

1 **Supporting Information:**

2 **Contributions of individual reactive biogenic volatile organic compounds to organic**
3 **nitrates above a mixed forest**

4
5 K. A. Pratt¹, L. H. Mielke^{1*}, P. B. Shepson^{1,2,3}, A. M. Bryan⁴, A. L. Steiner⁴, J. Ortega^{5†}, R.
6 Daly^{5‡}, D. Helmig⁵, C. S. Vogel⁶, S. Griffith⁷, S. Dusanter⁷⁻⁹, P. S. Stevens^{7,10}, M. Alaghmand¹
7

8 ¹Department of Chemistry, Purdue University, West Lafayette, IN USA

9 ²Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN USA

10 ³Purdue Climate Change Research Center, Purdue University, West Lafayette, IN USA

11 ⁴Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor,
12 MI USA

13 ⁵Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO USA

14 ⁶University of Michigan Biological Station, Pellston, MI USA

15 ⁷School of Public and Environmental Affairs, Indiana University, Bloomington, IN USA

16 ⁸Université Lille Nord de France, Lille, France

17 ⁹École des Mines de Douai, Douai, France

18 ¹⁰Department of Chemistry, Indiana University, Bloomington, IN USA
19

20 *Now at: School of Public and Environmental Affairs, Indiana University, Bloomington, IN USA

21 †Now at: Atmospheric Chemistry Division, Earth System Laboratory, National Center for
22 Atmospheric Research, Boulder, CO USA

23 ‡Now at: Air Pollution Prevention and Control Division, National Risk Management Research
24 Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC USA

25
26 *Correspondence to:* K.A. Pratt (kapratt@purdue.edu)
27
28

29 **2.2 One-dimensional model description**

30 ***Future forest composition***

31 Stem density of aspen trees at UMBS and relative proportions of hardwood and pine
32 species and size were estimated in a 1.4 km² area of the UMBS forest in 2010 by measuring tree
33 diameter at breast height (DBH, 1.37 m) of all trees with a DBH \geq 8.0 cm in 101 – 800 m² plots.
34 For this exercise, all aspen trees were assumed to be replaced by either northern hardwood or
35 upland pine assemblages of like DBH and stem density. Dry leaf mass of each of the
36 replacement species was estimated from biomass equations developed in the Great Lake States
37 or northeastern U.S. in the form $M = aD^b$, where M is foliage dry mass, D is DBH, and a and b
38 are species/site specific parameters (Ribe, 1973; Pastor and Bockheim, 1981; Young et al., 1981;
39 Crow and Erdmann, 1983; Hocker and Early, 1983; Perala and Alban, 1994; Ter-Michaelian and
40 Korzukhin, 1997). From the 2010 census at UMBS we found the mean DBH of aspen trees was
41 25.0 cm at a density of 22300 stems km⁻² or 32% of the trees in the forest. The proportions of
42 species in the pine and northern hardwood assemblages were determined from the 2010 census
43 and foliage biomass estimated assuming a complete replacement of aspen with either pine or
44 northern hardwood assemblages (Table S2). For scaling emission rates for temperature, average
45 β -factors for the two future forest scenarios were based on the projected forest composition and
46 associated individual BVOC emissions. For the upland pines future forest scenario,
47 monoterpenene (MT) and sesquiterpene (SQT) β -factors were calculated to be 0.19 K⁻¹ and 0.14 K⁻¹
48 respectively. For the northern hardwoods future forest scenario, the SQT β -factor was
49 calculated to be 0.15 K⁻¹; due to uncertainties in the measured aspen MT β -factor, the average
50 MT β -factor (0.14 K⁻¹) was used.

51

52

53 **BVOC emissions**

54 Normalized fluxes, measured during branch-enclosure sampling, for the three emission
55 scenarios (base, maximum, and minimum) are shown in Table S3. For the base scenario, the
56 emission rates of all BVOCs were scaled to account for measurement uncertainties. For
57 isoprene, emission rates were scaled by -30% for the base production rate scenario, with no
58 scaling for the maximum production rate scenario and scaling by -66% for the minimum
59 production rate scenario. Previously, Pressley et al. (2005) reported an uncertainty in isoprene
60 eddy covariance measurements at UMBS of $\pm 32\text{-}66\%$. However, similar to the modeling study
61 of Ortega et al. (2007), morning (5:30-10:30 EST) isoprene emissions were overestimated;
62 therefore, for all production rate scenarios, isoprene emission rates during this time period were
63 also scaled (by -9% to -83%, with 0.5 h resolution) according to previously documented average
64 overestimations by Ortega et al. (2007); this adjustment is not reflected in Table S3.

65 For MTs and other BVOCs, the base production rate scenario included scaling emission
66 rates by +107%; for the maximum and minimum production rate scenarios, scaling by +107%
67 and +10%, respectively, was completed. For these species, Ortega et al. (2007; 2008) previously
68 reported a measurement uncertainty of 27%, as well as reported average sampling losses of $\sim 20\text{-}30\%$
69 [range of 10-80%]. For SQTs, the base production rate scenario included scaling emission
70 rates by +130%, with scaling by +130% and +10% for the maximum and minimum production
71 rate scenarios, respectively. This accounts for the previously reported a measurement
72 uncertainty of 50% for SQTs, as well as reported average sampling losses of $\sim 20\text{-}30\%$ [range of
73 10-80%] (Ortega et al., 2007; 2008). In addition, for temperature dependence scaling of the
74 MTs, SQTs, and other BVOCs, upper and lower quartile β -factors were applied for the minimum
75 and maximum production rate scenarios. Also, for the MTs, SQTs, and other BVOCs, the

76 maximum and minimum production rate scenarios account for tree-to-tree variability during
77 branch enclosure measurements, as well as 95% confidence intervals associated with
78 measurements of mean green-leaf dry mass of the various tree species. Thus, the production rate
79 scenarios account for uncertainty and variability in emission rate measurements.

80

81 ***Calculated NO₃ concentrations***

82 Nitrate radicals are primarily produced by reaction of NO₂ with O₃ and generally
83 removed by photolysis and reaction with NO, as described by reactions 1-3:

88 The NO₃ production and loss reactions included in the box model are described in Table S4 with
89 their corresponding rate constants. Total sesquiterpene (SQT) concentrations were estimated
90 using the noontime average [SQT]/[MT] ratio measured by Kim et al. (2009) at the PROPHET
91 site (July-August 2005) and the measured total MT concentration for July-August 2008 (PTR-
92 LIT). NO₃ photolysis rates were calculated using the National Center for Atmospheric Research
93 (NCAR) tropospheric ultraviolet and visible (TUV) radiation model
94 (<http://cprm.acd.ucar.edu/Models/TUV/>) with total column ozone obtained from the Ozone
95 Monitoring Instrument (OMI) on the Aura spacecraft
96 (http://jwocky.gsfc.nasa.gov/teacher/ozone_overhead.html). NO₃ reached steady state within
97 ~0.5-8 min in the box model calculations, which were repeated to create an average 0.5 hr
98 resolution NO₃ diurnal profile for sunny days in July-August 2008.

99

100 **Table S1.** BVOCs identified during branch-enclosure emission measurements for UMBS tree
 101 species. Corresponding reaction rate constants (units of $\text{cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$) for OH, O_3 , and NO_3 at
 102 298 K (k_{OH} , k_{O_3} , and k_{NO_3} , respectively) and RONO_2 yields for reactions with OH and NO_3 (γ_{OH}
 103 and γ_{NO_3} , respectively) are included for each BVOC identified. Individual BVOCs are displayed
 104 in order of simulated RONO_2 contribution; BVOCs contributing >0.5 ppt RONO_2 (at ~ 12 m
 105 above forest canopy) at any time are shown in Table 1.

BVOC	Structure	k_{OH} k_{O_3} k_{NO_3} ($\text{cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$)	$\text{RONO}_2:$ γ_{OH} γ_{NO_3}
β -linalool ($\text{C}_{10}\text{H}_{18}\text{O}$)		1.59×10^{-10} a) 4.3×10^{-16} a) 1.12×10^{-11} a)	0.30 b) 0.31 c)
camphene ($\text{C}_{10}\text{H}_{16}$)		5.30×10^{-11} d) 9.0×10^{-19} d) 6.6×10^{-13} d)	0.23 e) 0.31 c)
α -farnesene ($\text{C}_{15}\text{H}_{24}$)		2.19×10^{-10} f) 5.94×10^{-16} f) 2.1×10^{-11} g)	0.29 h) 0.31 c)
β -phellandrene ($\text{C}_{10}\text{H}_{16}$)		1.68×10^{-10} d) 4.7×10^{-17} d) 8.0×10^{-12} d)	0.18 h) 0.31 c)
α -phellandrene ($\text{C}_{10}\text{H}_{16}$)		3.13×10^{-10} d) 3.0×10^{-15} d) 7.3×10^{-11} d)	0.18 h) 0.31 c)
terpinolene ($\text{C}_{10}\text{H}_{16}$)		2.25×10^{-10} d) 1.9×10^{-15} d) 9.7×10^{-11} d)	0.18 h) 0.31 c)
<i>allo</i> -ocimene ($\text{C}_{10}\text{H}_{16}$)		2.36×10^{-10} i) 4.16×10^{-16} i) 1.1×10^{-11} g)	0.18 h) 0.31 c)
dimethylnonatriene ($\text{C}_{11}\text{H}_{18}$)		2.32×10^{-10} i) 7.50×10^{-16} i) 9.6×10^{-12} g)	0.20 h) 0.31 c)
α -terpineol ($\text{C}_{10}\text{H}_{18}\text{O}$)		1.9×10^{-10} j) 3.0×10^{-16} j) 1.60×10^{-11} k)	0.30 b) 0.31 c)
α -terpinene ($\text{C}_{10}\text{H}_{16}$)		3.63×10^{-10} d) 2.1×10^{-14} d) 1.4×10^{-11} d)	0.18 h) 0.31 c)
β -selinene ($\text{C}_{15}\text{H}_{24}$)		1.17×10^{-10} i) 2.40×10^{-17} i) 6.5×10^{-13} g)	0.29 h) 0.31 c)

β -caryophyllene (C ₁₅ H ₂₄)		1.97 x 10 ⁻¹¹ d) 1.16 x 10 ⁻¹⁴ d) 1.9 x 10 ⁻¹¹ d)	0.29 h) 0.31 c)
δ -cadinene (C ₁₅ H ₂₄)		2.11 x 10 ⁻¹⁰ i) 1.63 x 10 ⁻¹⁵ i) 5.2 x 10 ⁻¹¹ g)	0.29 h) 0.31 c)
β -bourbonene (C ₁₅ H ₂₄)		6.19 x 10 ⁻¹¹ i) 1.2 x 10 ⁻¹⁷ i) 3.5 x 10 ⁻¹³ g)	0.29 h) 0.31 c)
α -copaene (C ₁₅ H ₂₄)		9.00 x 10 ⁻¹¹ d) 1.60 x 10 ⁻¹⁶ d) 1.60 x 10 ⁻¹¹ d)	0.29 h) 0.31 c)
4-carene (C ₁₀ H ₁₆)		5.81 x 10 ⁻¹¹ i) 2.00 x 10 ⁻¹⁶ i) 8.9 x 10 ⁻¹³ g)	0.18 e) 0.31 f)
4-terpineol (C ₁₀ H ₁₈ O)		1.04 x 10 ⁻¹⁰ i) (<)1 x 10 ⁻²⁰ i) 1.4 x 10 ⁻¹⁶ g)	0.30 b) 0.31 c)
α -selinene (C ₁₅ H ₂₄)		1.51 x 10 ⁻¹⁰ i) 4.42 x 10 ⁻¹⁶ i) 5.8 x 10 ⁻¹² g)	0.29 h) 0.31 c)
camphor (C ₁₀ H ₁₆ O)		4.30 x 10 ⁻¹² d) (<)7 x 10 ⁻²⁰ l) (<)3.00 x 10 ⁻¹⁶ d)	0.31 m) 0.31 c)
3-carene (C ₁₀ H ₁₆)		8.80 x 10 ⁻¹¹ d) 3.7 x 10 ⁻¹⁷ d) 9.1 x 10 ⁻¹² d)	0.18 h) 0.31 c)
β -elemene (C ₁₅ H ₂₄)		1.40 x 10 ⁻¹⁰ i) 2.6 x 10 ⁻¹⁷ i) 6.3 x 10 ⁻¹¹ g)	0.29 h) 0.31 c)
α -cubebene (C ₁₅ H ₂₄)		1.00 x 10 ⁻¹⁰ i) 4.30 x 10 ⁻¹⁶ d) 7.9 x 10 ⁻¹² g)	0.29 h) 0.31 c)
1,8-cineole (C ₁₀ H ₁₈ O)		1.11 x 10 ⁻¹¹ n) (<)1.5 x 10 ⁻¹⁹ o) 1.7 x 10 ⁻¹⁶ n)	0.52 p) 0.31 c)

D germacrene (C ₁₅ H ₂₄)		2.40 x 10 ⁻¹⁰ i) 6.10 x 10 ⁻¹⁶ i) 6.4 x 10 ⁻¹² g)	0.29 h) 0.31 c)
<i>o</i> -cymene (C ₁₀ H ₁₄)		8.54 x 10 ⁻¹² i) (<5 x 10 ⁻²⁰ q) 9.9 x 10 ⁻¹⁶ q)	0.03 r) 0.31 c)
<i>allo</i> - aromadendrene (C ₁₅ H ₂₄)		6.25 x 10 ⁻¹¹ i) 1.20 x 10 ⁻¹⁷ i) 3.5 x 10 ⁻¹³ g)	0.29 h) 0.31 c)
γ -muurolene (C ₁₅ H ₂₄)		1.56 x 10 ⁻¹⁰ i) 4.42 x 10 ⁻¹⁶ i) 5.9 x 10 ⁻¹² g)	0.29 h) 0.31 c)
β -cubebene (C ₁₅ H ₂₄)		6.54 x 10 ⁻¹¹ i) 1.20 x 10 ⁻¹⁷ i) 3.5 x 10 ⁻¹³ g)	0.29 h) 0.31 c)
α -muurolene (C ₁₅ H ₂₄)		1.90 x 10 ⁻¹⁰ i) 8.6 x 10 ⁻¹⁶ i) 1.1 x 10 ⁻¹¹ g)	0.29 h) 0.31 c)
β -gurjunene (C ₁₅ H ₂₄)		6.01 x 10 ⁻¹¹ i) 1.20 x 10 ⁻¹⁷ i) 3.5 x 10 ⁻¹³ g)	0.29 h) 0.31 c)
borneol (C ₁₀ H ₁₈ O)		1.14 x 10 ⁻¹¹ i) (<1 x 10 ⁻²⁰ d) 4.6 x 10 ⁻¹⁵ s)	0.52 p) 0.31 c)
β -farnesene (C ₁₅ H ₂₄)		2.88 x 10 ⁻¹⁰ f) 6.86 x 10 ⁻¹⁶ f) 9.3 x 10 ⁻¹² g)	0.29 h) 0.31 c)
α -humulene (C ₁₅ H ₂₄)		2.93 x 10 ⁻¹⁰ d) 1.17 x 10 ⁻¹⁴ d) 3.90 x 10 ⁻¹¹ d)	0.29 h) 0.31 c)
<i>cis</i> - and <i>trans</i> - linalool oxide (C ₁₀ H ₁₈ O ₂)		6.68 x 10 ⁻¹¹ i) 1.75 x 10 ⁻¹⁸ i) 4.6 x 10 ⁻¹⁴ g)	0.30 b) 0.31 c)
β -bisabolene (C ₁₅ H ₂₄)		2.4 x 10 ⁻¹¹ i) 8.7 x 10 ⁻¹⁶ i) 9.2 x 10 ⁻¹² g)	0.29 h) 0.31 c)

<i>p</i> -cymene (C ₁₀ H ₁₄)		1.51 x 10 ⁻¹¹ h) (<5 x 10 ⁻²⁰ o) 9.9 x 10 ⁻¹⁶ n)	0.03 r) 0.31 c)
germacrene B (C ₁₅ H ₂₄)		2.90 x 10 ⁻¹⁰ i) 2.06 x 10 ⁻¹⁵ i) 4.3 x 10 ⁻¹¹ g)	0.29 h) 0.31 c)
aromadendrene (C ₁₅ H ₂₄)		1.50 x 10 ⁻¹⁰ t) 6.50 x 10 ⁻¹⁵ u) 3.5 x 10 ⁻¹³ g)	0.29 h) 0.31 c)
α -cedrene (C ₁₅ H ₂₄)		6.70 x 10 ⁻¹¹ d) 2.80 x 10 ⁻¹⁷ d) 8.20 x 10 ⁻¹² d)	0.29 h) 0.31 c)
tricyclene (C ₁₀ H ₁₆)		2.66 x 10 ⁻¹² i) (<1 x 10 ⁻²³ d) 1.1 x 10 ⁻¹⁵ s)	0.31 m) 0.31 c)
α - <i>trans</i> -bergamotene (C ₁₅ H ₂₄)		1.80 x 10 ⁻¹⁰ i) 8.60 x 10 ⁻¹⁶ i) 9.6 x 10 ⁻¹² g)	0.29 h) 0.31 c)
camphene hydrate (C ₁₀ H ₁₈ O)		9.43 x 10 ⁻¹² i) (<1 x 10 ⁻²⁰ d) 6.4 x 10 ⁻¹⁶ s)	0.52 p) 0.31 c)
γ -cadinene (C ₁₅ H ₂₄)		1.56 x 10 ⁻¹⁰ i) 3.20 x 10 ⁻¹⁴ t) 5.9 x 10 ⁻¹² g)	0.29 h) 0.31 c)
<i>para</i> -cymenene (C ₁₀ H ₁₆)		5.7 x 10 ⁻¹¹ i) 1.4 x 10 ⁻¹⁶ i) 1.5 x 10 ⁻¹² v)	0.18 h) 0.31 c)
norbornene (C ₇ H ₁₀)		1.0 x 10 ⁻¹⁰ d) 1.27 x 10 ⁻¹⁷ d) 7.0 x 10 ⁻¹³ d)	0.11 h) 0.31 c)
cyclofenchone (C ₁₀ H ₁₆)		3.54 x 10 ⁻¹² i) (<1 x 10 ⁻²³ d) 1.4 x 10 ⁻¹⁵ s)	0.31 m) 0.31 c)

106

a) Atkinson et al. (1995)

107

b) Estimated based on Arey et al. (2001), Espada and Shepson (2005), and O'Brien et al. (1998)

108

c) Average of α -pinene, β -pinene, and limonene yields

109 d) Atkinson and Arey (2003)
110 e) β -pinene used as a proxy
111 f) Kim et al. (2011)
112 g) Estimated based on Pfrang et al. (2006)
113 h) Estimated based on Arey et al. (2001) and O'Brien et al. (1998)
114 i) Estimated using the Environmental Protection Agency's Estimation Program Interface Suite
115 (USEPA, 2010)
116 j) Wells (2005)
117 k) Jones and Ham (2008)
118 l) Reissell et al. (2001)
119 m) Estimated based on Arey et al. (2001)
120 n) Corchnoy and Atkinson (1990)
121 o) Atkinson et al. (1990)
122 p) Estimated based on Arey et al. (2001) and Espada and Shepson (2005)
123 q) *p*-cymene used as a proxy
124 r) *p*-xylene (Espada et al., 2005) used as a proxy
125 s) Estimated based on Kerdouci et al. (2010)
126 t) Ng et al. (2007)
127 u) Pollmann et al. (2005)
128 v) styrene (Atkinson and Arey, 2003) used as a proxy
129

130 **Table S2.** Estimated leaf dry mass and species proportions for replacement of aspen in the
131 future UMBS forest. Values in parentheses are \pm standard error.

Assemblage/species	Leaf dry mass ($\text{g}\cdot\text{m}^{-2}$)	Species proportions (%)
Northern Hardwoods		
<i>Acer rubrum</i>	102.8 (19.5)	70.5
<i>Acer saccharum</i>	28.3 (1.6)	15.5
<i>Fagus grandifolia</i>	26.1 (1.7)	14.0
Upland Pines		
<i>Pinus strobus</i>	233.4 (35.0)	89.0
<i>Pinus resinosa</i>	44.1 (4.4)	11.0

132

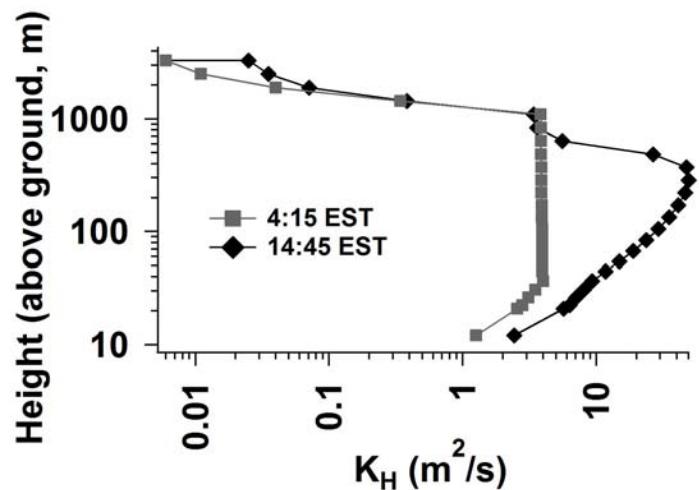
133

134 **Table S3.** Normalized fluxes ($\mu\text{g C m}^{-2} \text{ h}^{-1}$) for three emission scenarios (base, maximum, and
135 minimum production). Fluxes were normalized to a standard photosynthetic active radiation flux
136 of $1000 \mu\text{mol m}^{-2} \text{ s}^{-1}$ and a standard temperature of 303.15 K.

BVOC Class	Base	Maximum	Minimum
Isoprene	8141	14375	3909
Monoterpenes	667	1357	148
Sesquiterpenes	94	274	7
Other BVOCs	61	119	14

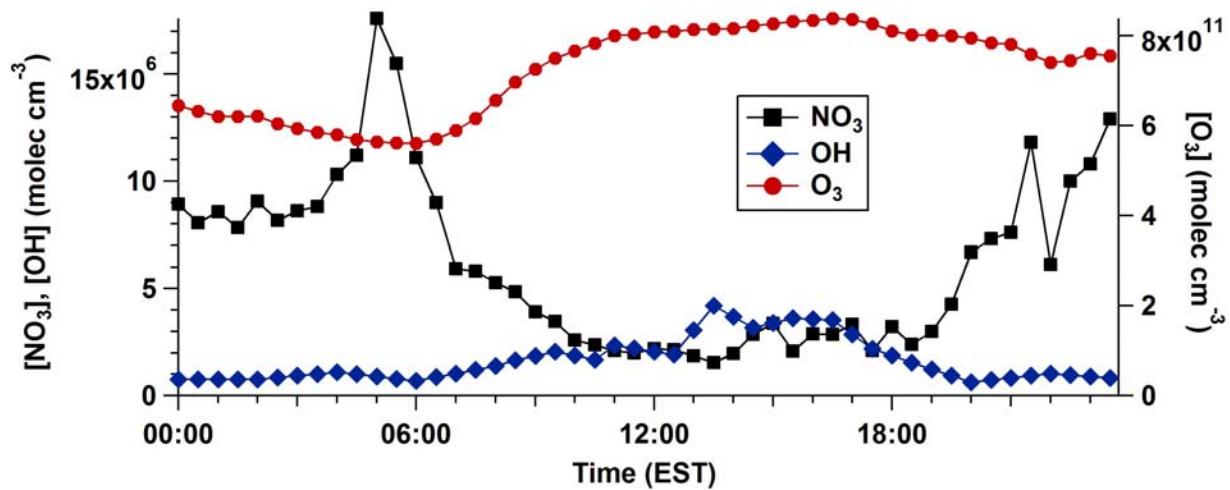
137
138

139 **Table S4.** NO_3 production and loss reactions included in the box model with corresponding rate
 140 constants.


Reaction	$k (\text{cm}^3 \text{ molec}^{-1} \text{ s}^{-1})$	Reference
$\text{NO}_3 + \text{NO} \rightarrow 2\text{NO}_2$	2.6×10^{-11}	(Atkinson et al., 2004)
$\text{NO}_3 + \text{NO}_2 \rightarrow \text{N}_2\text{O}_5$	1.9×10^{-12}	(Atkinson et al., 2004)
$\text{NO}_3 + \text{OH} \rightarrow \text{NO}_2 + \text{HO}_2$	2.0×10^{-11}	(Atkinson et al., 2004)
$\text{NO}_3 + \text{HO}_2 \rightarrow \text{HNO}_3 + \text{O}_2$	4.0×10^{-12}	(Atkinson et al., 2004)
$\text{NO}_3 + \text{RO}_2 \rightarrow \text{RO} + \text{NO}_2$	4.0×10^{-12}	Assumed same as HO_2 reaction
$\text{NO}_3 + \text{Isoprene} \rightarrow \text{Products}$	7.0×10^{-13}	(Atkinson and Arey, 2003)
$\text{NO}_3 + \text{MTs} \rightarrow \text{Products}$	1.4×10^{-11}	Emission weighted average (see Table 1 for individual k_{NO_3})
$\text{NO}_3 + \text{SQTs} \rightarrow \text{Products}$	1.7×10^{-11}	Emission weighted average (see Table 1 for individual k_{NO_3})
$\text{NO}_3 + \text{MACR} \rightarrow \text{Products}$	3.4×10^{-15}	(Atkinson and Arey, 2003)
$\text{NO}_3 + \text{MVK} \rightarrow \text{Products}$	$(<)6 \times 10^{-15}$	(Atkinson and Arey, 2003)
$\text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3 + \text{O}_2$	3.5×10^{-17}	(Atkinson et al., 2004)
$\text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2$	1.8×10^{-14}	(Atkinson et al., 2004)
$\text{N}_2\text{O}_5 \rightarrow \text{NO}_3 + \text{NO}_2$	$6.9 \times 10^{-2} \text{ s}^{-1}$	(Atkinson et al., 2004)
$\text{NO}_3 \rightarrow \text{particles}$	$4.0 \times 10^{-3} \text{ s}^{-1}$	(Hurst et al., 2001)
$\text{N}_2\text{O}_5 \rightarrow \text{particles}$	$9.3 \times 10^{-4} \text{ s}^{-1}$	(Hurst et al., 2001)
$\text{NO}_3 + \text{hv} \rightarrow \text{NO}_2 + \text{O}$	variable	NCAR TUV model
$\text{NO}_3 + \text{hv} \rightarrow \text{NO} + \text{O}_2$	variable	NCAR TUV model

141
 142

143 **Table S5.** First generation isoprene oxidation products with yields from isoprene oxidation,
 144 oxidation rate constants (units of $\text{cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$), and RONO_2 yields. Methacrolein (MACR)
 145 and methyl vinyl ketone (MVK) yields by OH oxidation are defined within the model based on
 146 the availability of NO, as represented by β (defined in the text as the fraction of time RO_2 reacts
 147 with NO versus HO_2 and RO_2), using high and low NO_x chamber yields from Ruppert and
 148 Becker (2000). The structures of RONO_2 products from the oxidation of these first generation
 149 isoprene oxidation products were estimated, and corresponding rate constants were estimated
 150 (Atkinson and Arey, 2003; Kerdouci et al., 2010; USEPA, 2010) to predict the removal of the
 151 nitrates.


First Generation Isoprene Oxidation Product	Structure	Isoprene γ_{OH} γ_{O_3} γ_{NO_3}	k_{OH} k_{O_3} k_{NO_3}	$\text{RONO}_2:$ γ_{OH} γ_{NO_3}
MACR		0.18-0.20 a) 0.39 b) 0.035 b)	$2.9 \times 10^{-11} \text{ c)}$ $1.2 \times 10^{-18} \text{ c)}$ $3.4 \times 10^{-15} \text{ c)}$	0.0705 d) 0.24 e)
MVK		0.15-0.31 a) 0.16 b) 0.035 b)	$2.0 \times 10^{-11} \text{ c)}$ $5.2 \times 10^{-18} \text{ c)}$ ($<6.0 \times 10^{-16} \text{ c}$)	0.11 d) 0.24 e)
IP-HMY		0.15 e) 0 e) 0 e)	$7.0 \times 10^{-11} \text{ f)}$ $1.0 \times 10^{-17} \text{ f)}$ $1.0 \times 10^{-13} \text{ f)}$	0.075 e) 0.20 e)
IP-MHY		0.13 e) 0 e) 0.32 f)	$7.0 \times 10^{-11} \text{ f)}$ $1.0 \times 10^{-17} \text{ f)}$ $1.0 \times 10^{-13} \text{ f)}$	0.075 e) 0.20 e)

152 a) (Ruppert and Becker, 2000)
 153 b) (Atkinson and Arey, 1998)
 154 c) (Atkinson et al., 2006)
 155 d) (Paulot et al., 2009)
 156 e) Estimation by Costa (2011)
 157 f) (Carter and Atkinson, 1996)
 158

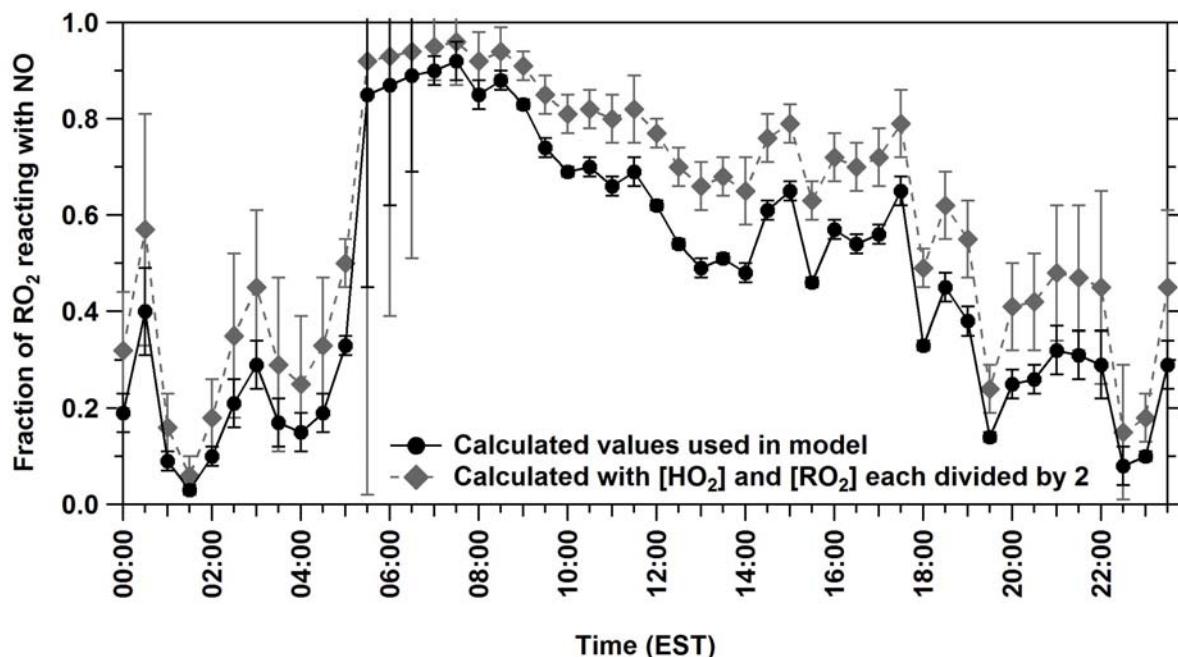
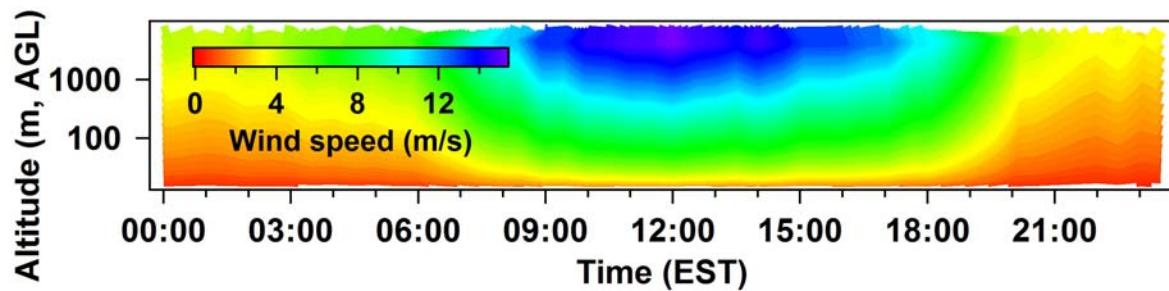

159
160
161
162

Figure S1. Modeled thermal eddy diffusivity (K_H) profiles for UMBS in the summer at 4:15 and 14:45 EST.



163
164
165

Figure S2. Diurnal cycles of the average concentrations of NO_3 (modeled), OH (measured), and O_3 (measured), used in the model, for 32 m above ground (10 m above canopy).

166
 167 **Figure S3.** Calculated average diurnal cycle of δ , used in the model and defined in Section 2.2.4
 168 as the fraction of time RO_2 reacts with NO versus HO_2 and RO_2 . If we assume that the actual
 169 “ HO_2 ” concentrations were half the measured values due to an interference from isoprene RO_2 ,
 170 this translates to an average diurnal increase in δ of 0.12 (range of 0.02-0.17); as shown here, the
 171 primary effect would be a relative increase in RONO_2 production in the mid-day and nighttime.
 172

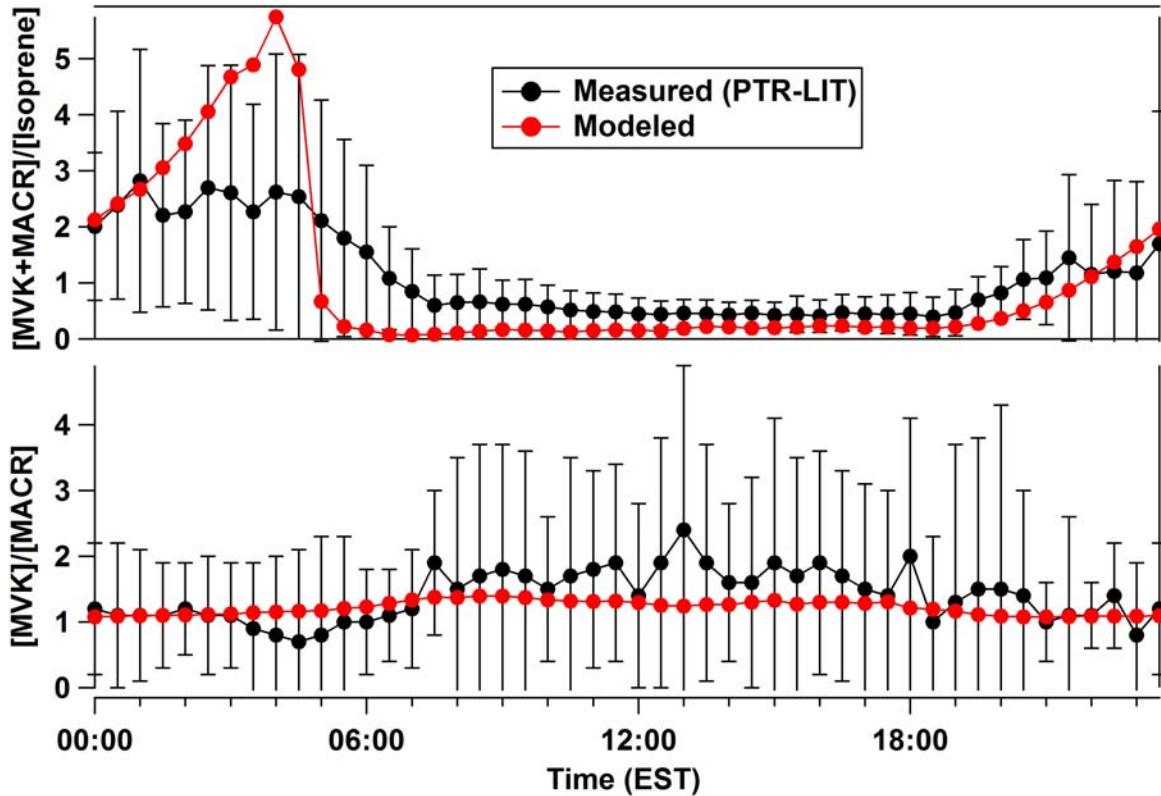
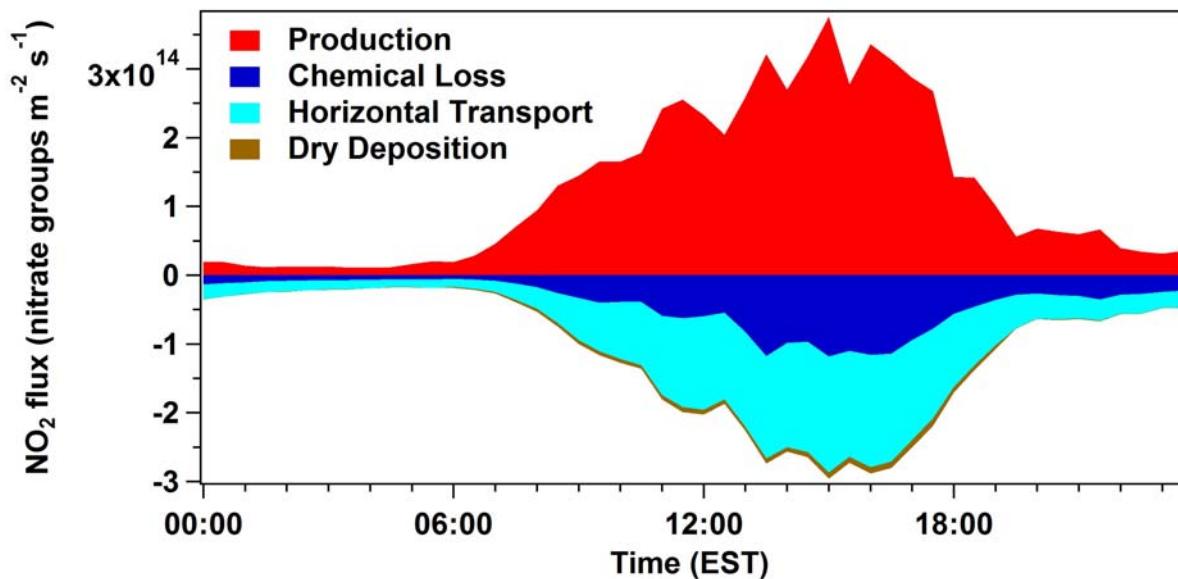
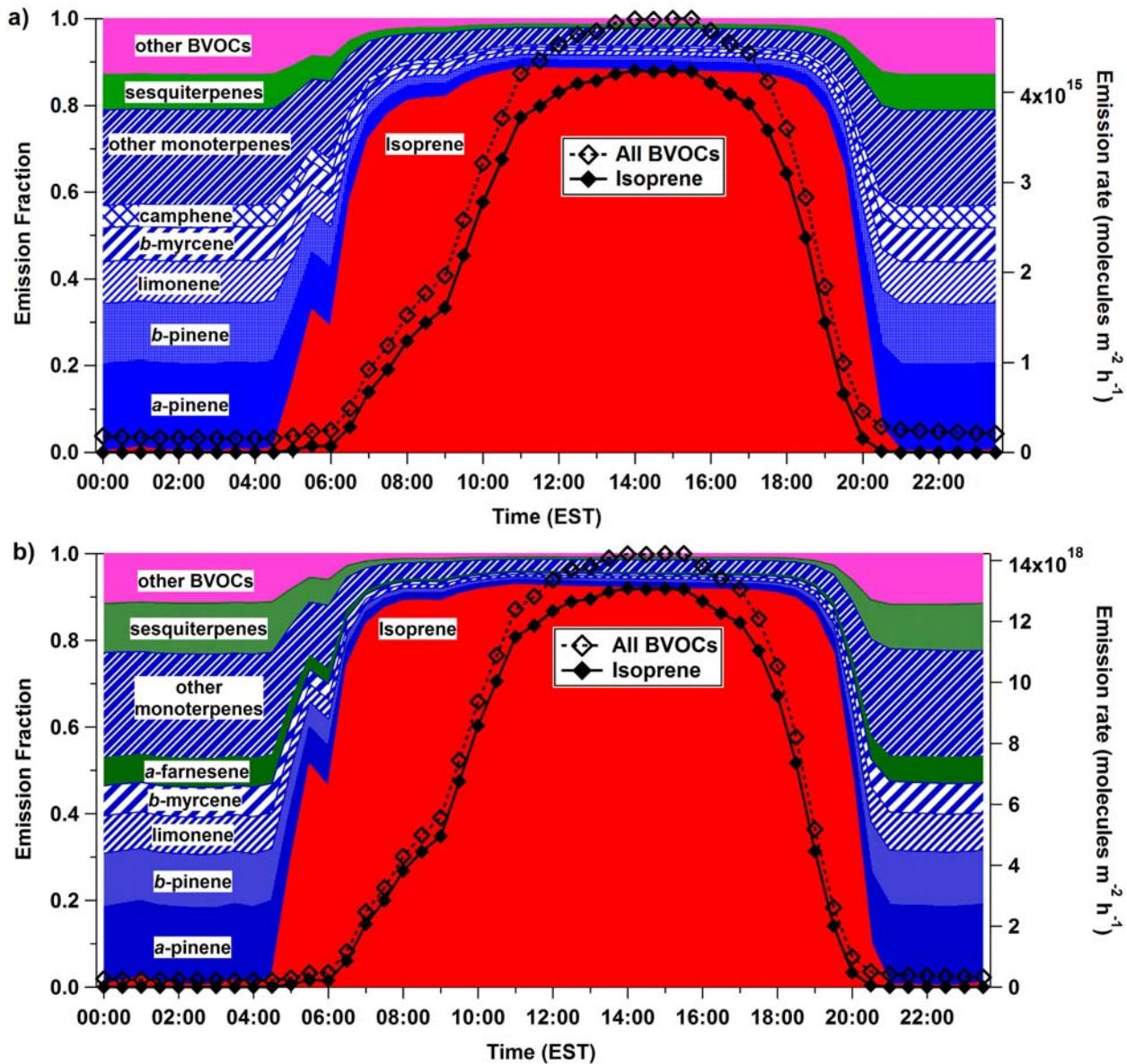
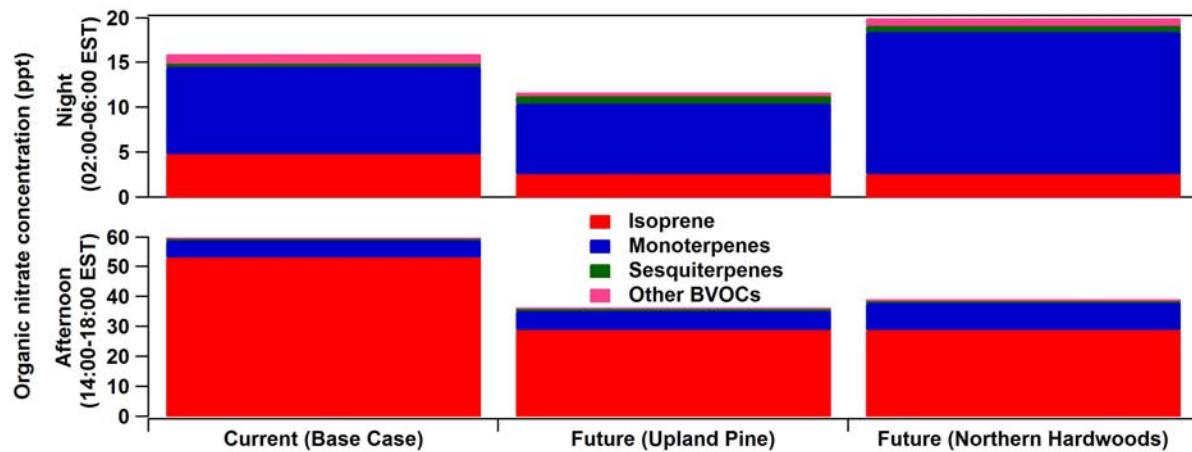

173
174
175
176
177

Figure S4. Diurnal cycle of calculated wind speed (0.5 hour time resolution) versus altitude. The logarithmic wind profile scaling (equation XII) does not account for atmospheric stability and may underestimate nighttime winds, particularly above 100 m.



178
179
180
181


Figure S5. Diurnal cycle of calculated absolute (lines, right axis) and fractional (colors, left axis) emission rates (base scenario) of BVOCs at UMBS.



182
 183 **Figure S6.** Diurnal cycles of modeled and measured [methyl vinyl ketone (MVK) +
 184 methacrolein (MACR)]/[isoprene] and [MVK]/[MACR] at ~12 m above the forest canopy.
 185 July-August 2008 measurements were completed using a proton-transfer reaction linear ion trap
 186 mass spectrometer (PTR-LIT) (Mielke et al., 2010). For nighttime periods when few PTR-LIT
 187 MS/MS measurements of [MVK] and [MACR] were made, PTR-LIT [MVK+MACR] data were
 188 utilized to obtain estimated [MVK] and [MACR] by applying 0.5 h average [MVK]/[MACR]
 189 from the previous UMBS study by Apel et al. (2002). Sensitivity to uncertainties and variability
 190 are indicated by error bars.
 191

192
193 **Figure S7.** Modeled diurnal cycle of total column nitrate flux due to addition (organic nitrate
194 production) and loss processes (chemical reaction, horizontal advection, and dry deposition).
195 Loss of individual primary and secondary nitrates are shown, as well as the production of
196 secondary nitrates, with dinitrate fluxes multiplied by two to represent the two nitrate groups
197 present within these molecules.
198

205
206 **Figure S9.** Comparison of simulated biogenic organic nitrate concentrations at ~12 m above the
207 forest canopy for the current forest (base case), compared to the two future forest scenarios
208 (upland pine and northern hardwoods).

209 **References**

210 Apel, E. C., Riemer, D. D., Hills, A., Baugh, W., Orlando, J., Faloona, I., Tan, D., Brune, W.,
211 Lamb, B., Westberg, H., Carroll, M. A., Thornberry, T., and Geron, C. D.: Measurement
212 and interpretation of isoprene fluxes and isoprene, methacrolein, and methyl vinyl ketone
213 mixing ratios at the PROPHET site during the 1998 Intensive, *J. Geophys. Res.*, 107,
214 doi:10.1029/2000JD000225, 2002.

215 Arey, J., Aschmann, S. M., Kwok, E. S. C., and Atkinson, R.: Alkyl nitrate, hydroxy nitrate, and
216 hydroxycarbonyl formation from the NO_x -air photooxidations of $\text{C}_5\text{-C}_8$ *n*-alkanes, *J.*
217 *Phys. Chem. A*, 105, 1020-1027, 2001.

218 Atkinson, R., Hasegawa, J., and Aschmann, S. M.: Rate constants for the gas-phase reactions of
219 O_3 with a series of monoterpenes and related compounds at 296 ± 2 K, *Int. J. Chem.*
220 *Kinet.*, 22, 871-887, 1990.

221 Atkinson, R., Arey, J., Aschmann, S. M., Corchnoy, S. B., and Shu, Y.: Rate constants for the
222 gas-phase reactions of *cis*-3-hexen-1-ol, *cis*-3-hexenylacetate, *trans*-2-hexenal, and
223 linalool with OH and NO_3 radicals and O_3 at 296 ± 2 K, and OH radical formation yields
224 from the O_3 reactions, *Int. J. Chem. Kinet.*, 27, 941-955, 1995.

225 Atkinson, R., and Arey, J.: Atmospheric chemistry of biogenic organic compounds, *Acc. Chem.*
226 *Res.*, 31, 574-583, 1998.

227 Atkinson, R., and Arey, J.: Atmospheric degradation of volatile organic compounds, *Chem.*
228 *Rev.*, 103, 4605-4638, 2003.

229 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin,
230 M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for
231 atmospheric chemistry: Volume I - gas phase reactions of O_x , HO_x , NO_x and SO_x species,
232 *Atmos. Chem. Phys.*, 4, 1461-1738, 2004.

233 Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin,
234 M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for
235 atmospheric chemistry: Volume II - gas phase reactions of organic species, *Atmos.*
236 *Chem. Phys.*, 6, 2006.

237 Carter, W. P. L., and Atkinson, R.: Development and evaluation of a detailed mechanism for the
238 atmospheric reactions of isoprene and NO_x, *Int. J. Chem. Kinet.*, 28, 497-530, 1996.

239 Corchnoy, S. B., and Atkinson, R.: Kinetics of the gas-phase reactions of OH and NO₃ radicals
240 with 2-carene, 1,8-cineole, *p*-cymene, and terpinolene, *Environ. Sci. Technol.*, 24, 1497-
241 1502, 1990.

242 Costa, A. W.: Coupling between the carbon and nitrogen cycles in a forested environment,
243 Ph.D., Chemistry, Purdue University, West Lafayette, IN, 279 pp., 2011.

244 Crow, T. R., and Erdmann, G. G.: Weight and volume equations and tables for red maples in the
245 Lake States, U.S. Forest Service Research Paper, NC-242, 14, 1983.

246 Espada, C., Grossenbacher, J. W., Ford, K., Couch, T., and Shepson, P. B.: The production of
247 organic nitrates from various anthropogenic volatile organic compounds, *Int. J. Chem.*
248 *Kinet.*, 37, 675-685, 2005.

249 Espada, C., and Shepson, P. B.: The production of organic nitrates from atmospheric oxidation of
250 ethers and glycol ethers, *Int. J. Chem. Kinet.*, 37, 686-699, 2005.

251 Hocker, H. W., and Early, D. J.: Biomass and leaf area equations for northern forest species,
252 New Hampshire Agricultural Experiment Station University of New Hampshire Research
253 Report, 102, 27, 1983.

254 Hurst, J. M., Barket, D. J., Herrera-Gomez, O., Couch, T. L., Shepson, P. B., Faloona, I., Tan,
255 D., Brune, W., Westberg, H., Lamb, B., Biesenthal, T., Young, V., Goldstein, A.,

256 Munger, J. W., Thornberry, T., and Carroll, M. A.: Investigation of the nighttime decay
257 of isoprene, *J. Geophys. Res.*, 106, 24335-24346, 2001.

258 Jones, B. T., and Ham, J. E.: α -Terpineol reactions with the nitrate radical: Rate constant and
259 gas-phase products, *Atmos. Environ.*, 42, 6689-6698, 2008.

260 Kerdouci, J., Picquet-Varrault, B., and Doussin, J. F.: Prediction of rate constants for gas-phase
261 reactions of nitrate radical with organic compounds: A new structure-activity
262 relationship, *Chem. Phys. Chem.*, 11, 3909-3920, 2010.

263 Kim, D., Stevens, P. S., and Hites, R. A.: Rate constants for the gas-phase reactions of OH and
264 O₃ with β -ocimene, β -myrcene, and α - and β -farnesene as a function of temperature, *J.*
265 *Phys. Chem. A*, 115, 500-506, 2011.

266 Kim, S., Karl, T., Helmig, D., Daly, R., Rasmussen, R., and Guenther, A.: Measurement of
267 atmospheric sesquiterpenes by proton transfer reaction-mass spectrometry (PTR-MS),
268 *Atmos. Meas. Tech.*, 2, 99-102, 2009.

269 Mielke, L. H., Pratt, K. A., Shepson, P. B., McLuckey, S. A., Wisthaler, A., and Hansel, A.:
270 Quantitative determination of biogenic volatile organic compounds in the atmosphere
271 using proton-transfer reaction linear ion trap mass spectrometry, *Anal. Chem.*, 82, 7952-
272 7957, 2010.

273 Ng, N. L., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Kroll, J. H., Kwan, A. J., McCabe, D.
274 C., Wennberg, P. O., Sorooshian, A., Murphy, S. M., Dalleska, N. F., Flagan, R. C., and
275 Seinfeld, J. H.: Effect of NO_x level on secondary organic aerosol (SOA) formation from
276 the photooxidation of terpenes, *Atmos. Chem. Phys.*, 7, 5159-5174, 2007.

277 O'Brien, J. M., Czuba, E., Hastie, D., Francisco, J. S., and Shepson, P. B.: Determination of the
278 hydroxy nitrate yields from the reaction of C₂-C₆ alkenes with OH in the presence of NO,
279 J. Phys. Chem. A, 102, 8903-8908, 1998.

280 Ortega, J., Helmig, D., Guenther, A., Harley, P., Pressley, S., and Vogel, C.: Flux estimates and
281 OH reaction potential of reactive biogenic volatile organic compounds (BVOCs) from a
282 mixed northern hardwood forest, Atmos. Environ., 41, 5479-5495, 2007.

283 Ortega, J., Helmig, D., Daly, R. W., Tanner, D. M., Guenther, A. B., and Herrick, J. D.:
284 Approaches for quantifying reactive and low-volatility biogenic organic compound
285 emissions by vegetation enclosure techniques - Part B: Applications, Chemosphere, 72,
286 365-380, 2008.

287 Pastor, J., and Bockheim, J. G.: Biomass and production of an aspen-mixed hardwood-spodosol
288 ecosystem in northern Wisconsin, Can. J. For. Res., 11, 132-138, 1981.

289 Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kroll, J. H., Seinfeld, J. H., and Wennberg, P. O.:
290 Isoprene photooxidation: new insights into the production of acids and organic nitrates,
291 Atmos. Chem. Phys., 9, 1479-1501, 2009.

292 Perala, D. A., and Alban, D. H.: Allometric biomass estimators for aspen-dominated ecosystems
293 in the Upper Great Lakes, U.S. Forest Service Research Paper, NC-134, 38, 1994.

294 Pfrang, C., King, M. D., Canosa-Mas, C. E., and Wayne, R. P.: Structure-activity relations
295 (SARs) for gas-phase reactions of NO₃, OH and O₃ with alkenes: An update, Atmos.
296 Environ., 40, 1180-1186, 2006.

297 Pollmann, J., Ortega, J., and Helmig, D.: Analysis of atmospheric sesquiterpenes: Sampling
298 losses and mitigation of ozone interferences, Environ. Sci. Technol., 39, 9620-9629,
299 2005.

300 Pressley, S., Lamb, B., Westberg, H., Flaherty, J., Chen, J., and Vogel, C.: Long-term isoprene
301 flux measurements above a northern hardwood forest, *J. Geophys. Res.*, 110,
302 doi:10.1029/2004JD005523, 2005.

303 Reissell, A., Arey, J., and Atkinson, R.: Atmospheric chemistry of camphor, *Int. J. Chem. Kinet.*,
304 33, 56-63, 2001.

305 Ribe, J. H.: Puckerbrush weight tables, *Miscellaneous Report 152*, Life Sciences and
306 Agricultural Experiment Station. University of Maine. Orono, ME, 92 pp., 1973.

307 Ruppert, L., and Becker, K. H.: A product study of the OH radical-initiated oxidation of
308 isoprene: formation of C5-unsaturated diols, *Atmos. Environ.*, 34, 1529-1542, 2000.

309 Ter-Michaelian, M. T., and Korzukhin, M. D.: Biomass equations for sixty-five North American
310 tree species, *Forest Ecol. Manage.*, 97, 1-24, 1997.

311 USEPA: *Estimation Programs Interface SuiteTM* for Microsoft[®] Windows, v 4.0, United State
312 Environmental Protection Agency, Washington, DC, USA, 2010.

313 Wells, J. R.: Gas-phase chemistry of α -terpineol with ozone and OH radical: Rate constants and
314 products, *Environ. Sci. Technol.*, 39, 6937-6943, 2005.

315 Young, H. E., Ribe, J. H., and Wainwright, K.: Weight tables for tree and shrub species in
316 Maine, *Miscellaneous Report 230*, Life Sciences and Agriculture Experiment Station.
317 University of Maine. Orono, ME, 84 pp., 1981.

318

319