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Abstract. A technique for the tracking of individual clouds
in a Large Eddy Simulation (LES) is presented. We use
this technique on an LES of a shallow cumulus cloud field
based upon the Barbados Oceanographic and Meteorolog-
ical Experiment (BOMEX) to calculate statistics of cloud
height, lifetime, and other physical properties for individ-
ual clouds in the model. We also examine the question of
nature versus nurture in shallow cumulus clouds: do prop-
erties at cloud base determine the upper-level properties of
the clouds (nature), or are cloud properties determined by
the environmental conditions they encounter (nurture). We
find that clouds which ascend through an environment that
has been pre-moistened by previous cloud activity are no
more likely to reach the inversion than clouds that ascend
through a drier environment. Cloud base thermodynamic
properties are uncorrelated with upper-level cloud properties,
while mean fractional entrainment and detrainment rates dis-
play moderate correlations with cloud properties up to the
inversion. Conversely, cloud base area correlates well with
upper-level cloud area and maximum cloud height. We con-
clude that cloud thermodynamic properties are primarily in-
fluenced by entrainment and detrainment processes, cloud
area and height are primarily influenced by cloud base area,
and thus nature and nurture both play roles in the dynamics
of BOMEX shallow cumulus clouds.

1 Introduction

Shallow cumulus clouds occur over large parts of the trade-
wind regions (Norris, 1988), where subsiding air creates sta-
ble atmospheric conditions. They form an important part of
the tropical Hadley circulation, acting to transport heat and
moisture away from the surface, erode the inversion, and pre-

condition the free troposphere for deep convection (Tiedtke
et al., 1988; Neggers et al., 2007). Additionally, since short-
wave radiation reflection from marine boundary-layer clouds
is a primary component of cloud radiative effects, a proper
parametrization of shallow cumulus is necessary to accu-
rately model the global radiation balance in General Circu-
lation Models (GCMs;Bony and Dufresne, 2005; Medeiros
et al., 2008; Wyant et al., 2009; Medeiros and Stevens, 2011).

Much effort has been devoted to understanding the dy-
namics of shallow cumulus, notably the work of the Global
Energy and Water Cycle Experiment (GEWEX) Cloud Sys-
tem Studies (GCSS;Randall et al., 2003) boundary layer
cloud group. The GCSS have created several idealized test
cases, based upon field campaigns, suitable for modelling via
Large Eddy Simulation (LES;Siebesma and Cuijpers, 1995;
Stevens et al., 2001; Brown et al., 2002; vanZanten et al.,
2011). These studies have generally examined cloud fields
in bulk, calculating large-scale conditionally sampled mean
values of quantities and fluxes. This approach provides infor-
mation about the mean cloud field properties, but averages
out any information concerning the dynamics of individual
clouds.

A few researchers have focused instead on simulating the
dynamics of individual clouds. Early work byKlaassen
and Clark(1985), Bretherton and Smolarkiewicz(1989) and
Grabowski and Clark(1991) performed two-dimensional
simulations of a single cloud. These were quickly fol-
lowed by fully three-dimensional simulations (Grabowski
and Clark, 1993a,b; Carpenter et al., 1998; Blyth et al.,
2005), which simulated individual clouds initiated via the
application of localized heat fluxes. Unfortunately, none of
these studies were able to examine how individual clouds
might be affected by the presence of many other clouds in
a cloud field. To address thisZhao and Austin(2005a,b)
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manually selected six clouds from a fully-developed LES
cloud field and analyzed their life cycles. A similar approach
was taken byHeus et al.(2009), who used a virtual-reality
environment to help select 79 clouds from a set of LES ex-
periments.

While the methods ofZhao and Austinand Heus et al.
were able to provide many insights into the dynamics of in-
dividual clouds in an LES cloud field, they still suffer from
two issues. First, they are time consuming, requiring human
intervention to select individual clouds out of the model sim-
ulations, and second, they do not allow for a complete de-
composition of a cloud field into individual clouds. Ideally
one would prefer an automated system that would be able to
identify all individual clouds in an LES simulation and track
them through their life history.

Two previous studies have looked at automated cloud
identification and tracking in LES.Jiang et al.(2006) used a
two-dimensional image registration algorithm to measure the
effect of aerosols upon cloud lifetimes (G. Feingold, personal
communication, 2011). This method of tracking projects
the cloud liquid water path of individual cumuli onto a two-
dimensional surface and tracks each entity over its lifetime. It
has the benefit of simplicity, but is not appropriate for clouds
that overlap in the vertical. More recently,Plant(2009) pre-
sented a tracking algorithm that was able to capture the com-
plete time evolution of each cloud in an Cloud Resolving
Model (CRM). This algorithm operates while the CRM is
running, examines cloud relationships at each time step of
the CRM, and outputs diagnostics for each individual cloud.

Here we present a fully automated algorithm for the track-
ing of individual clouds in an shallow cumulus LES. This al-
gorithm generates output similar to the algorithm created by
Plant(2009), but with one significant difference: it can be run
off-line, on pre-computed LES model fields. In Sect. 2 we
describe the BOMEX LES we analyzed. Section 3 presents
the cloud tracking algorithm itself and an overview of the
cloud population statistics generated by applying the algo-
rithm to an LES shallow cumulus cloud field. In Sect. 4
we use the output generated by the algorithm to examine
whether initial cloud properties at cloud base or the environ-
ment encountered by the cloud is more important in deter-
mining the course of the cloud’s life cycle. In Sect. 5 we
present our conclusions. In addition, we include the full
source code for our algorithm for use by the LES modeling
community, written in the Python programming language, as
Supplement to this paper.

2 Model description

All LES calculations in this paper were made using ver-
sion 6.7 of the System for Atmospheric Modeling (SAM;
Khairoutdinov and Randall, 2003). The model run configu-
ration was the standard GCSS Barbados Oceanographic and
Meteorological Experiment (BOMEX;Holland and Rasmus-

son, 1973; Siebesma et al., 2003) setup. BOMEX simulates
an idealized, non-precipitating, steady-state trade-wind cu-
mulus cloud field based on observations made near Barba-
dos during June 1969. Constant latent and sensible surface
heat fluxes, and constant large-scale moisture advection, sub-
sidence, and radiative forcings drive the model. Cloud base
begins at 500 m height with maximum cloud fraction reached
at 600 m, and the base of the inversion is roughly at 1500 m.

The BOMEX run was performed on a 6.4 km× 6.4 km
horizontal× 3.2 km vertical domain with 25 m grid resolu-
tion in all directions and a one second time step. The model
was run for 6 h of model time, and the first three hours of
simulation were discarded as the model was still adjusting
into steady state. During the run the model steadily emits
a numerical tracer from the surface which decays exponen-
tially over time with a one minute time constant. This tracer
is used to implement the conditional sampling ofCouvreux
et al. (2010) in order to track cloud plumes in the dry sub-
cloud layer. Model fields were output every minute for the
last three hours of the simulation.

3 Cloud tracking

Dividing a cloud field up into individual clouds at a sin-
gle moment in time is a trivial matter of finding connected
regions of condensed liquid water. Tracking the resulting
clouds from one time step to the next is more problem-
atic, however. The simplest possible algorithm would iden-
tify contiguous regions containing condensed liquid water at
each time step with unique ids, and then identify regions that
overlap spatially in successive time steps. This information
could then be used to construct a graph (in the mathematical
sense) of the cloud overlaps, and connected subgraphs of this
graph would represent individual tracked clouds. (For preci-
sion, we will refer to a region of condensed liquid water as
a “cloud”, and a connected subgraph of cloud overlaps as a
“tracked cloud”).

However, when this simple algorithm is applied to the
BOMEX cloud field the resulting graph is dominated by
a small number (less than 10) of highly connected tracked
clouds that occupy over half the cloud field volume at any
given time (not shown). Furthermore, the resulting tracked
clouds are not spatially localised-parts of individual tracked
clouds may be on opposite sides of the domain. This result
occurs because this simple algorithm does not allow tracked
clouds to split. Fleeting spatial connections between clouds
will result in those clouds belonging to a single connected
subgraph, no matter how long ago they connected or how
brief the connection.

A cloud is a process, not an object; a rising parcel of moist
air may condense, a parcel of air containing condensate may
evaporate, and a cloud may merge with another cloud or
split into multiple clouds. To handle all of these possible
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events, we have developed a more complex method for track-
ing clouds in time.

3.1 Cloud tracking algorithm

In this section we present a description of our cloud tracking
algorithm. The major problem that our algorithm needs to
solve is exactly how tracked clouds should merge and split.
Our strategy is to split each cloud into smaller regions, which
we refer to as “cloudlets”, formed around the buoyant cores
of the clouds. A full implementation of our algorithm written
in the Python programming language is included as Supple-
ment to this paper, and may be illustrative to readers attempt-
ing to understand our technique.

We begin by defining three regions we use for cloud track-
ing (Fig. 1). The first is the cloud “core”, defined following
Siebesma and Cuijpers(1995) as all model points containing
condensed liquid water which have positive buoyancy and
upward velocity. The second we refer to as the “condensed”
region, defined simply as all model points containing con-
densed liquid water. Third is the cloud “plume”, the region of
upward moving air that is associated with the cloud. We de-
fine this region following the work ofCouvreux et al.(2010)
via a numerical tracer that is emitted at the surface and sub-
sequently decays exponentially with a one minute time con-
stant. A point is considered to be in the plume if the tracer
value of that point is larger than one standard deviation above
the mean tracer value at the current height. Additionally, the
tracer value must exceed five percent of the mean of the hori-
zontal standard deviation of the tracer values from the surface
to the current height. However, unlikeCouvreux et al., we do
not require upper-level plume points to have condensed liq-
uid water. Finally, all condensed points are also flagged as
plume points regardless of their tracer concentration, so that
the condensed region is always a subset of the plume.

We use the plume, condensed, and core regions to help us
identify when tracked clouds merge and split. The simplest
criterion would be spatial connectivity; tracked clouds merge
when their condensed regions connect and split when a single
condensed region separates. However, in practice this often
results in tracked clouds making brief contact, merging, and
then immediately splitting apart again. To prevent these tran-
sitory splitting and merging events, we only merge clouds
when their core regions are connected, not simply their con-
densed regions. Splits still occur when the condensed re-
gion of a cloud divides into separate parts, but we addition-
ally require newly split clouds to be connected to the surface
via the plume region. This prevents cloud detritus near the
inversion from splitting from its parent cloud as it evapo-
rates. These additional constraints result in spatially local-
ized tracked clouds which centre around actively convecting
cores connected to ground level through rising plumes.

At each time step we divide each model cloud into
“cloudlets” formed around contiguous, nearest-neighbour
connected core regions. We identify contiguous core regions

by first selecting a core point at random and labeling it with
an integer cloudlet id. Next, any core grid cells immediately
above, below, north, south, east, and west of the initial core
point are labeled with the same cloudlet id. This process is
repeated recursively on the newly labeled points until all core
points which are nearest-neighbour connected to the initial
core point are labeled. Then another unlabeled core point is
chosen at random, assigned a new cloudlet id, and the pro-
cess repeated until all core points are assigned a cloudlet id.

Next, condensed points are labeled with cloudlet ids in a
process mimicking crystal growth. We iterate through the
core cloudlet ids and label condensed points that are im-
mediately nearest-neighbour adjacent to each cloudlet with
that cloudlet’s id. Condensed points adjacent to more than
one cloudlet are assigned the smaller cloudlet id. Once all
the cloudlets have been expanded into the condensed region
around them, the iteration is repeated, causing the cloudlets
to grow into the condensed region around them until all con-
nected condensed points are assigned to a cloudlet. Re-
maining condensed points must be unconnected to any core
points, and are assigned new cloudlet ids via the same pro-
cess used to label the core points. Once all the condensed
points are labeled the expansion process is repeated for the
plume points until all plume points connected to a condensed
region are assigned a cloudlet id. Remaining unconnected
plume points are assigned to new cloudlet ids via the same
process used for core and condensed cloudlets until all plume
points have a cloudlet id. The entire cloudlet id assigning
process is then repeated for every saved model time step.

This process of assigning plume, condensed, and core
points to cloudlets results in condensed regions being divided
into one or more cloudlets, each centered on contiguous re-
gions of core points within the condensed region (Fig.1). If
a condensed region contains no core points the entire con-
densed region will be assigned to a single cloudlet, and if a
plume region contains no condensed points the entire plume
region is assigned to a single cloudlet. This creates three
types of cloudlets: ones consisting of core points, surrounded
by condensed points, surrounded by plume; ones consisting
only of condensed points surrounded by plume; and ones
consisting only of plume points.

These cloudlets are then grouped into “clusters” of related
cloudlets and each cluster is assigned a unique integer track-
ing id. For the initial model output time step, we assign
cloudlets with adjacent condensed regions to the same clus-
ter. This causes the initial time step’s clusters to correspond
to what most people would consider clouds–connected re-
gions of condensed liquid water. At subsequent time steps,
spatial overlaps between a cluster and a cloudlet in the fol-
lowing time step are used to associate cloudlets with previous
clusters. The overlaps are examined with the cloudlet’s po-
sition corrected for advection between time steps using the
mean velocity of the cloudlet’s condensed points (if con-
densed points are present in the cloudlet) or plume (if they
are not).
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Fig. 1. Vertical and horizontal sections through the BOMEX model, showing the cloud core (dark red), condensed liquid water (blue) and the
plume (light yellow) regions used by the cloud tracking algorithm. Black linesshow the edges of algorithm cloudlets.(a) Vertical east-west
section across the model domain. Dashed lines show the heights of the horizontal sections shown in(b)–(d). (b) Horizontal section across
the model domain at 1200 m height. Dashed line shows the position of the vertical section shown in(a). Only 2 km of the 6.4 km domain are
shown in the north-south direction.(c) Same as for(b), but at 925 m height.(d) Same as for(b), but at 425 m height.

Fig. 1. Vertical and horizontal sections through the BOMEX model, showing the cloud core (dark red), condensed liquid water (blue) and the
plume (light yellow) regions used by the cloud tracking algorithm. Black lines show the edges of algorithm cloudlets.(a) Vertical east-west
section across the model domain. Dashed lines show the heights of the horizontal sections shown in(b–d). (b) Horizontal section across the
model domain at 1200 m height. Dashed line shows the position of the vertical section shown in(a). Only 2 km of the 6.4 km domain are
shown in the north-south direction.(c) Same as for(b), but at 925 m height.(d) Same as for(b), but at 425 m height.

Four kinds of overlap are possible: condensed points in
the cloudlet may overlap condensed points in a previous
cluster (condensed→ condensed, Fig.2a); condensed points
may overlap previous plume points (plume→ condensed,
Fig. 2b); plume may overlap condensed points (con-
densed→ plume, Fig.2c); and plume may overlap plume
(plume→ plume, Fig. 2d). Several kinds of over-
lap may occur simultaneously, so we define a hierar-
chy of connection types and check each in turn. The
strongest connection type is condensed→ condensed, fol-
lowed by plume→ condensed, then plume→ plume. Con-

densed→ plume connections are ignored, which prevents
connections between newly formed cloudlets and leftover
plume from a dissipating cloud. Conversely, allowing
plume→ condensed connections lets us associate newly
condensed fluid with plumes rising through the sub-cloud
layer. Only the strongest connection type present for
a given cloudlet is considered: if a cloudlet has con-
densed→ condensed connections, any condensed→ plume
or plume→ plume connections are ignored, and if there are
condensed→ plume connections, plume→ plume connec-
tions are ignored.

Atmos. Chem. Phys., 12, 1101–1119, 2012 www.atmos-chem-phys.net/12/1101/2012/
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Fig. 2. The four kinds of overlap between cloudlets and tracked clouds at the previous time step. Each subfigure shows a one-dimensional
representation of model points at an initial time (top) and 1 min later (bottom). Yellow indicates plume region and blue indicates condensed
region. (a) A condensed→ condensed overlap, with the condensed region in time step 1 overlapping the condensed region in time step
2. This subfigure also contains condensed→ plume, plume→ condensed, and plume→ plume overlaps, but the condensed→ condensed
overlap takes precedence.(b) A condensed→ plume connection, with the condensed region in time step 1 overlapping the plume re-
gion in time step 2. This diagram also contains a plume→ plume overlap, but the condensed→ plume overlap takes precedence.(c) A
plume→ condensed connection, with the plume region in time step 1 overlapping the condensed region in time step 2. This diagram also
contains a plume→ plume overlap, but the condensed→ plume overlap takes precedence.(d) A plume→ plume connection, with the plume
region in time step 1 overlapping the plume region in time step 2.

Cloudlets that overlap a single cluster are unambiguously
assigned the same tracking id (Fig.3, cluster 1 at time step 1
overlaps cloudlet 1 at time step 2). A cloudlet which overlaps
more than one cluster at the previous time step is assigned
the cluster id of the largest volume overlap, and the smaller
overlap cluster is flagged as possibly having merged into the
larger cloud. (Fig.3, clusters 2 and 3 at time step 1 both
overlap cloudlet 2 of the figure. Clusters 2 and 3 at time step
1 are separate because their core regions have not yet con-
nected.) Finally, clusters that contain more than one cloudlet
are considered for splitting. A split occurs if a tracked clus-
ter contains cloudlets with disconnected condensed regions,
with the additional condition that those cloudlets have plume
regions in contact with the ground. When a cluster splits, the
cluster of connected cloudlets with the greatest condensed
volume is assigned the parent cluster id, and the smaller sub-
clusters are assigned new ids. Cloudlets that are not con-
nected to the ground are assigned to the sub-cluster with the
nearest centroid. (In Fig.3, cluster 4 at time step 1 consists
of two cloudlets that have connected condensed regions. At
time step 2, cluster 5 splits from cluster 4 because their con-
densed regions are disconnected and both clusters are con-
nected to ground through the plume. The small core cloudlet
on the left side of cluster 4 does not split since it is not con-
nected to the surface.)

Finally, any cloudlets that do not overlap clusters in the
previous time step are assumed to be new clouds and are as-
signed new cluster ids. The process of cluster assignment,
merging, splitting, and creation is repeated for each time step
until all cloudlets are assigned tracking ids. At this point a
graph is created, with all cloudlets having the same cluster id
being connected into a tracked cloud. Any tracked cloud that
has condensed points for less than five minutes is flagged,

and if any merge or split events occurred over the tracked
cloud’s short lifetime it is connected to the tracked cloud it
split from or merged with. This further restricts decaying
detritus shed from a cloud top, and clouds which split then
immediately re-merge with their parent, from being counted
as discrete cloud objects. Finally, tracked clouds that have
condensed liquid water only for a single time step are placed
into a “cloud noise” group and considered separately.

3.2 Cloud tracking results

Applying the cloud tracking algorithm to three hours of
BOMEX LES output with snapshots taken each minute re-
quires 1 h and 40 min of computation time on an Intel Xeon
E5645 2.4 GHz processor with 4 GB of RAM. The algorithm
results in 3171 tracked clouds; of these, 609 (19 %) were cre-
ated by splitting an existing cloud, 2381 (75 %) were unas-
sociated with previous clouds, and 181 (6 %) were present at
the start of the output period and thus their initiation was not
observed. Conversely, 261 (8 %) of the clouds ended their
life cycle by merging with another cloud, 2820 (89 %) ended
their life cycle by decaying away, and 90 (3 %) were present
at the end of the output period. A total of 850 clouds ei-
ther begin by splitting from or end by merging with another
cloud (27 %), indicating only 20 clouds both begin and end
with such interactions (609 created via splitting, plus 261 de-
stroyed via merging, minus 850, equals 20 which both split
and merge). The larger number of clouds present at the start
of the output period (181) than at the end (90) is the result
of the algorithm maintaining connections between physically
separate clouds at the end of the output period.

Figure4 displays horizontally averaged condensed region
(cloud points containing condensed liquid water) properties
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Fig. 3. Example of possible relationships between clusters and
cloudlets at successive time steps. Top panel represents a vertical
model section showing 4 clusters being tracked by the algorithm.
Bottom panel represents the same vertical model section 1 min later.
As in Fig.1, cloud core is dark red, condensed liquid water is blue,
and the tracer plume is light yellow. Solid black lines denote clus-
ters, and dashed lines show the cloudlets that compose these clus-
ters. The left side of the sections shows cloudlet 1 unambiguously
overlapping cluster 1. The middle of the sections shows two clus-
ters merging; in the first time step, the clusters’ condensed regions
have come into contact, but not until their core regions form a sin-
gle contiguous area does cluster 3 merge with cluster 2. The right
side of the sections shows a cluster splitting in two. Initially, cluster
4 is composed of two cloudlets with connected condensed regions.
At the next time step cluster 5 splits from cluster 4 since their con-
densed regions have separated and cluster 5’s cloudlet has a plume
in contact with the ground. The disconnected core cloudlet on the
left side of cluster 4 does not split since it has no plume connection
to ground. The remaining two cloudlets which compose the bulk of
cluster 4 do not split since their condensed regions are connected.

for the longest-lived cloud in the ensemble. The cloud’s
horizontal cross-sectional condensed area shows large, ver-
tically coherent discontinuities in time due to merge events
and split events. However, the majority of the merge and
split events that occur to this cloud do not significantly alter
the cloud condensed area, and none of the other horizontally
averaged properties display significant discontinuities. Most
of the cloud condensed region maintains upward velocities
over 1 m s−1 (Fig. 4b), though short-lived downdrafts are ap-
parent in the inversion (above≈1.5 km) and at the end of
the cloud’s life. Near cloud base, the total specific water
(qt, units of g kg−1, Fig. 4c), liquid-water potential temper-
ature (θl , units of K, Fig.4d), and condensed liquid water
(ql , units of g kg−1, Fig. 4e) are similar to the mean environ-
mental properties, but theqt excess,θl deficit, andql of the
condensed region increases with height, and indications of
upward propagating pulses can be seen in these fields. The
condensed region buoyancy is generally positive below the
inversion, with strong pulses of positive buoyancy apparent

(displayed using density potential temperatureθρ , units of K,
Fig. 4f). Finally, comparing this example cloud with the ex-
ample clouds presented byHeus et al.(2009, Figs. 4 and 5)
shows similar magnitudes and patterns in condensed region
properties.

Core region (cloud points having upward velocity and pos-
itive buoyancy) properties for the same cloud (Fig.5) display
buoyant mass pulses more clearly than the condensed re-
gion. Cloud core occupies roughly 60 % the horizontal cloud
area near cloud base, but essentially vanishes in the inver-
sion. Since the condensed region properties show positive
vertical velocity and negative buoyancy in the inversion, the
disappearance of the core must be due to the rapid increase
of environmental stability, which makes the cloud negatively
buoyant. Cloud core vertical velocity increases steadily with
height andqt excess,θl deficit, andql are all greatest at cloud
top. Core buoyancy is positive by definition, and regular
buoyant pulses are apparent.

The total BOMEX cloud fraction at cloud base in our
model is about 0.065, or≈2.7× 106 m2. The longest-lived
cloud thus represents over 10 % of the total cloud base area
at times. As we mention at the beginning of this section, this
is actually much smaller than the largest cloud tracked by a
simple overlap algorithm that does not allow clouds to split
and merge. The dominance of the cloud field by this cloud is
a natural outcome of the power law distribution that shallow
cumulus cloud areas are known to obey, since a power law
implies the existence of a small number of extremely large
clouds.

3.3 Tracked cloud statistics

In this section we examine the statistics of the cloud popu-
lation generated by the tracking algorithm in order to sanity
check the algorithm results, and to identify how and where
the algorithm artificially modifies cloud field size statistics.
Before calculating these statistics, we exclude any clouds
which begin or end outside the model output period since
we do not have access to their complete life cycles. This re-
moves 287 clouds from the sample, leaving 2921. This filter-
ing will tend to preferentially affect the longest-lived clouds
from our sample, biasing the population slightly. However,
our results show the cloud population to be overwhelmingly
composed of short-lived clouds, implying that robust statis-
tics for the longest-lived clouds would not be possible with
this three hour model run.

Both cloud lifetime (defined by the length of time the
tracked cloud contains condensed points, Fig.6a) and mean
condensed region mass over the cloud’s lifetime (Fig.6b)
are heavily skewed toward small, short-lived clouds. The
cloud lifetime distribution displays no clouds with a lifetime
shorter than two minutes, due to our imposed constraint that
tracked clouds be present at more than one model output
time. Over 1000 of the tracked clouds, a little less than a
third of the total cloud population, exist for less than 4 min,

Atmos. Chem. Phys., 12, 1101–1119, 2012 www.atmos-chem-phys.net/12/1101/2012/
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Fig. 4. Height-time profiles of(a) horizontal cross-sectional area,(b) vertical velocity,(c) total specific water surplus,(d) liquid-water
potential temperature deficit,(e) specific liquid water and(f) buoyancy of the condensed liquid water region of the longest-lived tracked
cloud. Surplus and deficit values in(c) and(d) are relative to the horizontal mean properties of the model. The black lines in(b) and(f)
denote the zero contours. The longer line markers at the top and bottom of the plots denote the times at which clouds split from and merge
into this cloud, respectively.

and over 2200 clouds, or about a half of the cloud popu-
lation, have an average mass less than 106 kg (≈53 model
grid cells). Conversely, there are four clouds that persist for
longer than an hour (not shown), and 35 with mean mass
larger than 3× 107 kg (≈1600 model grid cells, not shown).
Maximum cloud top height is much less skewed (skew = 2.0)
than lifetime (3.6) and mass (10.4), but still shows many
more small clouds than large clouds (Fig.6c). Only 441
clouds, or about 15 % of the population, reach a height of
1 km, and only 108 clouds (4 %) reach the inversion base at
1.5 km. Over 78 % of the clouds have cloud base between
500 and 600 m, with the majority of the rest having cloud
base values below 1 km (Fig.6d). Thus, the overall picture
of the cloud field we form is of numerous small, short-lived

clouds at cloud base in a field dominated by a few large, long-
lived towers that have managed to overcome convective inhi-
bition and reach the inversion.

As cloud size distributions have been shown to be consis-
tent with power law scalings (Benner and Curry, 1998; Zhao
and Girolamo, 2007), these results are physically plausible.
However, few of these statistics have been accurately mea-
sured in real cloud fields. One cloud property that has been
widely measured, however, is horizontal cloud area taken
from satellite and aircraft images (Benner and Curry, 1998;
Cahalan and Joseph, 1989; Neggers et al., 2003b,a; Zhao and
Girolamo, 2007; Jiang et al., 2008). The number of clouds of
a given size has been found to follow a power-law distribu-
tion of the form:
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Fig. 5. As in as Fig.4, but for the cloud core region.

n(l) ∝ l−λ (1)

wherel is a horizontal length scale in meters generated by
taking l =

√
a, a is the horizontal area of the cloud, and

n(l)dl is the number of clouds with length scales between
l andl+dl. λ can be calculated by finding the slope of a line
fit to a log-log plot of the relative number of clouds present
at each length scalel. Often this relationship is complicated
by a scale break nearl = 1000 m, and so two power laws are
fit, one for clouds withl smaller than≈1000 m and another
for clouds withl larger than≈1000 m.

To calculate the cloud size distribution, we followNeg-
gers et al.(2003b) and take the projection of the clouds’
condensed regions onto a horizontal plane. This simulates
what a satellite directly overhead would observe, to facilitate
comparison with observations. We then take the square root
of the projected cloud condensed area to generate a length

scale, calculate a cloud size histogram with 10 m wide bins
at each minute over the three hours of model output, then fit
a line to this distribution in log-log space. We do this twice,
once for cloud sizes produced by the tracking algorithm, and
once using cloud condensed region areas taken directly from
snapshots of the model output.

Comparing the size distribution generated from snapshots
with the distribution generated by the tracking algorithm
shows the tracking algorithm modifies the cloud size dis-
tribution by increasing the number of clouds between 100
and 1000 m length scales, and removing clouds smaller and
larger than this range (Fig.7). The algorithm removes small
clouds for two reasons: first, we explicitly filter out clouds
that are present in only one snapshot; and second, the track-
ing algorithm treats short-lived clouds which have recently
separated from a parent as part of the parent cloud. Large
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Fig. 6. Histograms of(a) cloud lifetime in minutes (with a 2 min
bin width), (b) mean mass of the cloud condensed region over the
cloud lifetime (106 kg bin width), (c) maximum height reached by
the cloud top (50 m bin width), and(d) minimum height of the cloud
base (50 m bin width) for tracked clouds with complete life histo-
ries.

clouds are underrepresented by the algorithm for two rea-
sons: first, clouds which have connected condensed regions
may still have separate cores, and so are considered separate
clouds by the algorithm; and second, the projection of the
three dimensional cloud area onto the 2-D plane done for the
instantaneous snapshots results in clouds which overlap in
the vertical, but which are disconnected in 3-D space, inflat-
ing the numbers of large clouds seen in the snapshots. Many
of the small and large clouds thus end up classified as mid-
sized clouds by the tracking algorithm, inflating their num-
bers.

Clear scale breaks appear around 1000 m in the snapshot
distribution and 900 m in the tracking algorithm distribu-
tion, and so we exclude length scales greater than 1000 m
and 900 m from the line fits used to findλ. Additionally,
a small-cloud scale break is apparent in the tracking algo-
rithm distribution for clouds withl less than 100 m, so we
exclude this length scale from the tracking algorithm line
fit as well. Lines fit to the distributions result in reason-
ably similar values ofλ: 1.88 for the snapshots, and 1.96
for the tracking algorithm (Fig.7). Theseλ values also com-
pare favorably with previous estimates taken from LES (1.7,
Neggers et al.,2003b; 1.9, Jiang et al., 2008), satellite ob-
servations (1.89,Cahalan and Joseph, 1989; 1.88,Zhao and
Girolamo, 2007) and airplane observations (1.98,Benner and
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Fig. 7. Histograms of horizontal cloud length scales calculated
from instantaneous cloud field snapshots (black line) and from the
cloud tracking algorithm (grey line) using a 10 m bin width. The
red dashed line and blue dotted line show linear best fit between
100–1000 m length scales to the instantaneous and tracked cloud
histograms, respectively.

Curry, 1998; 2.3,Jiang et al., 2008). Thus, while the tracking
algorithm modifies the total numbers of small, medium, and
large clouds in the distribution, the power law scaling for the
medium clouds is not significantly distorted.

4 Two example analyses

The output of the tracking algorithm provides us with a com-
plete decomposition of the model cloud field into individ-
ual clouds. This allows us to generate statistics of cloud
behaviour and use these statistics to answer questions about
cloud field dynamics. Here we present two examples of anal-
yses that would not be possible without a large database of
tracked clouds.

Before we turn to our examples, we briefly examine the
variability of the clouds in the tracked ensemble. We ex-
amine six basic properties of the clouds’ condensed liquid
water regions: total specific waterqt, liquid-water potential
temperatureθl , density potential temperatureθρ , vertical ve-
locity w, horizontal cross-sectional areaa, and vertical mass
flux M. We take horizontal averages of the first four proper-
ties and horizontal sums fora andM over condensed points
to generate property profiles for each cloud at each sampled
time.

Correlations between the horizontal mean properties of all
clouds present at a given height reveal strong relationships
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Fig. 8. Vertical profiles of cross-correlations between condensed region(a) mean total specific waterqt, (b) mean liquid-water potential
temperatureθl , (c) mean density potential temperatureθρ , (d) mean vertical velocityw, (e) horizontal cross-sectional areaa and(e) vertical
mass fluxM. Green squares denote correlations withqt, yellow triangles correlations with−θl , red circles correlations withθρ , blue x
markers correlations withw, unmarked black lines correlations witha, and unmarked grey lines correlations withM. The dashed line
denotes the 99 % confidence level for the correlation to be significantly different than zero.

between the mean cloud properties (Fig.8). Nearly identi-
cal results are found taking correlations of core properties,
and so these results are applicable both to condensed and
core regions. Above 800 m,qt, −θl , and θρ are strongly
correlated, to the point that they can essentially be consid-
ered a single variable; more buoyant clouds have higherqt
and lowerθl . Similarly, a andM have near-unity correla-
tions from 600–1400 m, indicating that variations in horizon-
tal cross-sectional area completely control the vertical mass
flux. From this we conclude that BOMEX cloud variabil-
ity between 800 m and the inversion base can be completely
characterized by three variables:θρ , w, anda.

Near cloud base the system becomes slightly more com-
plicated, asa andM become uncorrelated and−θl diverges
fromqt andθρ . Below 600 m, buoyancy is controlled by vari-
ations inqt, and−θl becomes anti-correlated with bothqt and
θρ , reaching a correlation of≈−0.9 at 500 m (not shown).
Within the 700–1400 m layer cross-correlations are signifi-
cant at the 99 % confidence level betweenθρ , w, anda, but
the magnitude of these relationships is much weaker, with a
correlation of≈0.75 betweenw andθρ , ≈0.4 betweena and
θρ , and≈0.4 betweenw anda. Once the clouds reach the

inversion layer, these correlations betweenw, θρ anda are
no longer statistically significant.

Some of the causes of these cloud property cross-
correlation patterns can be inferred from the vertical structure
of the mean cloud condensed region properties (Fig.9). All
the BOMEX clouds begin with a small range of thermody-
namic properties (relative to their mean values) at cloud base.
The thermodynamic properties are then modified by mixing
events as the clouds rise, resulting in accumulating variability
that is strongly correlated. Conversely, the BOMEX clouds
start with a wide range of areas at cloud base, and as they
rise this variation only grows a little. Finally, the clouds start
with some variability in their vertical velocity at cloud base,
which increases as they rise due to variability in the buoyancy
forcing.

Although M is related toa andw via the relationM =

ρwa, whereρ is the air density in kg m−3, M is only weakly
correlated withw, despite being strongly correlated witha.
This unintuitive result arises due to the relative contributions
of a andw to the variance ofM. Changes inM can be ex-
pressed in terms of changes ina andw as
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Fig. 9. Variation with height of the probabilities in range1x (P(x)1x) of the condensed liquid-water regions of the tracked clouds having
a certain(a) mean total specific water excess,(b) mean liquid-water potential temperature deficit,(c) mean buoyancy,(d) mean vertical
velocity, (e) horizontal cross-sectional area, and(f) vertical mass flux. Black lines show contours of the cumulative distribution functions of
each variable at the 0.01, 0.05, 0.16, 0.5, 0.84, 0.95, and 0.99 levels, from left to right. White line denotes the mean values for each variable.

dM = ρw∂a+ρa∂w (2)

Choosing representative cloud layer values into Eq. (2) is
complicated by the power-law distribution that governs cloud
areas. The median values ofw anda are roughly 0.5 m s−1

and 10 000 m2 (Fig. 9), while 66 % ofw anda fall between
roughly 0.1–1.0 m s−1 and 1000–100 000 m2, respectively.
Differences in cloud vertical velocity will thus result in mass
flux values of approximately 1000–10 000 kg s−1, while dif-
ferences in cloud cross-sectional area will results in mass
flux values between 500–50 000 kg s−1, a range an order of
magnitude larger. Thus, cloud mass fluxes are primarily con-
trolled by the area of the cloud, producing near unity corre-
lations betweena andM.

Adopting the language ofRomps and Kuang(2010), these
results suggest that cloud area and mass flux results from the
cloud’s nature (initial conditions), and thermodynamic vari-
ables are governed by nurture (the environmental conditions
they experience). We examine this question further in the
next section.

4.1 Nature versus nurture

In this section, we perform analyses on the tracking algo-
rithm output to address the question of nature versus nur-
ture in shallow cumulus cloud dynamics: do the properties
of the air entering the cloud at cloud base, or the proper-
ties of the environment the cloud encounters as it rises, exert
stronger influence on the evolution of the cloud?Romps and
Kuang(2010) addressed this question for individual parcels
of convecting air and found the net entrainment experienced
by a parcel influences the parcel’s state far more than the par-
cel’s initial properties at cloud base. Our tracking algorithm
allows us to examine this question from the prospective of
whole clouds, instead of sub-cloud parcels.

We use a simple one-dimensional particle tracking model
to examine the causes of variability in upper-level cloud
properties. For each cloud, we release a particle once a
minute at some initial height and advect it vertically using
the average vertical profile ofw in the cloud. Linear interpo-
lation is used to calculatew between model grid points and
sampling times, and forward differencing is used to step the
particle position in time with a time step of 1 s. The times
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at which the particles reach each higher model level are then
recorded until the particle leaves the cloud (Fig.10a).

These time-height profiles are then used to sample the
mean properties of the cloud when the released particles
reach each model level (Fig.10b and c). We then combine
the results from each cloud in the simulation to produce cor-
relations between the cloud properties when the particles are
released and when they reach each model height (Fig.10d).
If a particle does not reach a given height, it is simply ex-
cluded from the correlation calculation. This allows us to de-
termine to what extent the properties of the cloud near cloud
base control the future properties of the cloud at height.

We use the 99 % significance level as a rough measure
of the height at which the cloud properties are decorrelated
from the properties at particle release. However, since clouds
tend to experience discrete mass flux pulses on a≈15 min
timescale and we release one particle each minute, we divide
the degrees of freedom (number of particles) used to calcu-
late the correlation significance by a factor of 15 to account
for the auto-correlation of cloud properties within a pulse.

First, we perform this calculation using particles released
from a height of 300 m, in the sub-cloud layer. Since con-
densed liquid water does not appear in the sub-cloud layer,
we use the horizontal mean properties of the cloud plume re-
gion to advect the particles and calculate property values. A
total of 8012 particles are released at 300 m and tracked. For
this calculation we ignore plume area and vertical mass flux,
because the method we use to divide the sub-cloud plume up
between individual clouds makes the area of the sub-cloud
plume dependent on that of the cloud core above.

The qt of the rising particles is strongly correlated with
qt at release up until the particles reach cloud base at 500 m
(Fig. 11). The meanθl andθρ of the plume are also strongly
correlated with release properties. This implies that the
sub-cloud plume properties propagate upward essentially un-
changed by interaction with surrounding air.qt is anti-
correlated withθl with a value of≈0.6 in the sub-cloud layer,
and does not show significant correlations withθρ . Con-
versely,θρ is strongly correlated withθl but not withqt; thus,
while in the cloud-layer buoyancy is controlled byqt, in the
sub-cloud layer, it is controlled byθl . The w of the rising
particles is uncorrelated with any other properties at particle
release with the exception of the velocity, but unlike the ther-
modynamic variables this correlation steadily declines and
become insignificant 200 m above the particle release level,
indicating the vertical velocity is strongly modified in the
sub-cloud layer. The transition from the sub-cloud layer into
cloud base fully decorrelates thew andθρ of the cloud with
the sub-cloud properties at 300 m. Onlyqt and θl proper-
ties survive the transit through cloud base, but the correla-
tion with the sub-cloud properties is limited to the first 200 m
above cloud base.

Next we look at correlation profiles for particles released
at 600 m, the height of maximum cloud fraction in the mid-
dle of the cloud base layer. For this height we use the hor-
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Fig. 10.Method used to determine correlations between lower- and
upper-level cloud properties.(a) Numerical particles are released
once per minute from an initial level in the cloud and advected ver-
tically with the mean vertical velocity of the cloud until the particle
leaves the cloud. (Lines show the time-height trajectories of the
numerical particles and colours show the cloud’s vertical velocity.)
(b) The times at which particles reach each model level are then
identified and the cloud properties at those times are recorded. (Dots
show the time each particle reaches each model level and colours
show the cloud’s vertical velocity. Only half the model levels have
been plotted for clarity.)(c) The properties encountered by the par-
ticles at a given height are then arranged by the time each particle
was released, forming a set of pseudo-time series at each height.
(Dotted lines show the total specific water values of the cloud at
the time each particle reached a given height. The 600 m, 800 m,
1000 m, 1200 m, and 1400 m height particle values are highlighted
and labeled. Only half the model levels have been plotted.)(d) Cor-
relations are then taken between the properties of the particles at
release and the properties at higher levels to calculate correlation
profiles. (Solid line shows the correlation between total specific hu-
midity of the particles at release and the total specific humidity of
the cloud at various heights. Dotted lines show the 99 % confidence
level for a correlation to be significantly different than zero.)

izontal mean of the cloud core properties to advect the par-
ticles and calculate cloud properties, as the cloud core defi-
nition insures the particles will always move upward. A to-
tal of 9984 particles are released and tracked. Due to the
strong cross-correlations between thermodynamic variables
and cloud area and mass flux, we restrict our analysis toθρ ,
w, anda. However, sinceθl is uncorrelated withqt andθρ

at cloud base, we do calculate the correlation betweenθl at
600 m and upper-level properties separately from cloud base
θρ .
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Fig. 11. Correlation profiles between cloud plume properties near
the middle of the sub-cloud layer at 300 m height and at higher lev-
els for(a) total specific waterqt, (b) liquid-water potential temper-
atureθl , (c) density potential temperatureθρ , and(d) vertical veloc-
ity w. Green squares show correlations with 300 m levelqt, yellow
triangles correlations with 300 mθl , red circles correlations with
300 mθρ , and blue x markers correlations with 300 mw. Dotted
lines show the 99 % confidence level for a correlation to be signifi-
cantly different than zero.

Cloud baseθl turns out to be uncorrelated with any upper-
level cloud core properties (Fig.12). Correlations between
θρ at cloud base and at height decline rapidly, dropping be-
low 0.5 by 800 m and losing all statistical significance around
1000 m. Cloud basew anda are correlated withθρ at cloud
base at levels of 0.25 and 0.5, respectively, and this correla-
tion also falls to insignificance by 1000 m. Vertical velocity
shows a similar pattern, with all correlations becoming in-
significant near 1000 m. Cloud core area, on the other hand,
is significantly correlated with cloud base area all the way
up to the inversion base at 1500 m. Cloud basew is also
significantly correlated with upper-level cloud core area up
to 1300 m, but with a much smaller correlation. In sum-
mary, upper-level thermodynamic properties and vertical ve-
locity appear to be uncorrelated with cloud-base properties,
but upper-level cloud core area is correlated with cloud base
a and, to a lesser extent,w.

Romps and Kuang(2010) explained the variation in cloud
parcel properties at height as the result of the entrainment
the parcel experienced as it rose from cloud base. We can
examine the influence of entrainment and detrainment pro-
cesses on the cloud core properties by taking the mean of the
total fractional cloud core entrainmentε (in units of m−1)

and fractional cloud core detrainmentδ (also in m−1) experi-
enced by the particle between 600 m and the current height,
and correlating thesēε andδ̄ values (where the over-bar de-
notes the mean of the property between cloud base and the
current height) with the properties of the cloud core at the
current height. To do this we calculate cloud core mass en-
trainment and detrainment rate profiles for each individual
cloud using the direct entrainment method detailed inDawe
and Austin(2011), and divide these profiles by the cloud core
vertical mass flux of each cloud to generate individualε and
δ values for each cloud at each particle sampling time. Ad-
ditionally, we calculate the mean of the critical mixing frac-
tion χc, the fraction of environmental air in a mixture of core
and environmental air needed to produce a neutrally buoy-
ant mixture.χc is used in buoyancy-sorting parametrization
schemes to determine cloud core entrainment and detrain-
ment rates (Kain and Fritsch, 1990; de Rooy and Siebesma,
2008). We calculateχc using the mean cloud core properties
and environmental properties taken as the average of all non-
cloud core points at the current height within 100 m of the
cloud core.

Cloud coreθρ is anti-correlated with̄ε and δ̄, and corre-
lated withχ̄c, with a constant magnitude of roughly 0.5 up to
1400 m (Fig.13). These correlations become stronger than
the correlation with cloud baseθρ roughly 200 m above par-
ticle release, and indicate that low entrainment and detrain-
ment rates are correlated with anomalously buoyant clouds.
Vertical velocity also shows stronger correlations with−ε̄,
−δ̄, and χ̄c than with cloud basew between 800–1300 m,
although in this case−δ̄ has a noticeably higher correlation
with w than−ε̄ does. Conversely, cloud core area is more
correlated with cloud base core area than−ε̄, −δ̄ or χ̄c all
the way to the inversion base, at which point the−δ̄ andχ̄c
values show roughly the same correlation witha as cloud
base area.−ε̄ is far less correlated witha, however, showing
that cloud area variations are more influenced by detrainment
than entrainment.

Our results largely agree with the results ofRomps and
Kuang(2010): upper-level cloud properties are governed by
the entrainment and detrainment experienced by the cloud
as it rises, and cloud base properties have little influence on
upper-level cloud properties, suggesting that nurture is more
important than nature in determining shallow cumulus cloud
properties. The exception to this is cloud area, which is cor-
related with cloud base area and whichRomps and Kuang
were not able to examine with their parcel model. Neverthe-
less, cloud base area and entrainment/detrainment rates still
exert roughly equal influence over upper-level cloud area.

4.2 Ascending cloud top properties versus maximum
cloud height

In this section, we examine the effect that the properties of
the cloud top and the environment the cloud encounters as
it ascends has upon the eventual height the cloud achieves.
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Fig. 12.Correlation profiles between cloud base properties at 600 m and at higher levels for(a) density potential temperatureθρ , (b) vertical
velocity w, and(c) horizontal cross-sectional areaa. Yellow triangles show correlations with cloud baseθl , red circles show correlations
with cloud baseθρ , blue x markers correlations with cloud basew, and the black line show correlations with cloud basea. Dotted lines show
the 99 % confidence level for a correlation to be significantly different than zero.
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Fig. 13. Correlation profiles between cloud properties at each level and the mean of the entrainment/detrainment variables from cloud base
at 600 m to the current level for(a) density potential temperatureθρ , (b) vertical velocityw, and(c) horizontal cross-sectional areaa. Yellow
triangles show correlations with mean critical mixing fractionχ̄c, orange diamonds show correlations with the negative of the mean fractional
entrainment ratēε, and cyan triangles show correlations with the negative of the mean fractional detrainment rateδ̄. Dotted lines show the
99 % confidence level for a correlation to be significantly different than zero.

Using the cloud tracking data, we identify the earliest times
that condensed liquid water is present at each height during
each cloud’s ascent (Fig.14a). We then find all condensed
points within 100 m of the cloud at those heights and time,
and take averages of the properties of those points to gen-
erate vertical profiles of the ascending cloud top properties
(Fig. 14b). Additionally, we find all environment points that
are nearest-neighbour adjacent to the cloud top condensed
points between 0 m and 50 m below cloud top and extend
the topmost nearest-neighbour points 50 m above cloud top
to generate profiles of the environment encountered by the
rising cloud top.

From these profiles, we perform two analyses based upon
the average of the property profiles between 550–750 m and
between 750–1000 m. In order to not bias these averages, any
cloud profiles which do not span the whole averaging range
are excluded from the analysis. Clouds whose life histories
begin or end outside the data period are also discarded. From
the original set of 3171 clouds, this leaves 257 clouds in the
550–750 m case and 240 clouds in the 750–1000 m case.

The clouds that remain are then split into two categories:
tall clouds which exceed a threshold height over their life-
time, and short clouds which do not. The threshold height
is chosen in each case to divide the cloud sample roughly
equally. For the clouds present between 550–750 m, we set
the dividing height to 1125 m; for the clouds present between
750–1000 m, we set the dividing height to 1300 m. This
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results in 131 tall clouds and 136 short clouds in the 550–
750 m case, and 127 tall and 113 short clouds in the 750–
1000 m case.

Since some of the cloud’s properties, such as horizontal
cross-sectional area, are not normally distributed, we use a
non-parametric statistical test to determine if the properties
of the tall clouds and their environment are significantly dif-
ferent than the properties of the short clouds. The Mann-
Whitney U test evaluates the null hypothesis that two data
samples come from the same distribution (Mann and Whit-
ney, 1947). It does this by summing the number of values in
one sample which are greater than each value in the other
sample; this sum is calledU . If large samples are taken
from populations with identical distributions, on average one
would expect a given value from the first sample to be larger
than half the values in the other sample, andU will be nor-
mally distributed with a mean value of mn/2. Thus, the fur-
therU is from mn/2, the more likely it is that the two samples
come from distributions with differing magnitudes. Note that
there are actually twoU values defined by this test, depend-
ing on whether the first sample is ranked against the second,
or the second is ranked against the first. However, it is easy to
show thatU1+U2 = mn, and by convention only the smaller
U-value is quoted.

We calculateU values for total specific waterqt, liquid-
water potential temperatureθl , density potential temperature
θρ , and vertical velocityw for both cloud top and environ-
ment. Three additional quantities are calculated for cloud top
alone: specific liquid waterql , horizontal cross sectional area
a, and vertical mass fluxM (in units of kg s−1). All of these
values are calculated for both averages over 550–750 m and
750–1000 m, resulting in a total of 22 property comparisons.
For the 550–750 m samples, if both the tall and short clouds
have identical distributions the mean value ofU should be
8908, and for the 750–1000 m samples, 7175.

Since we are calculating 22 separate tests, there is a high
chance that one of these tests will show a spurious significant
relationship if we test for a 95 % significance level. Several
methods, such as the Bonferonni correction (Shaffer, 1995),
can be used to reduce the possibility of finding a spurious re-
sult. However, these methods often risk erroneously exclud-
ing significant results, and much debate over their use can
be found in the scientific literature (Perneger, 1998; Naka-
gawa, 2004). The simplest correction to significance for mul-
tiple statistical tests is simply to divide the p-value sought by
the number of tests performed. Thus, to achieve an over-
all p-value of 0.05 with 22 tests, we must achieve a p-value
of 0.05/22 = 0.0023 on an individual test. This represents a
worst case scenario where only one of the 22 tests is signif-
icant, and we must exclude the possibility this significance
results from random chance; if more than one test is signifi-
cant, the p-value needed to exclude false positives is reduced.
Instead of calculating these probabilities explicitly, we will
simply consider any result withp < 0.05 as possibly signifi-
cant and any withp < 0.0023 as definitely significant.

0 10 20 30
model time (minutes)

0

.5

1

1.5

h
e
ig
h
t
(k
m
)

a) Sampling Locations

9

11

13

15

17

(g
k
g

)

8 10 12 14 16 18

(g kg )

0

.5

1

1.5

b) Generated Profile

Fig. 14. Method used to generate profiles of environmental prop-
erties encountered by a cloud during its initial ascent.(a) At each
height, the earliest time the cloud is present is used to sample the
mean properties of environmental points directly adjacent to the
cloud, and the mean cloud points.(b) These samples are used to
generate a profile of the initial properties encountered by the cloud
top.

Our results are presented in Table 1. We find that the en-
vironmentalqt, θl andθρ encountered by the clouds between
550–750 m are not significantly different for tall clouds than
for short clouds. Environmentalw is on the borderline for
statistical significance, with velocities on average 0.05 m s−1

larger between 550–750 m for the tall clouds than the short
clouds. On the other hand, cloud top properties show strong
differences between tall and short clouds, with onlyθl show-
ing no differences. Cloud topθρ is possibly significant,
with more buoyant clouds slightly more likely to become
tall, but much more important are the cloud humidity, ver-
tical velocity, and especially horizontal cloud cross-sectional
area and mass flux, which have extremely small p-values
of 2.2× 10−16 and 6.8× 10−21, respectively; moist clouds,
rising quickly, with larger horizontal cross-sectional areas
and greater vertical mass flux are more likely to become tall
clouds.

However, simply because the differences in these values
are statistically significant does not mean that they are impor-
tant. Examining histograms of environmentalw and cloud
top θρ , w, anda (Fig. 15) shows that, while the differences
between the tall and short clouds are unlikely to have oc-
curred by chance, clouds tops with small areas, in relatively
slowly rising environments, still have a reasonable chance of
becoming tall clouds. These properties certainly have an in-
fluence on the cloud height, but it is clearly not a definitive
one.

As the clouds rise above cloud base, similar results appear
for the properties associated with short and tall clouds change
(Table 1). None of the environmental properties encountered
by the clouds between 750–1000 m are significantly different
for short clouds than for tall clouds. However, all tested cloud
top variables show significant differences between the short
and tall clouds. Clouds with largeqt, ql , θρ , w, a, andM,
and lowerθl , between 750–1000 m, are more likely to rise
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Table 1. Mann-Whitney U-test results comparing differences between encountered environment and rising cloud top properties for tall
vs short clouds. For average properties between 550–750 m, tall clouds are defined as clouds that reach heights over 1050 m; for average
properties between 750–1000 m, tall clouds are those that reach heights over 1300 m. Shown are differences in the means (tall minus short),
the differences in the means normalized by the standard deviation, the U-value, and the p-value that this U-value would arise for two samples
taken from the same distribution. Variables with p-values<0.05 (“possibly significant”) are shaded in light grey, and variables with p-values
< 2.3× 10−3 (“definitely significant”) are shaded in darker grey.

Variable Number of Number of Mean difference Mean difference Mann-Whitney Mann-Whitney
tall clouds short clouds (tall minus short) divided by variable U-value p-value

standard deviation

environment 550–750 m 131 126
qt 0.03 g kg−1 0.14 7391 0.15
θl −0.0015 K −0.02 8167 0.89
θρ 0.004 K 0.09 7603.5 0.28
w 0.05 m s−1 0.38 6450 2.5× 10−3

cloud 550–750 m
qt 0.031 g kg−1 0.43 6044 2.1× 10−4

ql 6.7× 10−3 g kg−1 0.41 6386 1.7× 10−3

θl −1.1× 10−3 K −0.05 8006 0.68
θρ 0.018 K 0.37 6450 2.5× 10−3

w 0.08 m s−1 0.47 6039 2.0× 10−4

a 7748 m2 0.95 3383 3.0× 10−16

M 6193 kg s−1 1.04 2667 6.8× 10−21

environment 750–1000 m 127 113
qt 0.018 g kg−1 0.07 6893 0.60
θl −0.008 K −0.07 6932 0.65
θρ −3.5× 10−4 K −0.006 7028 0.78
w 0.03 m s−1 0.17 6659 0.34

cloud 750–1000 m
qt 0.17 g kg−1 1.10 2544 6.3× 10−18

ql 0.06 g kg−1 1.05 2836 6.3× 10−16

θl −0.05 K −1.00 2921.5 2.1× 10−15

θρ 0.10 K 1.02 2918 2.1× 10−15

w 0.15 m s−1 0.70 4212 3.4× 10−8

a 8100 m2 1.07 2405 6.3× 10−19

M 11 656 kg s−1 1.11 1716 2.7× 10−24

past 1300 m. Of these properties, cloud top area and mass
flux are again the most significant differences.

4.3 Discussion

Our results present the following picture of the dynamics of
the BOMEX cloud field. The sub-cloud layer is well mixed
and filled with broad regions of upward and downward mo-
tion (Fig. 1). These regions are large enough that they are
relatively shielded from mixing with other air masses and
property anomalies easily propagate vertically. Conversely,
the mean upward velocity of plumes in this region is uncor-
related with the plume’s mean buoyancy and plume velocity
anomalies dissipate quickly as the plumes rise, suggesting
the sub-cloud plume dynamics are dominated by inertia and
pressure effects.

Once the broad regions of rising air reach cloud base, they
enter a different physical regime. As rising parcels reach the
top of the sub-cloud layer they lose buoyancy, and must rely

on inertia and pressure perturbations to allow them to con-
tinue rising. Thus, the environmental stability at cloud base
acts as a filter which admits only the fastest moving parcels,
or the parcels in a region of organized motion with a pres-
sure perturbation sufficient to overcome the negative buoy-
ancy (i.e., a cloud with a large horizontal area). Hence, larger
area clouds in an upward moving environment are better able
to penetrate through cloud base.

However, above the cloud base region there is a third
regime. The fate of clouds above the cloud base is de-
termined by a race between the rate the cloud moves up-
ward and the rate the cloud is mixed away into the envi-
ronment. As the clouds rise, latent heating from conden-
sation enhances their buoyancy and creates a feedback loop
in which faster moving clouds gain more buoyancy, and
more buoyant clouds move faster. At the same time, en-
trainment and mixing tend to wipe out this excess buoyancy.
Clouds with higher moisture content and buoyancy are more
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likely to remain buoyant, so thermodynamic quantities be-
come important in determining eventual cloud height. How-
ever, cloud area dominates these effects, as larger clouds are
better able to shield their cores from mixing with the envi-
ronment. This process persists until the clouds reach the in-
version, where the latent heating rate is incapable of keeping
the clouds buoyant in the face of the strongθ gradient, and
they are mixed away.

Neggers et al.(2002) construct a theory in which fractional
entrainment rate is inversely proportional to vertical veloc-
ity and cloud parcels enter cloud base with a wide range of
properties. The variations in parcel properties then set the
entrainment rate and thus control the future evolution of the
parcel properties. Our results do not support the assumption
of Neggers et al.that parcels have a range of initial ther-
modynamic conditions. We have not directly examined the
dependence of entrainment rate on vertical velocity; how-
ever, the strong relationship between eventual height reached
by the clouds and the cloud area suggests that fractional en-
trainment is more likely dependent on cloud area and any
relationship between vertical velocity and entrainment is due
to larger area clouds shielding their cores from entrainment,
producing higher buoyancies and vertical velocities.

Using numerical tracers in a BOMEX LES,Romps and
Kuang (2010) found that stochastic entrainment controlled
the evolution of convecting parcels, not the thermodynamic
properties of those parcels at cloud base. Our results extend
this conclusion to apply to whole clouds. However, our re-
sults also show that cloud base area exerts strong controls
over the upper-level area and maximum height of the cloud.
Because of this we conclude that both nature, in the form of

cloud base area, and nurture, in the form of entrainment and
detrainment, have roles in the dynamics of BOMEX shallow
cumulus clouds.

Finally, the strong effect we find that cloud area has
on the eventual cloud top height cloud suggests a simple
physical interpretation for the stochastic entrainment event
parametrization proposed byRomps and Kuang(2010): en-
trainment events occur when a parcel reaches the edge of the
cloud. This idea is supported by examining the changes in
the probability distribution ofqt values at various distances
from the cloud surface (Fig.16): cloud parcels far from the
cloud surface display higher mean humidities than parcels
near the cloud surface, indicating that interior parcels are
shielded from mixing with the environment. This hypoth-
esis implies that the probability of a parcel experiencing an
entrainment event should be related to the ratio of the total
cloud area to the area of the cloud within some mixing length
of the cloud edge.

5 Conclusions

We have developed an algorithm for tracking individual shal-
low cumulus clouds in an LES simulation which generates
reasonable statistical distributions for a variety of cloud prop-
erties. The key innovations this algorithm employs are the
use of non-buoyant cloud parcels as a buffer region to me-
diate merging and splitting of buoyant cloud plumes, and a
numerical tracer which we use to evaluate if a cloud plume
remains dynamically connected to the surface layer. The
output of this algorithm is suitable for conducting statistical
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analyses of shallow cumulus cloud populations. We believe
this algorithm could be easily extended to study deep con-
vection. We include in the Supplement of this paper our im-
plementation of this algorithm, written in Python, for general
use by the cloud modeling community.

BOMEX cloud properties above cloud base divide into
three categories of variables that are highly correlated within
each category: the thermodynamic propertiesqt, θl , andθρ ;
the vertical velocityw; and the areaa and vertical mass
flux M. The thermodynamic properties show little varia-
tion at cloud base, but their variability increases steadily with
height; cloud area is quite variable at cloud base and main-
tains its variance with height; and vertical velocity falls be-
tween these two extremes.

Analyzing the upward propagation of property anomalies
shows three sets of processes operating on the clouds at dif-
ferent heights. Below cloud base, cloud plumes are large
and homogenous and upward motion is primarily governed
by turbulence. The buoyancy of plumes rapidly decreases at
cloud base, which prevents all but the fastest rising plumes
from penetrating into the cloud layer. If these plumes make
it through the cloud base layer, dilution by the environment
competes with buoyancy production from latent heating to
control the ascent of the clouds to the inversion. These re-
sults suggest that nature controls the area and eventual height
reached by the clouds, while nurture controls their thermody-
namic properties.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/12/1101/2012/
acp-12-1101-2012-supplement.zip.

Acknowledgements.Support for this research was provided by
the Canadian Foundation for Climate and Atmospheric Science
through the Cloud Aerosol Feedback and Climate network. We
thank Marat Khairoutdinov for making SAM available to the cloud
modeling community. Figures were generated using the matplotlib
library in the Python programming language.

Edited by: B. Stevens

References

Benner, T. C. and Curry, J. A.: Characteristics of small tropical
cumulus clouds and their impact on the environment, J. Geophys.
Res.-Atmos., 103, 28753–28767, 1998.

Blyth, A. M., Lasher-Trapp, S. G., and Cooper, W. A.: A study
of thermals in cumulus clouds, Q. J. Roy. Meteorol. Soc., 131,
1171–1190, 2005.

Bony, S. and Dufresne, J.: Marine boundary layer clouds at the
heart of tropical cloud feedback uncertainties in climate models,
Geophys. Res. Lett., 32, L20806,doi:10.1029/2005GL023851,
2005.

Bretherton, C. S. and Smolarkiewicz, P. K.: Gravity waves, com-
pensating subsidence and detrainment around cumulus clouds, J.
Atmos. Sci., 46, 740–759, 1989.

Brown, A. R., Cederwall, R. T., Chlond, A., Duynkerke, P. G., Go-
laz, J.-C., Khairoutdinov, M. F., Lewellen, D. C., Lock, A. P.,
Macvean, M. K., Moeng, C.-H., Neggers, R. A. J., Siebesma,
A. P., and Stevens, B.: Large-eddy simulation of the diurnal cy-
cle of shallow cumulus convection over land, Q. J. Roy. Mete-
orol. Soc., 128, 1075–1093,doi:10.1256/003590002320373210,
2002.

Cahalan, R. F. and Joseph, J. H.: Fractal statistics of cloud fields,
Mon. Weather Rev., 117, 261–272, 1989.

Carpenter, R. L., Droegemeier, K. K., and Blyth, A. M.: Entrain-
ment and detrainment in numerically simulated cumulus conges-
tus clouds. Part I: general results, J. Atmos. Sci., 55, 3417–3432,
1998.

Couvreux, F., Hourdin, F., and Rio, C.: Resolved Ver-
sus Parametrized Boundary-Layer Plumes. Part I: A
Parameterization-Oriented Conditional Sampling in Large-
Eddy Simulations, Bound.-Lay. Meteorology, 134, 441–458,
2010.

Dawe, J. T. and Austin, P. H.: Interpolation of LES cloud surfaces
for use in direct calculations of entrainment and detrainment,
Mon. Weather Rev., 139, 444–456, 2011.

de Rooy, W. C. and Siebesma, A. P.: A simple parameterization for
detrainment in shallow cumulus, Mon. Weather Rev., 136, 560–
576, 2008.

Grabowski, W. W. and Clark, T. L.: Cloud-environment interface
instability: rising thermal calculations in two spatial dimensions,
J. Atmos. Sci., 48, 527–546, 1991.

Atmos. Chem. Phys., 12, 1101–1119, 2012 www.atmos-chem-phys.net/12/1101/2012/

http://www.atmos-chem-phys.net/12/1101/2012/acp-12-1101-2012-supplement.zip
http://www.atmos-chem-phys.net/12/1101/2012/acp-12-1101-2012-supplement.zip
http://dx.doi.org/10.1029/2005GL023851
http://dx.doi.org/10.1256/003590002320373210


J. T. Dawe and P. H. Austin: LES cloud tracking 1119

Grabowski, W. W. and Clark, T. L.: Cloud-environment interface
instability. Part II: extension to three spatial dimensions, J. At-
mos. Sci., 50, 527–546, 1993a.

Grabowski, W. W. and Clark, T. L.: Cloud-environment interface
instability. Part III: direct influence of environmental shear, J.
Atmos. Sci., 50, 3821–3828, 1993b.

Heus, T., Jonker, H. J. J., den Akker, H. E. A. V., Griffith,
E. J., Koutek, M., and Post, F. H.: A statistical approach to
the life cycle analysis of cumulus clouds selected in a virtual
reality environment, J. Geophys. Res.-Atmos., 114, D06208,
doi:10.1029/2008JD010917, 2009.

Holland, J. Z. and Rasmusson, E. M.: Measurement of
the atmospheric mass, energy, and momentum bud-
gets over a 500-kilometer square of tropical ocean,
Mon. Weather Rev., 101, 44–57, doi:10.1175/1520-
0493(1973)101<0044:MOTAME>2.3.CO;2, 1973.

Jiang, H., Xue, H., Teller, A., Feingold, G., and Levin, Z.: Aerosol
effects on the lifetime of shallow cumulus, Geophys. Res. Lett.,
33, L14806,doi:10.1029/2006GL026024, 2006.

Jiang, H., Feingold, G., Jonsson, H. H., Lu, M.-L., Chuang, P. Y.,
Flagan, R. C., and Seinfeld, J. H.: Statistical comparison of prop-
erties of simulated and observed cumulus clouds in the vicinity
of Houston during the Gulf of Mexico Atmospheric Composition
and Climate Study (GoMACCS), J. Geophys. Res.-Atmos., 113,
D13205,doi:10.1029/2007JD009304, 2008.

Kain, J. S. and Fritsch, J. M.: A one-dimensional entrain-
ing/detraining plume model and its application in convective pa-
rameterization, J. Atmos. Sci., 47, 2784–2802, 1990.

Khairoutdinov, M. F. and Randall, D. A.: Cloud resolving modeling
of the ARM summer 1997 IOP: model formulation, results, un-
certainties, and sensitivities, J. Atmos. Sci., 60, 607–625, 2003.

Klaassen, G. P. and Clark, T. L.: Dynamics of the cloud-
environment interfact and entrainment in small cumuli: two-
dimensional simulations in the absence of ambient shear, J. At-
mos. Sci., 42, 2621–2642, 1985.

Mann, H. B. and Whitney, D. R.: On a Test of Whether
one of Two Random Variables is Stochastically Larger than
the Other, Annals of Mathematical Statistics, 18, 50–60,
doi:10.1214/aoms/1177730491, 1947.

Medeiros, B. and Stevens, B.: Revealing differences in GCM rep-
resentations of low clouds, Clim. Dyn., 36, 385–399, 2011.

Medeiros, B., Stevens, B., Held, I. M., Zhao, M., Williamson, D. L.,
Olson, J. G., and Bretherton, C. S.: Aquaplanets, climate sensi-
tivity, and low clouds, J. Climate, 21, 4974–4991, 2008.

Nakagawa, S.: A farewell to Bonferroni: the problems of low statis-
tical power and publication bias, Behavioral Ecology, 15, 1044–
1045,doi:10.1093/beheco/arh107, 2004.

Neggers, R. A. J., Siebesma, A. P., and Jonker, H. J. J.: A Multipar-
cel Model for Shallow Cumulus Convection, J. Atmos. Sci., 59,
1655–1668, 2002.

Neggers, R. A. J., Duynkerke, P. G., and Rodts, S. M. A.: Shal-
low cumulus convection: a validation of large-eddy simulation
against aircraft and Landsat observations, Q. J. Roy. Meteorol.
Soc., 129, 2671–2696, 2003a.

Neggers, R. A. J., Jonker, H. J. J., and Siebesma, A. P.: Size statis-
tics of cumulus cloud populations in large-eddy simulations, J.
Atmos. Sci., 60, 1060–1074, 2003b.

Neggers, R. A. J., Neelin, J. D., and Stevens, B.: Impact mech-
anisms of shallow cumulus convection on tropical climate dy-

namics, J. Climate, 20, 2623–2642, 2007.
Norris, J. R.: Low cloud type over the ocean from surface obser-

vations. Part II: geographical and seasonal variations, J. Climate,
11, 383–403, 1988.

Perneger, T. V.: What’s wrong with Bonferroni adjustments, The
British Medical Journal, 316, 1236, 1998.

Plant, R. S.: Statistical properties of cloud lifecycles in
cloud-resolving models, Atmos. Chem. Phys., 9, 2195–2205,
doi:10.5194/acp-9-2195-2009, 2009.

Randall, D., Krueger, S., Bretherton, C., Curry, J., Duynkerke, P.,
Moncrieff, M., Ryan, B., Starr, D., Miller, M., Rossow, W., Tse-
lioudis, G., and Wielicki, B.: Confronting models with data: the
GEWEX cloud systems study, B. Am. Meteorol. Soc., 84, 455–
469,doi:10.1175/BAMS-84-4-455, 2003.

Romps, D. M. and Kuang, Z.: Nature versus Nurture in Shallow
Convection, J. Atmos. Sci., 67, 1655–1666, 2010.

Shaffer, J. P.: Multiple Hypothesis Testing, Annual Reviews of Psy-
chology, 46, 561–584, 1995.

Siebesma, A. P. and Cuijpers, J. W. M.: Evaluation of parametric
assumptions for shallow cumulus convection, J. Atmos. Sci., 52,
650–666, 1995.

Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart,
J., Duynkerke, P. G., Jiang, H., Khairoutdinov, M., Lewellen, D.,
Moeng, C.-H., Sanchez, E., Stevens, B., and Stevens, D. E.: A
large eddy simulation intercomparison study of shallow cumulus
convection, J. Atmos. Sci., 60, 1201–1219,doi:10.1175/1520-
0469(2003)60¡1201:ALESIS¿2.0.CO;2, 2003.

Stevens, B., Ackerman, A. S., Albrecht, B. A., Brown, A. R.,
Chlond, A., Cuxart, J., Duynkerke, P. G., Lewellen, D. C.,
Macvean, M. K., Neggers, R. A. J., Sanchez, E., Siebesma, A. P.,
and Stevens, D. E.: Simulations of trade wind cumuli under a
strong inversion, J. Atmos. Sci., 58, 1870–1891, 2001.

Tiedtke, M., Heckley, W. A., and Slingo, J.: Tropical forecasting at
ECMWF: The influence of physical parametrization on the mean
structure of forecasts and analyses, Q. J. Roy. Meteorol. Soc.,
114, 639–664,doi:10.1002/qj.49711448106, 1988.

vanZanten, M. C., Stevens, B., Nuijens, L., Siebesma, A. P., Ack-
erman, A. S., Burnet, F., Cheng, A., Couvreaux, F., Jiang, H.,
Khairoutdinov, M., Kogan, Y., Lewellen, D. C., Mechem, D.,
Nakamura, K., Noda, A., Shipway, B. J., Slawinska, J., Wang, S.,
and Wyszogrodzki, A.: Controls on precipitation and cloudiness
in simulations of trade-wind cumulus as observed during RICO,
Journal of Advances in Modeling Earth Systems, 3, M06001,
doi:10.1029/2011MS000056, 2011.

Wyant, M., Bretherton, C., and Blossey, P.: Subtropical low
cloud response to a warmer climate in an superparameterized
climate model: part I. regime sorting and physical mecha-
nisms, Journal of Advances in Modeling Earth Systems, 1, 7,
doi:10.3894/JAMES.2009.1.7, 2009.

Zhao, G. and Girolamo, L. D.: Statistics on the macro-
physical properties of trade wind cumuli over the tropical
western Atlantic, J. Geophys. Res.-Atmos., 112, D10204,
doi:10.1029/2006JD007371, 2007.

Zhao, M. and Austin, P. H.: Life cycle of numerically simulated
shallow cumulus clouds. Part I: transport, J. Atmos. Sci., 62,
1269–1290,doi:10.1175/JAS3414.1, 2005a.

Zhao, M. and Austin, P. H.: Life cycle of numerically simulated
shallow cumulus clouds. Part II: mixing dynamics., J. Atmos.
Sci., 62, 1291–1310,doi:10.1175/JAS3415.1, 2005b.

www.atmos-chem-phys.net/12/1101/2012/ Atmos. Chem. Phys., 12, 1101–1119, 2012

http://dx.doi.org/10.1029/2008JD010917
http://dx.doi.org/10.1175/1520-0493(1973)101<0044:MOTAME>2.3.CO;2
http://dx.doi.org/10.1175/1520-0493(1973)101<0044:MOTAME>2.3.CO;2
http://dx.doi.org/10.1029/2006GL026024
http://dx.doi.org/10.1029/2007JD009304
http://dx.doi.org/10.1214/aoms/1177730491
http://dx.doi.org/10.1093/beheco/arh107
http://dx.doi.org/10.5194/acp-9-2195-2009
http://dx.doi.org/10.1175/BAMS-84-4-455
http://dx.doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2
http://dx.doi.org/10.1002/qj.49711448106
http://dx.doi.org/10.1029/2011MS000056
http://dx.doi.org/10.3894/JAMES.2009.1.7
http://dx.doi.org/10.1029/2006JD007371
http://dx.doi.org/10.1175/JAS3414.1
http://dx.doi.org/10.1175/JAS3415.1

