is defined as the sum of the eddy covariance fluxes at
28.5 m height above the canopy and the change in CO2 stor-
age in the volume from the ground to the height of the eddy
covariance system. The eddy-covariance fluxes were ob-
tained in a flux tower using a three-dimensional (3-D) sonic
anemothermometer and an infrared CO2/H2O analyzer (Li-
6262; LiCor, Lincoln, NE, USA) (Nakai et al., 2003). To
quantify the storage of CO2 below the altitude level of the
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eddy measurement, vertical profiles of CO2 concentrations
were measured at five altitude levels (2.7, 10.5, 16.3, 20.1,
and 29.6 m above the ground surface) via sampling inlets
mounted on the tower. Inside a shelter at the bottom of the
tower, the sample air from each altitude was introduced into
the CO2/H2O analyzer by rotation using an automatically
controlled solenoid valve manifold. In the present study, an
upward CO2 flux is considered to be positive, which means
that a negative NEE value indicates net uptake of CO2 by the
forest ecosystem. Further details of the NEE derived here are
given elsewhere (Nakai et al., 2003).

3 Results and discussion

3.1 Temporal variations of WSOC andδ13CWSOC

Figure 2a and b show the time series of WSOC concentra-
tions andδ13CWSOC near the forest floor over an 18-month
period. The WSOC concentrations peaked in early sum-
mer (May–June) and autumn (September–October), with av-
erages of 2.9±1.5 µgC m−3 and 1.7±0.6 µgC m−3, respec-
tively. To our knowledge, this is the first report on a full
annual cycle of WSOC andδ13CWSOC in forest aerosols.
Theδ13CWSOC exhibited a pronounced seasonal cycle, with
higher ratios during December–April and lower ratios dur-
ing June–September. The averageδ13CWSOC in summer was
−25.6±0.7 ‰, which is within the range (between−25 and
−27 ‰) of standard compounds for biogenic tracers (cis-
pinonic acid and sucrose) and of ambient WSOC aerosols
mostly of contemporary biogenic C3 plant origin (Kirillova
et al., 2010). Theδ13CWSOC value is also similar to those
of plant waxn-alcohols andn-acids in aerosols largely in-
fluenced by the temperate North American biosphere (Conte
and Weber, 2002). Althoughδ13CWSOC alone cannot differ-
entiate between primary and secondary WSOC in our data,
the results indicate a dominant input of precursor molecules
from C3 plants to WSOC from May to October, as gener-
ally expected in boreal forest. On the basis of the seasonal
cycle of theδ13CWSOC, the period during which the highest
WSOC concentrations were obtained can be characterized as
the growing season for forest vegetation at this site.

It should be noted that some anthropogenic sources have
δ13C values similar to those of C3 plants in aerosols (e.g.,
Widory et al., 2006). However, an insignificant contribu-
tion of anthropogenic sources to the observed aerosols in the
growing season is suggested by the substantially low con-
centrations of anthropogenic tracers (such as hopanes some
of which were not detetcted). Moreover, the predominant lo-
cal wind direction and speed in this season indicated that the
sampled aerosols originated mostly from the forested area,
as discussed in Sect. 2.1. The low concentrations of an-
thropogenic tracers together with the local wind data sup-
port the idea that theδ13C values in the growing season are

attributable mostly to C3 plants, rather than anthropogenic
sources.

Figure 2b also presents the time series of NEE together
with δ13CWSOC. In 2010, uptake of CO2 due to photosyn-
thesis by the forest ecosystem began in May and increased
(corresponding to negative values of NEE) rapidly to a max-
imum from late June through July. The estimated respiration
by the forest ecosystem increased after the disappearance of
snow cover in April (data not shown). The seasonal cycle
of δ13CWSOC closely followed that of NEE (r2 = 0.44). Even
though NEE can be interpreted as whole-ecosystem CO2 up-
take and may not be fully comparable to ourδ13CWSOC, the
covariant temporal trends ofδ13CWSOCand NEE suggest that
δ13CWSOCwas closely linked to the CO2 uptake by forest bi-
ological activity at this site. This indicates that the aerosols
collected here may be representative of the studied forest
area.

Notably, the seasonal variation of MSA also showed a
maximum during May and July (Fig. 2c). Possible sources
of this MSA maximum will be discussed later in Sect. 3.3.

3.2 Source apportionment of WSOC using positive
matrix factorization

3.2.1 Source profiles

To better understand the seasonal changes in the contribution
of possible sources to the observed WSOC, positive matrix
factorization (PMF) (Paatero and Tapper, 1994) was applied.
PMF can be used to identify underlying covariance among
chemical parameters. The PMF analysis was performed for
the collected samples using tracer compounds for BSOA,
PBAP, and other biologically derived tracer compounds as
well as inorganic species.

The analysis resulted in five interpretable factors, which
were characterized by the enrichment of each tracer com-
pound and reproduced more than 92 % of the measured
WSOC. Figure 3 shows composition profiles for the five
factors resolved by PMF. Factor 1 was dominated by 2-
methylerythritol (i.e., 86 % of 2-methylerythritol is in Fac-
tor 1) and 2-methylthreitol (87 %), both of which are
isoprene-SOA tracers (Claeys et al., 2004). Factor 2 was
characterized by 3-HGA (49 %) (Claeys et al., 2007), pinic
acid (38 %) (e.g., Yu et al., 1999), and 3-MBTCA (34 %)
(Szmigielski et al., 2007), indicating that WSOC was sig-
nificantly influenced byα-/β-pinene SOA. On the basis of
these characteristics of each source profile, Factors 1 and 2
are referred to here as “isoprene-SOA-rich WSOC” and “α-
/β-pinene-SOA-rich WSOC”, respectively.

Factor 3 was dominated by sucrose (89 %), whereas Fac-
tor 4 was characterized by trehalose (57 %). Saccharides
have recently been proposed as unique molecular tracers for
PBAPs such as spores, pollens, and fungi (e.g., Medeiros et
al., 2006). Sucrose is an important primary saccharide of
pollen grains (Pacini, 2000). On the other hand, trehalose is
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known to be a fungal metabolite as well as a stress protectant
for the soil microbial community, and has been proposed as
a marker compound for fungitive dust from biologically ac-
tive surface soils (Rogge et al., 2007). Factors 3 and 4 are
difficult to convincingly attribute to a specific source, given
the possibility that these saccharides originated from either
PBAPs or other biologically derived sources such as resus-
pended soil dust and associated biota (e.g., Graham et al.,
2003). However, each factor showed different contributions
to WSOC in terms of seasonal characteristics, as discussed
below. Thus, these two source factors are labeled here as
“sucrose-rich WSOC” and “trehalose-rich WSOC,” respec-
tively. Factor 5 showed enhanced contributions of both Na+

and anthropogenic tracers (e.g., hopanes), which could be a
mixture of sea salt and anthropogenic aerosols transported
from upwind regions.

3.2.2 Relative contributions of each factor to WSOC

Figure 4 shows the seasonal changes in the contribution of
each factor to WSOC as resolved by PMF. Average con-
centrations and ratios of each parameter are also summa-
rized in Table 1. In early summer,α-/β-pinene-SOA-rich
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Fig. 4. Estimated relative contributions of different sources to
WSOC concentrations resolved by PMF in each season. Open cir-
cles indicate the average concentrations of the measured WSOC.

Factor 2 accounted for 36 % of WSOC, whereas isoprene-
SOA-rich Factor 1 contributed only 4 %. Factor 2 was also
a significant contributor to WSOC in autumn (35 %), as ex-
pected from the peaks ofα-/β-pinene SOA tracers in the two
seasonal categories (Table 1). Among the measuredα-/β-
pinene SOA tracers, 3-HGA showed the highest concentra-
tions (2.1–9.3 ng m−3) throughout the study period, followed
by pinic acid. Kourtchev et al. (2009) also reported that
3-HGA showed the highest concentrations (with a median
value of 16.8 ng m−3) among theα-/β-pinene SOA tracers
for PM2.5 aerosols collected at a mixed coniferous/deciduous
forest site in K-puszta, Hungary, during summer 2003.

Conversely, Factor 3 contributed 35 % of WSOC in early
spring but was not apparent in autumn. The sucrose peak ob-
tained in early summer (Table 1) is generally in good agree-
ment with previous reports of the spring/early summer max-
ima of sucrose at boreal forests and rural sites (e.g., Medeiros
et al., 2006; Jia et al., 2010). The large fraction of sucrose-
rich Factor 3 suggests that pollen or pollen fragment sources
contributed significantly to WSOC in this season. Trehalose-
rich Factor 4 accounted for 24 % and 50 % of WSOC in early
summer and autumn, respectively. This implies that biologi-
cally derived sources such as resuspended soil dust and asso-
ciated biota contributed to WSOC in early summer and au-
tumn. In fact, the trehalose concentration showed positive
correlations with the concentrations of arabitol (r2 = 0.55)
and mannitol (r2 = 0.77), which are major fungal polyols in
many green algal lichens (Lewis and Smith, 1967; Dahlman
et al., 2003) and are well-known constituents of bacteria,
fungi, and lower plants (Bieleski, 1982). The result supports
the idea that fungal spores and fragments are the primary
source of trehalose. The relative enhancement of WSOC in
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Table 1. Averages with standard deviations of each parameter near the forest floor in each season during 2010.

Jan–Apr May–Jun Jul–Aug Sep–Oct Nov–Dec
(Winter–Spring) (Early Summer) (Summer) (Autumn) (Winter)

WSOC (µgC m−3) 1.0±0.3 2.9±1.5 1.5±0.4 1.7±0.6 1.2±0.4
δ13CWSOC (‰) −21.9±0.7 −24.0±0.8 −25.6±0.7 −24.7±0.8 −22.6±0.1
MSA (ng m−3) 30±8 64±15 52±23 30±7 27±12
α-/β-Pinene SOA (ng m−3)

3-HGAa 2.1±0.9 9.3±2.0 8.7±2.8 9.1±4.9 3.4±2.8
pinic acid 1.6±0.5 4.4±1.2 4.0±1.0 5.2±1.8 2.6±1.3
3-MBTCAb 0.1±0.2 1.1±0.3 1.3±0.5 1.3±0.7 0.4±0.4
pinonic acid 0.2±0.1 0.4±0.2 0.6±0.2 0.6±0.2 0.5±0.4

Isoprene SOA (ng m−3)
2-methylerythritol 0.1±0.1 3.9±3.8 24.8±14.1 16.2±12.3 0.2±0.1
2-methylthreitol 0.1±0.1 1.6±1.4 6.7±3.1 4.0±4.3 0.1±0.1

Sucrose (ng m−3) 25.0±53.9 176.5±220.1 2.8±2.1 3.2±1.6 1.0±0.4
Trehalose (ng m−3) 0.7±0.3 173.4±84 128.5±93.0 188.3±122.0 1.7±1.2
nss-SO2−

4 (µg m−3) 3.3±1.2 4.6±2.0 3.8±2.0 2.5±1.6 3.0±0.6
Ambient Temperature (◦C) −1.7±4.4 14.1±4.7 21.8±2.0 14.0±5.5 1.5±4.6

a3-HGA: 3-hydroxyglutaric acid.b3-MBTCA: 3-methyl-1,2,3-butanetricarboxylic acid.

autumn was likely due to enhanced contributions from mi-
crobially degraded materials during the period of leaf senes-
cence and decay in this season (Nakai et al., 2003). Given
that Factors 3 and 4 are both associated with the PBAPs frac-
tions of WSOC, PBAPs can account for 57 % and 50 % of
the WSOC peaks in the two seasons, respectively. In sum-
mary, the present results indicate that at this forest site, the
SOA formations associated mainly withα-/β-pinene oxida-
tion and the primary emissions from biological sources con-
tribute almost equally to the peak of WSOC in TSP in the
growing season of early summer as well as in autumn.

The isoprene-SOA-rich factor (Factor 1) had different sea-
sonality, with peaks in midsummer (July-August) account-
ing for 40 % of WSOC. This seasonal pattern is mainly at-
tributable to the fact that isoprene originates only from pho-
tosynthetic tissues (i.e., shoots of ground vegetation) (Guen-
ther et al., 2006); emissions are typically highest in mid-
summer (Aaltonen et al., 2011), when photosynthesis be-
comes most active. Note that the average WSOC was rel-
atively low in July both in 2009 and 2010, even though the
δ13CWSOC values indicate a dominant contribution of pre-
cursor molecules from C3 plants and intense photochemical
activity. This may have been partly caused by an enhanced
scavenging of aerosols because relatively large amounts of
rainfall (>200 mm month−1) were recorded (Fig. 2d). Nev-
ertheless, the PMF analysis indicates that biogenic SOA
production (46 % from isoprene SOA and 54 % fromα-/β-
pinene SOA) was the dominant source of WSOC in TSP in
the midsummer period.

3.3 Possible sources of MSA

As described in Sect. 3.1, MSA exhibited a distinct sea-
sonal variation with maximum values during May and July as
shown in Fig. 2c. The concentrations of MSA (9–95 ng m−3)
are similar to the ranges reported in previous studies (∼10–
100 ng m−3) in marine aerosols (e.g., Ayers and Gras, 1991).
The increase in the MSA concentrations may have been due
to either enhanced contributions of marine air masses advec-
tively transported from the sea or the oxidation of terres-
trial biogenic DMS (Lamb et al., 1987). In fact, emissions
of sulfur gases (DMS, H2S, and CS2) have been reported
for plant canopies (deciduous trees and pines) (Andreae et
al., 1990) and mollisol and histisol soil (Lamb et al., 1987).
Fig. 5 shows vertical profiles of several parameters within
the forest canopy in summer, autumn, and winter. The differ-
ence in the MSA at two heights is statistically significant in
summer and autumn (Fig. 5a): the concentration was higher
near the forest floor (42±16 ng m−3) than at the 15-m level
(30±15 ng m−3) throughout these seasons. The vertical gra-
dient of MSA indicates an upward mass flux. Similar verti-
cal profiles were also found for WSOC in summer and au-
tumn (Fig. 5b). In contrast, MSA showed an anti-correlation
with Na+ during summer and autumn, with enhanced con-
centrations occurring in the two seasons whenδ13CWSOCde-
creased (Fig. 5c) near the ground. Moreover, according to
the analysis of the local wind analysis, the majority of the
observed aerosols in summer and autumn were likely influ-
enced by emissions from major forested regions rather than
marine sources, as shown in Fig. 1. In combination, these
findings indicate that the enhanced concentrations of MSA
in summer were most likely due to production from DMS
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that originated from the forest floor rather than transport of
MSA from oceanic regions.

3.4 Implications for WSOC production near the forest
floor

Negative vertical gradients were also found for theα-/β-
pinene SOA tracers determined here (e.g., 3-HGA shown in
Fig. 5d) both in summer and autumn. The average concentra-
tions of 3-HGA were about two times higher near the forest
floor than at the 15-m level in the two seasons. Aaltonen et
al. (2011) recently reported that BVOC emissions from a bo-
real forest, mostly consisting of monoterpenes, also peaked
in early summer and autumn. They attributed the seasonal
variations to changes in the amount and types of litter, soil
microbial activity, and physiological stages of plants, point-
ing out that the boreal forest floor can be a significant source
of BVOC. Furthermore, MSA showed a statistically sig-
nificant correlation with 3-HGA (r2 = 0.50) and 3-MBTCA
(r2 = 0.55) in our data. The result indicates that the canopy
floor in a boreal forest is likely a significant source of WSOC
in summer and autumn.

It should be noted that turbulent exchange of air between
the forest and the atmosphere above can partly cause the
lower concentrations of WSOC and the other tracers at the
15-m level. However, the vertical gradient ofδ13CWSOC was
insignificant (Fig. 5c) in the two seasons as well as in win-
ter. Moreover, several samples taken only at night, when the
forest and the air above the canopy would be decoupled, also
showed the significant vertical gradient of WSOC (data not
shown). It is also noted that trapping of WSOC beneath the
canopy, which is significant mainly at night (e.g., Holzinger
et al., 2005), can partly explain the negative vertical gradient.
However, the time scale for each sample in our study is on the
order of a week. Our data show averaged vertical profiles of
WSOC including the data during the day when WSOC might
be vertically well-mixed within the canopy. In addition, even
when the vertical gradients ofδ13CWSOC and potential tem-

perature were insignificant (i.e., when vertical mixing was
likely significant within the canopy), the vertical gradients of
α-/β-pinene tracers and WSOC remained significant. These
results support possible sources near the forest floor. More
data including both BSOA tracers and VOCs near the forest
floor over a time scale of a few years are needed to discuss
the representativeness of the data at this site in future study.

In addition to the source strength, photochemical activ-
ity is also an important factor to control the concentrations
of secondarily formed WSOC. Zhang et al. (2010) recently
found an Arrhenius-type correlation between the 3-MBTCA
concentration and inverse temperature with a temperature
range of 275–300 K based on ambient aerosol samples in
central Europe. They suggested that the temperature de-
pendence of 3-MBTCA is largely due to enhanced photo-
chemical production by hydroxyl radicals (OH), indicating
that 3-MBTCA can be used as a tracer for chemical aging
of BSOA by OH. Considering that 3-MBTCA is formed by
OH-initiated oxidation ofcis-pinonic acid (PA) (Szmigiel-
ski et al., 2007), the 3-MBTCA/PA ratio can be an indica-
tor of photochemical aging of BSOA. In our samples, the 3-
MBTCA/PA ratio was highest in early summer (2.59) com-
pared with other seasons (0.72–2.38) (Table 1). This result
implies that photochemical activity as well as intense emis-
sions of BVOC from the forest floor can contribute to an in-
crease in WSOC concentrations in early summer.

3.5 Possible sources of WSOC in winter

In winter, Factor 5, in which a mixture of sea salt and an-
thropogenic aerosols dominated, was a major contributor to
WSOC (∼56–83 %). This is consistent with theδ13CWSOC,
which exhibited higher values (−21.9±0.7 ‰) from De-
cember through April, similar to a typicalδ13C range of
OC in seawater and in marine aerosols (−20 ‰ to −22 ‰)
(Turekian et al., 2003; Miyazaki et al., 2011). Addition-
ally, the local wind direction supports that the air mass was
influenced by the upwind marine region during this period
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(Fig. 1). These results indicate a predominant contribution of
marine aerosols from an upwind oceanic region during this
period. Note that an effect of some minor isotopic fraction-
ation onδ13CWSOC cannot be ruled out a priori. This pro-
cess may occur during oxidation of VOCs and partitioning of
WSOC to the aerosol phase (Fisseha et al., 2009). However,
reported isotopic effects onδ13C during aerosol formation
and reactions relevant toδ13CWSOC are on the order of 0–
2 ‰ (e.g., Rudolph et al., 2003; Widory, 2006; Fisseha et al.,
2009), which is lower than the difference in theδ13CWSOC
between summer and winter (1 ∼4 ‰). Therefore, such pro-
cesses would not have significantly affected the source ap-
portionment ability ofδ13CWSOC in this study.

The vertical gradients of WSOC in winter were fairly weak
compared to those in other seasons, likely due to the snow
coverage from mid-December until March at the site. In bo-
real forest soils, lower temperature and snow cover in win-
ter may suppress, but not completely halt, microbial activity
(Kähk̈onen et al., 2001). The current results imply that the
forest floor (ground vegetation and/or soil) acts as a signifi-
cant source of WSOC within the forest canopy.

4 Conclusions

This paper presents the seasonal changes in biogenic WSOC
in the canopy of a deciduous forest based on the aerosol sam-
ples collected in 2009–2010. Theδ13CWSOC in aerosols ex-
hibited a distinct seasonal cycle, with depleted ratios from
June through September (−25.5±0.5 ‰). Theδ13CWSOC in
summer and autumn is within that reported for contemporary
biogenic C3 plant origin, indicating a dominant input of pre-
cursor molecules from C3 plant ecosystems to WSOC. The
seasonal cycle ofδ13CWSOC corresponds to that of the CO2
uptake by the forest ecosystem from the atmosphere, indicat-
ing thatδ13CWSOC reflected the degree of biological activity
at this forest site.

The WSOC concentrations showed peaks in early summer
and autumn. PMF analysis indicated that factors in which
BSOA (mostlyα-/β-pinene SOA) dominated (∼40 %) and
PBAPs dominated (∼57 %) made similar contributions to the
maximum WSOC near the forest floor in early summer. The
findings suggest that the growing season of forest vegetation
is important for both primary and secondary formation of
WSOC in a deciduous forest. In contrast, the PMF analy-
sis indicated that biogenic SOA production was the domi-
nant source of WSOC in midsummer. We found that MSA
concentrations were also highest in early summer, with a dis-
tinct vertical gradient. Together with the similar vertical gra-
dients of WSOC andδ13CWSOC as well as theα-/β-pinene
SOA tracers, our results imply that the forest floor, including
ground vegetation and soil, is a significant source of WSOC
in TSP within a forest canopy.
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