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Abstract. The formulation of the background error covari-
ances represented in the spectral space is discussed in the
context of univariate assimilation relying on a grid point
model, leaving out all the aspects of balances between the
different control variables needed in meteorological assimi-
lation. The spectral transform operations are discussed in the
case of a spherical harmonics basis and we stress that there
is no need for an inverse spectral transform and of a Gaus-
sian grid. The analysis increments are thus produced directly
on the model grid. The practice of producing analysis incre-
ments on a horizontal Gaussian grid and then interpolating
to an equally spaced grid is also shown to produce a degra-
dation of the analysis. The method discussed in this paper
allows the implementation of separable and non-separable
spatial correlations. The separable formulation has been im-
plemented in the Belgian Assimilation System for Chemical
ObsErvations (BASCOE) and its impact on the assimilation
of O3 observed by the Michelson Interferometer for Passive
Atmospheric Sounding (MIPAS) is shown. To promote the
use of this method by other non-meteorological variational
systems and in particular chemistry, the Fortran code devel-
oped is made available to the community.

1 Introduction

One of the critical aspects of any assimilation system is the
formulation of the background spatial error covariances ma-
trix, denoted theB matrix. It needs to be sufficiently com-

pact to be numerically implemented and sufficiently com-
plex to represent correctly the real error covariances of the
first guess field. There are several approaches to achieve this
goal. For variational systems, which are the systems we will
focus on, three approaches have been developed. The first
one historically (Parrish and Derber, 1992), which we shall
discuss at length in this paper, uses a spectral representation
of the correlation matrix. It is based on the fact that a ho-
mogeneous and isotropic horizontal correlation matrix can
be represented by a diagonal matrix in the spectral space.
This property was discovered in the late sixties by Russian
scientists working in statistical fluid mechanics and turbu-
lence theory (see the works ofMonin and Yaglom, 1971,
1975; Panchev, 1971). These concepts were extended to the
sphere and applied successfully to large-scale atmospheric
dynamics and analyses byBoer (1983) andBoer and Shep-
herd(1983) using spherical harmonics as the orthogonal ba-
sis. It is only in the late nineties that this formulation became
the cornerstone of 3-dimensional variational meteorological
assimilation systems (Courtier et al., 1998), and was applied
later to chemical data assimilation (Dethof and H́olm, 2004).
More recently, efforts have been made to develop spectral
representation of inhomogeneous and flow-dependent corre-
lations (Fisher, 2003).

The second approach for variational systems is based on
a diffusion operator which uses the model’s diffusion to
generate the effect of a Gaussian correlation function. This
method was introduced byDerber and Rosati(1989) and fur-
ther developed byWeaver and Courtier(2001). This method
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is particularly useful when the domain has complex bound-
aries (e.g. ocean data assimilation) where it is difficult to de-
fine positive definite correlations. This method is also well
suited for models that have non uniform grid on a sphere (e.g.
icosahedral grids) because it avoids the interpolation of anal-
ysis increments onto that grid (Elbern et al., 2010; Schwinger
and Elbern, 2010). The diffusion approach primarily gives
rise to a Gaussian covariance model but can be generalized to
more complex (i.e. inhomogeneous and anisotropic) correla-
tions. However, the diffusion approach is highly demanding
in computer resources (both CPU and memory), especially if
one needs to simulate non-Gaussian correlations.

A third approach in variational data assimilation which
does not compute explicitly the error covariance is the re-
cursive filter (Purser et al., 2003). Like the diffusion opera-
tor approach, the recursive filter approach attemps to com-
pute Gaussian correlations. The method consists in evaluat-
ing the effect of a Gaussian correlation model on a state vec-
tor, by applying a sequence of 1-D finite difference operators
in different directions on the state vector. Repeated applica-
tions of these finite difference operators in carefully chosen
directions can lead to approximate the smoothing effect of
Gaussian homogeneous and isotropic correlations. Although
positive-definitness can be obtained, the scheme is approxi-
mate and computationally complex.

This paper discusses the spectral representation of back-
ground error correlations onto a spherical harmonic basis.
Most of the mathematical background presented in this pa-
per has already been published (see the references cited in
Sects. 2–4). However, none of those publications provide
a complete picture of the problem. For instance, these pub-
lications rarely give an introduction on spectral transforma-
tions. As numerical weather prediction (NWP) systems usu-
ally rely on spectral models, this aspect is supposed to be
known. Moreover, those publications describe the method in
the meteorological context, that is the use of balance opera-
tors between meteorological variables. This makes the back-
ground theory of this method difficult to be acquired for peo-
ple not involved in meteorology. As a consequence, one of
the aims of this paper is to describe the spectral representa-
tion of the background error correlations for univariate as-
similation with systems relying on a grid point model.

A code for this purpose has been developed and imple-
mented in the Belgian Assimilation System for Chemical
ObsErvation (BASCOE). In doing so we have identified
a rather important property that seemed to have been over-
looked in meteorological data assimilation: in variational as-
similation only the adjoint spectral transform is necessary,
not the inverse transform. As a result the analysis spectral in-
crements are produced directly on the model grid. In other
words, there is no need to extract the increments on the (non-
equally spaced) Gaussian grid and then to perform a trans-
formation from that grid to the model grid – a transformation
which necessarily degrades the analysis. While this method
is limited to homogeneous and isotropic correlations, it has

the advantage of being very low demanding in computer
resources. Moreover, while not studied in this paper, non-
separable three-dimensional error correlations could be im-
plemented easily, meaning that vertical correlations can be
different for large and small horizontal spectral features.

This paper is organized as follows. Section 2 and Ap-
pendix A introduce representations in spherical harmonics
and the spectral representation of homogeneous and isotropic
correlations. Section 3 discusses the variational formulation
and the control variable change from the model basis to the
spherical harmonic basis. The implementation of the spec-
tral transform operators and of the spatial correlations is de-
scribed in Sect. 4. Section 5 discusses the numerical imple-
mentation of the method and illustrates it by the results of an
assimilation of a single pseudo-observation. In Sect. 6, the
method is applied to real ozone observations using the BAS-
COE system. The results of this paper are summarized in the
conclusions. A Fortran code of this method is provided in
the Supplement of this paper. This code is introduced in the
AppendixB.

2 Introduction on spectral transform on the sphere

This section provides some useful information about two-
dimensional spectral representation on the sphere. For an ex-
haustive introduction, we refer to the books ofSatoh(2004)
andKrishnamurti et al.(2006), and the unpublished lectures
of P. Swarztrauber∗.

In this section, we denote a 2-D field on the sphere by
9(λ,µ) whereλ is the longitude,µ = sinφ and φ is the
latitude. Alternatively, the notation� will be used in place
of (λ,µ). The field9(λ,µ) can be represented by a series
of spherical harmonics where the coefficients are noted9m

n .
The values ofn andm are specified below. In this section,
the termgrid will be associated with thehorizontal gridand
not the usual three dimensional grid of the model.

2.1 Spherical harmonics

Spherical harmonics, denoted byYm
n , are defined as solu-

tions of the Laplace equation. They take the following form:

Ym
n (λ,µ) = Nm

n P m
n (µ)eimλ (1)

whereNm
n are the normalization constants,P m

n (µ) are the
associated Legendre functionsandeimλ are the Fourier ex-
ponentials wherei2

= −1. Spherical harmonics form an or-
thogonal basis and their normalization is defined by the
normalization constants. This is discussed in detail in Ap-
pendix A1. Here the geodesy 2π normalization is adopted

∗available at:
www.cisl.ucar.edu/css/staff/pauls/tutorials/index.html
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(while Courtier et al., 1998, uses the geodesy 4π ) such that:

2π∫
0

+1∫
−1

Ym
n (λ,µ)[Ym′

n′ (λ,µ)]∗dµdλ = 2πδn′

n δm′

m (2)

where[.]∗ denotes the complex conjugate andδk′

k is the Kro-

necker symbol (δk′

k = 1 if k = k′ and 0 otherwise). When
m = 0, P 0

n are called theLegendre polynomials. In such
a case the value ofm is omitted in the notation (P 0

n ≡ Pn).
When spherical harmonics are used in the context of spectral
transforms, as in this study, it is appropriate to include the
normalization constant in the associated Legendre functions.
In this case, we define thenormalized associated Legendre
functionsasP

m

n (µ) ≡ Nm
n P m

n (µ).

2.2 Direct spectral transform

In general, a smooth function on a sphere9(λ,µ) can be rep-
resented by a series of spherical harmonics with coefficients
9m

n :

9(λ,µ) =

∞∑
n=0

n∑
m=−n

9m
n Ym

n (λ,µ) . (3)

In this transformation, and recalling the definition of the
spherical harmonics (Eq.1), the dependence along the lon-
gitude is taken by the Fourier exponentials. For this reason,
m is called thezonal wavenumber. In addition,n is called the
total wavenumber.

9m
n are complex coefficients. If9(λ,µ) is real, which is

the case in atmospheric sciences, then the following property
holds:

9m
n = (−1)m[9−m

n ]
∗ . (4)

This suggests that it might be possible to define real coef-
ficients using Fourier sine and cosine instead of the com-
plex coefficients using Fourier exponentials. In this study, the
complex representation is kept.

The transform Eq. (3) cannot be evaluated exactly and re-
quires to be truncated at some reasonable number of terms.
Several truncation methods exist and here the triangular trun-
cation is adopted. In this case, the relationship between the
spectral coefficients and the physical field is given by

9(λj ,µk) =

N∑
n=0

n∑
m=−n

9m
n P

m

n (µk)e
imλj (5)

=

N∑
m=−N

N∑
n=|m|

9m
n P

m

n (µk)e
imλj (6)

whereN is the degree of truncation (and should not be con-
fused with the normalization factorNm

n ) and wherej and
k are respectively the longitude and latitude indices of the

target grid of the spectral transform. For practical purposes,
Eq. (6) is split in a Fourier transform followed by a Legendre
transform:

9m(µk) =

N∑
n=|m|

9m
n P

m

n (µk) (7)

9(λj ,µk) =

N∑
m=−N

9m(µk)e
imλj . (8)

Note that usually, operational centers use fast Fourier trans-
forms instead of Eq. (8). This is not the case in the code
provided in the Supplement as the CPU time necessary to
operate the Fourier transform is found sufficiently fast.

2.3 Inverse spectral transform

Given a 2-D field9(λ,µ) on the sphere, the question is
now how we can calculate its spectral coefficients9m

n . Us-
ing the orthogonality of the spherical harmonics, the inverse
of Eq. (3) is given by

9m
n =

1

2π

2π∫
0

1∫
−1

9(λ,µ)[Ym
n (λ,µ)]∗dµdλ . (9)

In order to solve this equation, one usually starts with a dis-
crete 2-D field given on a grid9(λj ,µk) and looks to invert
the sequence (Eqs.7, 8). The inverse of the Fourier transform
(Eq.8) is given by:

9m(µk) =
1

M

M−1∑
j=0

9(λj ,µk)e
−imλj (10)

whereM is the number of longitudes.
The inverse of the Legendre transform (Eq.7) is much

more difficult to implement. One aspect that has not been
addressed yet is the specification of the target grid of the
spectral transform. The direct transform (Eqs.7, 8) and the
inverse of the Fourier transform (Eq.10) are applicable to
any type of grid, in particular to the equally spaced (in de-
gree) model grid. However, this is not true for the inverse of
the Legendre transform. If one needs to calculate the exact
inverse of Eq. (7) without loss of information, the choice of
spectral grid is limited to theGaussian grid. On this grid,
the latitudes correspond to the roots of the Legendre polyno-
mialsPN (µk) = 0, which are not equally spaced. The longi-
tudes, on the other hand, are equally spaced. On the Gaussian
grid, the inverse spectral transform is defined by theGaus-
sian quadratureor Gauss-Legendre quadrature.

Let f (µ) be a polynomial of degree (2L-1). The Gaussian
quadrature specifies that the integral off (µ) between -1 and
1 can be solved exactly by the following quadrature (see the
proof in Krishnamurti et al., 2006, Sect. 6.6; orSatoh, 2004,
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Sect. 21.3):

+1∫
−1

f (µ)dµ =

L∑
l=1

w(µl)f (µl) (11)

wherew(µl) are the Gaussian weights which can be calcu-
lated analytically.

Using (11), the inverse of the Legendre transform (7) is
given by:

9m
n =

K∑
k=1

w(µk)9
m(µk)P

m

n (µk) (12)

whereK is the number of latitudes.
An equally spaced grid can also be a target grid for the

spectral transform. While the Gaussian grid allows one to
define an exact inverse transform, an accurate (but not exact)
inverse transform can also be defined from the equally spaced
grid. This is reported in the AppendixA2.

In the following, the target grid of the spectral transform
will be simply denoted by the target.

2.4 Adjoint spectral transform

In variational assimilation where theB matrix is defined
in the spectral space, the adjoint of the spectral transform
(Eqs.7, 8) is needed. Let us denote the spectral transform
operator byS. To obtain the gradient of the cost function (see
Sect.3), one needs to define the adjoint ofS, denoted byS∗

(that must not be confused with the conjugate operator[.]∗).
One way to implement the adjoint is to (re)define the spec-
tral transform as unitary operations such thatS−1

= S∗. This
is possible by re-writing the direct spectral transform (Eqs.7,
8) as

9m(µk) =

√
1

M

N∑
n=|m|

9m
n P

m

n (µk) (13)

9(λj ,µk) =

N∑
m=−N

√
w(µk)9

m(µk)e
imλj , (14)

and the inverse spectral transform (Eqs.10, 12) as

9m(µk) =

√
1

M

M−1∑
j=0

9(λj ,µk)e
−imλj (15)

9m
n =

K∑
k=1

√
w(µk)9

m(µk)P
m

n (µk) . (16)

However, this formulation requires the use of the Gaussian
grid as the target grid of the spectral transform. If one uses
a model defined on an equally spaced grid, as usually done
in atmospheric modeling, a mapping operation will be nec-
essary to map the analysis increments from the target grid

to the model grid. As mapping operations introduce a degra-
dation of the increments, it is better to find an alternative to
the unitary definition of the spectral transforms. For this rea-
son, the adjoint of the code of the direct spectral transform
sequence (Eqs.7, 8) has been written by hand in BASCOE.
In terms of equation, the operatorS∗ takes the form:

9̂m(µk) =

M−1∑
j=0

9̂(λj ,µk)e
−imλj (17)

9̂m
n =

K∑
k=1

9̂m(µk)P
m

n (µk) (18)

where9̂ denote the adjoint variable of9, i.e.9̂ = ∂J/∂9.

2.5 Degree of truncation, target grid and aliasing

To complete the definition of the spectral operators, we have
to define a degree of truncationN and the corresponding di-
mensions of the horizontal gridM andK. First, let us con-
sider the unitary definition of the spectral transforms. In or-
der to keep the information content equal in a sequence of di-
rect and inverse Fourier transforms, one needs to impose that
M = 2(N + 1) (Krishnamurti et al., 2006, Chap. 7;Swarz-
trauber, Lecture 1). If one triesM > 2(N + 1), a false rep-
resentation, oraliasing is introduced. On the other hand, if
M < 2(N +1), there is a loss of information during the spec-
tral transform (i.e. the spectral representation has a higher
resolution than the horizontal grid). Aliasing in the associ-
ated Legendre functions also exists but is much more difficult
to derive. Associated Legendre functions can be obtained by
a sum of Fourier coefficients in the latitude direction (Swarz-
trauber, Lecture 2). In this case, the aliasing is prevented if
K ≤ N+1 and the equality is required for no loss of informa-
tion in a sequence of direct and inverse Legendre transform.

If one bases their code on the non-unitary spectral trans-
forms, the condition is less strict. It can be verified with the
code provided in the Supplement of this paper that the fol-
lowing conditions must hold:N ≥ max(K,M/2) − 1. This
allows one to implement longitutes and latitudes that have
not necessarilly the same resolution, which is usually the case
in atmospheric modeling.

In the case of the BASCOE horizontal grid of 2◦
× 2◦ that

includes the poles (as done in Sect.6), the model resolution is
91 latitudes and 180 longitudes. If the target grid of the spec-
tral transform is the BASCOE model grid,K = 91,M = 180
and the degree of truncation is fixed toN = 90. If the target
grid is the Gaussian grid, a mapping operatorG must be in-
troduced to account for the transformation from the Gaussian
grid to the BASCOE grid. In this case, the size of the Gaus-
sian grid isK = 90 andM = 180, the degree of truncation is
N = 89 and the dimensions ofG are 91× 90.
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2.6 Spectral representation of spatial correlations

Let ε(�) be an error field on the surface sphere where� =

(λ,µ). Let us assume that the error field is unbiased and nor-
malized, i.e.〈ε(�)2

〉 = 1 where〈 〉 denotes the mathematical
expectation. Let us assume that the correlations are homoge-
neous and isotropic. This means that the correlations between
the points� and�′ depends only on the distanced between
the two points.Gaspari and Cohn(1999) have shown that, on
a sphere of radiusA, d corresponds to thechordalor geodetic
distance between the two points

d ≡ d(θ) = A
√

2(1− cosθ) .† (19)

whereθ is their angular separation as defined in Eq. (A14).
It follows that the correlations between the two points might
be expressed as a function ofθ :

〈ε(�)[ε(�′)]∗〉 = f (θ) . (20)

The concept of homogeneous and isotropic correlations
on the surface of a sphere is however not independent as
noted byGaspari and Cohn(1999), and needs to be some-
what revised. Isotropy can be obtained by translation invari-
ance back to the same point along great circle with trans-
lations in any directions – so basically the correlation func-
tion only needs to be homogeneous. Also as discussed in the
same paper, any homogeneous correlation function defined
in R3 is also homogeneous on any continuous manifold em-
bedded inR3, such as the surface of a sphere. Thus an ho-
mogeneous (translation invariant) correlation function on the
surface of a sphere can be defined from a correlation using
as the chordal distanced defined inR3 (and not the great cir-
cle distance), and which has the consequence to be implicitly
periodic from all directions.

Let us come back to Eq. (20). As homogeneous (and
isotropic) correlations over the sphere are invariant with ro-
tation, let us suppose that one of the two points is at the north
pole. Thenθ is the co-latitude angle, i.e.θ ≡

π
2 − φ. Conse-

quently, we have cosθ = µ. In this configuration, the corre-
lations between the two points are independent of the longi-
tude. If f m

n represents the spectral coefficients off (θ), we
havef m

n = 0 for m 6= 0. It follows that

f (θ) =

N∑
n=0

n∑
m=−n

f m
n Ym

n (λ,cosθ) (21)

=

N∑
n=0

fnP
0
n(cosθ) (22)

wherefn ≡ f 0
n . Boer(1983) andGauthier et al.(1993) have

shown that the correlations are represented by a diagonal ma-
trix on a spherical harmonics basis, i.e.

〈εm
n [εm′

n′ ]
∗
〉 = bnδ

n′

n δm′

m (23)

†And not 2
√

(1− cosθ) as reported inGaspari and Cohn(1999,
Eq. 2.33).

wherebn ≡ fn/N
0
n (see also the proof in AppendixA4).

3 Variational assimilation and control
variable transform

Variational methods (three-dimensional – 3D-Var – and four-
dimensional – 4D-Var) aim at calculating the model state that
minimizes the objective functionJ (x) (Talagrand, 1997):

J (x) = J b(x) + J o(x) (24)

where

J b(x) =
1

2
[x − xb

]
T B−1

[x − xb
] (25)

J o(x) =
1

2
[y − H(x)]T R−1

[y − H(x)] , (26)

wherexb andB are respectively the background model state
(i.e. the initial guess) and its associated error covariance ma-
trix; y andR are respectively the observational vector and its
associated error covariance matrix;x is the model state vec-
tor andH is the non-linear observation operator that projects
the model state in the observation space. In the 3D-Var case
the observations and the model state correspond to the same
time. In the 4D-Var case, observations span over an assimi-
lation time window, the model statex is defined at the begin-
ning of that window (or initial time) and the observation op-
eratorH includes an evolution model operator that projects
the model initial statex at the observation time.

The minimization of Eq. (24) is usually done with a quasi-
Newton minimizer that requires the knowledge of the gradi-
ent of the objective function:

∇xJ =
∂J

∂x
= ∇xJ

b
+ ∇xJ

o (27)

∇xJ
b
= B−1

[x − xb
] (28)

∇xJ
o
=

(
∂H(x)

∂x

)T

R−1
[y − H(x)] . (29)

As the typical dimension ofx is around 106, the matrixB
is of size 1012. This is far too large to be stored and in-
verted by modern computers. Moreover, the specification of
the elements of such a matrix requires a huge amount of
a priori information, more than available (Dee, 1995). For
those reasons, it is necessary to reduce the problem. Here,
we follow the same strategy as developed at ECMWF in late
nineties (Courtier et al., 1998). A review on the formulation
of background error covariance matrix in meteorology might
be found inBannister(2008a,b).

In order to avoid the problem of invertingB, a control vari-
able transform is introduced:

Lχ = x − xb︸ ︷︷ ︸
δx

(30)

www.atmos-chem-phys.net/12/10015/2012/ Atmos. Chem. Phys., 12, 10015–10031, 2012
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whereχ is a new control variable,δx is the analysis incre-
ment andL is the square root ofB:

B = LL T . (31)

The objective function thus becomes:

J b(χ) =
1

2
χT χ (32)

J o(χ) =
1

2
[d − H(Lχ)]T R−1

[d − H(Lχ)] (33)

where

d = y − H(xb) (34)

is the innovation vector. The background term (Eq.32) can
be easily calculated. If the observation operatorH is linear,
the termd−H(Lχ) in Eq. (33) is equal to the termy−H(x)

in Eq. (26). As a result,J o(x) = J o(χ). If H is non-linear
but the differencex − xb is small, thenH can be linearized.
It follows that the calculation ofJ o is practically obtained by
the resolution of Eq. (26), which is much easier to implement
numerically than Eq. (33).

The gradient of the objective function is now given by:

∇χJ b
= χ (35)

∇χJ o
= L∗

(
∂H(x)

∂x

)T

R−1
[d − H(Lχ)] (36)

whereL∗ is the adjoint of the operatorL . Again, the calcu-
lation of the background term (Eq.35) of the gradient is no
longer an issue and it can be verified that the gradient of the
observation term (Eq.36) corresponds to the operatorL∗ ap-
plied to the results of Eq. (29), i.e.∇χJ o

= L∗
∇xJ

o. With χ

as the control variable, the iterative sequence of operations
necessary to minimizeJ is:

1. Initialization: readxb andy, setχ = 0

2. CalculateJ b by Eq. (32)

3. Getx = Lχ + xb and calculateJ o by Eq. (26)

4. GetJ = J b
+ J o

5. Calculate∇χJ b by Eq. (35)

6. Calculate∇xJ
o by Eq. (29)

7. Get∇χJ = ∇J b
+ L∗

∇xJ
o

8. Provideχ , J and∇χJ to the minimizer and updateχ

9. If convergence, getx = Lχ+xb and start a forecast until
the next analysis time. Otherwise, go to step 2.

4 Formulation of L and its adjoint L ∗

By definition, the background error covariance matrixB is
the product of a standard deviation error matrix6 (diagonal)
and a correlation matrixC (non diagonal):

B = 6C6 (37)

or

L = 6C1/2 . (38)

In this study, we will only deal with univariate correlations
such that no species-species correlations are considered in
BASCOE. As the matrixC1/2 is huge, it is necessary to make
assumptions and/or transformations to allow its implementa-
tion in a variational system (see Sect. 1). In the NWP com-
munity, it was suggested to build the correlation matrix in the
spectral space (see e.g.Courtier et al., 1998). As mentioned
in Sect.2.6, assuming homogeneous and isotropic horizontal
correlations at the surface of a sphere allows one to get a di-
agonal correlation matrix in the spectral space. This means
that considering a 3-D model on the sphere, the spatial corre-
lations are then represented by a block diagonal matrix. Let
31/2 denote the spectral representation ofC1/2 and S de-
note the spectral transform operator. Hence, the transforma-
tion C1/2 can be rewritten asS31/2, so thatL becomes:

L = 6GS31/2 . (39)

The operatorG has been introduced in Eq. (39) to account for
the transformation from the target grid of the spectral trans-
form to the model grid. In the case where the analysis incre-
ments are calculated on the Gaussian grid, the transformation
G is represented by a weighting average over the latitudes. In
the case where the spectral grid is the model grid, no trans-
formation is implemented (G is the identity matrix).

The adjoint operatorL∗ is given by

L∗
= 31/2∗S∗G∗6 . (40)

Recall that6 is a diagonal matrix, so the transpose sign(.)T

has been omitted in the equations.
The block diagonal elements of3 have the dimensions

L×L whereL is the number of vertical levels of our model.
Each element of a block3m

n takes the form

3m
n (p,p′) =

√
bn(p)bn(p′)Cv

n(p,p′) (41)

where the coefficientsbn are those of Eq. (23) (Berre, 2000,
see also the AppendixA4 andp are the level indices of the
model) . This is the non-separable formulation of the spatial
correlations. By this formulation of3, the horizontal corre-
lation coefficientsbn depend on the altitude. Moreover, the
matricesCv

n allow one to take into account different vertical
correlations for different wavenumbers. In other words, fea-
tures with large horizontal scale could have different vertical
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correlations than features of small horizontal scale (Fisher,
2003). This specification is necessary in meteorology in or-
der to get correct correlations between the mass and wind
fields (Phillips, 1986; Bartello and Mitchell, 1992) while this
non-separability has not yet been studied in chemistry data
assimilation. Note that the vertical correlation matricesCv

n

are defined independently of the zonal wavenumberm, as
found for the horizontal correlation coefficientsbn. This for-
mulation of the background matrix is then very low demand-
ing in computer resources.

Although this non-separability formulation could be im-
plemented in the present formulation of the correlation ma-
trix 3 in BASCOE, this has not been done in this study. Here,
we have assumed that horizontal and vertical correlations are
separable, i.e.

3m
n = bnCv (42)

where the horizontal correlation coefficients are taken inde-
pendent of the altitude and where the vertical correlation ma-
trices are independent of the wavenumbern.

Usually, thebn coefficients and the vertical correlations
matricesCv

n are estimated orcalibratedin order to match the
statistical a priori errors of an assimilation system. This can
be done using methods that allow one to derive an ensem-
ble of error fields from which these statistics are calculated.
We will not describe all these calibration methods and will
refer toBannister(2008a, Sect. 5) for a complete review. It
is important to note that the calibration method will require
an inverse of the operationS in order to estimate the correla-
tion spectrabn. If one is using an equally spaced model grid,
the exact inverse ofS is not necessary and the method de-
scribed in AppendixA2 can be used. Even more simpler is
to interpolate the error fields on the Gaussian grid before the
inversion.

In the current study, the correlation matrix of BASCOE
has not been calibrated. Instead, a priori correlation functions
have been used to build it. In the code provided in the Sup-
plement, two functions have been coded for the horizontal
correlations: a Gaussian function

f (θ) = exp

(
−

1− cosθ

L2

)
(43)

and a second-order autoregressive (SOAR) function

f (θ) =

(
1+

2
√

1− cosθ

L

)
exp

(
−

2
√

1− cosθ

L

)
(44)

whereL = Lh/A0, A0 is the Earth’s radius andLh is a hori-
zontal correlation length scale.

For the vertical correlations, again, two functions are
coded: ahat function

Cv(pi,pj ) =


1 for i = j

1/2 for |i − j | = 1

0 for |i − j | > 1

(45)

and a Gaussian function

Cv(pi,pj ) = exp

(
−

1

2

(
|pi − pj |

Lv

)2
)

. (46)

For the Gaussian case, the distance between two levels|pi −

pj | can be measured either in level indices or in kilometers.
Moreover, a correlation length scaleLv must be provided in
the same units asp.

Finally, the square root ofCv, which is necessary to build
31/2 (see Eqs.39 and40), is obtained by a singular value
decomposition (SVD).

5 Assimilation of a single pseudo-observation

The operators described in Sect.4 have been implemented
in Fortran and tested. This code is provided in a Supplement
to this paper. It includes the code for the different operators
that defineL andL∗, as well as two tests. All this material is
introduced in AppendixB.

This section presents the results of an assimilation of a sin-
gle pseudo-observation using the 3D-Var method. The goal
is to evaluate the implementation of theB matrix by an as-
similation for which the result can be calculated analytically.
Here, we choose to assimilate a pseudo-observation with
a value of 1.2 and located at a model grid point. The back-
ground fieldxb has a constant value of 1. Both the observa-
tion and the background field have an error standard devia-
tion of

√
0.02. With this configuration, the value ofJ after

assimilation is expected to be 1/2. The optimization is per-
formed by the quasi-Newton algorithm M1QN3 (Gilbert and
Lemarechal, 1989).

In the assimilation experiments discussed here, the model
grid is equally spaced and two different kinds of systems
have been used. In the first one, the spectral transform op-
erates form the spectral space to the equally spaced model
grid. In the second case, the spectral transform operates from
the spectral space to the Gaussian grid and a mapping op-
eration from the Gaussian grid to the model grid is used. In
the following part of this section, the analyses obtained with
the two systems will be denoted, respectively, LL (i.e. lat/lon
grid) and GG (i.e. Gaussian grid).

Several model resolutions, locations of the observation and
(horizontal and vertical) correlation functions have been con-
sidered in these experiments. Here are shown only the results
obtained with specifics but representative configuration of
the experiment. This configuration considers a Gaussian cor-
relation function with correlation length scalesLh of 600 km
horizontally andLv of 3 model levels vertically. The reso-
lution of the model is 120 longitudes by 60 latitudes by 31
levels. Accordingly, the degree of truncation is 59. Three lo-
cations of the observation have been considered, namely the
Equator, 40◦N and 80◦N. In such a configuration, the theo-
retical analysis at the observation location is 1.1. From that
point, the analysis should decrease according to a Gaussian
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Table 1.Scores of the single-observation assimilations using two different target grids of the spectral transform: the model lat/lon grid (LL)
and the Gaussian grid (GG). The experiments have been performed considering three latitudes of the observations: the Equator, 40◦ N and
80◦ N. We report the value of the objective functionJ for the analysis, the analysis at the observation locationH(x), the analysis correlation
length scales obtained by fitting the analysis cross-sections (see Fig.1) by a Gaussian function, and the root mean square (RMS) between the
analysis and the expected Gaussian function.

Equator 40◦ N 80◦ N

Expected LL GG LL GG LL GG

J 0.5 0.5029 0.5208 0.5020 0.5200 0.5013 0.5166
H(x) 1.1 1.1015 1.0966 1.101 1.0971 1.0999 1.0967
Llat

h 600 576 622 576 619 581 622
Llon

h 600 575 574 576 575 601 607
Lv 3 2.88 2.87 2.88 2.87 2.9 2.9
RMSlat 0 3.0× 10−5 2.6× 10−5 2.9× 10−5 2.0× 10−5 2.3× 10−5 2.0× 10−3

RMSlon 0 3.1× 10−5 1.2× 10−4 3.7× 10−5 1.3× 10−4 7.3× 10−5 4.0× 10−4

RMSlev 0 5.4× 10−5 2.0× 10−4 5.2× 10−5 1.7× 10−4 4.7× 10−5 1.6× 10−3
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Fig. 1. Cross-sections of the analyses obtained by the assimilation of a single pseudo-observations located at the Equator using Gaussian
spatial correlation function and two target grids of the spectral transform: the lat/lon grid (blue line) and the Gaussian grid (red line). The
correlation length scales areLh = 600km horizontally andLv = 3 model levels vertically. The three top panels show the cross-section of
theses analyses along the latitude(a), the longitude(b) and the altitude(c), all crossing the observation location. The horizontal black lines
at value 1.1 indicate the theoretical analyses at the observation location. The bottom panels display the differences between the analysed
cross-sections and the expected cross-sections.

bell curve with a standard deviation that corresponds to the
correlation length scales, i.e. 600 km horizontally and 3 lev-
els vertically.

Figure1 displays the results of the experiments that con-
sider the observation at the Equator. It shows three cross-
sections of the analyses (upper panels) – along the latitude,
the longitude and the vertical directions, all of them crossing
the observed location. The differences of the analysis cross-

sections with the expected cross-sections are shown in the
lower panels of Fig.1. Both analyses present a maximum at
the location of the observation. As the distance to the obser-
vation location increases, the analyses decrease with a Gaus-
sian shape. The GG analysis has a value at the observation lo-
cation which is significantly different than the expected value
of 1.1. On the other hand, the LL analysis is (visually) closer
to this expected value. This is confirmed by the Fig.1d–f
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Fig. 2.Power spectra of the analysis incrementsχ at the observation
level obtained using two different spectral grids – the lat/lon grid
(blue line) and the Gaussian grid (red line). Panels(a) and(b) are
obtained using a correlation length scales ofLh = 600km(a) and
300 km, respectively. In both cases, the experiments are based on
a model resolution of 120 longitudes by 60 latitudes and 31 levels.
Results on panel(c) are obtained withLh = 600km and a model
resolution of 240 longitudes by 120 latitudes and 31 levels.

where it can be seen that the LL analysis is usually closer to
theoretical cross-sections than the GG analysis.

Table 1 reports several scores obtained by the different
experiments and their expected theoretical values. For each
(computed or theoretical) analysis, the table provides the
value of the objective functionJ , the analysis value at the
observation pointH(x) and the correlation length scales es-
timated by a fit of the cross-section lines in Figs.1a–c by
a Gaussian function. The table also provides the value of
the root mean square (RMS) of the differences between the
analyzed and the theoretical cross-section. Compared with
the GG analysis, the values ofJ , H(x) and RMS from the
LL analysis are closer to the expected value. The correla-
tion length scales obtained by both analyses are close to each
other. However, correlation length scales found by the lati-
tude and longitude cross-sections from the LL experiments
are more consistent – they do not differ from more than
1 km. This is not the case for the GG experiments where
the correlation length scales from the latitude cross-section is
around 620 km while those from the longitude cross-section
are around 575 km – around 45 km of differences.

We have also noted that the “fitted” correlation length
scales are slightly different from the expected values, around
575 km instead of 600 horizontally and 2.88 levels instead
of 3 vertically. The reason for these deviations remains un-
known. This issue has not been investigated as we found sat-
isfactory the results of the single assimilation experiments
and real data assimilation (see Sect. 6).

Another way of comparing both analyses is to look at the
power spectrum of their increments, which are displayed at
the model level of the observation location (Fig.2a). Recall
that the analysis increments are the difference between the
analysis and the background field and measure the impact
of the observations on the analyses. We see that the infor-
mation provided by the increments of both analyses differs
according to the wavenumber. This is even clearer when the
horizontal correlation length scale decreases up to 300 km,
i.e. a value closer to the resolution of the grid in the region
of the observation (Fig.2b). Taking the LL experiments as
references, Fig.2a–b tell us how the mapping operation from
the Gaussian grid to the model grid degrades the GG exper-
iments. At low frequencies (i.e. high horizontal scales), the
GG analysis provides more information but decreases more
rapidly than the LL analysis, this later providing more in-
formation at high frequencies (i.e. small horizontal scales).
Therefore, the mapping operation tends to overestimate the
spatial correlations for high horizontal scale features and to
underestimate the spatial correlations for small horizontal
scale features.

Finally, the power spectra of the analysis increments of
two additional LL and GG experiments (one each) are dis-
played on Fig.2c. These experiments consider a model
horizontal resolution four times higher (240 longitudes by
120 latitudes) than the previous experiments. Those exper-
iments have been run in order to get the optimal size of
the model resolution. ConsideringLv = 600 km, one sees
that the increments does not provide additional information
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Fig. 3. Bias (top row) and standard deviation (bottom row) of the Observations-minus-Forecast (OmF) statistics between the analyses and
the MIPAS data, in percent. Statistics are done at five latitude bands denoted in the title of each plot. Blue and red lines represent the statistics
obtained, repectively, by the CORREL and DIAG runs.
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Fig. 4.Analysis increments of the runs DIAG(a) and CORREL(b)
at the model level 21 (∼44hPa) on 15 September 2003, in percent.
Blue and red indicate, respectively, negative and positive increments
while green indicates close to zero increments.

above wavenumber∼85. As a consequence, a model reso-
lution of about 180 longitudes by 90 latitudes appears to be
optimal. While this result is valid for the LL and GG grid,
it is restricted to the correlation length scales of 600 km.
On the other hand, the the optimal resolution increase as
Lv decrease. For example, withLv = 300 km, one finds (not
shown) an optimal truncation of∼180 or a resolution of 360
longitudes by 180 latitudes. In the next section, assimilation
of real data will then be performed using a model horizontal
resolution of 180 longitudes by 90 latitudes with a correla-
tion length scales of 600 km.

6 Assimilation of real data

In this section, the results of two chemical data assimilation
experiments are presented. The first one includes correlations
in the B matrix while the second one considers a diagonal
B. The experiments have been performed by means of the
4D-Var Belgian Assimilation System for Chemical ObsErva-
tions (BASCOE,Errera et al., 2008). In its usual configura-
tion, this system considers 57 stratospheric species advected
by the Flux-Form Semi-Lagrangian scheme (Lin and Rood,
1996), 200 chemical reactions and a parameterization of the
physico-chemical processes due to the so-called Polar Strato-
spheric Clouds (PSCs). However, in this study, only the ad-
vection of ozone is considered (i.e. the chemical and PSC
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Fig. 5. Time series of the ozone partial column (10–100 hPa) be-
tween August and October 2003 obtained above three NDACC sta-
tions in Antarctica by the ozone sondes (black circles), and the runs
DIAG (red line) and CORREL (blue line), in Dobson unit (DU).

schemes have been turned off) in order to reduce the CPU
time. By doing this, it is assumed that ozone behaves like
an inert tracer. This is a fair assumption by choosing an as-
similation window of one day and by excluding observations
above 1 hPa where the ozone time scale is shorter than the
assimilation window.

The horizontal resolution is set to 2◦
×2◦ lat/lon grid. This

is higher than past experiments based on 3.75◦
× 5◦ lat/lon

(Geer et al., 2006; Errera et al., 2008; Viscardy et al., 2010) or
2.5◦

×3.75◦ lat/lon grid (Lahoz et al., 2011, and the BASCOE
Near Real Time service –http://macc.aeronomie.be). The
vertical grid is represented by the BASCOE usual 37 vertical
levels from the surface to 0.1 hPa, these levels being a sub-
set of the ECMWF levels. In these experiments, the dynam-
ics is provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF) ERA-Interim analyses (Dee
et al., 2011). The assimilated ozone data are taken by the

Michelson Interferometer for Passive Atmospheric Sounding
(MIPAS) ESA off-line level 2 profiles between August and
October 2003, as in BASCOE past experiments discussed by
Geer et al.(2006) andErrera et al.(2008). MIPAS is a limb
fourier transform spectrometer onboard the Envisat platform
operating between 2002 and 2012. Measuring in the infrared,
limb scans are inverted to provide profiles of numerous trace
gases, including ozone (Fischer et al., 2008).

Both experiments described in this paper consider 30 %
standard deviation in the background fields. The experiment
in which spatial correlations are introduced – denoted COR-
REL – considers a Gaussian correlation function in the hori-
zontal and vertical directions with a correlation length scale
Lh = 600km andLv = 1 level, respectively. Note that this
combination of model horizontal resolution and horizontal
correlation length scale is optimal as mentioned in Sect.5.
The experiment using a diagonalB is denoted DIAG.

Figure 3 shows the Observations-minus-Forecast (OmF)
statistics for both runs and for the period of the 2003 Antarc-
tic ozone hole (September–October 2003) and for five lat-
itude bands as explained inErrera et al.(2008, Sect. 3.4).
Generally, the biases of the OmF obtained by the CORREL
run are lower than those obtained by the DIAG run. This
is significant in the upper troposphere/lower stratosphere
(UTLS) region, between 70 and 300 hPa, particularly so in
the southern polar region. Regarding the standard deviations,
the statistics of both runs are very similar except at the South
Pole.

To understand the origin of the differences between both
runs, their analysis increments on September 15 at∼44hPa
(i.e. at model level 21) are shown in Fig.4. In the DIAG
increments, the track of the satellite is clearly visible and
the increments are confined around the observation locations.
On the other hand, the CORREL increments are spread over
a much larger area, especially in southern high latitudes,
thanks to the non-diagonal nature ofB. As shown by the
OmF statistics, this improves the assimilation.

To assess the improvements at the southern high lat-
itudes brought by the non-diagonalB, both experiments
have been compared with ozonesonde observations at three
NDACC (Network for the Detection of Atmospheric Compo-
sition Change) stations in Antarctica (Amundsen-Scott, Mac
Murdo and Neumayer). Figure5 presents the time series of
the ozone partial column between 10 and 100 hPa during the
formation of the ozone hole in the 2003 Antarctic winter,
along with the corresponding partial column from the analy-
ses. As expected, the CORREL run agrees much better with
the observations than the DIAG run. As a result, CORREL
exhibits a deeper ozone hole than DIAG which is in better
agreement with observations provided by the Total Ozone
Mapping Spectrometer (TOMS) (Fig.6).

The comparison of both runs against ozone sondes in
the UTLS has not revealed any “winner” or “looser” (not
shown). The possible reasons are that MIPAS observations
are of lower quality in the UTLS. Around 100 hPa, it has been
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Fig. 6. Total ozone in the Southern Hemisphere on 1 October 2003 obtained by the runs DIAG(a) and CORREL(b), and observed by the
Total Ozone Measurement Satellite (TOMS)(c), in Dobson unit (DU).

found that MIPAS O3 values are 5 % to 25 % larger compared
to the majority of the other datasets (Cortesi et al., 2007). Re-
moving the bias in the MIPAS data could help to improve the
analyses in this region. Nevertheless, this task has been left
for future studies. Moreover, the parameters ofB in the COR-
REL run have not been optimized. For instance, nothing tells
us that the background error standard deviation is 30 % of the
first guess field, that the correlations have a Gaussian shape
neither that the length scales are 600 km horizontally at every
model level or 1 level vertically. In principle, a calibratedB
should improve the analyses. Several methods have been de-
veloped by the NWP centers and are reviewed byBannister
(2008a, Sect. 5). This optimization effort has not been im-
plemented in the present study. Indeed, we aimed to focus on
the implementations of the correlations and not essentially
on the BASCOE results. We nevertheless plan to present the
optimization of the parameters ofB in future papers.

7 Conclusions

There are several outcomes from this work. First, we have
gathered together all the material published so far in order
to provide a stand alone document describing the spherical
harmonic representation of the background error covariance
matrix (theB matrix) in the case of univariate assimilation.
The motivation of a spherical harmonic representation ofB is
based on the fact that, if horizontal correlations are assumed
homogeneous and isotropic,B can be represented in the spec-
tral space by a block diagonal matrix with repeated matri-
ces for each zonal wavenumberm, which makes its numeri-
cal computation feasible. Horizontal and vertical correlations
can be implemented in two ways. The first one consists of
providing correlation functions for the vertical and the hori-
zontal directions (not necessarily the same) along with corre-
lation length scales. In the second method, these correlation

matrices are calibrated using optimization methods such as
those summarized byBannister(2008a, Sect. 5). This latter
method allows the implementation of non-separable spatial
correlations. This has proved to be important in meteorology
but has never been studied in chemistry.

The second outcome of this study is to provide the numer-
ical Fortran code of the formulation of theB matrix (see the
Supplement of this paper). During the course of this imple-
mentation, we realized that only the adjoint of the spectral
transform operator was necessary for variational assimila-
tion, not the inverse. The problem with the inverse operator is
to restrict the target grid of the spectral transform to the (non-
equally spaced) Gaussian grid. On the other hand, the adjoint
operator does not suffer this limitation thus allowing the use
of the (equally spaced) model grid. In this way, there is no
need to implement a grid transformation from the Gaussian
grid to the lat/lon (model) grid, which degrades the analyses.

The spherical harmonic representation ofB has been im-
plemented in the 4D-Var stratospheric chemical assimila-
tion system BASCOE using the Michelson Interferometer for
Passive Atmosphere Sounding (MIPAS) ozone observations
between August and October 2003. Two experiments were
performed: the one considering a spectral formulation ofB
and the other considering the diagonalB (i.e. spatially un-
correlated) implemented so far in BASCOE. In those exper-
iments, the chemical and PSC schemes of BASCOE were
turned off such that the influence of ozone observations on
other modeled constituents has not been studied. At southern
high latitudes and during the ozone hole period, the spatially
correlatedB allows a great improvement of the analyses with
respect to the uncorrelated one. The correlations allow one to
increase the size of the analysis increments which allow one
to produce ozone fields in good agreement against ozoneson-
des and total ozone observations, which is not the case for the
analyses calculated with the diagonalB.
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In the future, two studies are planned. The first one is
to adapt this formulation for BASCOE in the case where
the chemistry module is turned on and to evaluate the im-
provements to constituents other than ozone. The second
study consists of estimating the correlation matrices by one
of the methods reviewed byBannister(2008a, Sect. 5) for
separable and non-separable spatial correlations. In the at-
mosphere, the constituent’s concentrations can vary with
height by several orders of magnitude and chemical regimes
can completely change with altitude, for instance across the
tropopause and stratopause. For those reasons, the horizontal
and vertical lengths scales are likely to be strongly dependent
on height. Thus a non-separable three-dimensional error cor-
relation matrix could provide a better representation of the
background error for chemical variables than a separable ma-
trix.

Appendix A

Complement on spherical harmonic representation

A1 Normalization of spherical harmonics

Let us recall the definition of the spherical harmonics:

Ym
n (λ,µ) = Nm

n P m
n (µ)eimλ (A1)

where

P m
n (µ) =

(
1− µ2

)m/2

2nn!

dn+m

dµn+m
(µ2

− 1)n (A2)

are the associated Legendre functions. Since

2π∫
0

ei(m−m′)λdλ = 2πδm′

m (A3)

and

1∫
−1

P m
n (µ)P m

n′ (µ)dµ =

(
2

2n + 1

)[
(n + m)!

(n − m)!

]
δn′

n , (A4)

(where we note that associated Legendre functions are not
orthogonal for different values ofm), we have

2π∫
0

+1∫
−1

Ym
n (λ,µ)[Ym′

n′ (λ,µ)]∗dµdλ =

(
Nm

n

)2
δn′

n δm′

m

(
4π

2n + 1

)[
(n + m)!

(n − m)!

]
. (A5)

The normalization constantsNm
n take a different form fol-

lowing the choice of inner-product of the spherical harmon-
ics. For practical reasons, there are several ways to normalize

the spherical harmonics

∫
�

Ym
n (�)Y [

m′

n′ ]
∗(�)d� =



4π
2n+1

(n+m)!
(n−m)!

δn′

n δm′

m UN
4π

2n+1δn′

n δm′

m Schmit

δn′

n δm′

m ON

4πδn′

n δm′

m G4π

2πδn′

n δm′

m G2π
(A6)

where the abbreviations have the following meaning: UN for
unormalized, Schmit forSchmit semi-normalized, ON foror-
thonormalized, G4π for geodesy 4π (as in Courtier et al.,
1998) and G2π for geodesy 2π (as in this paper and inBoer,
1983). These different normalizations of the spherical har-
monics define the value of the normalization constant:

Nm
n =



1 UN[
(n−m)!
(n+m)!

]1/2
Schmit(

2n+1
4π

)1/2[
(n−m)!
(n+m)!

]1/2
ON

√
2n + 1

[
(n−m)!
(n+m)!

]1/2
G4π(

2n+1
2

)1/2[
(n−m)!
(n+m)!

]1/2
G2π.

(A7)

For practical reasons, computer code implementations often
introduce the normalization factor into the associated Legen-
dre functions (which is done in the code provided in the Sup-
plement). In this case, we define the normalized associated
Legendre functions:P

m

n (µ) = Nm
n P m

n (µ). Accordingly, the
computation of spherical harmonics is decomposed into the
product of two functions or two operations, a Fourier term
and a Legendre term. For the normalized associated Legen-
dre functions, we have

1∫
−1

P
m

n (µ)P
m

n′(µ)dµ =



2
2n+1

(n−m)!
(n+m)!

δn′

n UN
2

2n+1δn′

n Schmit
1

2π
δn′

n ON

2δn′

n G4π

δn′

n G2π.

(A8)

One easy way to check the choice of normalization is to ver-

ify that P
0
n(µ = 0) = N0

n , i.e.

P
0
n(0) =



1 UN

1 Schmit(
2n+1

4π

)1/2
ON

√
2n + 1 G4π(
2n+1

2

)1/2
G2π.

(A9)

However, note that this check does not make any difference
between UN and Schmit normalization.

Finally, let us mention the following propertyP
−m

n =

(−1)mP
m

n (which is not valid for unormalized associated
Legendre functions). It follows that[Ym

n ]
∗

= (−1)mY−m
n .
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A2 Inverse of spectral transform from
non-Gaussian grid

It is worth noting that the inverse transform on other grids
than the Gaussian grid can be made by a quadrature devel-
oped byMachenhauer and Daley(1972), which has the same
numerical accuracy (although not exact) as the method based
on the Gaussian grid (see alsoSwarztrauber, 1979; Swarz-
trauber and Spotz, 2000; Machenhauer, 1979, Sect. 4.6):

9m
n =

1

M

K∑
k=1

M−1∑
j=0

9(λj ,φk)Z
m

n (φk)e
−imλj (A10)

Z
m

n (φk) =
1

K

N∑
r=0

δLr(φk)

1∫
−1

Lr(φ)P
m

n (sinφ)dµ (A11)

δ =

{
1/2 for r = 0

1 for r 6= 0
(A12)

and

Lr(φ) =


cos(rφ)

{
m and r odd

m and r even

sin(rφ)

{
m even and r odd

m odd and r even.

(A13)

The integral on the right-hand side of Eq. (A11) can be com-
puted exactly by a Gaussian quadrature.

The code available in the Supplement provides the routine
to calculate the inverse operationS−1 from the Gaussian grid
(but not from the equally spaced lat/lon grid). Such a rou-
tine can be found in the SPHEREPACK module available at
www2.cisl.ucar.edu/resources/legacy/spherepack.

A3 Addition theorem of spherical harmonics

The derivation of the spectral representation of homogeneous
and isotropic horizontal correlations requires the use of the
addition theorem of spherical harmonics. Suppose we have
two points on a unit sphere� = (λ,µ) and�′

= (λ′,µ′). Let
θ denote the great circle angular separation between those
points which is defined by

cosθ = sinφ sinφ′
+ cosφ cosφ′ cos(λ′

− λ) (A14)

whereφ = sin−1µ. The addition theorem of spherical har-
monics states that (Jackson, 1998, Sect. 3.6):

n∑
m=−n

Y n
m(�)[Y n

m(�′)]∗ = (N0
n)

2Pn(cosθ) (A15)

or

n∑
m=−n

Ym
n (�)

[
Ym

n (�′)
]∗

= N0
n P n(cosθ) . (A16)

Table A1. List of operators and matrix operations that defineL and
L∗, and the routines in which they are coded.

Operator corresponding routine

S S DIRECT
S∗ S ADJ
S−1 S INV a

31/2 SQRTCORREL
G SG2MG
GT AD SG2MG
6 B STDDEV

a S−1 is only coded for the transform from the
Gaussian grid to the spectral space.

A4 Homogeneous and isotropic horizontal correlations

Let ε(�) be a 2-D error field on the sphere as defined in
Sect.2.6andεm

n its spectral coefficients. The physical repre-
sentation of the correlations〈ε(�)[ε(�′)]∗〉 and its spectral
counterpart〈εm

n [εm′

n′ ]
∗
〉 are related by

〈ε(�)[ε(�′)]∗〉 =

N∑
n=0

n∑
m=−n

N∑
n′=0

n′∑
m′=−n′

〈εm
n [εm′

n′ ]
∗
〉Ym

n (�)[Ym′

n′ (�′)]∗ (A17)

and by the inverse relationship (using a geodesy 2π norm)

〈εm
n [εm′

n′ ]
∗
〉 =

1

4π2

∫
�

∫
�′

〈ε(�)[ε(�′)]∗〉Ym
n (�)[Ym′

n′ (�′)]∗d�d�′ . (A18)

Assuming homogeneous and isotropic covariances using
Eq. (22), Eq. (A18) can be rewritten as

〈εm
n [εm′

n′ ]
∗
〉 =

1

4π2

N∑
n′′

fn′′

∫
�

∫
�′

P n′′(cosθ)Ym
n (�)[Ym′

n′ (�′)]∗d�d�′ .(A19)

Using the addition theorem of spherical harmonics,
Eq. (A19) becomes

〈εm
n [εm′

n′ ]
∗
〉 =

1

4π2

N∑
n′′

fn′′(N0
n′′)

−1

∫
�

∫
�′

Ym
n (�)

n′′∑
m′′=−n′′

[Ym′′

n′′ (�)]∗Ym′′

n′′ (�′)[Ym′

n′ (�′)]∗d�d�′ (A20)

which yields

〈εm
n [εm′

n′ ]
∗
〉 = bnδ

n′

n δm′

m ; bn ≡ fn/N
0
n (A21)

as a result of the orthogonality of the spherical harmonics.
Equation (A21) is a necessary condition when correlations
are homogeneous and isotropic. By substituting Eq. (A21) in
(A17) and using the addition theorem of spherical harmon-
ics, one finds Eq. (22), thus proving that Eq. (A21) is also
sufficient.

Let us see how this result is extended in three dimensions.
Let ζ(�,p) be a 3-D error field on the sphere wherep de-
notes the altitude. Again, we assume thatζ is unbiased and
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Table A2. List of precalculated variables and their Fortran
counterpart.

Variable names corresponding
Fortran names

µ mu
λ lambda
w wg
Pm

n Pnm
eimλ Eiml
G G
GT G TRANSP
(Cv)1/2 Cv
bn Values stored inCh
6 bg std

normalized such that〈ζ(�,p)2
〉 = 1. Equation (A21) ob-

tained in two dimensions is generalized in three dimensions
as follows:

〈ζm
n [ζm′

n′ ]
∗
〉 =

√
bn(p)bn(p′)Cv

n(p,p′)δn′

n δm′

m . (A22)

whereCv
n is the vertical correlation matrix for the wavenum-

bern and the coefficientsbn are now dependent on the alti-
tude.

If Cv
n andbn(p) are independent ofn andp, respectively,

(A22) might be rewritten as

〈ζm
n (p)[ζm′

n′ (p′)]∗〉 = bnC
v(p,p′)δn′

n δm′

m (A23)

and we can prove that the spatial correlations are separable.
By definition, a matrix is said separable if it can be calcu-
lated by a tensor product of two sub-matrices. In this case, if
the horizontal and vertical correlation matrices are denoted
by Ch andCv, then the 3-D spatial correlation matrixC is
defined by

C = Ch
⊗ Cv (A24)

where⊗ denotes the Kronecker tensor product. In terms of
matrix elements, and considering homogeneous and isotropic
correlations, we have

C(�,p,�′,p′) = f (θ)Cv(p,p′) . (A25)

Indeed, the correlations in the physical space might have the
following spectral representation

〈ζ(�,p)[ζ(�′,p′
]
∗)〉 =

N∑
n=0

n∑
m=−n

N∑
n′=0

n′∑
m′=−n′

〈ζm
n (p)[ζm′

n′ (p′)]∗〉Ym
n (�)[Ym′

n′ (�′)]∗ . (A26)

By using Eq. (A23), Eq. (A26) takes the form

〈ζ(�,p)[ζ(�′,p′)]∗〉 = Cv(p,p′)

N∑
n=0

n∑
m=−n

bnY
m
n (�)[Ym

n (�′)]∗ . (A27)

and using the Eq. (A16), the previous equation can be rewrit-
ten as

〈ζ(�,p)[ζ(�′,p′)]∗〉 = Cv(p,p′)

N∑
n=0

N0
nbnP n(cosθ)(A28)

which leads to Eq. (A25). If spatial correlations are separa-
ble, Eq. (A28) is a necessary condition. To prove that the
condition is sufficient, we substitute Eq. (A28) in

〈ζm
n (p)[ζm′

n′ (p′)]∗〉 =
1

4π2

∫
�

∫
�′

〈ζ(�,p)[ζ(�′,p′)]∗〉

Ym
n (�)[Ym′

n′ (�′)]∗d�d�′ . (A29)

and using the orthogonality of the spherical harmonics and
the addition theorem, we can find Eq. (A23).

Appendix B

Fortran code

The Supplement of this paper provides a code that al-
lows calculation of the operationsL and L∗ along with
two test programs. The operations related to theB ma-
trix are given in bglib sh.f90 (which means “Back-
Ground LIBrary and Spherical Harmonics representation”).
The length of this file is rather short. Moreover, we tried
to use Fortran variable names that are close to those
presented here. The correspondence between the different
operators discussed in Sect.3 and their coded counter-
part are given in TableA1. A very important routine is
PRECOMPUTEBGLIB which precomputes values used by
the different operators. They are described in TableA2. The
Gaussian latitudes and weights such as the associated Legen-
dre functions are precalculated by the freely available soft-
ware SHTOOLS (available at:http://www.ipgp.fr/∼wieczor/
SHTOOLS/SHTOOLS.html) which needs to be installed be-
fore compiling the code. The vertical correlation matrix is
calculated during the precomputing and its square root is cal-
culated using singular value decomposition (SVD). The SVD
uses LAPACK libraries which also need to be installed.

In order to allow the user to check if this code fulfills his
needs without having to install the SHTOOLS library or LA-
PACK (while this later is usually installed), this code can
also be compiled in a “demo” mode. In this case, the Gaus-
sian latitudes and weights, the associated Legendre functions
and the vertical correlation matrix are read in files also pro-
vided. However, this mode is only available for a size grid of
120× 60× 31 in lon/lat/lev as for vertical Gaussian correla-
tions withLv = 3 levels.

In addition to the library of the spectral representation of
B, the code is provided with two tests. The first one checks
that the test of the adjoint is satisfied, i.e.〈x,Lχ〉 = 〈L∗x,χ〉

for any value ofx and χ . This is the case if we exclude
round-off errors. This test is calculated bytest adj.f90 .
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The second test is the assimilation of a single pseudo-
observation as presented in Sect.5. For this test, a simulator
is given (simul sh.f90 ) and the quasi-Newton minimizer
M1QN3 (m1qn3.f90 , Gilbert and Lemarechal, 1989).

Information necessary to compile and run the code, and
the conditions for its use, are provided in a README file
given in the Supplement.

In terms of numerical performances, this code is very low
demanding in computer resources (CPU and memory). On
a single processor, the CPU time consumed by the operations
L andL∗ is lower than the time consumed by M1QN3. For
the real assimilation of MIPAS ozone data as discussed in
Sect.6, the operationsL andL∗ take less than 1 % of the to-
tal CPU time. On an AMD Opteron 1.15 GHz processor and
considering a model resolution of 180× 91× 37 grid points,
the total time necessary to calculate the operationsL andL∗

is ∼1.1s (∼0.55s each).

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/12/
10015/2012/acp-12-10015-2012-supplement.zip.
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