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Abstract. Aerosol composition and mixing state near anthro-
pogenic sources can be highly variable and can challenge
predictions of cloud condensation nuclei (CCN). The im-
pacts of chemical composition on CCN activation kinetics
is also an important, but largely unknown, aspect of cloud
droplet formation. Towards this, we present in-situ size-
resolved CCN measurements carried out during the 2008
summertime August Mini Intensive Gas and Aerosol Study
(AMIGAS) campaign in Atlanta, GA. Aerosol chemical
composition was measured by two particle-into-liquid sam-
plers measuring water-soluble inorganic ions and total water-
soluble organic carbon. Size-resolved CCN data were col-
lected using the Scanning Mobility CCN Analysis (SMCA)
method and were used to obtain characteristic aerosol hy-
groscopicity distributions, whose breadth reflects the aerosol
compositional variability and mixing state. Knowledge of
aerosol mixing state is important for accurate predictions of
CCN concentrations and that the influence of an externally-
mixed, CCN-active aerosol fraction varies with size from
31 % for particle diameters less than 40 nm to 93 % for ac-
cumulation mode aerosol during the day. Assuming size-
dependent aerosol mixing state and size-invariant chemical
composition decreases the average CCN concentration over-
prediction (for all but one mixing state and chemical com-
position scenario considered) from over 190–240 % to less
than 20 %. CCN activity is parameterized using a single hy-
groscopicity parameter,κ, which averages to 0.16± 0.07 for
80 nm particles and exhibits considerable variability (from
0.03 to 0.48) throughout the study period. Particles in the
60–100 nm range exhibited similar hygroscopicity, with aκ

range for 60 nm between 0.06–0.076 (mean of 0.18± 0.09).
Smaller particles (40 nm) had on average greaterκ, with a
range of 0.20–0.92 (mean of 0.3± 0.12). Analysis of the
droplet activation kinetics of the aerosol sampled suggests
that most of the CCN activate as rapidly as calibration
aerosol, suggesting that aerosol composition exhibits a mi-
nor (if any) impact on CCN activation kinetics.

1 Introduction

The ability of aerosol particles to act as cloud condensation
nuclei (CCN) depends on their size and composition (e.g.,
Twomey, 1977; Dusek et al., 2006; Wang, 2007). Chemi-
cal composition can have an important effect on CCN, espe-
cially in environments where the aerosol is externally mixed
(e.g., Cubison et al., 2008; Furutani et al., 2008). Köhler the-
ory (Köhler, 1936) has been shown to adequately describe
the size and compositional dependence of CCN composed
of inorganic and soluble organic compounds (e.g., Cruz and
Pandis, 1997; Padró et al., 2007). CCN containing higher
molecular weight organic compounds can readily form cloud
droplets but may exhibit more complex interactions with wa-
ter, owing to their partial solubility in water, and ability to
depress surface tension and create polymer networks (e.g.,
Li et al., 1998; Facchini et al., 1999; Corrigan and Novakov,
1999; Raymond and Pandis, 2002; Hartz et al., 2006; Petters
et al., 2009). Despite this complexity, simple assumptions on
the chemical composition of aerosols is often employed in
modeling CCN. The ultimate test of these simplified models
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are CCN closure studies, where measured CCN concentra-
tions and predictions from K̈ohler theory are directly com-
pared, where closure is deemed successful when agreement
is found to be within the measurement uncertainty (typically
10–20 %).

Over the past decades, numerous closure studies have been
carried out at a number of ground sites (e.g., Bigg, 1986;
Liu et al., 1996; Covert et al., 1998; Cantrell et al., 2001;
Roberts et al., 2002; Dusek et al., 2003; Roberts et al., 2003;
Snider et al., 2003; Rissler et al., 2004; Broekhuizen et al.,
2006; Chang et al., 2007; Ervens et al., 2007; Medina et al.,
2007; Stroud et al., 2007; Vestin et al., 2007; Yum et al.,
2007; Cubison et al., 2008; Kuwata et al., 2008; Bougiatioti
et al., 2009; Gunthe et al., 2009; Chang et al., 2010; Kam-
mermann et al., 2010; Rose et al., 2010; Wang et al., 2010;
Rose et al., 2011), ships (e.g., Zhou et al., 2001, Quinn et al.,
2008), and airborne platforms (e.g., Chuang et al., 2000; Van-
Reken et al., 2003; Rissman et al., 2006; Roberts et al., 2006,
2010; Wang et al., 2008; Lance et al., 2009; Murphy et al.,
2009; Asa-Awuku et al., 2011; Moore et al., 2011) through-
out the world to address the effects of chemical composi-
tion and mixing state on CCN activity. Chemical composition
data for CCN closures have been obtained from filters (Liu et
al., 1996; Chuang et al., 2000), MOUDI (Micro Orifice Uni-
form Deposit Impactor) cascade impactors (Cantrell et al.,
2001; Roberts et al., 2002, 2003; Bougiatioti et al., 2009),
inferred from hygroscopic growth measurements (Covert et
al., 1998; Zhou et al., 2001; Rissler et al., 2004; Ervens et
al., 2007; Vestin et al., 2007), Particle-Into-Liquid-Samplers
(PILS; Kuwata et al., 2008) and aerosol mass spectrometers
(AMS; Broekhuizen et al., 2006; Medina et al., 2007; Stroud
et al., 2007; Cubison et al., 2008; Lance et al., 2009; Murphy
et al., 2009; Gunthe et al., 2009). CCN closure utilizing AMS
measurements tend to be more successful (typically within
20–50 %), due to its fast time resolution (∼1 Hz) and abil-
ity to resolve size-dependant composition. CCN closure in
remote environments that use filter-based methods have nev-
ertheless given exceptionally good closure (on the order of a
few percent; Bougiatioti et al., 2009, 2011).

Although introducing size-dependent chemical composi-
tion (Medina et al., 2007; Stroud et al., 2007; Cubison et
al., 2008; Gunthe et al., 2009; Murphy et al., 2009) and ac-
counting for the aerosol mixing state (Broekhuizen et al.,
2006; Cubison et al., 2008; Lance et al., 2009) have been
found to improve CCN closure, it is still unclear the ex-
tent of error associated with ignoring such information in
simulations of the aerosol indirect effect. For example, Er-
vens et al. (2007) found that knowing the mixing state of the
aerosol is more important to achieve closure than the size-
dependent aerosol chemical composition; while other studies
(e.g., Medina et al., 2007; Lance et al., 2009; Asa-Awuku et
al., 2011) have found that knowledge of both chemical com-
position and mixing state are required to achieve closure to
within 10–20 %. The treatment of organics in Köhler theory
can be described with single-parameter approaches (e.g., Pet-

ters and Kreidenweis, 2007), but will nevertheless be subject
to some uncertainty and possibly contribute to the discrep-
ancy between measurements and predictions when organics
dominate the aerosol mass fraction (e.g., Moore et al., 2011).
Rissman et al. (2004) and Sotiropoulou et al. (2007) have
shown that even when CCN prediction errors are large, the
uncertainty in cloud droplet number associated with these er-
rors is substantially reduced by at least 50 %. If the CCN
prediction error is on the order of 20 % as suggested in recent
studies (Medina et al., 2007) it may not contribute a signifi-
cant source of error in the assessment of the aerosol indirect
effect (Sotiropoulou et al., 2007). However in regions where
aerosol is externally mixed, the CCN prediction uncertainty
can be high enough to yield important cloud droplet number
prediction uncertainty (Karydis et al., 2012).

Another uncertain aspect of cloud droplet formation is the
potential impact of slowly-dissolving compounds, droplet
surface forming films and aerosol amorphous/glassy states
on the activation kinetics of CCN. If present, kinetic ac-
tivation delays could have an important impact on cloud
droplet number and size distribution (e.g., Chuang et al.,
1997; Nenes et al., 2001; Feingold and Chuang, 2002; Lance
et al., 2004). To test whether such limitations exist, in-situ
field studies compare the size of the activated droplets from
the CCN being studied against those obtained from calibra-
tion salt aerosol known to exhibit rapid activation kinetics
(e.g., Sorooshian et al., 2008; Bougiatioti et al., 2009, 2011;
Lance et al., 2009; Murphy et al., 2009; Padró et al., 2010;
Cerully et al., 2011). The difference in droplet sizes can re-
veal whether the compounds present in the aerosol retard
droplet growth (i.e., growth kinetics is slower than expected
from gas-to-particle transfer of water vapor). Many studies
using this method of Threshold Droplet Growth Analysis
(TDGA) have found little or no evidence of slow droplet
growth kinetics (e.g., Bougiatioti et al., 2009, 2011; Lance
et al., 2009; Padró et al., 2010; Cerully et al., 2011), al-
though others have detected the occurrence of slow kinetics
for organic-rich aerosol (e.g., Sorooshian et al., 2008; Mur-
phy et al., 2009). When combined with a computational fluid
dynamics model of the CCN instrument (Lance et al., 2006;
Lathem et al., 2011; Raatikainen et al., 2012), changes in
growth kinetics can be parameterized in terms of an uptake
coefficient (Asa-Awuku et al., 2009; Engelhart et al., 2008;
Ruehl et al., 2008, 2009; Moore et al., 2012; Raatikainen et
al., 2012).

This paper presents size-resolved CCN and droplet growth
kinetic measurements obtained during a ground site study
in Atlanta, Georgia, during August and September of 2008.
This work complements an emerging number of studies that
use size-resolved CCN measurements to infer the composi-
tional dispersion and the processes that affect aerosol hygro-
scopicity (e.g., Lance, 2007; Gunthe et al., 2009; Rose et al.,
2010; Mochida et al., 2010; Irwin et al., 2011; Bougiatioti et
al., 2011; Su et al., 2010; Cerully et al., 2011; Lance et al.,
2012). The data presented here correspond to an environment
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Fig. 1. HYSPLIT one day back-trajectories representative of the air masses sampled in JST during the AMIGAS campaign.(a) represents
a “period A” air mass originating from the continental US; while(b) represents a “period B” air mass which originated from the Gulf of
Mexico. During 24 August till the 27th, the air masses originated either from the Atlantic Ocean or the Gulf of Mexico.

where fresh anthropogenic (urban) emissions interact with
biogenic emissions from forested areas prevalent through-
out the southeastern United States, producing aerosol that
strongly forces regional climate (Goldstein et al., 2009).
Apart from deriving size-resolved hygroscopicity distribu-
tions, this study focuses on comparing in-situ CCN concen-
trations against predicted concentrations from the observed
size distributions and chemical composition. A number of
simplifying compositional and mixing state assumptions are
used (typical of what is adopted in climate models when cal-
culating CCN concentrations), and the associated CCN pre-
diction errors are quantified. Finally, this study also focuses
on the droplet growth kinetics of urban aerosols by com-
paring the droplet size of the atmospheric CCN to those of
(NH4)2SO4 calibration aerosol.

2 Data set description

2.1 Measurement site

The main objective of the 2008 August Mini Intensive Gas
and Aerosol Study (AMIGAS) campaign was to study the
interactions between biogenic and anthropogenic emissions
and how these impact secondary organic aerosol (SOA) for-
mation. Atlanta was chosen for the study site since it repre-
sents a typical urban environment, but with strong biogenic
influences (Weber et al., 2003). The major components of
PM mass in Atlanta aerosol are sulfate and organic carbon
(OC) with mostly OC in the ultrafine particle size mode (But-
ler et al., 2003; Rhoads et al., 2003; Solomon et al., 2003).
When aerosol composition is dominated by OC, formation
mechanisms are most likely due to local sources; while peri-

ods when the particles are dominated by sulfate result from
the photochemical production from sources outside of At-
lanta such as power plants (Weber et al., 2003).

The measurements presented in this study were obtained
during 1 August 2008–15 September 2008 at the Jeffer-
son Street site (JST) in downtown Atlanta (33.777◦ N,
84.416◦ W), which is affected by fresh urban and regional
emissions. Measurements were performed during the sum-
mer season since it is the period where SOA is more abun-
dant and mostly formed from biogenic precursors (Lim and
Turpin, 2002; Weber et al., 2007; Hennigan et al., 2009).

HYSPLIT back-trajectories (www.arl.noaa.gov/ready/
hysplit4.html) were used to determine the characteristics
and origin of the air masses affecting JST throughout the
campaign. Two characteristic periods with different air mass
types were identified (Fig. 1). Period A is affected by “pol-
luted” air masses that originate from the continental United
States (1–20 August and 28 August–15 September); while
Period B is influenced by “cleaner” air masses that originate
either from the Atlantic Ocean or the Gulf of Mexico (21–27
August). Period B was also characterized by precipitation
events that considerably reduced particle concentrations
through wet deposition processes (although some rain events
also occurred occurred during Period A, these were not
as strong and widespread as those observed in Period B).
The effect of different air masses and precipitation events
on JST site is evident in the total particle (condensation
nuclei, CN) and CCN concentrations, (Fig. 2a) which during
Period B decrease and are statistically different (at the 99 %
confidence level) from Period A concentrations.
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Fig. 2. (a)Total CN and CCN time-series (for all five supersaturations studied during the AMIGAS campaign) for whole AMIGAS campaign.
(b) Particle size distribution time-series with characteristic dry diameter,dp,c (black line). Period A corresponds to “polluted” air masses
originating from the continental US; period B corresponds to “cleaner” air masses originating from either the Atlantic Ocean or Gulf of
Mexico. Gaps in data are a result of instrument outage.

2.2 Chemical composition measurements

Two particle-into-liquid-samplers (PILS) were used to study
bulk aerosol composition; one for real-time measurement
of ionic composition (using ion chromatography; IC), and
one for water-soluble organic carbon (WSOC). Coarse size
aerosols (2.5 µm aerodynamic diameter and above) were re-
moved from the sample air stream with a cyclone. In each
PILS, the aerosols are exposed to supersaturated water va-
por and nucleate droplets that are subsequently collected on
a plate via inertial impaction. A purified water stream flows
over the plate and the solution stream is then sent to the an-
alytical instrumentation. The PILS-IC (Weber et al., 2001)
uses a dual channel Ion Chromatograph (Dionex Model
300DX), which allows the detection of Ca2+, Mg2+, K+,
Na+, Cl−, NH+

4 , NO−

3 , NO−

2 , SO2−

4 , formate, and oxalate
ions integrated over roughly 3 min of sampling with mea-
surements repeated every 20 min. The PILS-WSOC (Sulli-

van et al., 2004) uses a Sievers Model 800 Turbo Total Or-
ganic Carbon (TOC) Analyzer to obtain the aerosol WSOC
mass. Before the WSOC measurements are performed, the
sample stream is filtered to remove any large insoluble par-
ticles. The PILS-WSOC reports the soluble organic concen-
tration by integrating over 10 min. Both types of chemical
composition measurements are used for predicting aerosol
hygroscopicity as described in Sect. 3.3.

2.3 Size-resolved CCN and particle concentrations

A Scanning Mobility Particle Sizer (SMPS) was used to mea-
sure the particle size distribution for particles having electri-
cal mobility diameters (dm) ranging from 7 to 500 nm. The
SMPS consists of a Differential Mobility Analyzer (DMA;
TSI Model 3081) running in series with a Condensation Par-
ticle Counter (CPC; TSI Model 3022A or TSI Model 3010).
Prior to classification, aerosols are passed through a Kr-85
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Fig. 3. AMIGAS experimental set up. From 1 till 26 August, the CPC 3022A was used for the SMPS; while the CPC 3010 was used from
26 August till the end of the campaign (15 September). The sheath-to-aerosol ratio in the DMA was run at 10:1 (1 till 8 August; Setup A1)
and 5:1 (8 August till 15 September; Setup A2 and B). The dotted box highlights the total CN measurement which was done from 15 till 26
August with the CPC3010.

bipolar charger to acquire an equilibrium charge distribution.
The charged particles are then classified by the DMA, and
sent to a CPC to measure the total aerosol number concentra-
tion, and a Continuous-Flow Streamwise Thermal Gradient
CCN Chamber (CFSTGC; Roberts and Nenes, 2005; Lance
et al., 2006) to measure the number of particles that act as
CCN (discussed in Sect. 2.4). By scanning the DMA volt-
age, a complete particle size distribution is obtained in two
minutes. During the course of the study, two different CPCs
and DMA sheath-to-aerosol ratios were used. The first CPC
(TSI Model 3022A) was replaced on 26 August with a TSI
Model 3010 due to an equipment malfunction. Adjustment of
the DMA sheath-to-aerosol flow from 10:1 to 5:1 was made
on 8 August in order to improve aerosol counting statistics
from a broader DMA transfer function. Overall, three SMPS
setups (Fig. 3) were employed to optimize counting statis-
tics with the new flow rates. Setups A1 and A2 have a CPC
3022A and sheath-to-aerosol ratios of 10:1 and 5:1, respec-
tively; while setup B has a CPC 3010 and a 5:1 sheath-to-
aerosol ratio. Particles sampled were assumed to be spheri-
cal, which is supported by previous aerosol measurements in
Atlanta (McMurry et al., 2002).

An intercomparison between the 3022 and 3010 CPCs was
carried out by comparing the total CN concentration mea-
sured by each instrument for data collected between 15 Au-
gust and 26 August (Fig. 3; Setup A2). As both CPCs have
different particle size detection limits (7 nm and 10 nm for
the CPC 3022 and CPC 3010, respectively), the particle size
distribution obtained from the SMPS (that used the 3022 as
a particle detector) was integrated above 10 nm to match the
size range of the CPC 3010. The data were filtered to in-
clude only scans for which aerosol modes are fully resolved
within the dynamic range of the scan, and, where the total
CN remains constant throughout the scan (within 15 % of
average CN concentration). Furthermore, periods of excep-
tionally high total CN concentrations (>104 particles cm−3),
were removed from the data to avoid coincidence errors as-
sociated with the CPC 3010. Based on the measurements,
the integrated size distributions with the CPC 3022 were
found to be about 25 % lower than the CN concentration
from the CPC 3010. About 15 % of this bias could be at-
tributed to instrument-dependent bias (determined by sam-
pling the same air mass with both instruments). The absolute
bias varied approximately linearly with concentration with
a negligible constant bias, while the relative bias remained
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Fig. 4. (a)Example of the CCN-to-CN activation ratio as a function
of dry diameter (fors = 0.98 % on 2 August 2008 at 01:30 a.m.)
with sigmoid fit and its defined parameters.(b) Example of CCN-
to-CN activation ratio as a function of supersaturation for a 80 nm
dry particle (sample collected on 14 August 2008 at 01:00 p.m.) as
derived from the SMCA with sigmoid fit and its defined parameters.

constant. The total CN concentrations (measured and pre-
dicted) obtained for Setups A1 and A2 were corrected for this
bias before the CCN closure analysis was performed. The
total CN time-series (after correction) is shown in Fig. 2a.
Throughout the campaign the CCN was found to correlate
well with the CN concentration and increased with supersat-
uration (Fig. 2a).

The total aerosol concentration was measured continu-
ously with a CPC with a detection diameter of 10 nm (TSI
model 3010) from 15 August to 26 August. Apart from pro-
viding a consistency check the separate CPC was used to de-
tect small intense plumes that may occasionally pass over the
site that could not be resolved with the 120s scantime of the
SMPS.

2.4 CCN measurements

Prior to measurement, the sampled air stream was dried from
ambient relative humidity (RH) to∼21 % RH to minimize
residual water, as this can affect the inference of aerosol CCN

activity, especially for very acidic aerosol (e.g., Murphy et
al., 2009). The classified aerosol was sent to the CFSTGC
chamber, where some particles activate to form droplets and
counted by an optical particle counter (OPC) at the end of the
growth chamber. The OPC also sizes the activated droplets,
ranging from∼1 to 10 µm with a resolution of 0.5 µm.

In this work, size-dependant CCN activity data is obtained
using Scanning Mobility CCN Analysis (SMCA; Moore et
al., 2010). In SMCA, the DMA voltage is exponentially
scanned over time (120 s upscan, 15 s downscan) to con-
tinuously sample particles across the size distribution. The
time-series of CCN and CN counts are then inverted to ob-
tain size-resolved CCN concentration and activated droplet
size. The aerosol size, analyzed for this study, ranged from
10 to 500 nm, depending on the sheath-to-aerosol ratio used
in the DMA (10:1 or 5:1). A total of five supersaturations
(s) were applied in the following order: 0.2, 0.6, 1.0, 0.8, and
0.4 % supersaturation, allowing sufficient time (6 min) for the
instrumentation to reach steady state following a supersatura-
tion change. Instrument supersaturation was calibrated with
classified (NH4)2SO4 particles using a similar procedure to
that of Rose et al. (2008) and Padró et al. (2010).

3 Experimental analysis

The CCN activity of the aerosol is characterized at each su-
persaturation by determining the “critical” dry particle diam-
eter, dp,c, above which particles activate to form droplets.
Operationally this is defined as the dry diameter for which
the CCN to CN ratio equals 0.50 (assuming all CN are CCN
active at a specific supersaturation). As shown in Fig. 4a, the
sigmoidal activation curve can be used to infer thedp,c. From
this size-resolved data, the mixing state and hygroscopicity
parameter distribution are determined (Sect. 3.1).

CCN activation kinetics are determined from the CCN
measurements by monitoring the change in droplet size mea-
sured by the OPC for all supersaturations and dry particle
diameters considered, and by comparing these sizes to those
for (NH4)2SO4 calibration particles with the same critical su-
persaturation.

3.1 Analysis of SMCA data

Each DMA size scan was screened for fluctuations in the
CFSTGC chamber temperature gradient, OPC temperature,
and stability of the flows. Data exhibiting maximum temper-
ature or flow deviations of more than 15 % from the setpoint
were discarded. The size-dependent activation ratio function,
Rd(dp, s), was determined by computing the CCN to CN ra-
tio as a function of dry particle diameter,dp, at constant su-
persaturations. Rd(dp, s) was fit to a sigmoidal curve:

Rd(dp, s) =
NCCN(dp, s)

NCN(dp)
=

E

1+

(
dp,c
dp

)c (1)
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whereNCCN is the total CCN number concentration,NCN is
the total aerosol number concentration,E is the asymptote of
Rd(dp, s) at large particle sizes,dp,c is the characteristic dry
diameter for which most particles are CCN and corresponds
to the inflection point of the sigmoid, andc is an empiri-
cal coefficient that captures the slope of the sigmoidal func-
tion (Fig. 4a). Overall, we found Eq. (1) to describe the size-
resolved CCN well (e.g., Fig. 4a). However, in some cases in-
tegrating the fitted sigmoids did not reproduce the measured
CCN concentration within 15 % and therefore were removed
from the analysis.

Rd(dp, s) can be used to study the size-dependent hygro-
scopicity and mixing state by evaluating the function at dif-
ferent diameters (in this study, at 30, 40, 50, 60, 70, 80, 90,
and 100 nm) for all sigmoids within a supersaturation cy-
cle. The supersaturation-dependant activation ratio function,
Ra(s,dp), (the fraction of particles of sizedp that are CCN
at s) is subsequently determined and fit to a new sigmoidal
function (Bougiatioti et al., 2011):

Ra(s,dp) =
NCCN(s,dp=const)

NCN(dp=const)
=

E∗

1+
(

s
s∗

)c∗ (2)

whereE∗ is the asymptotic activated fraction at large super-
saturations,s∗ is the characteristic critical supersaturation of
particles with diameterdp, andc∗ is a fitting constant that
captures the slope of the fitting function (which is related
to aerosol chemical heterogenity). Figure 4b shows a typi-
cal example ofRa(s,dp) for 80 nm particles obtained on 14
August.

As described by Lance (2007), Bougiatioti et al. (2011),
and Cerully et al. (2011),Ra(s,dp) mostly reflects the cumu-
lative distribution of the “characteristic” critical supersatura-
tion for particles of constantdp, and can be expressed as a
cumulative distribution of hygroscopicity,Ra(κ), as follows.
Assuming thatRa(κ) is driven solely by the chemical com-
position variance and using the asymptotic expression ofκ

for high hygroscopicity (Petters and Kreidenweis, 2007),

κ =
4A3

27d3
50

s−2 (3)

whereA =
4Mwσw
RTρw

(Petters and Kreidenweis, 2007),R is the
ideal gas constant,T is the temperature andMw, σw, ρw
are the molar mass, surface tension, and density of water,
respectively. For everys∗ there is a corresponding “charac-
teristic” hygroscopicity parameter,κ∗, so that (s/s∗) can be
expressed as (κ/κ∗)−1/2. Substituting this into Eq. (2) gives
Ra(κ), which is the fraction of particles of sizedp that are
CCN as a function ofκ:

Ra(κ) =
E∗

1+
(

κ
κ∗

)c∗/2
(4)

Differentiating and normalizing Eq. (4) gives the probability
distribution ofκ, p(κ), for particles of constant size (Lance,

2007; Bougiatioti et al., 2011; Cerully et al., 2011),

p(κ) =
1

E∗

dRa(κ)

dκ
=

c∗

2κ∗

(
κ
κ∗

) c∗

2 −1(
1+

(
κ∗

κ

) c∗

2

)2
(5)

from which one can compute the variance of the distribution
function, which represents the extent of aerosol chemical het-
erogeneity within the CCN-active aerosol fraction,

σ 2
κ =

∫ 1
0 (κ − κ∗)2p(κ)dκ∫ 1

0 p(κ)dκ
(6)

The upper limit of hygroscopicity in the integrals is opera-
tionally set to unity, which captures the upper limit of atmo-
sphericκ values in the absence of sea salt (Cerully et al.,
2011).κ andσκ are obtained for all diameters and supersat-
urations considered.

3.2 CCN distribution

Since the size-resolved aerosols are sent simultaneously to
the CPC and CCN counter for CN and CCN measurements,
the CCN distribution can be obtained by multiplying the par-
ticle size distribution with theRd(dp, s) ratio. The CCN dis-
tribution at a given supersaturation,dNCCN

d logdp
, is defined as:

dNCCN

d logdp
= Rd(dp, s)n(dp) (7)

where n(dp) is the particle size distribution. Substituting
Eq. (1) into Eq. (7) gives:

dNCCN

d logdp
=

E

1+
(
dp,c/dp

)c n(dp) (8)

Integrating Eq. (8) for all sizes gives the total CCN concen-
tration (NCCN) in cm−3:

NCCN =

∞∫
0

dNCCN

d logdp
d logdp. (9)

It should be emphasized that the supersaturation in Eqs. (7)–
(9) is kept constant.

3.3 CCN closure and mixing state

CCN closure refers to a comparison between measured and
predicted CCN concentrations. CCN closures are performed
to determine how well K̈ohler theory can predict CCN con-
centrations when the chemical composition and mixing state
of the aerosol are known. It can also be used to quantify the
errors associated with simplifying assumptions taken to cal-
culate CCN concentrations in atmospheric models. To pre-
dict CCN concentrations, the supersaturation, the aerosol
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Fig. 5. Coordination of measurements used in this study for each 30 min measurement cycle.s is the symbol for “supersaturation”; PILS-
WSOC, PILS-IC stand for “Particle-In-Liquid-Sampler” for water soluble organic carbon and inorganic ions, respectively.

size distribution, and aerosol chemical composition (bulk or
size resolved) are needed. CCN predictions were made us-
ing the measured CN size distributions (120 s resolution)
and bulk particle chemical composition information from the
PILS-IC (20 min resolution) and PILS-WSOC (620 s resolu-
tion). The chemical composition data was binned to match
the SMCA time series as shown in Fig. 5 to account for the
diversity of measurement frequency of each instrument.

The predicted CCN concentration at each supersaturation
was determined by calculating the minimum aerosol diam-
eter that acts as a CCN, termed “activation diameter”,dp,c,
from Köhler theory (K̈ohler, 1936):

dp,c =

(
256M3

wσ 3

27R3T 3ρ3
w

)1/3[∑
i

(
Mw

ρw

)(
ρi

Mi

)
εiυi

]−1/3

s−2/3 (10)

whereσ is the surface tension of the CCN at the point of
activation (here assumed to be equal toσw, unless otherwise
specified) andρi , εi , υi , andMi are the density, volume frac-
tion, effective van’t Hoff factor and molar mass of the solutei

(sulfuric acid, ammonium bisulfate, ammonium sulfate, am-
monium nitrate, and organic species). The volume fraction of
solutei in the dry particle,εi , is related to its mass fraction,
xi , as:

εi =
xi/ρi∑
j (x/ρ)j

(11)

For the closure, the effective van’t Hoff factor of organic
species was assumed to be 1, while the Pitzer activity co-
efficient model (Pitzer and Mayorga, 1973; Pilinis and Se-
infeld, 1987; Clegg and Brimblecombe 1988) was used to
calculate the effective van’t Hoff factor of all inorganic salts
present in the sample, at the concentration corresponding to
the critical wet droplet diameter of the CCN. The PILS–IC
data is then used to determine the inorganic salts present in
the dry aerosol. The ions present are (almost exclusively) am-
monium, sulfate and nitrate. Following Nenes et al. (1998),
the sulfate molar ratio,RSO4 = [NH+

4 ]/[SO2−

4 ], was used to

determine the types of sulfate salts present in the dry aerosol.
WhenRSO4 ≤ 1, the sulfate and ammonium are present as a
mixture of H2SO4 and NH4HSO4; when 1< RSO4 < 2, the
sulfate and ammonium are present as a mixture of NH4HSO4
and (NH4)2SO4 and whenRSO4 ≥ 2, the sulfate and ammo-
nium are present as (NH4)2SO4 and NH4NO3. A mass bal-
ance on the PILS–IC measurements determines the amounts
of each salt. Organics in the aerosol are determined from the
PILS–WSOC.

Two different CCN closure schemes were assessed based
on assumptions related to the chemical composition and mix-
ing state of the aerosol (i.e., the maximum activated fraction,
E, obtained from the CCN spectrum):

– Internal Mixture (INT) – all particles have the same
composition.

– External Mixture (EXT)– two types of particles are
present: soluble particles and insoluble particles. Only
the soluble particles contribute to the CCN; the relative
number fraction of soluble particles isE, and (1− E)

are considered insoluble.

In addition to the different aerosol mixing states a number of
different chemical composition and surface tension assump-
tions are explored for the soluble fraction:

– Ammonium Sulfate (AS)– the aerosol is assumed to be
composed of pure (NH4)2SO4. Although this scenario
does not reflect the true composition of the aerosol, it
corresponds to an upper hygroscopicity limit for conti-
nental aerosol.

– Soluble Salts, Insoluble Organics (SALTS)– here, only
soluble inorganic salts are assumed to contribute solute.
This scenario underestimates aerosol hygroscopicity be-
cause the organics are known to contain water-soluble
compounds (as reflected in the PILS–WSOC observa-
tions); however, this case is still instructive as neglecting
organic hygroscopicity is a common model assumption.
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– Soluble Salts, Soluble Organics (ALLSOL)– the aerosol
is composed of soluble inorganic salts and soluble or-
ganics, as determined from the PILS measurements.
Contrary to the SALTS scenario, in this case all or-
ganics in the aerosol are treated as soluble (with
υorg = 1, Morg = 250 g mol−1, ρorg = 1.4 g cm−3), cor-
responding to a characteristic organic hygroscopicity
κ = 0.1.

– Soluble Salts, Soluble and Surface-Active Organics
(ALLSOL-ST)– the aerosol follows theALLSOLsce-
nario, with the added assumption that organic species
present are assumed to be surface active and reduce the
surface tension of the solution droplet to 75 % that of
pure water (Padró et al., 2010).

The only soluble salts compositional case was only ap-
plied to the internal mixture case, while the other compo-
sitional assumptions were applied to both cases for a total
of seven closure scenarios considered. Hereafter, the scenar-
ios are referenced by combining the acronyms of the mixing
state and composition scenario (e.g.,INT-AS is internally-
mixed aerosol composed only of ammonium sulfate).

The total CCN predicted from the seven CCN closure
scenarios explained above are compared to the total CCN
obtained from SMCA. The CCN closure is statistically as-
sessed with a least-squares linear fit between observations
and predictions. In addition, the closure agreement is as-
sessed in terms of two error metrics: the Normalized Mean
Error (NME) and the Normalized Mean Bias (NMB),

NME =

∑n
i |Pi − Oi |∑n

i Oi

(12)

and

NMB =

∑n
i (Pi − Oi)∑n

i Oi

(13)

whereP and O are the predicted and measured “critical”
dry particle diameter or total CCN number concentrations
averaged over each SMPS scan,i. These metrics provide ad-
ditional information regarding the accuracy and bias of the
theoretical predictions.

The compositional scenarios defined above reflect the
range of assumptions taken in atmospheric models for calcu-
lating CCN concentrations, and are used to help quantify the
CCN prediction error associated with their application. An
observationally-based mixing state closure calculation would
also be relevant but cannot be carried out here due to lack of
relevant data (e.g., Rhoads et al., 2003) over the observation
period considered.

Fig. 6. (a) dp,c closure for the internal mixture (INT) scenarios.
The red, blue, green, and yellow circles correspond to the INT-AS,
INT-SALTS, INT-ALLSOL, and INT-ALLSOL-ST cases (Table 1),
respectively.(b) dp,c closure for the external mixture (EXT) scenar-
ios. The green and yellow circles correspond to the EXT-ALLSOL,
and EXT-ALLSOL-ST cases (Table 1), respectively. Dashed lines
represent 1:2 and 2:1 prediction error.

4 Results and discussion

4.1 CCN closure

Since the SMCA technique and the sigmoidal fit (Eq. 1) pro-
vide us with the characteristic activation diameter, a compar-
ison between the measured and predicteddp,c can be per-
formed. For the internal mixture case, a diameter compar-
ison was done for the four chemical composition and sur-
face tension scenarios (Table 1; Fig. 6a). For all scenarios
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Table 1. “Critical” dry particle diameter closure analysis error metrics for entire AMIGAS campaign.

Description of CCN Linear Fit Normalized Normalized

Closure Scenario Slope (R2) Mean Error Mean Bias

Internal Mixture – (NH4)2SO4 (INT-AS) 0.57 (0.70) 0.428 −0.428
Internal Mixture – Only Salts Soluble (INT-SALTS) 0.74 (0.70) 0.273 −0.261
Internal Mixture – All Soluble (INT-ALLSOL) 0.70 (0.73) 0.307 −0.302
Internal Mixture – All Soluble and Surface Active (INT-ALLSOL-ST) 0.53 (0.73) 0.477 −0.477
External Mixture – (NH4)2SO4 (EXT-AS) N/A N/A N/A
External Mixture – All Soluble (EXT-ALLSOL) 0.65 (0.71) 0.349 −0.346
External Mixture – All Soluble and Surface Active (EXT-ALLSOL-ST) 0.49 (0.71) 0.509 −0.509
Size-Resolved – External Mixture (SR-EXT) N/A N/A N/A

Table 2.CCN closure analysis error metrics for entire AMIGAS campaign.

Description of CCN Linear Fit Normalized Normalized
Closure Scenario Slope (R2) Mean Error Mean Bias

Internal Mixture – (NH4)2SO4 (INT-AS) 2.23 (0.32) 1.937 1.937
Internal Mixture – Only Salts Soluble (INT-SALTS) 1.96 (0.53) 1.462 1.462
Internal Mixture – All Soluble (INT-ALLSOL) 2.02 (0.48) 1.567 1.567
Internal Mixture – All Soluble and Surface Active (INT-ALLSOL-ST) 2.34 (0.33) 2.065 2.065
External Mixture – (NH4)2SO4 (EXT-AS) 1.17 (0.64) 0.489 0.401
External Mixture – All Soluble (EXT-ALLSOL) 2.09 (0.41) 1.692 1.692
External Mixture – All Soluble and Surface Active (EXT-ALLSOL-ST) 2.39 (0.26) 2.179 2.179
Size-Resolved – External Mixture (SR-EXT) 1.10 (0.95) 0.172 0.159

considered, a smaller diameter,dp,c, is predicted than the
observed. From all the internal mixture scenarios consid-
ered,INT-SALTSand INT-ALLSOLprovide the best closure
although,dp,c is still underpredicted by 26 and 30 %, re-
spectively. For the external mixture cases, a comparison was
done only for theEXT-ALLSOLandEXT-ALLSOL-STcases,
which were characterized by an underprediction bias. Better
closure was achieved for theEXT-ALLSOLcase, withdp,c
being underpredicted by 35 % (Fig. 6b).

The predicteddp,c for each case was then used to deter-
mine the theoretical CCN concentration and compared to that
measured. As expected from the activation diameter results
(Fig. 6), a discrepancy between the predicted and measured
CCN concentration was observed for all scenarios within the
internal and external mixture cases (Table 2, Fig. 7). The best
CCN closure was achieved for theEXT-ASwhere the pre-
dicted CCN concentration was found to be∼20 % greater
than the measured CCN concentration. For all other mixing
state and chemical composition scenarios, the predicted CCN
was approximately twofold greater than measured (Fig. 7).
Based on the closure results (Table 2), it is likely that or-
ganics contribute some solute and possibly depress surface
tension (less than the assumed 25 %) in Atlanta. It is also
likely that better closure would be achieved if size-resolved
chemical composition were available (Medina et al., 2007).
For all the CCN closure analyses performed, a uniform exter-
nal mixture fraction (equal to 1− E evaluated at dry diame-

ter = 200 nm) was assumed to perform the external CCN clo-
sure scenarios. This constitutes an “upper limit” as larger par-
ticles tend to be more internally mixed (have a lower 1− E;
Fig. 8: see Sect. 4.2). As shown in Fig. 8, 1− E does not
only change with size, but with time of day, likely from pho-
tochemical ageing of particles and mixing of air outside of
the boundary layer. The CCN closure for the external mix-
ture scenarios,EXT-ALLSOLandEXT-ALLSOL-ST, lead to
an overestimation and greater discrepancy than their internal
mixture counterpart (e.g.,INT-ALLSOLand INT-ALLSOL-
ST). This analysis suggests that a more precise knowledge of
mixing state (as function of size) as well as chemical compo-
sition (size-resolved) is required to achieve closure for com-
plex urban aerosol such as those seen in Atlanta.

The CCN closure errors reported here are higher than re-
ported for other anthropogenically-impacted locations (e.g.,
Broekhuizen et al., 2006; Medina et al., 2007) but compa-
rable to others sampling externally-mixed aerosol (e.g., Cu-
bison et al., 2008). In all studies, however, best CCN closure
was attained with the consideration of size-resolved chemical
composition. To assess the impact of size-resolved mixing
state on the CCN closure, an additional size-resolved exter-
nal mixture (SR-EXT) scenario was assessed using the mix-
ing state obtained from the fitted CCN activity spectrum over
a range of dry diameters (Fig. 8). ForSR-EXT, the activated
or internal mixture fraction (E∗) of the aerosol was assumed
to be completely soluble with compositions obtained from
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L. T. Padr ó et al.: Mixing state and compositional effects on CCN activity 10249

Fig. 7. (a) CCN closure plot for the internal mixture (INT) sce-
narios. The red, blue, green, and yellow circles correspond to the
INT-AS, INT-SALTS, INT-ALLSOL, and INT-ALLSOL-ST cases
(Table 1), respectively.(b) CCN closure plot for the external mix-
ture (EXT) scenarios. The red, green, and yellow circles correspond
to the EXT-AS, EXT-ALLSOL, and EXT-ALLSOL-ST cases, re-
spectively. Inset plots show the observed frequency distribution of
the normalized mean bias = (Pi − Oi )/Oi .

the PILS measurements (similar to theALLSOLcase above).
PredictedNCCN is obtained by applying a modified form of
Eq. (9) to find the total CCN concentration at each size bin
scaled by the soluble particle fraction:

NCCN =

∞∫
dp,c

dNCCN

d logdp
E∗

dp
d logdp (14)

whereE∗

dp
is the internal mixture fraction (E∗) at each diam-

eterdp. Compared to the internal and external closure scenar-
ios previously discussed, introducing size-resolved mixing
state information significantly improves CCN closure (aver-
age overprediction = 10 %; Fig. 9), which is approaching the

Fig. 8.Example of activation fraction as function of particle size for
a day (square) and night (circle) sample. The smaller the particles
the more externally mixed they become (smallerE).

Fig. 9.CCN closure plot for the size-resolved external mixture (SR-
EXT) scenario. Inset plot shows the observed frequency distribution
of the normalized mean bias = (Pi − Oi )/Oi .

level of agreement seen for very aged aerosol (e.g., Bougia-
tioti et al., 2011). The residual error is likely due to the as-
sumption of size-averaged composition.

4.2 Mixing state and hygroscopicity time-series

Figure 10 shows the time-series of the sigmoidal fit param-
eters (E∗, s∗, and C∗ in Eq. 2) obtained from fitting the
CCN activity spectrum as a function of supersaturation for
the 80 nm particles over the entire AMIGAS campaign. The
air mass periods discussed in Sect. 2.1 are indicated on the
plot. There is no clear correlation between the different pe-
riods and fit parameters (Fig. 10); however, there is a slight
increase in the non-CCN-active aerosol fraction (1−E∗) after
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Fig. 10.Time-series of(a)maximum activated ratio,(b) characteris-
tic critical supersaturation, and(c) extent of chemical heterogeneity
for 80 nm particles. Period A correspond to air masses originating
from the continental US; while period B corresponds to air masses
originating from either the Atlantic Ocean or Gulf of Mexico.

27 August (second A Period; Fig. 10a) and a decrease in the
characteristic supersaturation (s∗; Fig. 10b). The slight de-
crease in thes∗ (regardless of the increase in the externally
mixed aerosol) suggest that the internally mixed particles
at the end of the campaign (after 24 August) were slightly
more hygroscopic than those observed at the beginning. The
increase in the aerosol hygroscopicity may be due to or-
ganic compounds reacting in the aqueous phase; therefore
increasing the water soluble organic carbon (WSOC) frac-

Fig. 11.Time-series of the characteristic hygroscopicity parameter
(κ∗; red circles) and its variability (error bars represented byσk)
for 80 nm particles. Period A correspond to air masses originating
from the continental US; while period B corresponds to air masses
originating from either the Atlantic Ocean or Gulf of Mexico. Gaps
in data are a result of power outage or instrument problems.

tion present in the particle phase. This observation is con-
sistent with recent studies (e.g., Hennigan et al., 2008) in At-
lanta that found the fraction of the total WSOC in the particle
phase to have a strong dependence with RH above 70 % as is
the case in this study. As for the chemical heterogeneity of
the activated particles (Fig. 10c), the particles have the same
chemical variability regardless of the air mass sampled.

κ is calculated using the surface tension of water evalu-
ated at the median column temperature (Petters and Kreiden-
weis, 2007). However, the surface tension of the CCN can
be different from water if surfactants are present (Kiss et al.,
2005; Dinar et al., 2007), which can introduce uncertainty
in κ calculations (Padró et al., 2010). Theκ time-series for
the whole AMIGAS campaign for 80 nm particles is shown
in Fig. 11, and typically ranged between 0.03–0.48 (mean of
0.16± 0.07). These values ofκ are consistent with mixtures
of soluble salts and organic species (Carrico et al., 2008;
Koehler et al., 2009; Petters and Kreidenweis, 2007; Shantz
et al., 2008). As for the chemical heterogeneity of the parti-
cles, there is no clear correlation between the particle hygro-
scopicity and air mass sampled. Particles in the 60–100 nm
range exhibited similar hygroscopicity, with aκ range for
60 nm between 0.06–0.076 (mean of 0.18± 0.09). Smaller
particles (40 nm) had on average greaterκ, with a range of
0.20–0.92 (mean of 0.3± 0.12).

4.3 Droplet activation kinetics

The measured CCN droplet sizes were used to assess the ef-
fect of aerosol composition on activation kinetics. In Fig. 12,
the droplet size at the point of activation (dp corresponding
to dp,c) for a subset of the ambient data is plotted against
the instrument supersaturation. The droplet sizes for ambient
aerosol are compared to the droplet sizes from (NH4)2SO4
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Fig. 12.Droplet growth kinetics study analysis. Box plots for am-
bient droplet sizes at the point of activation by supersaturation. The
whiskers represent the 10th and 90th percentile. Outliers shown as
open circles represent those points that are 1.5 times the interquar-
tile range (box width). The dashed blue line corresponds to the
(NH4)2SO4 calibration droplet size at activation at the same super-
saturation. The grey band represents the variability in the average
calibration (NH4)2SO4 droplet distribution.

calibration aerosol at the same supersaturation. If the droplets
formed from ambient CCN are smaller than those from
the calibrations, this may indicate that the CCN experience
slow growth kinetics from the presence of organics. Spe-
cial attention should be given to the CCN concentration,
as if high enough, it can deplete the water supersaturation
in the CFSTGC chamber and explain the reduced droplet
sizes (Lathem and Nenes, 2011; Raatikainen et al., 2012).
Thus, while threshold growth analysis can rule out the pres-
ence of slowly-growing particles, it cannot always unam-
biguously identify slowly-activating particles. Rather, a de-
tailed numerical model is required to account for the various
droplet growth dependencies and numerically constrain ki-
netic growth parameters (Raatikainen et al., 2012).

During AMIGAS, Atlanta aerosol exhibit similar activa-
tion kinetics to (NH4)2SO4 (Fig. 12); however, an increase in
the number of particles that exhibit smaller droplet sizes was
observed at higher supersaturations. The quantity of outliers
was shown to increase with supersaturation (e.g., lower acti-
vation diameters) from 4 % (at 0.2 % supersaturation) to 9 %
(at 1.0 % supersaturation) of the total data points. Of these,
some points were found to lie within the variability of the
average droplet diameter, especially for the lower supersatu-
rations. A detailed assessment of the few particles that pro-
duced small CCN droplet sizes will be the focus of future
work.

5 Conclusions

Size-resolved CCN measurements, obtained using Scanning
Mobility CCN Analysis, were performed during the AMI-
GAS campaign in Atlanta, GA, from 1 August until 15
September 2008. Size-resolved CCN activation ratio were
used to express the aerosol mixing state (e.g., CCN activa-
tion fraction), hygroscopicity, and activation kinetics charac-
teristics. The data were then used to assess CCN closure for
a number of chemical composition and mixing state scenar-
ios often taken in atmospheric models to predict CCN con-
centrations. Of all the cases considered, the best closure was
achieved for the size-resolved mixing state scenario (∼10 %
overprediction). It is possible that the CCN closure would
further improve with detailed size-resolved chemical com-
position; the improvment in droplet number prediction how-
ever will be negligible (e.g., Sotiropoulou et al., 2007; Kary-
dis et al., 2012). The results of the CCN closure scenarios
considered here indicate that knowing the chemical composi-
tion and mixing state of aerosols allows the accurate predic-
tion (to within 10–20 %) of CCN concentrations. However,
for more commonly applied assumptions of aerosol inter-
nal mixing, the prediction error can be much higher (100 %),
which is consistent with other studies focusing on CCN clo-
sure for externally-mixed aerosol (e.g., Cubison et al., 2008;
Ervens et al., 2007). As expected, the hygroscopicity param-
eter of the aerosol exhibits considerable variability over time
and particle size, but tends to be 30–50 % lower than the “typ-
ical” continental average of 0.3 (Pringle et al., 2010). As for
the activated CCN, most of the aerosols sampled during the
campaign experienced growth similar to (NH4)2SO4 calibra-
tion aerosol, suggesting that compositional variability in this
region of the world exhibits a minimal impact on CCN acti-
vation kinetics. If the same finding applies to other regions
of the globe, CCN activation and growth kinetics can be de-
scribed with one set of kinetic parameters (i.e. uptake coeffi-
cient).
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