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Abstract. Several different types of parameterization of
heterogeneous ice nucleation for cloud and climate models
have been developed over the past decades, ranging from
empirically-derived expressions to parameterizations of ice
crystal nucleation rates derived from theory, including the pa-
rameterization developed by the authors that includes simul-
taneous dependence on the temperature and saturation ratio,
hereafter referred to as KC. Parameterizations schemes that
address the deliquescence-heterogeneous-freezing (DHetF),
which combines the modes of condensation freezing and im-
mersion freezing, are assessed here in the context of thermo-
dynamic constraints, laboratory measurements, and recent
field measurements. It is shown that empirical schemes de-
pending only on the ice saturation ratio or only on tempera-
ture can produce reasonable crystal concentrations, but ice
crystal nucleation is thermodynamically prohibited in cer-
tain regions of the temperature-saturation ratio phase space.
Some recent empirical parameterizations yield clouds that
are almost entire liquid at temperatures as low as−35◦C in
contrast to cloud climatology. Reasonable performance of
the KC ice nucleation scheme is demonstrated by compari-
son with numerous data from several recent field campaigns,
laboratory data, climatology of cloud phase-state. Several
mis-applications of the KC parameterization that appeared
recently in the literature are described and corrected. It is
emphasized here that a correct application of the KC scheme
requires integration of the individual nucleation rates over the
measured size spectrum of ice nuclei that represent a frac-
tion or several fractions of the environmental aerosol with
specific ice nucleation properties. The concentration in these
fractions can be substantially smaller than that of the total
aerosol, but greater than the crystal concentration measured
by an experimental device. Simulations with temperature-

dependent active site area or with several IN fractions hav-
ing different properties show that ice nucleation in the KC
scheme occurs in a wide temperature range of 10–20◦C,
which depends on IN properties. Simulation with a spectral
bin model and correct application of KC scheme adequately
describes ice nucleation via the DHetF mode and yields crys-
tal concentrations and phase state close to those measured in
the single-layer stratocumulus cloud observed in the Mixed
Phase Arctic Cloud Experiment (MPACE). An assessment
of some deficiencies in current parcel modeling methods and
cloud chamber observations and their impact on parameteri-
zation development and evaluation is provided.

1 Introduction

Ice formation in atmospheric clouds influences the cloud life
cycle, precipitation processes, and cloud radiative properties.
The importance of cloud ice processes in global climate mod-
els has stimulated a large number of theoretical and experi-
mental studies on this topic, but many outstanding problems
remain. Further, several recent papers have compared differ-
ent ice nucleation schemes with contradictory results, raising
issues regarding the appropriate application of the schemes,
limitations of the parcel model framework, and interpretation
of cloud chamber results.

The authors of this paper have developed a theory of het-
erogeneous ice nucleation by deliquescence-heterogeneous-
freezing, DHetF (Khvorostyanov and Curry, 2000, 2004a, b,
2005, 2009, hereafter referred to as the KC scheme). This
scheme has allowed quantitative description of many fea-
tures of ice formation in clouds including simultaneous de-
pendence of the freezing of solutions on both temperature
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T and water saturation ratioSw. This created a platform
for further improvements of the classical nucleation theory
and its practical applications to the parameterization prob-
lem. In this paper, we assess the KC nucleation scheme along
with several commonly used and recently developed empiri-
cal ice nucleation schemes, in the context of thermodynamic
constraints and laboratory and field observations. Classical
cloud physics defines four modes of heterogeneous ice nu-
cleation: condensation-freezing, immersion, contact and de-
position (Vali, 1985; Pruppacher and Klett, 1997, hereafter
PK97). The focus of this assessment is on the deliquescence-
heterogeneous-freezing (DHetF) mode, which combines the
thermodynamically indistinguishable modes of condensation
freezing and immersion freezing.

Over the past several decades, numerous empirical param-
eterizations have been developed for these modes of het-
erogeneous ice nucleation or their combinations, based pri-
marily on laboratory data. Fletcher (1962), Cooper (1986),
Sassen (1992), DeMott et al. (1998) suggested parameteri-
zations of ice nuclei (IN)Nc(T ) as empirical functions of
temperatureT . Huffman and Vali (1973), Huffman (1973),
and Berezinsky and Stepanov (1986) offered a parameter-
ization consisting of a power law by ice supersaturation
si = (ρv −ρsi)/ρsi, whereρv andρsi are vapor density and
saturated over ice density. Meyers et al. (1992, hereafter
MDC92) used a continuous flow diffusion chamber (CFDC)
to form the basis of an empirical parameterization of the
combined condensation-freezing and deposition modes as a
supersaturation-dependent only function

Nc(si) = exp(aM +bMsi), (1)

with Nc in l−1, si in %, aM = −0.639, bM = 0.1296. This
parameterization was suggested to be valid at−20< T <

−7 ◦C, and 2< si < 25 %, although Eq. (1) has been sub-
sequently applied outside this parameter range (e.g., Com-
stock et al., 2008). Although the temperature dependence
was present in the original data, MDC92 averaged it and in-
cluded only the supersaturation dependence in the parame-
terization. A similarsi-dependent parameterization for de-
position nucleation on dust particles was suggested recently
by Möhler et al. (2006) based on measurements in a large
expansion chamber of 84 m3.

An empirical parameterization for the immersion mode
with soot, mineral dust and biological nuclei was recently
suggested by Diehl and Wurzler (2004, hereafter DW04) that
generalized Bigg’s (1953) concept of the median freezing
temperature. This parameterization was tested in the GCM
ECHAM4 (Lohmann and Diehl, 2006).

Phillips et al. (2008, hereafter PDA08) developed a new
empirical parameterization using MDC92 as a basis. PDA08
extended this parameterization for variousT - andsi-ranges
and generalized the parameterization to account for the three
types of freezing aerosol (dust and metallic compounds,
black carbon, and insoluble organics) by appropriate scaling

and integration over the surface areas of these aerosols, so
that the concentrationNc,x of IN of thex-th kind is

Nc,x=

∞∫
log[0.1µm]

(1−exp[−µx(Dx,Si,T )]
dnx

d logDx

d logDx, (2)

wherex denotes any of the 3 aerosol types,nx is the aerosol
mixing ratio, andµx is the average activated IN per aerosol
of diameterDx ; andµx is proportional toNc(si) from Eq. (1)
multiplied by some coefficients. For low freezing fraction,
which often takes place,Nc,x ∼ µx ∼ Ni (PDA08).

DeMott et al. (1998, hereafter DM98) suggested a param-
eterization of the ratioFIN/CN of the concentrationNc of IN
to the concentrationNCN of cloud nuclei (CN) as a simple
power law function by temperature, then

FIN/CN = aD(−Tc)
bD , Nc = FIN/CNNCN (3)

where aD = 1.3× 10−22, bD = 11.75, andNCN is deter-
mined from simultaneous measurements. A modification of
this parameterization was proposed recently by DeMott et
al. (2010).

Several heterogeneous ice nucleation parameterizations
have been suggested based upon theoretical arguments.
These parameterizations included analytical fits to the par-
cel models simulations and various approximations in the
basic equations of the crystal growth (e.g., Sassen and Ben-
son, 2000; Khvorostyanov and Curry, 2000, 2005; Lin et al.,
2002; Gierens, 2003; K̈archer and Lohmann, 2003; Liu and
Penner, 2005; Barahona and Nenes, 2008, 2009). The utility
of classical nucleation theory for parameterization of hetero-
geneous ice nucleation via solution freezing was limited un-
til recently by the lack of any dependence on supersaturation
of the critical radiusrcr and energy1Fcr of ice germs and
nucleation rates of freezing process as formulated by Thom-
son (1888), with temperature dependence only (PK97, eq. 9–
38). Khvorostyanov and Curry (2000, 2004a, b, 2005, 2009,
hereafter KC00, KC04a, b, KC05, KC09, respectively) ex-
tended classical nucleation theory for heterogeneous freez-
ing and derived equations for the critical radius and energy
that included dependencies on bothT and water saturation
ratio Sw = ρv/ρsw simultaneously (withρsw being the va-
por density saturated over water), or on water supersaturation
sw = (ρv −ρsw)/ρsw = Sw −1, generalizing the previous ex-
pressions derived for homogeneous ice nucleation theory by
Khvorostyanov and Sassen (1998).

The key parameter in classical nucleation theory is the crit-
ical radiusrcr of an ice germ. The equation forrcr at freezing
of a solution drop was derived in KC00, KC04a, b in the
form:

rcr(T ,Sw,ε,ra,1p) =
2σis

ρiLef
m(T )

[
ln
(

T0
T

SG
w

)
−Hv,fr

] . (4a)

Here σis is the surface tension at the ice-solution inter-
face,ρi is the ice density,T is the temperature in degrees
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Kelvin, T0 = 273.15, Lef
m is the effective melting heat (con-

structed to−70◦C in KC09),Sw is the water saturation ra-
tio, G = RT/(MwLef

m), Mw is the molecular weight of wa-
ter, R is the universal gas constant. A functionHv,fr =

rsc
ra

+
Cεε

2

ρiL
ef
m

+
1ρ1p

ρwρiL
ef
m

describes the effects of the misfit strain

ε, finite radiusra of a haze drop,1ρ = ρw −ρi , ρw is the
water density,1p = p−p0 is the excess pressure,p0 is the
reference pressure (1 atm),Cε ∼ 1.7×1011 dyn cm−2 is the
Turnbull-Vonnegut parameter,p is the external applied pres-
sure,rsc= 2σsa/(ρiL

ef
m) is the curvature parameter and the

term rsc/ra describes the effects of curvature of a haze drop
on ice nucleation, whereσsa is the surface tension at the solu-
tion drop-air interface (KC00, KC04a, b; KC09). KC04a, b
described in detail how Eq. (4a) generalizes the previous for-
mulations of the classical nucleation theory and converts into
particular cases for specific values of the parameters:Sw = 1,
T → T0, ε = 0, ra� rcr, 1p = 0.

Equation (4a) can be rewritten in another form via the
difference between the chemical potential of the metastable
phase (solution)µmstab and of the stable phase (ice germ)
µstab(Landau and Lifshitz, 1980; Dufour and Defay, 1963)

rcr(T ,Sw,ε,ra,1p)=
2σisvi

µmstab−µstab
, (4b)

where vi = Mw/ρi is the molar volume of ice. The dif-
ference of molar chemical potentials1µ = µmstab− µstab
is called sometimes “affinity” in meteorological applica-
tions (Dufour and Defay, 1963), or “supersaturation” in non-
meteorological literature (Kashchiev, 2000) and plays an
important role in thermodynamical analysis of nucleation.
Comparison of Eq. (4a) and (4b) allows an expression for
affinity using the KC00-04 model, as a function simultane-
ously ofT , Sw, ε, ra, and1p:

µmstab−µstab= MwLef
m(T )

[
ln

(
T0

T
SG

w

)
−Hv,fr

]
, (4c)

The phase transition is thermodynamically possible from the
metastable phase with higherµmstabto the stable phase with
lowerµstab, when the affinity1µ > 0, and Eq. (4c) quantifies
this condition in general form. Equation (4a) shows that this
condition on affinity is equivalent to the physical condition
rcr > 0.

The critical energy1Fcr of a germ formation is (Fletcher,
1969; PK97; Curry and Webster, 1999):

1Fcr(T ,Sw) =
4

3
πσisr

2
crf (mis,x)−αr2

Nσis(1−mis), (5)

wheremis is the contact or wettability parameter,x = ra/rcr,
andα is the relative area of “active sites” (Fletcher, 1969). A
new expression for1Fcr with simultaneous dependence on
T andSw was derived in KC00, KC04a, b from Eq. (5) with
account for Eq. (4a)

1Fcr=
16πσ 3

isf (mis,x)

3
{
ρiLef

m(T )
[
ln
(

T0
T

SG
w

)
−Hv,fr

]}2
−αr2

Nσis(1−mis),(6a)

which is used in the KC scheme. Withα = 0 andHv,fr = 0,
Eq. (6a) is simplified (KC00, KC04a)

1Fcr =
16πσ 3

isf (mis,x)

3
[
ρiLef

m(T )ln
(

T0
T

)
+

ρiRT
Mw

lnSw

]2
. (6b)

The nucleation ratesJhet in classical nucleation theory are
evaluated as (Fletcher, 1962; Dufour and Defay, 1963; PK97;
Seinfeld and Pandis, 1998; Kashchiev, 2000)

Jhet=
kT

h
NmonZs�sc1s4πr2

Nexp

(
−

1Fact+1Fcr

kT

)
, (7)

where1Fact is the activation energy,k andh are the Boltz-
mann’s and Planck’s constants,c1s is the concentration of
water molecules adsorbed on 1 cm2 of a surface,rN is the ra-
dius of insoluble substrate,Nmon is a number of monomers
of water in contact with unit area of ice surface,�s is the
surface area of the germ, andZs is the Zeldovich (1942)
factor refined for heterogeneous nucleation in Vehkamäki et
al. (2007). The parameters in Eqs. (4a)–(7) are taken mostly
from PK97 with some modifications described in KC04b,
KC05, KC09. A new temperature dependent model of the
active sites areaα(T ) is developed here, tested and described
below.

The total number of particles nucleated in DHetF mode
(IN concentration) is obtained in the KC scheme by integrat-
ing over the superposition of the size spectra of several IN
species, which is a subset of aerosol populations that possess
ice nucleating ability:

Nc(t) =

k∑
i=1

rmax∫
rmin

Pfr(ra,rN,t)fai(ra)dra, (8a)

wherefai(ra) is the size spectrum of thei-th fraction of total
k IN fractions, each of which has specific properties (contact
parametermi , active sites areaαi , mean radiusri , etc.), and
is normalized to the concentrationNai

Nai(t) =

rmax∫
rmin

fai(ra)dra, (8b)

Pfr(ra,rN,t) = 1−exp
(
−
∫ t

0 Jhet(ra,rN,t ′)dt ′
)

is the proba-

bility of freezing at a timet of a single deliquescent IN par-
ticle or drop with radiusra containing an insoluble substrate
with radiusrN and depending also onmi , αi , and other prop-
erties of that particle.

The crystal nucleation rateRfr (cm−3 s−1) in a polydis-
perse aerosol can be calculated as:

Rfr =
dNfr

dt
=

k∑
i=1

rmax∫
rmin

drNfai(ra)Js,fr(t)exp

(
−

∫ t

0
Js,fr(t

′)dt ′
)

. (9)

Various aerosol species can serve as IN (PK97): mineral par-
ticles (e.g., kaolinite, montmorillonite, dust), soot of various
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origin, biological particles (bacteria, pollen, leaf litter) that
have especially high nucleation temperature thresholds of−4
to −7◦C (e.g., Diehl and Wurzler, 2004; Chen et al., 2008).
A superposition of the size spectra of all of these species
can be substituted into Eqs. (8a), (9), and each IN species
would give a corresponding contribution to the nucleation.
The numberk of IN species can be 1-3-6 or greater, e.g.,
Diehl and Wurzler (2004), and Chen et al. (2008) analyze and
present parameters for more than 20 IN species, that can be
specified based on the IN properties measured in some exper-
iment. If such detailed measurements are absent, the choice
of IN spectrafai(ra) andNai can be based on the plausible
hypotheses that integrate previous measurements and theory.
If measured IN size spectra are not available, they can be ap-
proximated as lognormal or equivalently as algebraic spectra
(following Khvorostyanov and Curry, 2006, 2007).

It should be emphasized that the concentrationsNai of
IN species used in the classical theory, in particular, in
KC ice scheme, can be substantially smaller than the total
aerosol concentrationNa,tot (as is the case with concentra-
tions of cloud condensation nuclei, CCN), since only a rel-
atively small fraction of total aerosol possesses necessary
nucleating properties (e.g., PK97). The IN concentrations
NIN,exp measured with experimental devices are typically
∼1–20 l−1, rarely exceeding 100 l−1 (see Sect. 4). We ex-
pect thatNIN,exp should be smaller than concentrationsNai
used in Eqs. (8a, b), (9) that may potentially serve as IN,
since any device can measure only a fraction ofNai due to
various experimental limitations.

It has been already emphasized in MDC92 that measure-
ments with filters and other devices prior to use of CFDC
provided IN concentrations at least an order of magnitude
smaller than those measured by more powerful devices like
CFDC. The CFDCs also likely provide a lower limit of IN,
and probably the next generations of improved instruments
will yield higher values ofNIN,exp. Numerical experiments
with parcel and other models and the KC scheme also show
that concentrations of nucleated ice crystalsNc are smaller
than the input concentrationNai and depends on the cool-
ing rate and process duration (Khvorostyanov et al., 2003;
KC05, EDK09). A general characteristic relation among all
these concentrations can be outlined as

NIN,exp< Nc ≤ Nai < Na,tot. (10)

These relations are discussed also in Sect. 4.
The system of Eqs. (4a)–(9) comprise the essence of the

KC heterogeneous ice nucleation scheme with simultaneous
account for the dependence on temperature, humidity, misfit
strain, finite size of freezing particles and external pressure
that was used in KC00-KC09 to describe critical radii and en-
ergies, kinetics, thresholds and other properties of heteroge-
neous ice nucleation. Equations (4a)–(9) show that the input
information may include complete data for individual aerosol
particles obtained in experiments: concentrations and size

spectra, contact angle or wettability parameter, activation en-
ergy1Fact, surface tension, active site area. Hence the KC
ice nucleation scheme enables determination of aerosol spe-
cific properties and differences in their nucleation abilities.

Liu and Penner (2005) used a particular case of1Fcr from
KC00, Eq. (6b) here, withHv,fr = 0 andα = 0, i.e., without
account for misfit strain, the finite radius of a haze drop and
without active sites (eq. 2.6 in Liu and Penner) to develop an
ice nucleation parameterization for a GCM (Liu et al., 2007).
EDK09 used a more detailed version of Eq. (4a), forrcr and
Eq. (6a) for1Fcr for a comparison of the KC and PDA08
schemes, althought with valuesNai = 1000 l−1 that are 2–3
orders of magnitude higher than typical values in CFDC.

Chen et al. (2008) refined calculations of nucleation rates
in the classical nucleation theory by fitting its parameters
(1Fact, mis) based on laboratory measurements of ice nu-
cleation on IN of various origins (soot, bacteria, pollen, and
dust). It was shown that the contact parameters of several
substances can be very close to unity, which may explain the
high temperature threshold of ice nucleation when such sub-
stances are present. Most of the results in Chen et al. (2008)
were related to the deposition mode; a possible extension to
the freezing mode and account for the solute freezing depres-
sion were briefly outlined.

In this paper, we analyze several empirical parameteriza-
tions and compare them with the KC theoretical approach
based on the classical nucleation theory. In Sect. 2, thermo-
dynamic constraints on heterogeneous ice nucleation are ex-
amined. In Sect. 3, an empirical parameterization by Phillips
et al. (2008; hereafter PDA08) is compared with the theoreti-
cal KC ice scheme in parcel model simulations in evaluation
with the climatological data and GCMs parameterizations of
cloud phase state. Section 4 compares the results of numer-
ous parcel runs with KC ice nucleation scheme to the results
of ice nuclei measurements in the six recent field campaigns
and some laboratory measurements. In Sect. 5, the low-level
mixed-phase arctic cloud observed during MPACE is simu-
lated using a 1-D model with spectral bin microphysics and
it is shown that the KC ice scheme reproduces the correct
quasi-state mixed phase of this cloud for a few hours.

2 Thermodynamic constraints on heterogeneous ice
nucleation schemes

Heterogeneous nucleation schemes that depend on tempera-
ture and/or supersaturation have been derived from both em-
pirical and theoretical bases. Here we assess the range of
validity of these parameterizations in the context of thermo-
dynamic constraints derived from the extended classical nu-
cleation theory described by KC.

The critical radiusrcr of an ice germ in Eq. (4a) is posi-
tive if the denominator is positive, yielding a condition for
the thresholdSw,th(T ) or Tth(Sw) for ice particle nucleation
(KC04a, b, KC09):
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Sw,th(T ) =

(
T

T0

)MwLef
m/RT

exp

[
Mw

ρiRT

(
Cεε

2
+

2σsa

ra
+

1ρ1p

ρw

)]
, (11a)

Tth(Sw) = T0S
RT/MwLef

m
w exp

(
−

Cεε
2

ρiLef
m

−
rsc

ra
−

1ρ1p

ρwρiLef
m

)
. (11b)

The notations were defined following Eq. (4a). Equa-
tions (11a), (11b) represent a lower and upper limits forSw
andT respectively for infinitesimally small nucleation rates
Jhet, the more general equations for finiteJhet are given
in KC04a, b, KC09, they predict somewhat higherSw,th
and lowerTth that depend onJhet; the latter is in qualita-
tive agreement with Kashchiev et al. (2010). The condi-
tion (11a) is similar to the parameterizations of the thresh-
old humidity for homogeneous nucleation (e.g., Sassen and
Dodd, 1989; Heymsfield and Sabin, 1989), but predicts sub-
stantially lowerSw,th for heterogeneous nucleation (KC09).

Equations (4a) and (11a), and (11b) show that the value
rcr > 0 if Sw > Sw,th at givenT or if T <Tth at givenSw, and
only these states are thermodynamically allowed in theSw −

T domain. The denominator of the critical radiircr of ice
germs in Eq. (4a) (affinity1µ) becomes negative andrcr < 0
in the Sw −T domain if Sw < Sw,th at givenT , i.e., where
the relative humidity over water (RHW) is smaller than
its threshold value,δ(RHWth) = RHW− RHWth = (Sw −

Sw,th) · 100 %< 0, or whereT > Tth at givenSw (see also
KC04b, KC09). As pointed out above, the conditionrcr > 0
means that ifµmstab> µstab (affinity 1µ > 0), then such a
transition is thermodynamically allowed. The reverse condi-
tion rcr < 0 or1µ < 0 means that the transition is prohibited
from the state with lower energyµstabto the state with higher
energyµmstab.

Note that Eqs. (4a) to (11b) are based on the classical nu-
cleation theory with use of the capillary approximation and
the concept of “surface”. These approximations and concepts
become invalid nearrcr = 0, when the number of molecules
in a germ is too small. As discussed in detail in Dufour and
Defay (1963) and Defay et al. (1966), this limitation is per-
tinent to the very small area aroundrcr = 0, a narrow belt
in T −Sw plane (Fig. 1). This imposes a small uncertainty
on the linercr(T , Sw) = 0 but does not influence the general
validity of the above conditions and conclusions since the
major area withrcr < 0 and1µ < 0 lies well above the line
rcr = 0 and is free of limitations for the capillary approxima-
tions. Another note is that the constraints (11a), (11b) are
sufficiently general, and do not contain any information on
aerosol size spectra and contact parameters; they follow from
the entropy equation used for derivation ofrcr in Eq. (4a) that
is based on classical thermodynamics.

Here we assess the range of thermodynamic validity of the
MC92, DM98, and PDA08 ice nucleation parameterization
schemes on theSw −T diagrams using values ofNc calcu-
lated with parameterizations MC92 (Eq. 1 here), and DM98
(Eq. 3 here andNCN ∼ 200 cm−3 as in fig. 1 in DM98). Cal-
culations were performed over a wide range of values of

si andT . For comparison withSw,th andδ(RHWth), these
quantities were calculated for pairs ofSi andT values. Cal-
culated values ofNc(Si) andNc(T ) were superimposed on
the field ofδ(RHWth) in Fig. 1 inSw −T coordinates calcu-
lated using Eq. (11a).

Figure 1 represents anSw −T diagram over the domain
−30< T < 0 ◦C and 0.7< Sw < 1.0. Superimposed here is
the threshold differenceδ(RHWth), whereby the deep blue
hatched line denotes the boundary RHW= RHWth or rcr(T ,
Sw) = 0 (excluding the very narrow strip around this line due
to limitations of capillary approximation discussed above).
The states above this line (white field) correspond to negative
values ofrcr and negative difference1µ of chemical poten-
tials, µustab< µstab. That is, ice germs cannot be nucleated
above this line in thisSw −T area, which corresponds to the
reverse transition from the stable to metastable phase and is
thermodynamically prohibited. Only the states withrcr > 0
or 1µ > 0 below the blue hatched line RHW− RHWth = 0
(shaded field) are thermodynamically allowed for heteroge-
neous ice nucleation by freezing. Figure 1 shows that the
allowedT −Sw domain is located in the triangle below tem-
perature of−8 to−12◦C and at water saturation ratio above
0.8 to 0.83, this area covering only about 1/8 of the entire
domain considered. We note here that ice nucleation in the
MDC92 and DM98 schemes (as in DeMott et al., 2010) is
allowed in the thermodynamically prohibited region. The
boundaries of the allowed domain depend of the sizera of
aerosol particles. Whenra increases from 0.05 µm, typical
of the fine mode, to 1 µm typical of the coarser mode, the
allowed domain shifts to higher temperatures by about 5◦C
allowing ice nucleation at warmer temperatures.

It is interesting to note that the isolines of the MDC92
si-parameterization are in good correlation (almost parallel)
with the isolines ofδ(RHWth). Thus, both MDC92 empir-
ical scheme and KC theoretical scheme produce similar de-
pendencies indicating that both schemes capture some ba-
sic physical features of the nucleation process. However,
the gradientsdNc/dSw anddNc/dT in MDC92 are noticeably
smaller than predicted by the classical theory. This may be
caused by averaging over aerosols with different properties
in CFDC experiments (MDC92 scheme), while calculations
with KC scheme included here only a single aerosol type.
The agreement of DM98T -parameterization (and of similar
DeMott et al., 2010) with classical theory is somewhat worse
because they do not account for the humidity dependence.

We do not present here similar thermodynamic analysis of
the other existing parameterizations but this is easily done for
any functionNc(T ) andNc(si). These thermodynamic limi-
tations also should be accounted for when choosing and com-
paring the empirical and theoretical parameterizations of ice
nucleation in the numerical models of various complexity as
e.g., in Comstock et al. (2008) and Eidhammer et al. (2009),
and empirical parameterizations should not be applied out-
side of thermodynamically allowed conditions.
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Fig. 1. Sw-T diagrams of Nc calculated with 
MDC92 (a, b), Eq. (1) here, and DM98 (c, d), 
Eq. (3) here, parameterizations (red lines and 
labels) with superimposed threshold difference 
δ(RHW,th) = RHW - RHW,th = (Sw - Sw,th)×100 
% (blue lines and labels) calculated from Eq. 
(11a) as in KC09. The line δ(RHW,th) = 0 or 
RHW = RHWth is indicated by deep blue and 
hatched. The physical states and Nc above this 
line (white) are below the critical humidity,  
Si < Si,cr, and blue isolines 
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denote negative deficit δ(RHW,th). These states 
are thermodynamically prohibited and 
correspond to the negative critical radii, rcr < 0 
and negative (reverse) difference ∆µ of 
chemical potentials, µustab < µstab. Only the 
states below the blue hatched line RHW - 
RHW,th = 0 (blue filled field) correspond to rcr 
> 0, ∆µ >0 and are thermodynamically 
allowed. 
 
 
 
 
 
 

Fig. 1. Sw −T diagrams ofNc calculated with MDC92(a, b), Eq. (1) here, and DM98(c, d), Eq. (3) here, parameterizations (red lines
and labels) with superimposed threshold differenceδ(RHWth) = RHW− RHWth = (Sw −Sw,th) ·100 % (blue lines and labels) calculated
from Eq. (11a) as in KC09. The lineδ(RHWth) = 0 or RHW = RHWth is indicated by deep blue and hatched. The physical states and
Nc above this line (white) are below the critical humidity,Si < Si,cr, and blue isolines denote negative deficitδ(RHWth). These states
are thermodynamically prohibited and correspond to the negative critical radii,rcr < 0 and negative (reverse) difference1µ of chemical
potentials,µustab< µstab. Only the states below the blue hatched line RHW− RHWth = 0 (blue filled field) correspond torcr > 0, 1µ > 0
and are thermodynamically allowed.

3 Evaluation of phase state simulations

Eidhammer et al. (2009, hereafter EDK09) compared three
parameterizations of heterogeneous ice nucleation using a
parcel model developed at Colorado State University (CSU).
The model is based on the spectral bin microphysics for the
mixed and ice states with various parameterizations of ice nu-
cleation. The three ice nucleation schemes included PDA08,
KC, and DW04. Comparing the results of simulations for the
three parameterizations, EDK09 found that for small verti-
cal velocitiesw ∼ 5 cm s−1, all three parameterizations yield
similar results. For largew, only PDA08 compares well with
typical observations of ice nucleation in CFDC producingNc

∼1–20 l−1, while the other two parameterizations (DW04
and KC) produce crystal concentrations much higher than
PDA08. EDK09 recommend that the empirically-derived
“constraint” on the upper limit ofNc used in the PDA08
scheme should be used in cloud and climate models parame-
terizations.

In this section, the PDA08 and KC schemes are com-
pared further to understand the sources of the discrep-
ancies between the two parameterizations (we note that
the DW04 scheme performs comparably to KC and pro-
duces comparable values ofNc). We carry out simula-
tions using the parcel model described in KC05. The drop
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nucleation parameterization was substantially modified ac-
cording to Khvorostyanov and Curry (2006, 2007, hereafter
KC06, KC07), where a generalized power lawNd(sw) =

C(sw)s
k(sw)
w was derived. BothC and k depend on wa-

ter supersaturationsw and decrease with increasingsw, in
agreement with the observed experimentally quantities (e.g.,
Yum and Hudson, 2001), yielding finiteNd limited by Na
at high sw. We used the same composition of aerosol as
in EDK09, and the KC heterogeneous DHetF ice nucleation
scheme. Simulations are conducted with the active site area
α in Eq. (6a) in two forms:α = 0; and a new parameteriza-
tion of α as a function ofT ,

α(T ) = α0(1−Tc/Tv)θ(Tth−Tc)θ(Tc−Tv), (12)

where α0 = 2 × 10−5 was successfully tested in KC05
for explanation of fast glaciation of polar maritime cumu-
lus observed in Hobbs and Rangno (1990), Rangno and
Hobbs (1991) without high water supersaturation.θ(x) is
the Heaviside function,Tth = −5 ◦C is the threshold tem-
perature of nucleation close to that assumed in EDK09, and
Tv = −20◦C is the scaling temperature that determines the
rate of decrease ofα(T ). Equation (12) indicates thatα(T )

has a maximumα0 = 2×10−5 at warmT , decreases to 0 at
Tv = −20◦C, andα(T ) = 0 at Tc < Tv. This parameteriza-
tion accounts for the fact that the area of the sites close to the
structure of water (mis = 1) that are favorable for nucleation
increases toward 0◦C. We hypothesize that these sites can be
formed by crystal defects, steps, or premelted sites. Their
exact origin does not matter for now, but it is known that
the number of such sites may increase toward 0◦C (Hobbs,
1974; Dash et al., 1995).

Simulations were conducted under the following condi-
tions: w = 50 cm s−1, RHW0 = 96 %, T0 = 10◦C. The KC
scheme was used with DHetF mode in 3 versions. The in-
put data for these 3 runs are given in Table 1: (#1) only
one coarse aerosol fraction included as in EDK09, lognor-
mal size spectrum, concentrationNIN,2 = 1 cm−3 (1000 l−1),
mean geometric radiusrd2 = 0.4 µm, dispersionσd2 = 2,
and active site areaα = 0; (#2) the same coarse aerosol
fraction, NIN,2 = 1 cm−3, but variableα(T ) described by
Eq. (12); (#3)α = 0, and including 3 IN lognormal fractions
with equal concentrationsNIN,1 = NIN,2 = NIN,3 = 10 l−1

(=10−2 cm−3, i.e., 100 times smaller than in runs #1 and
#2 and in EDK09 for KC scheme),rd1= rd2= rd3= 0.4 µm,
but 3 different values of contact parameter, 0.85, 0.75 and
0.5 that can mimic a mixture of organic (bacteria or pollen),
soot and mineral IN. The IN concentration of 1 cm−3 in the
runs #1 and #2 follows the choice in EDK09 for the KC
scheme, although it is not clear why this very high concentra-
tion NIN,2 was chosen in EDK09. This is an arbitrary choice,
2–3 orders of magnitude higher than typical IN concentra-
tions in CFDC, and it is not related to any characteristic of
the KC or DW04 schemes. In run #3, the concentrations were
chosen comparable to those measured in CFDCs and used in
PDA08.

Table 1. Parameters of the 3 simulations (runs) of the parcel model
with the KC scheme and various input data.

Run Model ofα Model of IN microphysics

#1 0 One fraction with lognormal size
spectrum, concentrationNIN,2 =

1 cm−3 (1000 l−1), mean geomet-
ric radius rd2 = 0.4 µm, dispersion
σd2= 2

#2 α(T ) by Eq. (12) One fraction with lognormal size
spectrum, same as in run #2

#3 0 Three IN lognormal frac-
tions with equal concentrations
NIN,1 = NIN,2 = NIN,3 = 10 l−1

(=10−2 cm−3), rd1 = rd2 = rd3 =

0.4 µm, but 3 different values of
contact parameter, 0.85, 0.75 and
0.5

The results of simulations from EDK09 with ice scheme
PDA08 and from the 3 simulations of our parcel model with
the KC scheme are compared in Fig. 2. Due to high ini-
tial RHW, drop activation occurs in a few minutes (a bit ear-
lier than in EDK09 due to a little higher RHW0, but this is
unimportant). The drop concentrationNd is ∼90 cm−3 in
EDK09 model and 160 cm−3 in KC model, the difference
associated with different drop activation methods. Values
of Nd are constant in EDK09 simulations for 4 h (Fig. 2c),
and liquid water content (LWC) increases over this period
due to drop growth down toT = −34.5 ◦C (Fig. 2e). In
the EDK09 model with PDA08 ice scheme, noticeable het-
erogeneous crystal nucleation begins at about 75 min when
T < −3 ◦C, their concentrationNc increases almost linearly
and reaches∼22 l−1 atT ∼ −32.5◦C at a height above 6 km
and time 240 min (Fig. 2d). Thus, nucleation with PDA08
scheme continues over almost 4 h, much longer than in any
other heterogeneous scheme (e.g., Sassen and Benson, 2000;
Lin et al., 2002; K̈archer and Lohmann, 2003; KC05; Liu
and Penner, 2005), and much longer than in CFDC experi-
ments, only 7–15 s (Phillips et al., 2008). Thus, the nucle-
ation rates in EDK09 simulations with PDA08 scheme are
several orders of magnitude smaller than in CFDC exper-
iments upon which PDA08 parameterization is based, and
the correspondence between the measurements over a few
seconds and their extension for several hours is not clear.
Then an abrupt increase inNc occurs by almost 3 orders
of magnitude to 1.6× 104 l−1 caused by homogeneous drop
freezing, which begins in EDK09 model at the heights above
6 km, atT ≈ −34◦C, close to the freezing threshold for the
drops with radii of 18–20 µm. At temperatures warmer than
−34◦C, the nucleated ice crystals do not influenceNd and
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active site area α = 0 (crosses); #2) only the same 2nd 
aerosol mode and variable α(T) described by Eq. (12) 
(triangles); #3) 3 IN fractions included with 3 values of 
contact parameter, 0.85, 0.75 and 0.5, and concentrations 
10, 10 and 10 L-1 (diamonds). The 3 nucleation impulses 
in Nc in the run #3 are denoted by the numbers (Fig. 2d). 
The parameters: w= 50 cm s-1, RHW0=96 %, T0 =10 ºC.  

 

Fig. 2. Comparison of the temperature and time dependencies of cloud microphysical properties in the parcel runs obtained in simulations
EDK09 with parameterization PDA08 (solid circles) and obtained in simulations of this work using KC scheme with DHetF mode in 3
simulations (see Table 1): (#1) only 2nd aerosol mode included as in EDK09,Nd2= 1 cm−3 (1000 l−1), σd2= 2, rd2= 0.4 µm, and active
site areaα = 0 (crosses); (#2) only the same 2nd aerosol mode and variableα(T ) as described by Eq. (12) (triangles); (#3) 3 IN fractions
included with 3 values of contact parameter, 0.85, 0.75 and 0.5, and concentrations 10, 10 and 10 l−1 (diamonds). The 3 nucleation impulses
in Nc in the run #3 are denoted by the numbers (Fig. 2d). The parameters:w = 50 cm s−1, RHW0 = 96 %,T0 = 10◦C.
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LWC, and no signs of Bergeron-Findeisen process and crys-
tallization are seen on the EDK09 curves. Only when the
temperature falls to−35◦C, the instantaneous glaciation oc-
curs due to drop homogeneous freezing,Nc rapidly increases
by three orders of magnitude,Nd and LWC abruptly drop to
zero. Thus, the crystals heterogeneously formed in PDA08
scheme are unable to produce any noticeable crystallization
effect down to−34◦C and the “constraints” imposed in the
PDA08 scheme lead to a substantial underestimation of het-
erogeneous ice nucleation.

In contrast, crystallization in the KC scheme in simula-
tions #1 and #2 withNIN,2 = 1 cm−3 occurs much more
smoothly with decreasing temperature, in the temperature
range of ∼20◦C. With α = 0, crystal nucleation in KC
scheme begins at−15◦C and Nc reaches a maximum
∼103 l−1 within 2◦C. With the smooth functionα(T ) in sim-
ulation #2, crystal nucleation begins at about−5◦C, and
ends at−17◦C, more smoothly than withα = 0. Cloud
glaciation with decreasingNd and LWC begins at−15◦C
with α = 0 (at −7◦C with α(T )) and ends at−35◦C with
α = 0 (at−23◦C with α(T )), over theT -range of 16–20◦C
and 1 h in both cases. Note that the DW04 scheme shown
in Fig. 1 in EDK09 (not shown here) performs similarly to
the KC scheme in runs #1 and #2, and produces realistic
crystallization and cloud phase state. In simulation #3 with
3 IN fractions and with the KC scheme, heterogeneous nucle-
ation occurs in the three temperature ranges, near−5, −8 to
−9, and from−15 to−18◦C, corresponding to nucleation of
each of 3 fractions, from highest to lowest contact parameter.
Each nucleation impulse produces values ofNc almost equal
to the concentration in the corresponding fractions,∼10 l−1,
and the total is∼30 l−1 at T < −18◦C. Each nucleation im-
pulse is located in a relatively narrow temperature range of 1–
3◦C, but the total temperature range of nucleation stretches
over 13◦C.

Figure 2 shows that this nucleation picture and final crys-
tal concentration with KC scheme in simulation #3 are close
to those produced in EDK09 with PDA08 scheme. With this
small finalNc = 30 l−1, the KC scheme also does not pro-
duce glaciation down to the homogeneous freezing threshold
of −34◦C, when rapid drop freeing and cloud crystallization
occur. Thus, the conclusion in EDK09 that the KC scheme
produces very high crystal concentrations was caused by an
arbitrary and unjustified choice of very high (1000 l−1) IN
concentration in EDK09. The conclusion that nucleation in
the KC scheme occurs in very narrow temperature range was
caused by the choice of just one IN fraction with “monodis-
perse” properties: contact angle,α, etc. A more realistic
choice of IN produces nucleation with KC scheme over a
wideT -interval.

One criteria for validity of ice nucleation parameteriza-
tion is the cloud phase state. The phase state in clouds is
characterized by the ratio of the liquid (LWC) to the to-
tal water (LWC + IWC) in mixed phase,fl = LWC/(LWC
+ IWC) · 100 %. Figure 3 shows the observed climatology
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Fig. 3. Frequency of liquid vs. mixed states. Climatological
data after Borovikov et al. (1963) (see also figs. 2–33 in PK97),
compared to the characteristic of the liquid/mixed phase, the ra-
tio fl = LWC/(LWC+IWC), simulated with the KC05-CK10 parcel
model and heterogeneous KC ice scheme in the same 3 simulations
shown in Fig. 2 (see Table 1): (#1) only 2nd aerosol mode included
as in EDK09,Nd2= 1 cm−3 (1000 l−1), σd2= 2, rd2= 0.4 µm, and
active site areaα = 0 (diamonds); (#2) only the same 2nd aerosol
mode andα(T ) as described in the text (triangles); (#3) 3 IN frac-
tions included with 3 values of contact parameter, 0.85, 0.75 and
0.5, and concentrations 10, 10 and 10 l−1 (blue crosses). These re-
sults are compared to EDK09 parcel model simulations with PDA08
ice scheme, the same aerosol andα = 0 (open red circles), and to
the correspondingT -partitioning of the liquid and ice phases in
the climate models with single-moment microphysics: the NCAR
CAM3 (Boville et al., 2006), (83 % liquid at−15◦C) and ECMWF
(ECMWF-2007), (12 % liquid at−15◦C) as described in the text.

of fl compiled of a few thousands aircraft measurements
(Borovikov et al., 1963; reproduced in PK97). In pure liq-
uid clouds at warm temperatures slightly below 0◦C, fl is
close to 100 %, then decreases with decreasing temperature
(22 % liquid at−15◦C) and tends to zero atT <−30◦C, i.e.,
the clouds become purely crystalline.

Figure 3 compares this climatological data withfl cal-
culated from the simulations data of EDK09 and from the
three runs with KC scheme shown in Fig. 2 above com-
paring two forms ofα(T ) and two input IN concentrations.
These are also compared with the two parameterizations
of fl as a function of temperature in two general circula-
tion models: ECMWF (European Centre for Medium-Range
Weather Forecasts) and NCAR CAM3 (National Center for
Atmospheric Research Community Atmosphere Model 3).
In ECMWF, the liquid fraction was chosen asfl =[(T −

Tice)/(T0 −Tice)]2, andfl = 0 atT < Tice, with T0 = 273.16
and Tice = 250.16 K (12 % liquid at −15◦C), (ECMWF-
2007). In NCAR CAM3, the ice fraction was parameterized
as fi(T ) = (T − Tmax)/(Tmin − Tmax) with Tmax = −10 ◦C,
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Tmin = −40◦C (Boville et al., 2006); thenfl in percent can
be written asfl(T ) = 1−fi(T ) = (Tmin−T )/(Tmin−Tmax) ·

100, andfl(T ) = 0 atT <Tmin (83 % liquid at−15◦C). Fig-
ure 3 shows that the ECMWF parameterization is very close
to the climatological data of Borovikov et al. (1963), but
ends at slightly warmer temperatures. The CAM3 parame-
terization has a slope close to the climatological data, but the
curve CAM3 is displaced as a whole toward colder tempera-
tures by about 10◦C, underestimating the ice phase at warm
and medium temperatures (note that theT -limits in NCAR
CAM2 were 0 and−20◦C (Boville et al., 2006), andfl(T )

was closer to the ECMWF).
Thefl(T ) slopes in the KC scheme in simulations #1 and

#2 with NIN,2 = 1 cm−3 are steeper than the climatological,
ECMWF and CAM3 values but are still comparable to them,
and closer to CAM3. Occurrence of the ice phase increases
in KC scheme at−16◦C with α = 0 and at−7◦C with α(T );
the threshold withα(T ) is close to the threshold in CAM3.
In general, the KC scheme in simulations #1 and #2 with
NIN,2 = 1 cm−3 may underestimate the ice phase at warm
temperatures and overestimate the ice phase at coldT . How-
ever, there is a clear qualitative agreement of the KC scheme
in simulations #1 and #2 with the climatological data and
parameterizations ECMWF and CAM3, although a further
smoothing of the KC curve over the widerT -range is desir-
able, which is discussed below.

In contrast, the EDK09 simulations using the PDA08 pa-
rameterization, and simulations with the KC scheme in sim-
ulation #3 with low concentrationsNIN,1 = NIN,2 = NIN,1 =

10 l−1 are in sharp conflict with climatology. EDK09 and
KC simulation #3 predict more than 95 % liquid phase down
to −34.5◦C, where homogeneous nucleation begins to act in
the drops with radii of∼20 µm. With homogeneous nucle-
ation, the PDA08 and KC run #3 curves are very close and
exhibit abrupt crystallization within a few tenths of a degree,
and the curvefl(T ) is actually vertical. The simulations in
EDK09 show that the DW04 scheme produces ice crystals
with concentrations similar to the KC scheme in simulations
#1 and #2, i.e., with the limits 300 l−1 for dust and 1000 l−1

for soot, the corresponding limiting aerosol concentrations in
the 2nd mode chosen in EDK09.

The low heterogeneous nucleation efficiency of the
PDA08 scheme in ice production was somewhat masked in
Fig. 2, where the characteristics of the liquid and ice phases
were plotted separately, but it becomes clearer in Fig. 3,
when considering the ratio of liquid to total water,fl(T ).
Figure 3 illustrates that the increase in LWC during the par-
cel ascent is so rapid that the small amount of ice nucleated
with PDA08 scheme did not result in any noticeable crystal
growth and liquid water depletion by the Bergeron-Findeisen
mechanism. EDK09 argued that the KC and DW04 schemes
produced crystal concentrations a few orders of magnitude
greater and substantially overestimate ice production. How-
ever, Figs. 2 and 3 show that high crystal concentration is not
a characteristic feature of the KC and DW04 schemes, it was

a result of choosing a high value of input IN concentration
NIN ∼ 1 cm−3 for these schemes in EDK09.

Figure 3 shows that the KC scheme with higher values
of NIN ∼ 1 cm−3 is much closer to reality in reproducing
the cloud phase state (and the DW04 scheme also), while
the PDA08 scheme and KC scheme with lower values of
NIN ∼ 0.01 cm−3 produces unrealistically high values of liq-
uid water down to the threshold of homogeneous nucleation.
It is not clear whether this is a consequence of the too low IN
concentrations in PDA08 scheme and in KC simulation #3,
or a result of an unrealistic simulation with an isolated par-
cel model with high vertical velocities for a long time. This
question can be answered by running Eulerian models with
more realistic dynamic and physical framework with vari-
ous ice schemes. The modifications of the DW04 immersion
freezing scheme were applied by Lohmann and Diehl (2006)
in the ECHAM4 general circulation model and by Zubler
et al. (2011) in the nonhydrostatic weather prediction Con-
sortium for Small-Scale Modeling (COSMO) model. In
both works, ice nucleation was efficient well above−35◦C
and DW04 scheme produced reasonable glaciation effects in
good agreement with observations. To further address this
question, the results of simulation of the observed in MPACE
mixed cloud with a 1-D Eulerian model more realistic than a
parcel model and KC scheme are described in Sect. 5.

4 Assessment of parameterized ice particle
concentrations

Phillips et al. (2008) and EDK09 compared the PDA08 em-
pirical parameterization of IN with that from KC theory and
concluded that the KC approach producesNc(T ) curves with
slopesdNc/dT that are too steep and overestimate the crystal
concentrationNc. In this section, we show that PDA08 used
an incorrect procedure of comparison, and not the KC data at
all, and that a correct comparison shows good agreement of
the KC scheme with observations.

Figure 4 shows the results of simulations ofNc with the
parcel model described in KC05 and KC heterogeneous ice
nucleation scheme. This figure includes simulations from
KC05 based on several hundred runs of the parcel model,
and results of several new runs are added along with our pa-
rameterization forw = 0.3 to 50 cm s−1 and Cooper’s (1986)
parameterization. Each solid symbol in Fig. 4 corresponds to
a final value ofNc after a single run of the parcel model with
the KC scheme. This figure shows substantial variability of
Nc that depends on the initial temperatureT , vertical velocity
w, contact parametermis, and the areaα of the active sites.
The KC curves ofNc(T ) have two distinct different slopes:
a larger slope atT < −18 to−20◦C and a smaller slope for
T < −20◦C. The two different slopes are explained by the
preferential ice nucleation with medium contact parameter
mis ∼ 0.5 in mixed phase clouds atT > −20◦C (red sym-
bols) and in ice clouds at colder temperatures (blue symbols).
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Fig. 4. Temperature dependence of the crystal concentrationsNc
calculated withw = 1 (solid circles), 2 (diamonds), and 5 cm s−1

(crosses), and 50 cm s−1 (green square). Each solid symbol cor-
responds to a finalNi after a single run of the parcel model with
KC (2000, 2004, 2005) heterogeneous DF ice nucleation scheme.
The values of the contact parametermis = 0.52 = const along the
continuous lines, the other values ofmis are shown near the points
that are outside the lines; the symbol “α” denotes the runs with
α = 2× 10−5. Red symbols denote CCN freezing atδw > 0 in
the presence of drops in a mixed cloud, mostly atTc > −20◦C,
although mixed phase can be below−20◦ C and down to−30◦C
with lowermis = 0.12–0.30. Blue symbols denote ice nucleation at
δw < 0 in a crystalline cloud. The solid lines with the open symbols
plotted forw = 0.3, 1, 2, 3, 5, and 50 cm s−1 are parameterizations
from KC05 of the simulation data as described in the text. These
lines are compared with Cooper’s (1986) parameterization (trian-
gles). These fits might be used as a simple parameterization of the
average data in Figure in cloud models and GCMs.

However, mixed-phase clouds may exist in these simula-
tions down to−30◦C at lower values ofmis, which indi-
cates that the KC scheme can be consistent with frequent
observations of the mixed-phase Arctic clouds at low tem-
peratures (Curry, 1986; Curry et al., 1990, 1993, 1996, 2000;
Curry and Webster, 1999; Gultepe et al., 2000; Lawson et al.,
2001; Intrieri et al., 2002; Korolev et al., 2003; Shupe et al.,
2006; McFarquhar et al., 2007; Cotton and Anthes, 1989).
A comparison with Cooper’s (1986) parameterization lim-
ited atNc = 500 l−1 shows that the slopes of the KC curves
are greater atT > −18◦C and much smaller at colderT in
mostly crystalline clouds.

The solid lines with the open symbols in Fig. 4 represent
a parameterization of the simulation data described in KC05
and modified here as a function of two variables,T andw:

Nc(T ,w) = Cg(Tc0−Tc)
CT wCw , (13)
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Fig. 5. Parameterized parcel model simulations from KC scheme
with DF mode shown in Fig. 4 for the 5 values ofw = 0.3, 1, 2,
5 and 50 cm s−1 are compared to the experimental data from the
6 field campaigns described in Eidhammer et al. (2009) and indi-
cated in the legend. The almost vertical curve labeled “PDA-KC”
is from Philips et al. (2008). This curve, labeled “KC” in PDA08,
was calculated from Eq. (7) forNc here atSw = 1 (RHW = 100 %)
for eachT separately, without any model simulations and was a
wrong attempt to represent theT -dependence in KC theory with
excludedSw-dependence and its negative feedback. As this fig-
ure illustrates, this curve is substantially different from the realT -
dependences in KC scheme represented by the parameterized KC
curves. This PDA-KC curve from PDA08 actually represents the
old T -dependence from the classical theory based on the Thom-
son’s (1888) equations forrcr and1Fcr with account for onlyT -
dependence but withoutSw-dependence (see PK97, eq. 9–38).

whereTc is the temperature in Celsius,Tc0 = 0◦C, Nc is
in l−1, Cw = 1.41; and there are two sets of the other con-
stants: Cg = 0.4× 10−8, CT = 8.0, for Tc > −15◦C; and
Cg = 0.535, CT = 1.05 for Tc < −15◦C. The expression in
Eq. (13) represents the average data in Fig. 4 and can be used
as a simple parameterization in cloud models and GCMs.
Zhang et al. (2011) successfully used this parameterization
in the Weather Research and Forecast (WRF) model for sim-
ulations of dust effects on ice nucleation in the development
of Hurricane Helene.

This parameterization (Eq. 13) is compared in Fig. 5
to the experimental data from the 6 field campaigns de-
scribed in EDK09: INSPECT1, INSPECT2, CRYSTAL-
FACE, PACDEX, WISP, and MPACE. Figure 5 shows that
the span of the KC parameterization curves in the range
w = 0.3− 5 cm s−1 encloses the majority of the field data,
i.e., this ice nucleation scheme is in general agreement with
the field experiments. The tendency of KC curves is in

www.atmos-chem-phys.net/12/1151/2012/ Atmos. Chem. Phys., 12, 1151–1172, 2012



1162 J. A. Curry and V. I. Khvorostyanov: Assessment of parameterizations of ice nucleation

qualitative agreement with Cooper’s (1986) parameterization
used in the Morrison microphysics scheme currently em-
ployed in the CAM3 GCM (Morrison and Gettelman, 2008;
Gettelman et al., 2008) but allows a greater variability caused
by the different cooling rates (w). The almost vertical curve
in Fig. 5, marked “PDA-KC”, is from PDA08. This curve
was labeled “KC” in PDA08 and was intended to represent
theT -dependence in KC theory; however this curve was con-
structed in PDA08 for the first time without any parcel sim-
ulations and therefore is named here “PDA-KC”. Figures 4
and 5 clearly illustrate that this “KC” curve in PDA08 does
not correspond to the KC scheme and does not represent any
real dependence of finalNc(T ) from KC simulation data for
various conditions. The “PDA-KC” curve differs from the
KC simulations here in two aspects: (1) the slope of this
curve is much steeper than that of the KC curves; (2) the
maximum values ofNc (∼ 2× 105 l−1) are 103–105 times
greater than on the KC curves. These differences are ana-
lyzed below.

The “PDA-KC” curve is almost vertical because ice nu-
cleation in this case occurs in a very narrowT -range, in this
case,∼ −14 to −16◦C. This curve was plotted in PDA08
as a possible hypothetical temperature dependence of in-
termediateNc(T ), but it was calculated without any parcel
model runs and with fixedSw = 1 (or RHW= 100 %), that
is, with excluded any supersaturation dependence. Phillips
et al. (2008) in their “adiabatic” model considered ice crystal
nucleation but neglected crystal growth and the Bergeron-
Findeisen mechanism; therefore the liquid phase and mixed
cloud with Sw = 1 exist in their model at all temperatures
down to−70◦C. This curve “PDA-KC” actually represents
the oldT -dependence based on the classical equations for
rcr(T ) and 1Fcr(T ) by Thomson (1888) with account for
only theT -dependence and without anySw-dependence (see
eq. 9–38 in PK97 or Eq. (4a) here withSw = 1, Hv,fr = 0).
It has long been known that early formulations of the clas-
sical nucleation theory produce unrealistic values ofNc.
PDA08 characterized this curve as aT -dependence in the
KC scheme, but it is an incorrect characterization because the
T -dependence in the KC parcel model simulations shown in
Figs. 4, 5 was calculated with account for theSw-dependence
and its negative feedback that reducesNc by several orders
of magnitude. The KC curves correspond to many nucle-
ation events that begin at different initial conditions (T , Sw)

and pass different trajectories on theSw−T phase plane, and
the temperature in KC data is the final temperature when nu-
cleation has ceased.

The very large values ofNc that are 3–5 orders of magni-
tude higher than typicalNc were produced by PDA08 due to
two reasons. (1) PDA08 used only Eq. (8a) forNc with very
high IN concentrationNai = 200 cm−3 = 2×105 l−1, which
resulted in this highNc on PDA-KC curve. IfNai was chosen
comparable to typical CFDC data of 1–20 l−1, thenNc would
be several orders of magnitude smaller. (2) Further, PDA08
fixedSw = 1 and therefore neglected very strong negative su-

persaturation feedback in the KC scheme (see KC05). If the
correctSw-dependence is included as in the KC scheme, then
Sw can be equal to 1 for some time, but eventually becomes
negative at someNc due to the supersaturation absorption
by the drops (if any) and crystals, this creates a very strong
exponential negative feedback and nucleation ceases at val-
ues ofNc represented by KC points in Fig. 4 and curves in
Fig. 5 that are 3–5 orders of magnitude smaller than those
on the “PDA-KC” curve. Therefore the PDA08 interpreta-
tion of the KC theory with very highNai and excludedSw-
dependence is an incorrect and misleading representation of
the KC parameterization. The strong negative feedback due
to Sw-dependence found and analyzed in KC05 boundsNc
and produces much smootherNc(T ) and parameterization
that are in a good general agreement with the data from 6
field campaigns as shown in Fig. 5.

Figure 6 showsNc(si) calculated with KC scheme and an-
other comparison with experimental data by Rogers (1982,
1988) and Al-Naimi and Saunders (1985), now as a func-
tion of ice supersaturation. Plotted here are also two previ-
ous empirical parameterizations, MDC92 (green) and Huff-
man’s (1973) power lawNc(si) = CiHs

bH
i (magenta). Huff-

man found 3< bH < 8, andCiH was more uncertain. We have
chosen here the valuesCiH = 10−5 l−1 andbH = 4.9 to match
the lab data. Each solid symbol on the theoretical curves or
nearby (red, blue and brown) corresponds to a finalNc (after
nucleation ceases) in a single run of the parcel model plotted
against the maximum value ofsi during the run (reached usu-
ally near maximumNc). The points from parcel simulations
with KC scheme are here the same as in Fig. 4 forNc(T ) but
plotted now versussi .

Figure 6 shows that KC values ofNc are in reasonable
qualitative and quantitative agreement with the experimen-
tal points and both previous parameterizations, showing an
increase ofNc(si) with increasingsi . However, the simu-
lated increase is different for both small and large values of
si : there is a distinct decrease of the slopesdNc(si)/dsi at
si > 15–20 %, i.e., some sort of “saturation” at highersi . This
feature, convex dependenceNc(si) with decreasing slopes, is
similar to Huffman’s parameterization and to the water su-
persaturation dependence in the drop nucleation power law
(e.g., Yum and Hudson, 2001; Khvorostyanov and Curry,
2006, 2007).

5 Simulations of Mixed-Phase Arctic Cloud
Experiment (MPACE)

It was mentioned in Sect. 3 that parcel models alone are
insufficient tools for testing various ice parameterizations,
and Eulerian models are needed. An Eulerian single-column
model with KC scheme is used in this section for simula-
tion of the long-lived mixed-phase clouds that occur in the
Arctic. Simulation of Arctic mixed-phase clouds is one of
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Fig. 6. The ice supersaturation dependence of the crystal concen-
trationNc(si) calculated with KC04-KC05 scheme. Each solid cir-
cle on the curves corresponds to a finalNc after a single run of
the parcel model withα = 0. The data are mostly the same as in
Fig. 4 but plotted here as a function of ice supersaturation. The
red, blue and brown symbols and lines denote simulations with
vertical velocityw = 1, 2 and 5 cm s−1. The contact parameter
mis = 0.52 along the lines (as shown at the right ends) and is in-
dicated near the points where it is different from 0.52; the symbol
“α” denotes the runs with active site parameterα = 2×10−5, which
yields Nc = 1–3 l−1 at si ≈ 5 %. With this or similar valueα, all
points would be shifted to lower supersaturations by∼5–7 % and
would be closer to MDC92 curve and experimental points at lower
ice supersaturations. The parameterization curve from Meyers et al.
(MDC92, extended tosi = 38 %) is denoted with green color and
triangles. Huffman’s (1973) parameterizationNc(si) = CiHsb

i with

CiH = 10−5 l−1 (chosen here to match the lab data) andb = 4.9 is
shown in magenta. Black crosses denote experimental points from
CFD chamber by Rogers (1982, 1988) and Al-Naimi and Saun-
ders (1985) (courtesy by Paul DeMott).

the greatest challenges for a heterogeneous ice nucleation pa-
rameterization.

The Mixed-Phase Arctic Cloud Experiment (MPACE) was
conducted during September–October 2004 at the North
Slope of Alaska site in the vicinity of the ARM Climate Re-
search Facility (Verlinde et al., 2007). A single-layer mixed-
phase stratocumulus cloud deck with boundaries from 0.4–
0.5 to 1.3–1.6 km was observed on 9–11 October, when the
air mass was advected from the pack ice to the open ocean
and further inland (Klein et al., 2006; Verlinde et al., 2007).
The temperature varied from approximately around−8◦C at
cloud base to−15 to −17◦C at cloud top (McFarquhar et
al., 2007). Data on condensation nuclei were absent due to
instrument malfunction onboard of Citation aircraft. The dry
aerosol size distributions were obtained with Hand-Held Par-

ticle Counter (HHPC) on the Aerosonde unmanned aircraft,
but aerosol composition was unknown, and some condensa-
tion nuclei data were collected by the counter operated in
Barrow.

The average aerosol measurements on 10 October were
approximated by a bimodal aerosol size spectrum that was
recommended for use in numerical models (Klein et al.,
2006). The parameters for the fine mode were: concentration
Na1 = 72.2 cm−3, mean geometric radiusrg1 = 0.052 µm,
and dispersionσd1 = 2.04; the corresponding parameters for
the coarse mode wereNa2= 1.8 cm−3, mean geometric ra-
dius rg2 = 1.3 µm, and dispersionσd1 = 2.5. The aerosol
data were collected in the subcloud layer but should be rep-
resentative of the entire atmospheric boundary layer (ABL)
including the cloud because it was well mixed (Verlinde et
al., 2007).

The data on IN were sampled onboard the Citation with
a CFDC having an upper radius limit of 0.75 µm. 96 % of
the data remained below the CFDC detection limit of about
0.1 l−1, although measured crystal concentrations varied in
the range 1–30 l−1 (Fridlind et al., 2007). We can hypothe-
size two possible reasons for this. One reason could be that
the CFDC radius limit, 0.75 µm, was substantially lower than
the mean radius of the second aerosol mode, 1.3 µm. Thus,
the IN particles in the tail of the 2nd aerosol mode with max-
imum surface area and potentially highest ice nucleability
were excluded from CFDC measurements, while the con-
centration of large particles only 0.01 cm−3

= 10 l−1 would
produce a significant effect. An additional explanation could
be that the time of IN processing in the CFD chamber, 7–
15 s (Rogers, 1982, 1988; PDA08), is much smaller than the
timescale of heterogeneous ice nucleation of 15–240 min de-
termined from models (e.g., Lin et al., 2002; KC05; EDK09).
So, the IN concentrations above detection limit were mea-
sured only during 4 % of the in flight measurement time,
when IN concentration reached 1–20 l−1. Published simu-
lations of this case used the average value of 0.16–0.2 l−1,
which was determined as the average of 0 (below the detec-
tion limit) and the highest values of IN (Prenni et al., 2007;
Fridlind et al., 2007; Morrison et al., 2008).

Several simulations of MPACE clouds have been per-
formed with various models and ice nucleation parameter-
izations. Prenni et al. (2007; hereafter P07) used the Re-
gional Atmospheric Modeling System (RAMS, Cotton et al.,
2003) with heterogeneous ice nucleation parameterized us-
ing MDC92 and its modification with the same the functional
form as Eq. (1) but with different coefficientsaM = −1.488,
bM = 0.0187. P07 found that simulations with MDC92 led
to rapid cloud glaciation even with depletion of IN, lack of
liquid water and small optical thickness. Simulations with
the modified MDC92 scheme (P07 ice scheme) and deple-
tion of IN produced a mixed-phase cloud deck with suffi-
cient liquid phase similar to observations. Simulations with
the P07 scheme and IN increased by a factor of 2 and 10 (to
∼0.4–2 l−1) still yielded a mixed cloud and liquid phase was

www.atmos-chem-phys.net/12/1151/2012/ Atmos. Chem. Phys., 12, 1151–1172, 2012



1164 J. A. Curry and V. I. Khvorostyanov: Assessment of parameterizations of ice nucleation

maintained for 24–48 h. However, simulations using the P07
scheme without IN depletion led again to rapid glaciation.

Fridlind et al. (2007) simulated the MPACE cloud using a
3-D LES model with size-resolved bin microphysics. Sev-
eral pathways of ice nucleation were parameterized in the
model including the four standard modes of pristine ice nu-
cleation, various modes of ice multiplication, and a few addi-
tional mechanisms. These mechanisms included: increase of
IN aloft by 3 orders of magnitude from 0.2 to 200 l−1, surface
source of IN, prescription of some arbitrary rates of volume
and surface freezing, slower sedimentation plus fragmenta-
tion, ice nuclei formation from drop evaporation residues,
and drop freezing during evaporation. Fridlind et al. (2007)
found that the ambient IN as measured by CFDC appeared
insufficient by several orders of magnitude to explain the ob-
served cloud phase state, particularly crystal concentrations
and IWC. Sensitivity tests showed that neither standard 4 het-
erogeneous ice nucleation modes, nor 2 common ice multi-
plication mechanisms (drop shattering and crystal fragmen-
tation due to ice-ice collisions) could explain the observed
cloud microstructure and phase state. The standard nucle-
ation modes and even an increase of IN by 3 orders aloft (run
200 l−1) could produce onlyNc generally smaller than 1–
2 l−1. The runs with either evaporation freezing or with evap-
oration IN produced total crystal concentrations of 10 l−1 and
greater. This however did not cause full cloud glaciation and
vertical profiles of LWC were similar to observed values with
maxima about 0.5 g m−3 at a height 1200 m. Both LWP and
IWP were also similar to observed values in these runs.

Morrison et al. (2008) simulated MPACE clouds using the
polar version of mesoscale MM5 model with two-moment
microphysics scheme (Morrison et al., 2005; Morrison and
Pinto, 2005). Two different modes of ice nucleation were
included: deposition, condensation-freezing and immersion-
freezing were considered as a single mode with a specified
value of IN concentration of 0.16 l−1; and contact nucleation
was parameterized with the temperature dependence follow-
ing MDC92. The model was able to reproduce the LWC and
drop concentrations in reasonable agreement with observa-
tions but could not capture ice phase properties as well. The
modeled crystal concentration was smaller than observed by
about an order of magnitude, which was a consequence of
the large discrepancy between the measured IN and ice crys-
tal concentrations. The sensitivity to ice nuclei concentra-
tion was tested by increasing IN by 10 and 100 times in the
runs IN· 10 (to 1.6 l−1) and IN· 100 (to 16 l−1). The sim-
ulation IN· 10 produced crystal concentrations much closer
to observations while was still able to reproduce reasonably
the liquid phase properties although LWP= 158 g m−2 was
somewhat smaller than observed. The simulation IN· 100
(with IN comparable with the highest values in Fridlind et al.,
2007) produced IWP of 30 g m−2, about 5–7 times smaller
than observed.

The Prenni et al. (2007), Fridlind et al. (2007), and Morri-
son et al. (2008) simulations can be ranked according to sen-

sitivity to presence of ice. The RAMS bulk model (Prenni
et al., 2007) is most sensitive, full glaciation occurs atNc
∼0.2 l−1 without depletion; the MM5 model with Morri-
son’s microphysics is intermediate, mixed-phase can exist
at Nc ∼ 1.6 l−1; and the spectral bin model (Fridlind et
al., 2007) allows existence of quasi-stationary mixed-phase
cloud with the highestNc ∼5–10 l−1. A detailed comparison
of 17 single column models (SCM) and 9 cloud resolving
models (CRM) performed in Klein et al. (2009) and Morri-
son et al. (2009) showed a great diversity of simulated crystal
concentrations (about five orders of magnitude).

Fan et al. (2009, hereafter F09) simulated this single-
layer mixed-phase cloud observed from MPACE using a 3-D
model with spectral bin microphysics. The heterogeneous ice
nucleation scheme chosen by F09 was more detailed than in
most of the previous models: the KC scheme with simultane-
ous account for the temperature and supersaturation depen-
dencies but with very low input IN concentration of 0.2 l−1,
an artificial time average of the measured IN, and lower than
the measured crystal concentrationsNc cited above. This
was referred to as HINKC in F09, and this was an incorrect
use of the KC scheme, because the output data (IN concentra-
tions smaller thanNc) were used instead of the required input
IN data. Therefore, as noted in F09, the HINKC scheme in
F09 could produce a maximum of only 0.2 l−1 even when
all IN are activated. Thus, this HINKC scheme failed to
reproduce the observed ice crystal concentration and F09 in-
troduced two additional hypothetical mechanisms of ice nu-
cleation enhancement considered in Fridlind et al. (2007):
(a) activation of droplet evaporation residues by condensa-
tion followed by freezing, and (b) droplet evaporation freez-
ing by contact freezing inside out.

Examination of F09 indicates that failure to reproduce the
observed cloud with the KC scheme was caused by incor-
rect choice by F09 of the concentration of the initial freezing
aerosol particles in KC scheme. Here we test the KC scheme
with an Eulerian model, showing that correct use of the KC
ice scheme with the DHetF nucleation mode and more cor-
rectly chosen input concentrationNai may produce reason-
able crystal concentrations in quite good agreement with the
MPACE observations. The MPACE cloud is simulated us-
ing a 1-D single-column type model with spectral bin mi-
crophysics and supersaturation equation similar to described
in Khvorostyanov et al. (2001, 2003, 2006). This spectral
Eulerian model was under development for almost 40 yr,
was used previously for simulations of the natural forma-
tion and artificial seeding of all the major cloud types (a re-
view is in Khvorostyanov, 1995), in particular, for the mixed-
phase clouds observed during the SHEBA-FIRE experiment
in 1998 (Curry et al., 2000): in a 1-D version for simulation
of a deep frontal mixed-phase cloud of St-As-cirrus, and in
a 3-D version for a boundary layer cloud formed over the
Beaufort Sea polynya (Khvorostyanov et al., 2001, 2003), in
a 2-D version for simulation of the moderately cold cirrus
(Sassen et al., 2002) and in a 1-D version for simulation with
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KC DHetF ice scheme of a very cold cirrus observed during
the CRYSTAL-FACE campaign in 2002 (Khvorostyanov et
al., 2006). The version of the model used for the MPACE
simulations was modified to include a revised droplet nucle-
ation scheme following a generalized power law derived in
KC06, KC07 as described in Sect. 3.

The aerosol measured in MPACE was approximated by the
two lognormal modes, fine and coarse, as described above
based on Klein et al. (2006, 2009), Morrison et al. (2008).
The KC scheme was tested in 2 simulations: (a) both fine
mode with rg1 = 0.052 µm and coarse mode withrg2 =

1.3 µm were allowed to serve as CCN and IN; (b) only coarse
mode withrg2 = 1.3 µm was allowed to serve as IN, similar
to the parcel simulations in EDK09 and ours in Sect. 3. We
first describe in detail results in the simulation (b) and then
compare with simulation (a).

The model was initialized using the initial and bound-
ary conditions provided by Klein et al. (2006), Xie et
al. (2006a, b). The cloud was initially pure liquid and the
drop spectra were initialized as a 3-parameter gamma dis-
tribution with a power index of 6 using observed profiles of
LWC andNd (Klein et al., 2006; see Figs. 1 and 2). Subse-
quently, the two kinetic equations for the droplet and crys-
tal size distribution functions were solved at each time step
1t = 0.5 s along with the supersaturation equation to calcu-
late the evolution of the liquid and ice size spectra, each in-
cluding 30 gridpoints by radius. The model has 61 vertical
levels with1z= 25 m, corresponding to a vertical domain of
1.5 km. The algorithms of solution were described in detail
in Khvorostyanov et al. (1995, 2001, 2003, 2006).

The baseline simulated height-time display for the
MPACE cloud is shown in Fig. 7. Initially, there is a rather
thick liquid layer with slightly positive water supersaturation,
and ice supersaturation reaches 15–18 % (Figs. 7a, b). Max-
imum droplet concentration and liquid water content (LWC)
are 90 cm−3 and 0.4 g m−3 (Fig. 7c, e) in the upper cloud
layer above 1 km. Crystals appear after 30 min of simulation,
in a narrow layer near the temperature minimum (∼ −15◦C)
at z = 1.3 km with RHW ∼100 % (Fig. 7d, f). Maximum
crystal concentrationsNc are 20–30 l−1 in the generating
layer, ice virga fall out from it, andNc ∼5–10 l−1 in the lower
layers, generating precipitation that reaches the surface.

The simulated ice nucleation has an oscillatory character
(clearly seen in Fig. 7f) that results from competition be-
tween supersaturation production by dynamical and radiative
forcings and supersaturation depletion due to vapor deposi-
tion to the drops and crystals. These oscillations resemble
those in the evolution of the cirrus clouds with homogeneous
ice nucleation (Sassen and Dodd, 1989; Khvorostyanov et
al., 2001; Sassen et al., 2002). Complete glaciation of the
simulated cloud does not occur, since the crystal concentra-
tions are too low and their supersaturation relaxation times
are 1–1.5 h (Fig. 1j), the rate of vapor deposition is low, and
the Bergeron-Findeisen mechanism acts slowly. Supersatu-
ration over water is close to zero in most of the cloud layer

even in the presence of the crystals with these concentrations
of 10–30 l−1, and a rather large ice supersaturation of∼10–
20 % exists in the cloud layer. It is not rapidly converted into
IWC in contrast to many bulk models with zero ice super-
saturation. This feature is described by the supersaturation
equation in this model, and allows to cloud to exist in the
mixed-phase state for a long time and to reach a quasi-steady
state with very slow gradual accumulation of ice content. The
crystal concentrations of 5–15 l−1 do not cause full glacia-
tion due to the large crystal relaxation time and high resid-
ual quasi-steady ice supersaturation. This result is in a good
agreement with the more detailed simulations performed ear-
lier with the 2-D version of this model by M. Khairoutdi-
nov and M. Ovtchinnikov with wide variations of the crys-
tal concentrations (e.g., Khairoutdinov and Khvorostyanov,
1989; Kondratyev et al., 1990a, b, c), which showed that
even higher crystal concentrations may not cause full cloud
glaciation due to maintenance of the residual ice supersat-
uration instead of its fast transformation into bulk ice, and
allowed to find the criteria for full glaciation.

Figure 8 compares the simulated vertical profiles ofNd,
Nc, LWC, and IWC for the MPACE case on 10 October 2006
with the observational data. It is noted here that the large-
scale flow pattern and cloud field varied little during 9–10
October (Verlinde et al., 2007; Morrison et al., 2008). The
simulated droplet concentration is close to the initial profile,
and maximum LWC decreased to 0.3 g m−3. Simulated crys-
tal concentration in the upper layer 0.75–1.5 km closely re-
sembles the measuredNc: there is a pronounced maximum
in Nc ∼ 30 l−1 at∼1.25 km, both in simulations and observa-
tions, that coincides with the temperature minimum−15 to
−16.5◦C, where a substantial increase in ice nucleation rate
via the DHetF mode is predicted the by KC theory (KC00,
KC04b, KC05).

Thus, this simulation shows that the KC scheme in DHetF
mode is capable of explaining many features of the crystal
concentrations observed during MPACE and coexistence of
the liquid and ice phases. The lower maximum near 0.5 km
in measuredNc is not reproduced by the model. The origin
of this maximum could be a result of the nucleation due to
evaporated droplet residues or droplet freezing near the lower
cloud boundary as suggested in Fridlind et al. (2007), this
mechanism was not accounted for in our simulations.

The simulation (a) with both fine and coarse modes al-
lowed for ice nucleation showed very little difference with
simulation (b). Thus, it appears that the CCN fraction plays
minor role in ice nucleation compared to the coarse mode.
The reason for this is that, as follows from Eq. (7), the nucle-
ation rate for an individual aerosol particle is proportional
approximately to the square of particle radius, i.e., to its
surface area. For a population of particles, it was shown
in KC05 that Eqs. (7) forJhet and (9) forRfr can be sim-
plified in such a way that the integrals for the crystal con-
centration and nucleation rate contain explicitly the surface
area of aerosol population. The ratio of surface areas of the
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Fig. 7. Evolution of the Arctic mixed-cloud 
microphysical properties over 12 hours with 
initial M-PACE data on 10 October 2004, 
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KC04-05 ice scheme (condensation-freezing 
mode only) and KC06-07 drop activation 
scheme   
 

Fig. 7. Evolution of the Arctic mixed-cloud microphysical properties over 12 h with initial M-PACE data on 10 October 2004, KC ice
scheme with deliquescence-heterogeneous-freezing (DHetF) mode only and KC06-07 drop activation scheme. In this simulation, the aerosol
of the fine observed lognormal mode (Na1= 72.2 cm−3, rm = 0.052 µm,σ1 = 2.04) was allowed to serve as CCN; the aerosol of the coarse
observed lognormal mode (Na2= 1.8 cm−3, rm = 1.3 µm,σ2 = 2.5) was allowed to serve as ice nuclei and participate in nucleation processes.
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Fig. 8. Vertical profiles of Nd, Ni, LWC, and 
IWC for simulations of MPACE on 10 
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Fig. 8. Vertical profiles ofNd, Ni , LWC, and IWC for simulations of MPACE on 10 October 2006, corresponding to the timet = 3 h in
cross-sections in Fig. 7, compared to the observational data for 9 October. KC ice nucleation scheme was used with account for DHetF
mode, and KC06-07 CCN activation scheme was used for drop nucleation. In this simulation, the aerosol of the fine observed lognormal
mode (Na1= 72.2 cm−3, rm = 0.052 µm,σ1 = 2.04) was allowed to serve as CCN; the aerosol of the coarse observed lognormal mode
(Na2= 1.8 cm−3, rm = 1.3 µm, σ2 = 2.5) was allowed to serve as ice nuclei. Note a pronounced maximum inNi at ∼1.25 km, both in
simulations and observations, that coincides with the temperature minimum−16 to−16.5◦C, where a substantial increase in ice nucleation
rate is predicted by KC theory (KC04, KC05).

coarse and fine fractions in MPACE can be roughly estimated
as r2

g2/r2
g1 ∼ (1.3/0.05)2

= (26)2
= 676. The ratio of the

concentrations isN2/N1 = 1.8/72= 0.025. Thus, the ratio
of ice nucleation abilities of these modes is∼ N2r

2
g2/N1r

2
g1

∼ 676× 0.025= 17, i.e., the ice nucleating ability of the
coarse fraction is about 17 times greater than that of the fine
fraction (and unfortunately, this coarse mode could not be

captured by the CFDC). This is a crude estimate but it il-
lustrates the major role of the coarse fraction and the small
difference between the two simulations. Note that in this ex-
planation, the ratio of concentrations of IN to CCN is small,
N2/N1 = 0.025, in agreement with experimental results (e.g.,
PK97, DeMott et al., 1998).
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As Figs. 7 and 8 illustrate, correct application of the KC
scheme produces quite reasonable values and profiles ofNi
close to observed, and shows that F09’s conclusion that “...
HIN KC... cannot produce the observed ice crystal concen-
trations without ice enhancement mechanisms” was based on
an incorrect application of the KC scheme. If input IN con-
centration was chosen in F09 comparable to the coarse frac-
tion, ∼1–2 cm−3 (as EDK09 used KC scheme) or perhaps
even smaller but comparable, this would yield correct crystal
concentrations using the KC scheme.

Other examples of successful applications of KC DhetF
scheme in Eulerian models that also yielded reasonableNc
and cloud phase state close to observations include: a mixed
Sc cloud over a polar polynya (Khvorostyanov et al., 2003),
a cirrus cloud observed in CRYSTAL-FACE (Khvorostyanov
et al., 2006), observed with lidar gradual glaciation of mixed
Ac around−15◦C (Sassen and Khvorostyanov, 2007), and
effects of forest fire smoke on the “reverse” formation of
mixed Ac clouds when crystals formed first via haze freez-
ing and cloud drops formed 10–15 min later (Sassen and
Khvorostyanov, 2008), dust effects on extended cloud sys-
tem of the Hurricane Helene (Zhang et al., 2011).

6 Conclusions

Some empirical parameterizations of heterogeneous ice nu-
cleation for cloud and climate models were analyzed and
compared with the theoretical scheme developed by the au-
thors (KC scheme) and based on a modification of the classi-
cal nucleation theory for freezing. The results can be briefly
summarized as follows.

Analysis of several frequently used empirical parameteri-
zations of heterogeneous ice nucleation in the context of ex-
tended classical nucleation theory based on the entropy equa-
tion indicates that most empirical parameterizations can pro-
duce reasonable crystal concentrations but are prohibited in
some ranges of their variables (temperature and supersatura-
tion) from the thermodynamic point of view since they cor-
respond to negative critical ice germs radii or to humidities
below the critical threshold. This indicates that the existing
empirical parameterizations should be corrected, applied in
the regions of their validity and those developed in the future
should be constructed with account for the thermodynamic
constraints. These thermodynamic limitations also should
be accounted when evaluating various parameterizations in
cloud models.

A detailed comparison of the empirical parameterization
by Phillips et al. (2008) with the theoretical approach by
Khvorostyanov and Curry (2000–2009) is performed using
parcel model simulations similar to those in Eidhammer et
al. (2009). Both schemes are compared with climatologi-
cal data on cloud phase and with its parameterization in sev-
eral GCMs. This comparison demonstrated that the PDA08
scheme as applied in EDK09 in the wide temperature range

has a low nucleating efficiency, and may substantially under-
estimate crystal concentrations. In the EDK09 simulations,
PDA08 scheme predicts almost entirely liquid cloud down to
−35◦C, the threshold of homogeneous nucleation. The KC
scheme is sufficiently flexible and its performance depends
on the choice of the input parameters. The KC scheme with
IN concentration of 1 cm−3 as chosen in EDK09 and here
yields the temperature dependence of the cloud phase much
closer to climatology. A simulation using the KC scheme
and 3 fractions of IN with much smaller concentrations of
0.01 cm−3 (10 l−1), comparable to measured in CFDC, pro-
duced crystal concentrations comparable to those in PDA08
and EDK09, and the cloud phase state similar to EDK09, al-
most liquid down the threshold of drop homogeneous freez-
ing. It is not clear whether this liquid phase is a consequence
of too low IN concentrations, or a result of an unrealistic
simulation with an isolated parcel model with high vertical
velocities for a long time causing “superproduction” of liq-
uid.

The conclusion drawn in EDK09 that the KC scheme pro-
duces very high crystal concentrations was caused by the
choice in EDK09 of very high (1000 l−1) IN concentration
for the KC scheme. It was shown here that a choice of
smaller input IN concentrations yields much smaller crys-
tal concentrations. Concentration of the nucleated crystals in
the KC scheme is a function of the variable input IN con-
centration, which can be taken from the experimental data or
varying the input parameters in the model for better agree-
ment with observations.

The criticisms of the KC scheme expressed in PDA08 and
EDK09 that ice nucleation and cloud glaciation occurs in the
KC scheme in a very narrow temperature range was also in-
correct. It was based on application of the KC scheme using
a single value of each input parameter, e.g. contact angle,
misfit strain, etc. Nucleation in a single IN size fraction with
single properties for the whole fraction really yields nucle-
ation in a temperature range of 1–3 degrees. Therefore, the
KC scheme can be improved by averaging over some ranges
of the input parameters, perhaps in the way similar to Mar-
coli et al. (2007). Such a smoothing of the KC scheme was
demonstrated in EDK09.

Simulations performed here with the KC scheme and three
IN fractions with various properties showed that ice nucle-
ation may consist of several nucleation impulses in various
T -ranges, so that nucleation in a mixture of IN species oc-
curs over the temperature range of 15–20◦C. Observed cloud
glaciation, when liquid phase vanishes, occurs over a sim-
ilar range of 15–20◦C in convective cases, and over much
narrowerT -ranges in stratiform cases when cloud tempera-
ture does not vary significantly. Note that the precise mea-
surements of the temperature dependence of heterogeneous
ice nucleation for a single substance have never been made.
All of the experimental ice nucleation data actually relates to
large ensembles of IN mixtures with various properties and
various initial conditions (e.g., DeMott et al., 1998, 2003;
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Phillips et al., 2008). Conclusions on how narrow or wide the
T -interval of nucleation for an individual aerosol type can be
made only when corresponding measurements are available.

The simple model for KC scheme with 3 IN species was
chosen for illustration. If we have chosen more than 3 IN
species, e.g., with 7 aerosol modes as in Zubler et al. (2011),
or each mode had a dispersion of contact angles, active
sites and activation energies, the nucleation would be much
smoother and could occur quasi-continuously and over even
wider temperature range. The KC scheme does not have lim-
itations on the number of IN species, their concentrations
and properties, and allows easy incorporation of any avail-
able experimental information. The challenge is that such
information very rarely (if ever) is provided by experimental-
ists. However, it is possible to solve the “inverse problem” in
numerical simulations by varying input parameters until the
simulation results become close to observations, and thereby
retrieving IN properties.

Another evaluation of the KC scheme was performed by a
comparison of the results of numerous parcel runs with KC
ice nucleation scheme to the results of ice nuclei (nucleated
crystals) measurements in six recent field campaigns and in
some laboratory measurements. The results plotted as a func-
tion of the temperature or ice supersaturation show that the
KC scheme agrees well with the experimental data on the
nucleated crystals concentrations.

Increasing attention is being paid to the existence and long
lifetime of the mixed-phase Arctic clouds, which has been
a substantial challenge for heterogeneous ice nucleation pa-
rameterizations. Simulations of a case from the MPACE
field experiment were conducted here using a single column
model with spectral bin microphysics and the KC ice nu-
cleation scheme. These simulations were able to reproduce
the correct quasi-steady mixed phase of this cloud for a few
hours even without invoking some additional hypothetical
mechanisms. Our simulations showed that the major contri-
bution to ice nucleation comes from the coarse aerosol mode,
and contribution from the fine (CCN) mode is much smaller.

The discrepancy between the IN measured during MPACE
by the CFDC instrument and the IN predicted by the KC
scheme from the coarse mode aerosol concentration raises
the issue of the appropriate interpretation of the IN measured
by the CFDC. There are several possible reasons for not de-
tecting these IN by the CFDC. Limitation of the aerosol di-
ameter in CFDC by 1.5 µm while measured aerosol had a
second mode near 2.6 µm, so that the largest and most ef-
fective IN could be missed in CFDC. The process of ice nu-
cleation via freezing may take from a few minutes to a few
hours, while the processing time in the CFDC is limited to
7–15 s (PDA08); thus the IN captured in CFDC could have
insufficient time for ice nucleation. As discussed in Sect. 1,
the IN concentrationNi,a should be smaller or much smaller
than the total aerosol concentrationNa, see Eq. (10). Of
course, only a fraction of all aerosol can serve as IN, and
only a fraction of total IN becomes crystals in this example,

Nc � Nai, but as Eq. (10) indicates, theNai, can be greater
or much greater than the measuredNi,exp due to experimen-
tal limitations. Then, if necessary, an appropriateNai can be
determined by its variation in the model using the MDC92,
DM98, KC, DW04, LD06, PDA08 or other similar ice nu-
cleation scheme.
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theory of aerosol equilibrium radii, size spectra, and droplet ac-
tivation: Effects of humidity and insoluble fraction, J. Geophys.
Res., 112, D05206,doi:10.1029/2006JD007672, 2007.

Khvorostyanov, V. I. and Curry, J. A.: Critical humidities of ho-
mogeneous and heterogeneous ice nucleation: inferences from
extended classical nucleation theory, J. Geophys. Res., 114,
D04207,doi:10.1029/2008JD011197, 2009.

Khvorostyanov, V. and Sassen, K.: Towards the theory of homo-
geneous nucleation and its parameterization for cloud models,
Geophys. Res. Lett., 25, 3155–3158, 1998.

Khvorostyanov, V. I., Curry, J. A., Pinto, J. O., Shupe, M., Baker,
B., and Sassen, K.: Modeling with explicit spectral water and ice
microphysics of a two-layer cloud system of altostratus and cir-
rus observed during the FIRE Arctic Clouds Experiment, Special
Issue, J. Geophys. Res., 106, 15099–15112, 2001.

Khvorostyanov, V. I., Curry, J. A., Gultepe, I., and Strawbridge,
K.: A springtime cloud over the Beaufort Sea polynya: Three-
dimensional simulation with explicit spectral microphysics and
comparison with observations, J. Geophys. Res., 108, 4296,
doi:10.1029/2001JD001489, 2003.

Khvorostyanov, V. I., Morrison, H., Curry, J. A., Baumgardner, D.,
and Lawson, P.: High supersaturation and modes of ice nucle-
ation in thin tropopause cirrus: Simulation of the 13 July 2002
Cirrus Regional Study of Tropical Anvils and Cirrus Layers case,
J. Geophys. Res., 111, D02201,doi:10.1029/2004JD005235,
2006.

Klein, S., Fridlind, A., McCoy, R. B., McFarquhar, G., Menon, S.,
Morrison, H., Veron, D., Xie, S., Yio, J. J., and Zhang, M.: GCSS
Polar Cloud WG SCM/CRM/LES Intercomparison Case 2004,
ARM Mixed-Phase Arctic Cloud Experiment (M-PACE): 5–22
October 2004, available at:http://science.arm.gov/wg/cpm/scm/
scmic5/, last access: 15 December 2009, 2006.

Klein, S. A., McCoy, R. B., Morrison, H., Ackerman, A. S.,
Avramov, A., de Boer, G., Chen, M., Cole, J. N. S., Del Genio,
A. D., Falk, M., Foster, M. J., Fridlind, A., Golaz, J.-C., Hashino,
T., Harrington, J. Y., Hoose, C., Khairoutdinov, M. F., Larson, V.
E., Liu, X., Luo, Y., McFarquhar, G. M., Menon, S., Neggers,
R. A. J., Park, S., Poellot, M. R., Schmidt, J. M., Sednev, I.,
Shipway, B. J., Shupe, M. D., Spangenberg, D. A., Sud, Y. C.,
Turner, D. D., Veron, D. E., von Salzen, K., Walker, G. K., Wang,
Z., Wolf, A. B., Xie, S., Xu, K.-M., Yang, F., and Zhango, G.:
Intercomparison of model simulations of mixed-phase clouds ob-
served during the ARM Mixed-Phase Arctic Cloud Experiment.
I. Single-layer cloud, Q. J. Roy. Meteor. Soc., 135, 979–1002,

2009.
Kondratyev, K. Ya., Ovtchinnikov, M. V., and Khvorostyanov, V.

I.: Mesoscale model of mixed-phase cloud development with ac-
count for the interaction among optical, radiative and microphys-
ical processes, Atmos. Optics, 3, 639–646, 1990a.

Kondratyev, K. Ya., Ovtchinnikov, M. V., and Khvorostyanov, V. I.:
Modeling the evolution of optical, radiative and microphysical
properties of the atmosphere after crystallization of cloudiness.
Part I: Complete dispersal of the clouds, Atmos. Optics, 3, 647–
654, 1990b.

Kondratyev, K. Ya., Ovtchinnikov, M. V., and Khvorostyanov, V. I.:
Modeling the evolution of optical, radiative and microphysical
properties of the atmosphere after crystallization of cloudiness.
Part II: Restoration of the clouds after dispersal, Atmos. Optics,
3, 655–661, 1990c.

Korolev, A., Isaac, G., Cober, S. G., Strapp, J. W., and Hallett, J.:
Microphysical characterization of mixed-phase clouds, Q. J. Roy.
Meteor. Soc., 129, 19–38, 2003.

Landau, L. D. and Lifshitz, E. M.: Statistical Physics, Part 1, Perg-
amon Press, New York, 1980.

Lawson, R. P., Baker, B. A., Schmitt, C. G., and Jensen, T. L.:
Overview of microphysical properties of summertime boundary
layer clouds observed during FIRE.ACE, J. Geophys. Res., 106,
14989–15014, 2001.

Lin, R.-F., Starr, D. O’C., DeMott, P. J., Cotton, R., Sassen, K.,
Jensen, E., K̈archer, B., and Liu, X.: Cirrus parcel model com-
parison project. Phase 1: The critical components to simulate
cirrus initiation explicitly, J. Atmos. Sci., 59, 2305–2329, 2002.

Liu, X. and Penner, J.: Ice nucleation parameterization for global
models, Meteorol. Zeitschr., 14, 499–514, 2005.

Liu, X., Penner, J. E., Ghan, S. J., and Wang, M.: Inclusion of
ice microphysics in the NCAR Community Atmospheric Model
version 3 (CAM3), J. Climate, 20, 4526–4547, 2007.

Lohmann, U. and Diehl, K.: Sensitivity studies of the importance of
dust ice nuclei for the indirect aerosol effect on stratiform mixed-
phase clouds, J. Atmos. Sci., 63, 968–982, 2006.

Marcolli, C., Gedamke, S., Peter, T., and Zobrist, B.: Efficiency of
immersion mode ice nucleation on surrogates of mineral dust,
Atmos. Chem. Phys., 7, 5081–5091,doi:10.5194/acp-7-5081-
2007, 2007.

McFarquhar, G. M., Zhang, G., Poellot, M., Kok, G., McCoy, R.,
Tooman, T., Fridlind, A., and Heymsfield, A. J.: Ice properties of
single-layer stratocumulus during the Mixed-Phase Arctic Cloud
Experiment: 1. Observations, J. Geophys. Res., 112, D24201,
doi:10.1029/2007JD008633, 2007.

Meyers, M. P., DeMott, P. J., and Cotton, W. R.: New primary ice-
nucleation parameterizations in an explicit cloud model, J. Appl.
Meteor., 31, 708–721, 1992.
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