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Abstract. Positive matrix factorization (PMF) of high-
resolution laboratory chamber aerosol mass spectra is ap-
plied for the first time, the results of which are con-
sistent with molecular level MOVI-HRToF-CIMS aerosol-
phase and CIMS gas-phase measurements. Secondary or-
ganic aerosol was generated by photooxidation of dode-
cane under low-NOx conditions in the Caltech environmental
chamber. The PMF results exhibit three factors representing
a combination of gas-particle partitioning, chemical conver-
sion in the aerosol, and wall deposition. The slope of the
measured high-resolution aerosol mass spectrometer (HR-
ToF-AMS) composition data on a Van Krevelen diagram is
consistent with that of other low-NOx alkane systems in the
same O : C range. Elemental analysis of the PMF factor mass
spectral profiles elucidates the combinations of functionality
that contribute to the slope on the Van Krevelen diagram.

1 Introduction

The processes by which the atmospheric oxidation of volatile
organic compounds (VOCs) leads to low volatility products
that partition into the aerosol phase, forming Secondary Or-
ganic Aerosol (SOA), are complex and not thoroughly under-
stood. Gas-phase oxidation processes are key in SOA forma-
tion, but there is increasing evidence that chemistry occur-
ring in the particle phase, as well, may be important in pro-
ducing the low-volatility, oxygenated compounds that char-
acterize SOA. Laboratory chamber studies are essential to
understand the lifecycle of organics involved in the forma-
tion of SOA. In such chamber experiments, measurements
of both gas- and particle-phase chemical composition pro-
vide a window into the complex chemistry of SOA forma-
tion. While measurement of the complete suite of compounds
involved in SOA formation is generally not feasible, key
observations can provide considerable insight into the na-
ture of the multi-generation gas-phase oxidation that char-
acterizes SOA formation. High-Resolution Time-of-Flight
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Aerosol Mass Spectrometer (HR-ToF-AMS) measurements
of aerosol composition enable derivation of a number of key
SOA properties; these include the atomic oxygen-to-carbon
and hydrogen-to-carbon ratios (O : C and H : C), from which
one can infer the overall oxidation state of the aerosol. The
full HR-ToF-AMS spectrum, over the course of SOA for-
mation and evolution, comprises a large number of mass-
to-charge ratios (m/z), which contain time-dependent infor-
mation on the overall processes occurring. Positive Matrix
Factorization (PMF) has proved to be a powerful procedure
for analyzing HR-ToF-AMS spectra in terms of the evolu-
tion of major mass spectral factors (Lanz et al., 2007; Ulbrich
et al., 2009; Aiken et al., 2009; Ng et al., 2010; Hersey et al.,
2011; Fry et al., 2011). The factor profile extracts the con-
tributions from a number of masses that are co-correlated,
providing information on the time evolution of the aerosol
composition that is not immediately evident from the com-
plex aerosol spectrum. We present here the first application
of PMF to HR-ToF-AMS spectra obtained in a laboratory
chamber investigation of SOA formation.

The present study is part of a comprehensive investiga-
tion of SOA formation from large alkanes. Historically, alka-
nes have been considered a significant atmospheric compo-
nent of the unresolved complex mixture (UCM) of organ-
ics (Schauer et al., 2001, 2002). With the advent of a re-
cently developed soft ionization gas chromatography tech-
nique, the unresolved complex mixture has been character-
ized at the molecular level to containn-alkanes, cycloalka-
nes, bicycloalkanes, tricycloalkanes, and steranes (Isaacman
et al., 2012). Pye and Pouliot(2012) predict from the Com-
munity Multiscale Air Quality (CMAQ) model the SOA
yield from alkanes and PAHs to be 20 to 30 % of that from
anthropogenic hydrocarbons. In particular, the linear alkane
is predicted to dominate the SOA yield for the C12 alkanes.
This first phase of the comprehensive investigation of alka-
nes focuses on high-resolution HR-ToF-AMS spectra of do-
decane (C12H26) SOA. In conjunction with Chemical Ioniza-
tion Mass Spectrometer (CIMS) measurements, and Micro-
Orifice Volatilization Impactor Coupled to a Chemical Ion-
ization Mass Spectrometer (MOVI-HRToF-CIMS), the ap-
plication of PMF provides insight into the multi-generational
and multi-phase processes involved in SOA formation and
aging.

2 Experimental

Experiments were carried out in the Caltech environmental
chamber facility, which is comprised of dual 28 m3 teflon
chambers (Table1, Cocker et al., 2001). Experiments were
carried out in a low-NOx environment with hydrogen per-
oxide (H2O2) photolysis as the OH source. For each experi-
ment, 280 µl of 50 % wt aqueous H2O2 solution was evapo-
rated into the chamber, followed by atomization of 0.015 M
aqueous ammonium sulfate (AS) solution for seed particles,

which were subsequently dried. Finally, the specific volume
of liquid dodecane necessary to achieve the desired gas-
phase concentration was evaporated into the chamber. The
oxidant, seed, and hydrocarbon mixed for 1 h prior to irradi-
ation.

2.1 High-resolution time-of-flight aerosol mass
spectrometer

In the Aerodyne high-resolution time-of-flight aerosol mass
spectrometer (HR-ToF-AMS), aerosol is sampled at atmo-
spheric pressure through an aerodynamic lens into a par-
ticle time-of-flight chamber, at the end of which the par-
ticles impact a 600◦C heater and 70 eV filament assem-
bly where they are vaporized and ionized. The aerosol
ion fragments are then orthogonally extracted into the ion
time-of-flight chamber where they are sampled in either V
(higher signal) or W (higher resolution) mode. For these
experiments, both modes were utilized at a 1 min sequen-
tial sampling rate. The V-mode was utilized for PMF anal-
ysis, as the higherm/z values exhibit a more favorable
signal-to-noise ratio; the W-mode was used for ion identi-
fication, clarification, and elemental analysis. The V-mode
and W-mode can be set to measure bulk aerosol compo-
sition in which all of the particles within the transmission
of the instrument (60–600 nm with 100 % transmission effi-
ciency) are measured. This is commonly referred to as mass
spec.-mode (MS-mode). The HR-ToF-AMS can also mea-
sure size-resolved chemistry by employing the particle time-
of-flight-mode (PTOF-mode) in which the aerosol beam is
chopped in the particle time-of-flight chamber and single par-
ticles are sized and sampled. All HR-ToF-AMS data were
processed with “Squirrel”, the ToF-AMS Unit Resolution
Analysis Toolkit (http://cires.colorado.edu/jimenez-group/
ToFAMSResources/ToFSoftware/index.html), in Igor Pro
Version 6.22A (Wavemetrics, Lake Oswego, OR). Adjust-
ments to the fragmentation table were made to correct for
air interferences based on measurements made at the begin-
ning of each experiment with a particle filter in-line with the
chamber sample line and the HR-ToF-AMS (Allan et al.,
2004). The ToF-AMS High Resolution Analysis software
tool PIKA (Peak Integration by Key Analysis) was employed
for high-resolution analysis (DeCarlo et al., 2006). Elemental
ratios were calculated using the technique outlined byAiken
et al.(2008) andChhabra et al.(2010).

2.2 Chemical Ionization Mass Spectrometer

A Chemical Ionization Mass Spectrometer (CIMS) was em-
ployed for the measurement of gas-phase photooxidation
products, including key intermediates contributing to the
particle phase. The CIMS consists of a Varian 1200 triple
quadrupole mass spectrometer that has been modified to ac-
commodate a custom ionization region. Sample air from the
environmental chamber flows at 190 sccm into a glass flow
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Table 1.Experimental conditions for dodecane low-NOx photooxidation.

Exp # duration initial hydrocarbon conc. seed type initial seed volume HR-ToF-AMS mode
(h) (ppb) (µm3 cm−3)

1 18 34 AS 9.1 MS-mode, (V and W)
2 34 34 AS 11.4 (MS-mode (V and W)
3 18 33 AS 12.0 (MS-mode (V and W)
4 18 50 AS 14.1 MS-mode (V and W), PTOF-mode (V)
5 18 300 AS 34.7 MS-mode (V and W), turned heater off

tube, where it is diluted by a factor of nine with N2 gas.
It then enters the chemical ionization region. The CIMS
uses CF3OOCF3 reagent gas, generating cluster products at
[X.CF3O]− and fluoride transfer products at [X.F]−, where
X is the analyte. Hydroperoxide-containing species are de-
tected as a cluster product, and strongly acidic species are
primarily detected as the transfer product. More weakly
acidic species can be detected as both a cluster and transfer
product. In these experiments, such products were tracked
with the CIMS as discussed previously (Yee et al., 2012).
Additional details of the instrument and its general operation
have been described elsewhere (St. Clair et al., 2010; Paulot
et al., 2009; Crounse et al., 2006).

2.3 Micro-orifice volatilization impactor coupled to a
high-resolution time-of-flight chemical ionization
mass spectrometer

A micro-orifice volatilization impactor coupled to a high-
resolution time-of-flight chemical-ionization mass spectrom-
eter (MOVI-HRToF-CIMS) was employed. Analysis in the
MOVI-HRToF-CIMS is a two-step cycle in which (i) gas-
phase compounds are measured by the high-resolution
TOFMS while aerosols are collected, and (ii) collected
aerosols are then thermally vaporized with composition mea-
sured by the spectrometer. Chemical ionization (CI) pre-
serves the parent ion in most cases, which, when combined
with a high-resolution TOF analyzer, allows determination
of the elemental composition of the molecular ions in the
mass range of 17–550m/z with a mass resolution of 4500
for mass to charge> 100 (Yatavelli and Thornton, 2010;
Yatavelli et al., 2012).

2.4 Positive Matrix Factorization (PMF)

Positive Matrix Factorization (PMF) has emerged as a pow-
erful technique for source apportionment of HR-ToF-AMS
measurements of ambient aerosol (Paatero and Tapper, 1994;
Jimenez et al., 2009; Lanz et al., 2007; Ulbrich et al., 2009;
Aiken et al., 2009; Hersey et al., 2011; Ng et al., 2010;
Allan, 2003; Zhang et al., 2011). Here, the application of
PMF to HR-ToF-AMS spectra to investigate SOA forma-
tion in a laboratory chamber is reported for the first time.
The factors are groups of ions (or fractions of ions) that

vary together in time. For chamber experiments, this vari-
ation could result from processes such as gas-particle par-
titioning, chemical conversion in the aerosol, or wall loss
of either individual molecules, or more likely a group of
molecules with similar chemical character, such as the gas-
phase products from a specific generation of gas-phase ox-
idation. Gas-phase measurements support and the dodecane
low-NOx mechanism predicts the multi-generation produc-
tion of increasingly oxidized gas-phase products, which are
expected to condense at different times. The AMS-PMF
time series results are compared with molecular level detail
of the CIMS gas-phase and MOVI-HRToF-CIMS aerosol-
phase measurements, linking the HR-ToF-AMS high time-
resolution electron impact ion information to the com-
plex aerosol molecular level composition. The PMF re-
sults are explored using the PMF Evaluation Tool Version
2.04 in Igor Pro (http://cires.colorado.edu/jimenez-group/
wiki/index.php/PMF-AMSAnalysisGuide, Ulbrich et al.,
2009). The details of implementing PMF are given in the Ap-
pendix A.

3 Results

SOA formation and aging comprise a number of atmospheric
processes: (1) gas-phase reactions involving the primary or-
ganic and its oxidation products that involve functionaliza-
tion and fragmentation; (2) gas-particle partitioning of lower
volatility products; (3) chemical reactions in the aerosol
phase that can lead to even lower volatility compounds or, in
some cases, fragmentation and return to the gas phase. In in-
terpreting the results of laboratory chamber experiments, one
must also consider the effect of deposition of gases and parti-
cles to the chamber walls. In the present study we seek, via a
combination of HR-ToF-AMS and CIMS measurements, to
evaluate both gas- and particle-phase routes to formation of
oxidized compounds.

3.1 Elemental ratios

Figure1 shows the evolution of total organic aerosol mass
during the longer experiment (Table1). The O : C and H : C
elemental ratios of the aerosol provide information on the
bulk chemical evolution over the course of the experiment.
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2 ion. The triangles are 30 min averages of the data.

The first reliable O : C measurement yields a value near 0.22,
which is consistent with the predicted early aerosol prod-
uct, the C12 carbonyl hydroperoxide (product formula of
C12H24O3, O : C of 0.25). Upon further OH exposure, the
O : C ratio grows to about 0.3. The H:C ratio is initially at
1.7, reflecting the oxidized nature of the aerosol composi-
tion at a relatively early stage of formation. The H : C ratio
then increases after early growth to 1.79 and then decreases
to 1.69 at 34 h. Dodecane itself has an H : C of 2.17 and an
O : C of 0, so the initially high H : C and low O : C reflect the
early oxidation stage of aerosol. The C2H+

4 ion was removed
from the mass spectra owing to large interference with the
N+

2 ion, but with little effect on the absolute value and time
trend of the elemental ratios. Individual high resolution ions
provide further information on those masses in the spectrum
that are driving the evolution of the aerosol chemical compo-
sition.

3.2 High-resolution ion analysis

The higher mass ions (> m/z 100) in the HR-ToF-
AMS spectrum provide key information regarding the low-
volatility SOA constituents. Owing to the fragmentation
caused by electron impact ionization, numerous ion combi-
nations contribute to each nominal mass; the larger the mass,
the greater the potential information regarding molecular de-
tail, but the greater challenge in extracting that information.
An explicit chemical mechanism of dodecane oxidation is
critical in identifying individual ions, as well as patterns in
the HR-ToF-AMS spectrum. A simplified schematic of the
low-NOx mechanism presented byYee et al.(2012) is shown
in Fig. 2.

At early growth,m/z 183 andm/z 215 dominate the signal
for m/z > 100 (Figs.3 and4). At the outset, the only appar-
ent ion atm/z 183 is C12H23O+, but by the end of oxida-
tion, C10H15O

+

3 has clearly grown in as a “left-side” neigh-
bor to the original ion. This same type of behavior occurs for
m/z 215 and, indeed, for almost all of the other masses in the
spectrum. These developing patterns allow for a systematic
identification of the ions at each mass. In each case, the later
neighboring ion(s) have fewer carbons and more oxygens,
as expected from continuous multi-generation oxidation. The
unit mass resolution signals ofm/z 183 andm/z 215, shown
in Figs.3 and4, emphasize the difference in information be-
tween the unit mass and high-resolution analysis. The high
resolution ions well pastm/z 100 provide ion trend informa-
tion (see Sect. 3.3), even if these ions do not influence the
overall H : C and O : C ratios owing to small mass contribu-
tions.

3.3 Varying time trends for C12 ion fragments

The ions at higherm/z provide unique time traces from
which inferences about the aerosol composition can be
drawn. For example, the time series of C12 fragments in
Fig. 5 shows distinct maxima during the course of the ex-
periment. Since the parent hydrocarbon is a C12 molecule,
the fragments shown in Fig.5 are close to molecular level
detail. The steady increase in signal of the less oxidized
ion C12H23O+ at m/z 183, followed by the increase of
C12H21O

+

2 at m/z 197, and then C12H19O
+

3 at m/z 211 re-
flect the incorporation of increasingly oxidized products to
the aerosol. The processes by which each ion reaches a max-
imum and then decreases are more challenging to infer. De-
position of aerosol to the chamber walls will cause the ion
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signals to decrease (Sect. 3.6). A decreasing trend could also
be the result of partitioning of products back to the gas-
phase as their gas-phase equivalent reacts. Then, upon fur-
ther oxidation in the gas-phase, the product re-condenses as
a more oxidized species. Chemical conversion of the con-
densed products would provide another explanation for some
ions to be decreasing, at the same time other ions are increas-
ing. In electron impact ionization a particular ion fragment
can be produced from two different compounds. This effect
is magnified in the smallerm/z’s, for example, the C2H+

3 ion

at m/z 27, which is dominant throughout the entire experi-
ment and a common fragment for alkyl molecules.

The ions identified in the HR-ToF-AMS spectra are a lin-
ear combination of the molecules in the aerosol; positive
matrix factorization is well suited for long-duration cham-
ber experiments, especially with ions that have unique time
trends. The PMF results are an attempt to rebuild the molecu-
lar trend information that is lost from electron impact ioniza-
tion in the HR-ToF-AMS. The less harsh ionization methods
of both the heating mode of the MOVI-HRToF-CIMS and
gas-phase measurements from the CIMS provide molecular
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level information that the HR-ToF-AMS is unable to obtain,
but to which the PMF results show similarity. From this com-
parison, molecular information can be inferred about the HR-
ToF-AMS spectra, and how compounds fragment in the HR-
ToF-AMS. Moreover, PMF results can be applied to obtain
insight into the partitioning of the populations of oxidized
molecules and the aerosol composition that evolves with con-
tinued oxidation.

3.4 Three-factor PMF solution

The PMF results for low-NOx SOA formation from dode-
cane oxidation exhibit three distinct time traces with their
correlating factor mass spectral profiles (Figs.6 and7) . The
three factor time series, shown in Fig.6, are overlaid with
the total organic loading to emphasize the relationship of
each factor to the total SOA mass. The O : C ratio traces the
overall oxidation state in the aerosol, and the PMF factors
help explain that behavior. Factor 1, in grey, is dominant in
the early aerosol growth and contains the least oxidized ions
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Fig. 7.The 3-factor mass spectra profiles in terms of their families. The ions pastm/z 100 are multiplied by 30 to amplify signal strength.

(has the highest H:C ratio) of the factors. Factor 2 grows in
next, peaks after factor 1, and then decreases. Factor 3 con-
tains the highest contribution to the CO+ and CO+

2 ions and
other O2, O3, O4, and O5 – containing ions, explaining the
steady increase in O:C over the course of the experiment.
The CO+

2 ion is the tracer for carboxylic acid in the HR-ToF-
AMS (Aiken et al., 2008), which could explain the increase
in O : C; however, the existence of the> 2 oxygen ion frag-
ments indicates the O : C ratio increase could also be due to
highly functionalized compounds, and not solely carboxylic
acids, an observation supported by the chemical mechanism
(Fig. 2) and the Van Krevelen Diagram (Sect. 3.7).

The mass spectral profiles of the factors are presented in
Fig.7, in which ions with different oxygen contents (different
ion families) are highlighted by different colors. The mass
percentage of each family to the total factor is presented in
each factor’s legend. Each factor profile has distinct, unique
masses in the> m/z 100 range. While it is difficult to iden-
tify an ion unique to one factor, certain ions have a higher
contribution to one factor than another. Pearson’s r correla-
tion of each ion in the spectrum to each factor time series
was used to identify which unique ions contribute the most
to each factor. The 10 ions with the highest correlation in
time with the factor profiles are tagged in the figure, with the
top ion surrounded by a box. These are also listed in Table3.
The time trends of the top 3 ions correlating with each factor
are displayed in Fig.8. These ions provide the basis for iden-
tifying HR-ToF-AMS tracer ions for different generations of
oxidation products. The interpretation of these factor time se-
ries and mass spectral profiles is aided by a chemical mech-

anism of dodecane oxidation, as well as comparison of time
series to CIMS and MOVI-HRToF-CIMS data and individual
HR-ToF-AMS ions.

3.5 Chemical interpretation of PMF solution

Factor 1 mass spectra and time series correlations with CIMS
(Fig. 10) and MOVI-HRToF-CIMS (Fig.11) ion time traces
suggest that factor 1 could be C12 carbonyl hydroperoxide
or C12 dihydroperoxide gas-to-particle partitioning (CAR-
BROOH or DIROOH, Fig.2, see grey shaded box) and pos-
sibly peroxyhemiacetal formation (see inset from Fig.2). A
C18H38 low-NOx photooxidation experiment was carried out
to produce a hydroperoxide standard and to understand the
hydroperoxide fragmentation pattern in the HR-ToF-AMS
(Fig. 9 and Table4). The first product from C18H38 low-NOx
photooxidation is the hydroperoxide, which because of its
long carbon chain, is expected to condense immediately onto
the aerosol. Removal of HO2 from the C18 hydroperoxide
is supported by the C18H

+

37 ion in the HR-ToF-AMS spec-
trum; this ion is considered a tracer for the C18 hydroperox-
ide.Fraser et al.(1970) also saw alkyl ions with 70 eV elec-
tronic impact ionization mass spectrometry measurements of
alkyl hydroperoxides and attributed these peaks to HO2 elim-
ination from the hydroperoxide. The C3H7O+

2 ion is also
considered to be a tracer for the hydroperoxide-like com-
pound since it has the highest percent difference between
the C18H38 condensation spectrum before irradiation and the
mass spectrum immediately after irradiation.

For dodecane, we do not expect the C12 hydroperoxide
to partition to the particle phase, but we do expect the C12

Atmos. Chem. Phys., 12, 11795–11817, 2012 www.atmos-chem-phys.net/12/11795/2012/
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Fig. 8.Factor time series with the top three highest Pearson’s r correlating HR-ToF-AMS ions.

Table 2. Ion fragments.

m/z Ion possible identification

169 C12H25
+ hydroperoxide, hydroperoxide-peroxyhemiacetal

201 C12H25O+

2 hydroperoxide-peroxyhemiacetal

185 C12H25O+ hydroxy hydroperoxide, hydroxy hydroperoxide-peroxyhemiacetal
217 C12H25O+

3 hydroxy hydroperoxide-peroxyhemiacetal

183 C12H23O+ carbonyl hydroperoxide, carbonyl hydroperoxide-peroxyhemiacetal
215 C12H23O+

3 carbonyl hydroperoxide-peroxyhemiacetal

197 C12H21O+

2 dicarbonyl hydroperoxide, dicarbonyl hydroperoxide-peroxyhemiacetal

229 C12H21O+

4 dicarbonyl hydroperoxide-peroxyhemiacetal

199 C12H23O+

2 hydroxy carbonyl hydroperoxide, hydroxy carbonyl hydroperoxide-peroxyhemiacetal

231 C12H23O+

4 hydroxy carbonyl hydroperoxide-peroxyhemiacetal

211 C12H19O+

3 tricarbonyl hydroperoxide, tricarbonyl hydroperoxide-peroxyhemiacetal

243 C12H19O+

5 tricarbonyl hydroperoxide-peroxyhemiacetal

carbonyl hydroperoxide to partition (Yee et al., 2012). The
presence of ion fragment C12H23O+ at m/z 183 supports
this explanation (Fig.3). The C12H23O3

+ ion at m/z 215
(a 32m/z and O+

2 difference from the carbonyl hydroperox-
ide ion) trends with the C12H23O

+

3 ion with a Pearson’s r of
0.986 and is the ion with the highest correlation in the entire
spectrum to C12H23O+. A possible assignment of C12H23O

+

3

in correlation with C12H23O+ is the peroxyhemiacetal corre-
sponding to the carbonyl hydroperoxide (possible fragmen-
tation at site 2 of peroxyhemiacetal, see inset in Fig.2). Al-
though the fragmentation of a peroxyhemiacetal standard in
the HR-ToF-AMS can not be confirmed, the chemical mech-
anism prediction of aldehyde formation in the gas-phase and
evidence for hydroperoxides in the gas- and particle-phase

www.atmos-chem-phys.net/12/11795/2012/ Atmos. Chem. Phys., 12, 11795–11817, 2012
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Table 3.HR-ToF-AMS ions with highest Pearson’s r values forfpeak= 0.2 solution.

Pearson’s r with Ion Formula Ion Mass Pearson’s r with Ion Formula Ion Mass Pearson’s r with Ion Formula Ion Mass
factor 1 (µg m−3) factor 2 (µg m−3) factor 3 (µg m−3)

0.888964 C12H23O 183.175 0.992157 C12H23O2 199.17 0.978408 C10H15O3 183.102
0.858995 C12H23O3 215.165 0.975248 C8H13 109.102 0.970308 C4H5O3 101.024
0.854958 C3H7O2 75.0446 0.973654 C7H13O 113.097 0.95434 C8H11O3 155.071
0.851494 C6H12 84.0939 0.973188 C7H13 97.1017 0.953511 C5H7O3 115.039
0.835077 C5H11O2 103.076 0.972338 C8H15O 127.112 0.949821 C9H13O3 169.087
0.830188 C4H9O2 89.0603 0.972216 C7H11 95.0861 0.947504 C7H11O3 143.071
0.83002 C5H10 70.0782 0.970214 C12H21O2 197.154 0.94481 C12H19O3 211.133
0.819021 C7H14 98.1096 0.969585 C9H15 123.117 0.943721 C10H16O3 184.11
0.812879 C2H5O2 61.0289 0.969189 C6H11 83.0861 0.941672 C10H13O3 181.087
0.775934 C4H8 56.0626 0.968232 C6H11O 99.081 0.939138 C3H3O3 87.0082

suggest that peroxyhemiacetal formation or other oligomer-
ization processes are possible.

Figure8 shows the PMF factor time series with the top 3
correlating HR-ToF-AMS ions. The C3H7O+

2 ion atm/z 75,
which is a suggested hydroperoxide tracer (Table4), nearly
overlaps factor 1 for the first 15 h, after which the time trend
of C3H7O2

+ decays more slowly than factor 1; this is be-
cause the hydroperoxide functionalization could also have
a contribution to factor 2, or later generations of oxidation
products. C12H23O+ at m/z 183 and C12H23O

+

3 at m/z 215
also have a high correlation, although these ions grow in
slightly after the hydroperoxide ion atm/z 75. The difference
between the individual ions trends and the PMF time trace is
expected since the PMF factor represents the bulk variation
of the aerosol composition over time and is not necessarily
expected to exactly overlap with individual ion trends. Addi-
tionally, due to the fragmentation in the HR-ToF-AMS, sin-
gle ions can contribute to multiple factors. The top 10 ions
with the highest Pearson’s r values for each factor show this
effect (Fig.A1). The chemical interpretation of factor 1 is
also supported by comparison to the CIMS gas-phase mea-
surement of positive modem/z 204, the suggested product
being the carbonyl hydroperoxide (Fig.10, Yee et al., 2012)
as well as the MOVI-HRToF-CIMS heating-mode measure-
ment of the C12H21O3

+ ion, which is likely the chemical
ionization product of a C12 dihydroperoxide (Fig.11).

HR-ToF-AMS, CIMS, and MOVI-HRToF-CIMS mea-
surements suggest that factor 2 represents the gas-phase par-
titioning of tri-functionalized products and their correspond-
ing peroxyhemiacetals (see pink shaded boxes in Fig.2). Fac-
tor 2 correlates highly with HR-ToF-AMS ion C12H23O

+

2
at m/z 199, which is the suggested ion tracer for the hy-
droxy carbonyl hydroperoxide (OHCARBROOH). Factor 2
also correlates well with the CIMS gas-phase positive mode
m/z 219, which is the suggested dicarbonyl hydroperox-
ide product (Fig.10) and the MOVI-HRToF-CIMS heating-
mode ion C9H15O

+

4 (Fig. 11). The MOVI-HRToF-CIMS ion
has higher oxygen content than ions trending with factor 1,

which could suggest an additional functional group from fur-
ther oxidation.

Factor 3 is likely the gas-particle partitioning of multi-
functional (4 or more functional groups) products, as in-
dicated by HR-ToF-AMS ion C10H15O

+

3 at m/z 183 and
C12H19O

+

3 at m/z 211 (Fig. 7), which could be the tri-
carbonyl hydroperoxide product (TRICARBROOH). MOVI-
HRToF-CIMS data also support the addition of a highly
oxidized product to the aerosol with the ion C10H15O

+

3
trend (Fig.11). Although the CIMS did not measure in the
high m/z range necessary for identifying greater than tri-
functionalized gas-phase products, the CIMS gas-phase C8
carboxylic acid trace shows continual increase. This is con-
sistent with factor 3 growth, the potential for acid forma-
tion in the chemical mechanism, and HR-ToF-AMS CO+

2
ion, which could be from either acid formation or multifunc-
tional products (Fig.10). These results support factor 3 con-
taining highly functionalized compounds, and acidic com-
pounds, either from gas-to-particle partitioning of highly ox-
idized products or possibly from condensed chemical con-
version from products in factors 1 and 2.

Factors 1 and 2 both exhibit a maximum with respect to
time. A decrease after the maximum owing to wall depo-
sition alone, addressed in Sect. 3.6, does not fully explain
the decrease of these factors. The extent of evaporation of
aerosol products is difficult to interpret from the gas-phase
data. Other processes, such as cyclization or peroxyhemi-
acetal oligomerization, are possible (Tobias and Ziemann,
2000; Ziemann, 2003) but cannot be established unequiv-
ocally from HR-ToF-AMS data, as the fragments resulting
from oligomerization are not unique. Masses greater than
m/z 300 are observed in the MOVI-HRToF-CIMS spectra,
which although difficult to assign exact elemental formu-
las, may suggest that products greater than C12 exist in the
aerosol. Chemical conversion likely contributes to the de-
crease in factors 1 and 2 and increase in factor 3 (although
gas-phase partitioning of highly oxidized compounds could
also be contributing to the increase in factor 3). The percent-
ages of mass greater thanm/z 100 for factors 2 and 3 are

Atmos. Chem. Phys., 12, 11795–11817, 2012 www.atmos-chem-phys.net/12/11795/2012/
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8 % and 5 %, respectively. The decrease of mass concentra-
tion of ions correlating with factor 2 may be a result of frag-
mentation in the aerosol. Molecular level identification of in-
dividual species from further MOVI-HRToF-CIMS analysis
would be necessary to confirm this.

Other HR-ToF-AMS ions with 32m/z difference that sup-
port a C12 functionalized hydroperoxide reacting with an
aldehyde to form peroxyhemiacetal are listed in Table2.
Other 32m/z pairs with fewer than 12 carbons exist, and
may come from hydroperoxide formation in Channel 1 of the

mechanism containing fragmentation of carbon chains fewer
than 12.

The proposed peroxyhemiacetal tracer ions behave differ-
ently under reduced HR-ToF-AMS temperature. In exper-
iment 5 in Table1, the HR-ToF-AMS 600◦C heater was
turned off and only ionization (no vaporization) was used
to sample the aerosol. During the time when the heater was
turned off, the bulk of the organic ions decreased, since the
ionization of the aerosol is contingent upon its vaporization.
However, signal generated by the ions for the hypothesized

www.atmos-chem-phys.net/12/11795/2012/ Atmos. Chem. Phys., 12, 11795–11817, 2012
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peroxyhemiacetal actually increased (Fig.12). Since peroxy-
hemiacetals are unstable at high temperature, the decrease in
temperature would stabilize peroxyhemiacetal, allowing the
molecules to be more available for ionization.

It is important to note that the latter half of experiment 2
provides useful information in interpreting the chemistry of
the aerosol. In the first 17 h, all of the factors show only an
increase (see Figs.11 andA1). The time trends of factors 2
and 3 look very similar in the first 17 h, but distinction be-
comes possible in the latter half of the experiment in which
factor 2 decreases and factor 3 increases (Fig.6). This ex-
plains perhaps why in a shorter experiment, two factors ex-
plain the data better (see Appendix A for further explanation
on the effect of PMF on different lengths of experiment).

3.6 Chamber processes

Deposition of aerosol to the chamber walls decreases the sus-
pended aerosol mass. PTOF-mode data are not available for
the 34 h experiment discussed above. Experiment 4 was car-
ried out, with a similar initial dodecane concentration, to ex-
plore the contribution from wall loss to the decrease in mass
of the PMF factor time series. As expected, the average di-
ameter of the aerosol mass distribution grew with increasing
OH exposure (Fig.13 and panel a1, a2 and a3 in Fig.14).
Since the wall loss rate is a function of diameter (Fig.13,
Loza et al., 2012), the size of the aerosol and composition

at that size are important for factor dependent wall-loss cor-
rections. Panel b of Fig.14 shows the PMF factors (only 2
for a shorter experiment, see Sect. A2) as a function of time.
“Time 1” is early in the experiment when the mass distribu-
tion is expected to have a major contribution from factor 1.
“Time 2” is at maximum growth in time of factor 1 and a
large contribution from factor 2, and “Time 3” is when factor
2 has passed factor 1 in overall mass. The PMF results for the
mass distributions (diameter is the independent variable now
instead of time) are shown with the overall organic mass dis-
tribution to emphasize the contribution from factors 1 and 2
to each size bin (panel a1, a2, and a3 with b on Fig.14). Since
factor 1 is the first to condense onto the aerosol, some of its
mass is lost more rapidly than factor 2, which condenses later
onto larger particles (which are lost by deposition at a slower
rate). The mass fractions of factors 1 and 2 were calculated
for each size bin for 12 mass distributions; this information
was used to adapt the wall deposition calculations carried out
by Loza et al.(2012) for individual factor wall loss correc-
tions.

Even with wall loss correction, factor 1 shows a decrease,
while factor 2 shows an increase; the cumulative mass loss
by wall deposition for factor 1 at the end of the experiment
is 18 µg m−3, which accounts for approximately 50 % of the
decrease in mass from the peak of factor 1 (panel c from
Fig. 14). These results further support the hypothesis that the
mass in the aerosol is undergoing chemical conversion. It is

Atmos. Chem. Phys., 12, 11795–11817, 2012 www.atmos-chem-phys.net/12/11795/2012/
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also important to note that the effects of wall loss on factors
1 and 2 differ as a result of the size distribution of the aerosol
when the factor emerges.

3.7 Van Krevelen diagram

The Van Krevelen diagram has been used to represent the
evolution of HR-ToF-AMS elemental ratios, H : C vs. O : C,
for both ambient and chamber-generated organic aerosols
(Heald et al., 2010; Ng et al., 2011; Chhabra et al., 2011;
Lambe et al., 2011, 2012). A slope of 0 on the diagram is
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consistent with peroxide or alcohol functionalization without
carbon chain fragmentation. A slope of−1 is consistent with
carboxylic acid or ketone/aldehyde and alcohol addition on
the same carbon chain, and a slope of−2 is consistent with
ketone/aldehyde addition (Van Krevelen, 1950; Heald et al.,
2010). Lambe et al.(2012) report the slopes for low-NOx
photooxidation of long chain alkanes (C10, C15, and C17) in
a PAM reactor in two regimes in terms of the O : C ratio. For
O : C< 0.3, the slope is relatively steep (−1.3± 0.2), while
for O : C> 0.3 the slope becomes less negative (−0.7± 0.1).
Lambe et al.(2012) attribute this change in slope to a transi-
tion from functionalization to fragmentation dominated reac-
tions. The dodecane aerosol composition data presented here
lie primarily in the regime where O : C< 0.3, with a slope of
−1.16 that is consistent withLambe et al.(2012) in this O : C
range.

As discussed byNg et al.(2011) andLambe et al.(2012),
the slope on a Van Krevelen diagram can represent a com-
bination of several functionalities and generally requires
molecular level information for further interpretation. The

PMF analysis links the HR-ToF-AMS aerosol spectrum to
molecular level detail when compared to measurements from
CIMS and MOVI-HRToF-CIMS. Concurrent with our chem-
ical understanding, over 34 h of oxidation, the dodecane low-
NOx system is characterized by the addition of peroxides
and ketone/aldehyde functionalization, as opposed to solely
carboxylic acid formation. PMF factor 1 (black marker in
Fig. 15) overlaps the bulk composition data (grey mark-
ers) near the initial growth at low OH exposure. Factor 2
(red marker in Fig.15) has a similar H : C ratio as factor 1,
but higher O : C ratio. The slope between factors 1 and 2,
m12 = 0.12, is characteristic of either hydroxy or peroxide
addition. We have already shown that factor 2 describes the
gas-phase partitioning of hydroperoxide species (Sect. 3.5).
The addition of hydroperoxide functional groups is not ob-
vious from the bulk H : C and O : C ratios (slope= −1.16),
but only from the PMF factor elemental ratios. The H:C and
O : C ratios of factor 3 (green marker in Fig.15) overlaps
the data (grey markers) at the end of the experiment. The
slope from factor 2 to 3,m23 = −1.78, is characteristic of

Atmos. Chem. Phys., 12, 11795–11817, 2012 www.atmos-chem-phys.net/12/11795/2012/
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markers and PMF factors 1–3 are shown by the black, red, and green circle markers. C12 ions, which are the ions retaining the most
molecular-level detail, with high correlation to each factor are also displayed by the black, red, and green star markers.

the addition of products with carbonyl or ketone function-
alization. The slope between factor 1 and 3,m13 = −1.19,
is consistent with either carboxylic acid formation or ke-
tone/aldehyde and alcohol addition to a product in factor 1.
The slopes between the factor elemental ratios help indicate
the combinations of functionality in the aerosol, with more
clarity than one slope from the bulk elemental analysis. The
C12 ion fragments correlating the highest with each factor
and hypothesized to be mono-, di-, or tri- functionalized C12
hydroperoxides and/or functionalized peroxyhemiacetals are
also displayed on Fig.15.

4 Conclusions

In the present work, PMF has been applied to high-resolution
chamber HR-ToF-AMS mass spectra to deduce the chemi-
cal and physical processes associated with low-NOx dode-
cane SOA formation and aging. PMF untangles some of the
complexity of SOA mass spectra by providing a mass spec-
tral signature, with ion tracers, associated with a group of
molecules at a distinct oxidation level. Factor 1 represents
the gas-phase partitioning of initial oxidation products with
two functional groups, factor 2 is the further oxidized, tri-

functionalized products incorporating into the particle phase,
and factor 3 is the partitioning of extended oxidation products
quadruply functionalized. All three factors could also include
oligomerization processes and contributions from wall-loss.

An octadecane low-NOx photooxidation experiment was
conducted to develop a hydroperoxide standard for the HR-
ToF-AMS, from which the alkyl-ion C18H

+

37 atm/z 253 and
C3H7O+

2 at m/z 75 were identified as hydroperoxide ion
tracers. With the PMF factor results, in combination with the
SOA mechanism, CIMS, and MOVI-HRToF-CIMS measure-
ments, the peroxyhemiacetal ion tracers were proposed, such
as the C12H23O+ at m/z 183 and C12H23O

+

3 at m/z 215 for
the carbonyl hydroperoxide-peroxyhemiacetal.

The Van Krevelen diagram of the data, supported by the
chemical interpretation of the dodecane low-NOx oxida-
tion, is consistent with the addition of peroxides and ke-
tone/aldehyde functionalization rather than solely carboxylic
acids. While the bulk experimental elemental ratios exhibit
a slope of−1.16, the change in H : C and O : C ratios from
factors 1 to 2 reveals a slope of 0.12, strongly indicating
hydroperoxide addition to the aerosol. The elemental ratios
between factors 2 and 3 have a slope of−1.78, indicat-
ing adding of aldehyde/carbonyl functionalization, and the
slope between factor 1 and 3 is−1.19, indicating either

www.atmos-chem-phys.net/12/11795/2012/ Atmos. Chem. Phys., 12, 11795–11817, 2012
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Table 4.Distinct ions present in early C18 SOA formation.

Ion Exact % Difference from C18 Mass Fraction in
Formula Mass Condensation MS∗ SOA Spectrum

C3H7O2 75.0446 0.99 0.0005
CO 27.9949 0.99 0.0007
CO2 43.9898 0.99 0.0007
C 12.0000 0.99 0.0006
C2H2O 42.0106 0.99 0.0017
CHO2 44.9977 0.99 0.0006
CH 13.0078 0.99 0.0006
CH3 15.0235 0.99 0.0048
C5H3 63.0235 0.99 0.0006
C18H37 253.2900 0.98 0.0005
C5H7O 83.0497 0.98 0.0024
C4H9O 73.0653 0.98 0.0014
C2H3O 43.0184 0.97 0.0174
C6H6 78.0470 0.96 0.0014
CH3O 31.0184 0.95 0.0027
C2H2 26.0156 0.95 0.0066
C3H7O 59.0497 0.95 0.0036
C2H5O 45.0340 0.94 0.0084
C3H 37.0078 0.94 0.0008
C4H2 50.0157 0.94 0.0009
C3H3O 55.0184 0.94 0.0072
CHO 29.0027 0.93 0.0103
C4H4 52.0313 0.93 0.0012
C2H5O2 61.0289 0.93 0.0007
C3H6O 58.0419 0.93 0.0118
C3H4O 56.0262 0.93 0.0010
C5H5O 81.0340 0.92 0.0010
C4H5 53.0391 0.92 0.0074
C3H4 40.0313 0.92 0.0041
C5H10O 86.0732 0.92 0.0005
C5H11O 87.0810 0.92 0.0005
C9H7 115.0550 0.92 0.0006
C4H6O 70.0419 0.92 0.0019
C2H4O 44.0262 0.92 0.0167
C6H8 80.0626 0.92 0.0013
C3H2 38.0157 0.91 0.0020
C2H3 27.0235 0.91 0.0390
C5H5 65.0391 0.91 0.0020
C6H11O 99.0810 0.91 0.0015
C4H7O 71.0497 0.91 0.0089
C3H3 39.0235 0.91 0.0271
C4H3 51.0235 0.91 0.0016
C3H5O 57.0340 0.90 0.0158

∗ Early Oxidation MS-Condensation MS)/Condensation MS

carboxylic acid formation or aldehyde/ketone and alcohol
addition. With the aid of the PMF results, the experimental
data displayed on the Van Krevelen diagram can be broken
down into contributions from different types of functionality.

Size-dependent composition was utilized to determine the
extent of wall-loss deposition affecting factors 1 and 2. The
wall deposition contributed differently to each factor, but
does not entirely explain the factor mass decrease; the de-
crease unexplained by wall loss deposition is attributed to
chemical aging of the aerosol.

The chamber photooxidation HR-ToF-AMS PMF results
facilitate the interpretation of SOA chemical and physical
processes by linking the bulk AMS aerosol composition
data to molecular level information provided by CIMS and
MOVI-HRToF-CIMS measurements.

Appendix A

SOA formation from a single source in a laboratory is char-
acterized by smooth aerosol growth (Fig.A1); the well-
behaved nature of ion signals and their associated errors is
ideal for application of PMF. The size of the organic sig-
nal input matrix for PMF of experiment 2 in Table1 is
1050×325. The columns of the matrix correspond to individ-
ual identified ions. High resolution stick intensities for iden-
tified ions at fractionalm/z’s from 12–300 were used. AMS
ion identification in them/z 101–300 range was aided by the
dodecane low-NOx chemical mechanism, CIMS gas-phase
measurements, and MOVI-CIMS aerosol measurements. Not
all of the individual ions identified were included in PMF
analysis, due toS/N constraints.

The ions included in PMF analysis and the solution jus-
tification are discussed here. The organic matrix was calcu-
lated using PIKA’s “Open” minus “Closed” option for high-
resolution ions with an average signal-to-noise ratio (S/N)
greater than 0.2. Signals with aS/N between 0.2 and 2 were
down-weighted by a factor of 3, as recommended byPaatero
and Hopke(2003). The error matrix was calculated in PIKA
in the standard way using “Open” minus “Closed” errors.
The errors (σ ) normalize the residuals (e) for the minimiza-
tion function routine of PMF,Q; therefore, good quantifica-
tion of errors is needed. For an input matrix ofn × m, the
PMF minimization function fromUlbrich et al.(2009), is:

Q =

n∑
i=1

m∑
j=1

(eij/σij )
2 (A1)

Careful consideration was given when choosing the ions
for PMF. Even though the ion may appear to be present in
the ion fitting window in PIKA, sometimes the time trend of
this ion is too noisy for PMF. Noisiness in the time trend can
be introduced when there are: (a) ions that are in the shoulder
of a larger ion at the same nominal mass (i.e., C3H3O+

5 is in
the shoulder of the much larger ion C8H7O+ at m/z 119),
(b) ions that are in the valley of two larger ions at the same
nominal mass (i.e., the C3H+

7 ion is in-between C3H3O+

3 and
C4H7O+

2 at m/z 87), (c) ions that exhibit a strong signal in
the closed spectra, but only a small signal in the difference
spectra (i.e., C10H

+

7 at m/z 127), and/or (d) an ion is coin-
cident with another ion that is expected to be there (i.e., the
isotope of N+2 ion and CHO+ ion are extremely close in ex-
act mass). If ions like the ones mentioned above are included
in PMF, then there is considerable noise in the time trend

Atmos. Chem. Phys., 12, 11795–11817, 2012 www.atmos-chem-phys.net/12/11795/2012/
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of Q/Qexpected. This noisiness results from peak fitting ions
that experience large interference from other (often larger)
ions, and should not be considered for PMF. An effective di-
agnostic to determine which ions to exclude from PMF is to
calculate theS/N of each ion using the errors generated in
PIKA (S/Nerror), and then compare that to theS/N using the
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observed noise (S/Nnoise). The observed noise is calculated
by smoothing the data using the binomial smoothing function
in Igor (order of smoothing is chosen by user) and then sub-
tracting the data from the smoothed data at each time point.
Since the equation for errors in PIKA does not consider noise
introduced by ion fitting (in the a., b., c., and d. scenarios de-
scribed above), theS/Nnoise is a good way to asses how well
the ion is quantified. IfS/Nerror is much different than the
S/Nnoise, then either the ion should not be fit because it is a
minor ion, or it is an ion described by a., b., c., or d. above,
and should be removed from PMF analysis. FigureA2 shows
the time-averaged error vs. time-averaged noise for each ion.
The marker is labeled by the ion it represents and is sized and
colored by itsS/N . A marker lying on the y = x line means
that the calculated errors in PIKA captured the noisiness of
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the ion, which is essential for PMF analysis. The noisiness in
theQ/Qexpectedtime trend results from some noisy ions that
were selected to remain in the input PMF analysis because
the time trend of the ions, albeit noisy, appears to contain
useful time trend information. This must be decided by the
user for each system analyzed with PMF. No smoothed or
averaged data were used for PMF, albeit averaging is recom-
mended for future chamber PMF studies (Paatero, 2012).

The optimization function,Q, for PMF involves the min-
imization of the scaled residual at each mass over time (Ul-
brich et al., 2009). Figure A3 shows the initial decrease
in Q/Qexpectedwith the addition of one factor fromp = 1
to p = 2, which is expected for any data set with enough
variability to run PMF. And then there is a slight decrease
betweenp = 2 and p = 3. After p = 3, the decrease in
Q/Qexpectedis small and continues to decrease by the same
amount with each increase inp and never flattens out. At
p = 3, the solution has reached a point at which no additional
information is gained in adding another factor. It is useful
to remember that in PMF, the factor mass spectral profiles
are constant, and so one has to assume that the same is true
for the actual SOA. The numerous processes associated with
continuous oxidation of the gas and aerosol phase may invali-
date this assumption, and so this may be why theQ/Qexpected
never flattens out. This behavior can make it difficult to select
a solution. A good strategy is to examine how both specific
ions and the majority of the ions are reconstructed by the fac-

torization and if individual highm/z ions (tracer ions) trend
with each factor time series (see Fig.8).

The time series of the sum of the residuals and the
Q/Qexpectedis also useful in determining a solution. Any ma-
jor structure in either of these parameters would suggest that
additional factors are needed to describe the data. FigureA4
shows these two parameters for thep = 1, p = 2, p = 3 and
p = 4 solution for the all ion iteration of PMF. There is clear
structure in both thep = 1 andp = 2 solutions, whereas the
p = 3 andp = 4 solutions have a flat sum of residuals and a
relatively flat and smallQ/Qexpected. There is little difference
between thep = 3 andp = 4 solutions, so the addition of an-
other factor would not enhance the information learned from
the factorization from a residual point of view. The reason
why theQ/Qexpectedhas a slightly curved shape for both the
p = 3 andp = 4 solutions arises from variability in the mass
spectra that is beyond what is explained by the input noise.
This may be a consequence of the composition of the aerosol
becoming more complex, combined with the assumption of
PMF that the factor must have a constant mass spectral pro-
file (which does not hold with these systems).

Map plots were made for thep = 2 andp = 3 solutions
(Figs. A5 and A6). In these plots, a red dot indicates the
residualij > errorij , a blue dot is where residualij < −errorij ,
and a white dot is where−errorij < residualij < errorij . For
a two factor solution (Fig.A5) there is clearly a non-random

Atmos. Chem. Phys., 12, 11795–11817, 2012 www.atmos-chem-phys.net/12/11795/2012/
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Fig. A5. The map plot for the two factor solution displays a red dot where the residualij > errorij , a blue dot where residualij < −errorij ,
and a white dot where−errorij < residualij < errorij . For a two-factor solution there is clearly a non-random pattern, indicating two factors
do not adequately describe the data.

Fig. A6. The map plot, as described in Fig.A5 is shown for 3 factors. The pattern is random, indicating 3 factors describe the data variation
well.
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pattern, whereas for the 3 factor solution (Fig.A6), the pat-
tern is random. This further supports a three factor solution.

The solution was chosen by running several iterations of
PMF on the same dataset. As explained byUlbrich et al.
(2009), the PMF solution can be systematically explored
by varyingp, the factor number, and two other parameters,
the seeds and thefpeaks. The 3-factor solution was uniform
across many seeds, but not acrossfpeaks. FigureA7 shows
the effect offpeak for the three factor solution. Factor 3
shows little difference for varying solutions, however fac-
tors 1 and 2 seem to trade off mass between the different
types of solutions. The minimum ofQ/Qexpectedwhich oc-
curs atfpeak= 0.2 (see inset of Fig.A7) was chosen as the
solution. This solution had good agreement with the time se-
ries comparison with highm/z HR-ToF-AMS molecular ion
tracers (Fig.8) and with the CIMS and MOVI-HRToF-CIMS
measurements (Fig.10). However, as emphasized byUlbrich
et al. (2009), fpeak does not explore all possible rotations
(Paatero et al., 2002). In the current experiment, it is possible

that factor 1 time trend goes to zero, however, as indicated by
the positivefpeaks(Fig. A7), the factor 1 decrease could also
taper toward the end of 34 h and perhaps not reach zero. A
longer experiment may have clarified this ambiguity, and/or
comparison with aerosol molecular-level information out at
this time range. If an external comparison (i.e. MOVI-CIMS
molecular trace) for factor 1 did not go to zero, then it would
be necessary to pull up the last few elements of the time trend
of factor 1. If the increase in factor 1 at the end of the exper-
iment did not increaseQ too intensely, then the desired ro-
tation would have been found (Paatero, 2012). Although not
reported here, a full exploration of rotational ambiguity re-
quires induced rotations, such as the example just described,
by explicitly pulling individual factor elements in desired di-
rections. For PMF2, this is described inPaatero et al.(2002).

The solution of PMF will only be as descriptive as the
data matrix itself. In a chamber experiment, the initial mass
spectra reflect the chemistry of early aerosol formation and
are not necessarily the same as those later in the oxidation.

Atmos. Chem. Phys., 12, 11795–11817, 2012 www.atmos-chem-phys.net/12/11795/2012/
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FigureA8 shows theQ/Qexpectedversus factor number,p,
for the 1 seed solution from experiment 2 for “all h”, “first
18 h”, and the “last 18 h”. For the 1 factor solution (p = 1),
the “first 18 h” solution has the lowestQ/Qexpected, the “all
h” solution has the highestQ/Qexpected, and the “last 18 h”
is in between. This trend is the same forp = 2. The first 18 h
solution is lower than the last 18 h because chemically the
mass spectra are less complex at the beginning of the exper-
iment, andp = 1 orp = 2 describes much of the data (there
is less variability earlier on, in comparison to the full 34 h so-
lution). As the oxidation progresses, the aerosol composition
becomes more complex, as higherm/z oxygen-containing
ions appear in the mass spectra, in addition to those observed
at initial aerosol growth. For the sameQ/Qexpectedvalue, the
last 18 h (and all h) requires more factors to describe the data
to the same degree as the “first 18 h”. Three factors best de-
scribe the “all h” solution and the “last 18 h” solution since
the third factor grows in at about 18 h. The “first 18 h” so-
lution, would not “see” this third factor (since it covers only
the first 18 h), so only 2 factors are necessary to describe the
variability in the input data matrix.
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