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Abstract. The formulation of the background error covari- pact to be numerically implemented and sufficiently com-
ances represented in the spectral space is discussed in tipex to represent correctly the real error covariances of the
context of univariate assimilation relying on a grid point first guess field. There are several approaches to achieve this
model, leaving out all the aspects of balances between thgoal. For variational systems, which are the systems we will
different control variables needed in meteorological assimi-focus on, three approaches have been developed. The first
lation. The spectral transform operations are discussed in thene historically Parrish and Derbef992), which we shall
case of a spherical harmonics basis and we stress that thediscuss at length in this paper, uses a spectral representation
is no need for an inverse spectral transform and of a Gausef the correlation matrix. It is based on the fact that a ho-
sian grid. The analysis increments are thus produced directlynogeneous and isotropic horizontal correlation matrix can
on the model grid. The practice of producing analysis incre-be represented by a diagonal matrix in the spectral space.
ments on a horizontal Gaussian grid and then interpolatingrhis property was discovered in the late sixties by Russian
to an equally spaced grid is also shown to produce a degrascientists working in statistical fluid mechanics and turbu-
dation of the analysis. The method discussed in this papelence theory (see the works donin and Yaglom 1971,
allows the implementation of separable and non-separabl&975 Panchey1971). These concepts were extended to the
spatial correlations. The separable formulation has been imsphere and applied successfully to large-scale atmospheric
plemented in the Belgian Assimilation System for Chemical dynamics and analyses IBpoer (1983 andBoer and Shep-
ObsErvations (BASCOE) and its impact on the assimilationherd(1983 using spherical harmonics as the orthogonal ba-
of Oz observed by the Michelson Interferometer for Passivesis. Itis only in the late nineties that this formulation became
Atmospheric Sounding (MIPAS) is shown. To promote the the cornerstone of 3-dimensional variational meteorological
use of this method by other non-meteorological variationalassimilation systemsJourtier et al. 1998, and was applied
systems and in particular chemistry, the Fortran code develfater to chemical data assimilatioDéthof and HIm, 2004).

oped is made available to the community. More recently, efforts have been made to develop spectral
representation of inhomogeneous and flow-dependent corre-
lations fisher 2003.

1 Introduction The second approach for variational systems is based on

a diffusion operator which uses the model’s diffusion to
One of the critical aspects of any assimilation system is thegenerate the effect of a Gaussian correlation function. This
formulation of the background spatial error covariances ma+nethod was introduced yerber and Rosa(lL989 and fur-
trix, denoted theB matrix. It needs to be sufficiently com- ther developed byeaver and Courtigf2001). This method
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is particularly useful when the domain has complex bound-the advantage of being very low demanding in computer

aries (e.g. ocean data assimilation) where it is difficult to de-resources. Moreover, while not studied in this paper, non-

fine positive definite correlations. This method is also well separable three-dimensional error correlations could be im-

suited for models that have non uniform grid on a sphere (e.gplemented easily, meaning that vertical correlations can be

icosahedral grids) because it avoids the interpolation of analdifferent for large and small horizontal spectral features.

ysis increments onto that gri&lpern et al.201Q Schwinger This paper is organized as follows. Section 2 and Ap-

and Elbern 2010. The diffusion approach primarily gives pendix A introduce representations in spherical harmonics

rise to a Gaussian covariance model but can be generalized &nd the spectral representation of homogeneous and isotropic

more complex (i.e. inhomogeneous and anisotropic) correlacorrelations. Section 3 discusses the variational formulation

tions. However, the diffusion approach is highly demandingand the control variable change from the model basis to the

in computer resources (both CPU and memory), especially ispherical harmonic basis. The implementation of the spec-

one needs to simulate non-Gaussian correlations. tral transform operators and of the spatial correlations is de-
A third approach in variational data assimilation which scribed in Sect. 4. Section 5 discusses the numerical imple-

does not compute explicitly the error covariance is the re-mentation of the method and illustrates it by the results of an

cursive filter Purser et a).2003. Like the diffusion opera- assimilation of a single pseudo-observation. In Sect. 6, the

tor approach, the recursive filter approach attemps to commethod is applied to real ozone observations using the BAS-

pute Gaussian correlations. The method consists in evaluatOE system. The results of this paper are summarized in the

ing the effect of a Gaussian correlation model on a state veceonclusions. A Fortran code of this method is provided in

tor, by applying a sequence of 1-D finite difference operatorsthe Supplement of this paper. This code is introduced in the

in different directions on the state vector. Repeated applicaAppendixB.

tions of these finite difference operators in carefully chosen

directions can lead to approximate the smoothing effect of

Gaussian homogeneous and isotropic correlations. Althougl?  |ntroduction on spectral transform on the sphere

positive-definitness can be obtained, the scheme is approxi-

mate and computationally complex. This section provides some useful information about two-
This paper discusses the spectral representation of backtimensional spectral representation on the sphere. For an ex-

ground error correlations onto a spherical harmonic basishaustive introduction, we refer to the booksSztoh(2004

Most of the mathematical background presented in this paandKrishnamurti et al(2006, and the unpublished lectures

per has already been published (see the references cited if P, Swarztraubér

Sects. 2-4). However, none of those publications provide |n this section, we denote a 2-D field on the sphere by

a complete picture of the problem. For instance, these pubwy (., 1) where x is the longitude,u = sing and ¢ is the

lications rarely give an introduction on spectral transforma-|atitude. Alternatively, the notatiof will be used in place

tions. As numerical weather prediction (NWP) systems usu-of (1, 1). The fieldW (i, 1) can be represented by a series

ally rely on spectral models, this aspect is supposed to b&f spherical harmonics where the coefficients are natgd

known. Moreover, those publications describe the method inThe values of: andm are specified below. In this section,

the meteorological context, that is the use of balance operathe termgrid will be associated with theorizontal gridand

tors between meteorological variables. This makes the backnot the usual three dimensional grid of the model.

ground theory of this method difficult to be acquired for peo-

ple not involved in meteorology. As a consequence, one of2.1 Spherical harmonics

the aims of this paper is to describe the spectral representa-

tion of the background error correlations for univariate as-Spherical harmonicsdenoted byY,", are defined as solu-

similation with systems relying on a grid point model. tions of the Laplace equation. They take the following form:
A code for this purpose has been developed and imple-

mented in the Belgian Assimilation System for Chemical

ObsErvation (BASCOE). In doing so we have identified " (1, 1) = N P (u)e'™* (1)

a rather important property that seemed to have been over-

looked in meteorological data assimilation: in variational as-where N'* are the normalization constant®” (i) are the

similation only the adjoint spectral transform is necessary,associated Legendre functioasd¢”* are the Fourier ex-

not the inverse transform. As a result the analysis spectral inponentials where? = —1. Spherical harmonics form an or-

crements are produced directly on the model grid. In otherthogonal basis and their normalization is defined by the

words, there is no need to extract the increments on the (Nnomormalization constants. This is discussed in detail in Ap-

equally spaced) Gaussian grid and then to perform a transpendix A1. Here the geodesys2normalization is adopted

formation from that grid to the model grid — a transformation

which necessarily degrades the analysis. While this method *available at:

is limited to homogeneous and isotropic correlations, it has  www.cisl.ucar.edu/css/staff/pauls/tutorials/index.html
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(while Courtier et al. 1998 uses the geodesyrd such that: target grid of the spectral transform. For practical purposes,
Eqg. ) is splitin a Fourier transform followed by a Legendre

2r 41 / o transform:

//Y,;”(k,u)[Y,;’? O T dpdi = 2782 80 ) N

0 W) = Y WP (k) @
where[.]* denotes the complex conjugate a&{jdis the Kro- ":‘mllv

necker symbol gllcc’ =1 if k=k" and O otherwise). When WOk, ) = Z W (et ™ 8)
m =0, P,? are called theLegendre polynomialsin such ' m=—N

a case the value ofi is omitted in the notationR,? = P,).
When spherical harmonics are used in the context of spectrdlote that usually, operational centers use fast Fourier trans-
transforms, as in this study, it is appropriate to include theforms instead of Eq.8). This is not the case in the code
normalization constant in the associated Legendre functiongprovided in the Supplement as the CPU time necessary to
In this case, we define theormalized associated Legendre operate the Fourier transform is found sufficiently fast.
functionsas P, (1) = N P (11).

2.3 Inverse spectral transform
2.2 Direct spectral transform

Given a 2-D field¥ (i, u) on the sphere, the question is
In general, a smooth function on a sphéré., 1) canberep-  now how we can calculate its spectral coefficieds. Us-
resented by a series of spherical harmonics with coefficient$ng the orthogonality of the spherical harmonics, the inverse

w of Eg. @) is given by
W(A, 1) i i wmymn, ) 3) 1 71
1/~’L = n 5“ . m m *
o e v = / f WO, Y™ 0, )T d pd . (9)
0 -1

In this transformation, and recalling the definition of the

spherical harmonics (EQ), the dependence along the lon- |n order to solve this equation, one usually starts with a dis-
gitude is taken by the Fourier exponentials. For this reasongrete 2-D field given on a grier (1, x) and looks to invert

m is called thezonal wavenumbetn additionn is calledthe  the sequence (Eqg, 8). The inverse of the Fourier transform
total wavenumber (Eq.8) is given by:

W are complex coefficients. W (i, ) is real, which is

the case in atmospheric sciences, then the following property 1 M1

. m _ . —imh;
holds: U (ug) = i ;:O W(Aj, ug)e "™ (10)
v = (=DM, T 4)

whereM is the number of longitudes.

This suggests that it might be possible to define real coef- The inverse of the Legendre transform (Eg.is much
ficients using Fourier sine and cosine instead of the commore difficult to implement. One aspect that has not been
plex coefficients using Fourier exponentials. In this study, theaddressed yet is the specification of the target grid of the
complex representation is kept. spectral transform. The direct transform (E@s8) and the

The transform Eq.3) cannot be evaluated exactly and re- inverse of the Fourier transform (E0) are applicable to
quires to be truncated at some reasonable number of termany type of grid, in particular to the equally spaced (in de-
Several truncation methods exist and here the triangular trungree) model grid. However, this is not true for the inverse of
cation is adopted. In this case, the relationship between théhe Legendre transform. If one needs to calculate the exact
spectral coefficients and the physical field is given by inverse of Eq. 7) without loss of information, the choice of
spectral grid is limited to th&aussian grid On this grid,
the latitudes correspond to the roots of the Legendre polyno-
mials Py (i) = 0, which are not equally spaced. The longi-
NN tudes, on the other hand, are equally spaced. On the Gaussian
_ mpM imhj grid, the inverse spectral transform is defined by Gaus-
= D D WP (e 6 9

sian quadratureor Gauss-Legendre quadrature

Let f(u) be a polynomial of degree [21). The Gaussian
whereN is the degree of truncation (and should not be con-quadrature specifies that the integralf@j.) between -1 and
fused with the normalization facta¥,") and where;j and 1 can be solved exactly by the following quadrature (see the
k are respectively the longitude and latitude indices of theproof in Krishnamurti et al.2006 Sect. 6.6; oSatoh 2004

N

WO, ) =Y > WPy (e (5)

n=0m=-—n

m=—N n=|m|
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Sect. 21.3): to the model grid. As mapping operations introduce a degra-

dation of the increments, it is better to find an alternative to

11 L the unitary definition of the spectral transforms. For this rea-

ff(/t)d,u =Y w(u) f () (11)  son, the adjoint of the code of the direct spectral transform
1 =1 sequence (Eq9g, 8) has been written by hand in BASCOE.

In terms of equation, the operatSt takes the form:
wherew(u;) are the Gaussian weights which can be calcu-

lated analytically.

Using (L1, the inverse of the Legendre transforif) {s R M-1 L
given by: W () = Z W(Aj, ule bk (17)
j=0
K —m K
v = Z w ()" () P, (k) 12) =" (o) Py () (18)
k=1 k=1

whereK is the number of latitudes.
An equally spaced grid can also be a target grid for theyyheres denote the adjoint variable &f, i.e. & = 3.J/3W.
spectral transform. While the Gaussian grid allows one to
define an exact inverse transform, an accurate (but not exact ) ] o
inverse transform can also be defined from the equally spaced-> Degree of truncation, target grid and aliasing
grid. This is reported in the AppendA2.
In the following, the target grid of the spectral transform To complete the definition of the spectral operators, we have

will be simply denoted by the target. to define a degree of truncation and the corresponding di-
o mensions of the horizontal grit¥ and K. First, let us con-
2.4 Adjoint spectral transform sider the unitary definition of the spectral transforms. In or-

o o o ] der to keep the information content equal in a sequence of di-
In variational assimilation where thB matrix is defined  ect and inverse Fourier transforms, one needs to impose that
in the spectral space, the adjoint of the spectral transformy, _ 2(N +1) (Krishnamurti et al. 200§ Chap. 7;Swarz-
(Egs.7, 8) is needed. Let us denote the spectral transformtrauber Lecture 3. If one triesM > 2(N + 1), a false rep-
operator byS. To obtain the gradient of the cost function (see yesentation, oaliasing s introduced. On the other hand, if
Sect.3), one needs to define the adjoint@fdenoted byS" 3/ _ 2 4+ 1), there is a loss of information during the spec-
(that must not be confused with the conjugate operiafoy. (5| transform (i.e. the spectral representation has a higher
One way to implement the adjoint is to (re)define the spec-esojution than the horizontal grid). Aliasing in the associ-
tral transform as unitary operations such t8at = S*. This  5teq | egendre functions also exists but is much more difficult
is possible by re-writing the direct spectral transform (Egs. 4 derive. Associated Legendre functions can be obtained by

8) as a sum of Fourier coefficients in the latitude directi@warz-
T W trauber Lecture 3. In this case, the aliasing is prevented if
W (1) = [+ Z \I,Zzﬁzi (111) (13) K §_N-|-1 and the equa_lllty is req_wred for no loss of informa-
M = tion in a sequence of direct and inverse Legendre transform.
N If one bases their code on the non-unitary spectral trans-
WA, ) = fw () W™ (ui)e ™ (14)  forms, the_conqnlon is less strict. It can be verified with the
/ m;N code provided in the Supplement of this paper that the fol-
' lowing conditions must holdN > max(K, M/2) — 1. This
and the inverse spectral transform (E4@.12) as allows one to implement longitutes and latitudes that have
o1 not necessarilly the same resolution, which is usually the case
1 —im\; in atmospheric modeling.
V() =+ — Y W, im?j 15 . .
() M ; (s> mi)e (15) In the case of the BASCOE horizontal grid ¢f 2 2° that

X includes the poles (as done in Sé&)t.the model resolution is
m_ < m —m 91 latitudes and 180 longitudes. If the target grid of the spec-
Y = ; WO (i) Py (k) (16) tral transform is the BASCOE model griff, = 91, M = 180
and the degree of truncation is fixed o= 90. If the target
However, this formulation requires the use of the Gaussiargrid is the Gaussian grid, a mapping operdomust be in-
grid as the target grid of the spectral transform. If one usedroduced to account for the transformation from the Gaussian
a model defined on an equally spaced grid, as usually dongrid to the BASCOE grid. In this case, the size of the Gaus-
in atmospheric modeling, a mapping operation will be nec-sian grid isK = 90 andM = 180, the degree of truncation is
essary to map the analysis increments from the target gridv = 89 and the dimensions & are 91x 90.

Atmos. Chem. Phys., 12, 100180031, 2012 www.atmos-chem-phys.net/12/10015/2012/
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2.6 Spectral representation of spatial correlations whereb, = f, /N,? (see also the proof in Appendd).

Let €(2) be an error field on the surface sphere where
(A, w). Let us assume that the error field is unbiased and nor3 Variational assimilation and control

malized, i.e(e(2)%) = 1 where( ) denotes the mathematical variable transform

expectation. Let us assume that the correlations are homoge-

neous and isotropic. This means that the correlations betweeMariational methods (three-dimensional — 3D-Var —and four-
the points2 and$2’ depends only on the distandebetween dlmgnslonal —4D_—Var) aim at .calculatmg the model state that
the two pointsGaspari and Coh(1999 have shown that, on Minimizes the objective functiosi(x) (Talagrand1997):

a sphere of radiug, d corresponds to thehordalor geodetic

distance between the two points J(x) = J°(0) +7°(%) (24)
d=d©®)=AJ/2(1—cow).T (19)  where

whereé is their angular sgparation as defined in I_quzo. P = }[x x0T B Lx — xP] (25)
It follows that the correlations between the two points might 2

be expressed as a functionébf Jo(x) = %[y — HXITR Yy — HX)]. (26)

(e(D[e(@N]") = f(0) . (20)

The concept of homogeneous and isotropic correlationdvherex” andB are respectively the background model state
on the surface of a sphere is however not independent ag.e. the initial guess) and its associated error covariance ma-
noted byGaspari and Coh(1999, and needs to be some- trix; y andR are respectively the observational vector and its
what revised. Isotropy can be obtained by translation invari-25S0ciated error covariance mateis the model state vec-
ance back to the same point along great circle with transtorandH is the non-linear observation operator that projects

lations in any directions — so basically the correlation func- "€ M0del state in the observation space. In the 3D-Var case

tion only needs to be homogeneous. Also as discussed in th@e observations and the model state correspond to the same

same paper, any homogeneous correlation function defineiMe- In the 4D-Var case, observations span over an assimi-

in R3 is also homogeneous on any continuous manifold em4ation time window, the model stateis defined at the begin-

bedded inR3, such as the surface of a sphere. Thus an ho ning of that window (or initial time) and the observation op-

mogeneous (translation invariant) correlation function on theeratorb(lj |r|1_cl_u_de|zs an evoIrL:tlonbmodel_ operator that projects
surface of a sphere can be defined from a correlation usin§'€ Model initial state at the observation time.

as the chordal distanekedefined inR3 (and not the great cir-

cle distance), and which has the consequence to be implicitl)'/\l

periodic from all directions.
Let us come back to Eq.20). As homogeneous (and

isotropic) correlations over the sphere are invariant with ro-
tation, let us suppose that one of the two points is at the north

pole. Thery is the co-latitude angle, i.6.= % — ¢. Conse-
quently, we have cas= n. In this configuration, the corre-

lations between the two points are independent of the longi-

tude. If /)" represents the spectral coefficientsfab), we
have f" = 0 form # 0. It follows that

N n
FO=" Y [0 cosd)

(21)
n=0m=-—n
N 0
=Y fuP,(cOS0) (22)
n=0

where f, = £0. Boer(1983 andGauthier et al(1993 have
shown that the correlations are represented by a diagonal m
trix on a spherical harmonics basis, i.e.

(€M™ T¥)

TAnd not 2/(1— cosd) as reported itcaspari and Coh(1999
Eg. 2.33).

=b,8!" 8"

n-m

(23)

www.atmos-chem-phys.net/12/10015/2012/

The minimization of Eq.Z4) is usually done with a quasi-
ewton minimizer that requires the knowledge of the gradi-
ent of the objective function:

VyJ = aa_i = Vi J? 4 v, J° (27)

Vi J? =B~ 1[x — x°] (28)
T

(0= (82’)((")) Ry — HOOI. (29)

As the typical dimension of is around 18, the matrixB

is of size 182 This is far too large to be stored and in-
verted by modern computers. Moreover, the specification of
the elements of such a matrix requires a huge amount of
a priori information, more than availabl®¢e 1995. For
those reasons, it is necessary to reduce the problem. Here,
we follow the same strategy as developed at ECMWF in late
nineties Courtier et al. 1998. A review on the formulation

of background error covariance matrix in meteorology might

%e found inBannister(2008ab).

In order to avoid the problem of invertirigy a control vari-
able transform is introduced:

(30)

Atmos. Chem. Phys., 12, 1000831 2012
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where x is a new control variablejx is the analysis incre-
ment and. is the square root d8:

B=LLT. (31)

The objective function thus becomes:

TP = %XTX (32)
To(x) = %[d—H(LX)]TR_l[d—H(Lx)] (33)
where

d=y— H(xP (34)

is the innovation vector. The background term (Bg) can
be easily calculated. If the observation operaibis linear,
the termd — H(L x) in Eq. (33) is equal to the termg — H (X)
in Eqg. (26). As a result,J°(x) = J°(x). If H is non-linear
but the differencex — xP is small, thenH can be linearized.
It follows that the calculation of © is practically obtained by
the resolution of Eq.46), which is much easier to implement
numerically than Eq.33).

The gradient of the objective function is now given by:

v, P =y (35)

T
vV, 0= L* (8’;’)((")) R-1d — H(Ly)] (36)

whereL* is the adjoint of the operatdr. Again, the calcu-
lation of the background term (E85) of the gradient is no

4 Formulation of L and its adjoint L *

By definition, the background error covariance maixs
the product of a standard deviation error maixdiagonal)
and a correlation matri< (non diagonal):

B=3CX (37)
or
L=xcY?. (38)

In this study, we will only deal with univariate correlations
such that no species-species correlations are considered in
BASCOE. As the matriC/2 is huge, it is necessary to make
assumptions and/or transformations to allow its implementa-
tion in a variational system (see Sect. 1). In the NWP com-
munity, it was suggested to build the correlation matrix in the
spectral space (see e@ourtier et al. 1998. As mentioned

in Sect.2.6, assuming homogeneous and isotropic horizontal
correlations at the surface of a sphere allows one to get a di-
agonal correlation matrix in the spectral space. This means
that considering a 3-D model on the sphere, the spatial corre-
lations are then represented by a block diagonal matrix. Let
A2 denote the spectral representation@¥?2 and S de-

note the spectral transform operator. Hence, the transforma-
tion C/2 can be rewritten aSA'/2, so that. becomes:

L = XGSAY?. (39)

The operato6 has been introduced in EQ9) to account for
the transformation from the target grid of the spectral trans-
form to the model grid. In the case where the analysis incre-

longer an issue and it can be verified that the gradient of thénents are calculated on the Gaussian grid, the transformation

observation term (E@6) corresponds to the operatof ap-
plied to the results of Eq20), i.e. V, J° = L*V,J°. With x

G is represented by a weighting average over the latitudes. In
the case where the spectral grid is the model grid, no trans-

as the control variable, the iterative sequence of operationféormation is implementedg is the identity matrix).

necessary to minimizé is:
1. Initialization: readk? andy, sety =0
2. Calculates® by Eq. 32)
3. Getx = L x + xP and calculate/° by Eq. 26)
4. GetJ = JP+J°
5. Calculatev, J® by Eq. 85)
6. CalculatevyJ° by Eq. 29)
7. GetV,J = VJP £ L*VyJ°
8. Providey, J andV, J to the minimizer and update

9. If convergence, get = L x +x and start a forecast until
the next analysis time. Otherwise, go to step 2.

Atmos. Chem. Phys., 12, 100180031, 2012

The adjoint operatadr * is given by
L* = AV>*S'G*E . (40)

Recall thatX is a diagonal matrix, so the transpose sigh
has been omitted in the equations.

The block diagonal elements & have the dimensions
L x L whereL is the number of vertical levels of our model.
Each element of a block" takes the form

AN (p, p") =/ bu(p)ba(p)Cyl (p. P) (41)

where the coefficients, are those of Eq.23) (Berre 200Q

see also the Appendi&4 and p are the level indices of the
model) . This is the non-separable formulation of the spatial
correlations. By this formulation ok, the horizontal corre-
lation coefficientsh, depend on the altitude. Moreover, the
matricesC) allow one to take into account different vertical
correlations for different wavenumbers. In other words, fea-
tures with large horizontal scale could have different vertical

www.atmos-chem-phys.net/12/10015/2012/
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correlations than features of small horizontal sc&lisier and a Gaussian function
2003. This specification is necessary in meteorology in or- 2
1 /(1lpi—pjl (46)
2 Ly '

der to get correct correlations between the mass and wingV(,, p;) = exp
fields Phillips, 1986 Bartello and Mitchell 1992 while this
?:or the Gaussian case, the distance between two Igxels
p;l can be measured either in level indices or in kilometers.

non-separability has not yet been studied in chemistry dat
assimilation. Note that the vertical correlation matri€¥s

Moreover, a correlation length scalg must be provided in
the same units as.

are defined independently of the zonal wavenumheras
found for the horizontal correlation coefficiertts. This for-
::; Iﬁglggnﬁghﬁgrbrzcsz%rr?:gé matrix s then very low demand- Finally, the square root &, which is necessary to build
Although this non-separability formulation could be im- A™/? (see .E.qs39 and40), is obtained by a singular value
an P v . . decomposition (SVD)
plemented in the present formulation of the correlation ma- '
trix A in BASCOE, this has not been done in this study. Here,
we have assumed that horizontal and vertical correlations arg  Assimilation of a single pseudo-observation
separable, i.e.
AT — Y 42) The operators described_ in Sed'Fhave k_Jeen_impIemented
n —n in Fortran and tested. This code is provided in a Supplement
where the horizontal correlation coefficients are taken inde-0 this paper. It includes the code for the different operators
pendent of the altitude and where the vertical correlation mathat definel andL*, as well as two tests. All this material is
trices are independent of the wavenumhber introduced in AppendiB. o _
Usually, theb, coefficients and the vertical correlations This section preser_wts the_ results of an assimilation of a sin-
matricesCY are estimated aralibratedin order to match the ~ 91€ pseudo-observation using the 3D-Var method. The goal
statistical a priori errors of an assimilation system. This can!S {0 evaluate the implementation of tBematrix by an as-
be done using methods that allow one to derive an ensemsimilation for which the re;ullt can be calculated analytlcally.
ble of error fields from which these statistics are calculated.€ré, we choose to assimilate a pseudo-observation with
We will not describe all these calibration methods and will & Value of 1-% and located at a model grid point. The back-
refer toBannister(2008a Sect. 5) for a complete review, It 9round fieldx® has a constant value of 1. Both the observa-
is important to note that the calibration method will require tion and the background field have an error standard devia-
an inverse of the operatidin order to estimate the correla- tion of +v/0.02. With this configuration, the value of after
tion spectrab,. If one is using an equally spaced model grid, assimilation is expgcted to be 1/2. The optlmlgatlon is per-
the exact inverse o8 is not necessary and the method de- formed by the quasi-Newton algorithm M1QNGi(bert and
scribed in AppendiA2 can be used. Even more simpler is Leémarechal1989. _ _
to interpolate the error fields on the Gaussian grid before the !N the assimilation experiments discussed here, the model
inversion. grid is equally spaced and two different kinds of systems
In the current study, the correlation matrix of BASCOE have been used. In the first one, the spectral transform op-
has not been calibrated. Instead, a priori correlation function§"ates form the spectral space to the equally spaced model
have been used to build it. In the code provided in the Supgrld. In the second case, the spec_tral tra_lnsform operat_es from
plement, two functions have been coded for the horizontal® Spectral space to the Gaussian grid and a mapping op-

correlations: a Gaussian function eration from the Gaussian grid to the model grid is used. In

the following part of this section, the analyses obtained with

760) = exp(— 1- COSQ) 43)  the two systems will be denoted, respectively, LL (i.e. lat/lon
L2 grid) and GG (i.e. Gaussian grid).

Several model resolutions, locations of the observation and

and a second-order autoregressive (SOAR) function ; ; X .
(horizontal and vertical) correlation functions have been con-

2./1—cos9 2/1—cos sidered in these experiments. Here are shown only the results
@)= 1+f exp T (44) obtained with specifics but representative configuration of
the experiment. This configuration considers a Gaussian cor-
whereL = Ly/Ag, Ag is the Earth’s radius andy, is a hori- relation function with correlation length scalgeg of 600 km
zontal correlation length scale. horizontally andLy of 3 model levels vertically. The reso-
For the vertical correlations, again, two functions are lution of the model is 120 longitudes by 60 latitudes by 31
coded: ahat function levels. Accordingly, the degree of truncation is 59. Three lo-

cations of the observation have been considered, namely the

v 1 for i=j Equator, 40N and 80N. In such a configuration, the theo-
C'(pi,pj)=41/2 for Ji—jl=1 (45)  retical analysis at the observation location is 1.1. From that
0 for |i—j|>1 point, the analysis should decrease according to a Gaussian
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Table 1. Scores of the single-observation assimilations using two different target grids of the spectral transform: the model lat/lon grid (LL)
and the Gaussian grid (GG). The experiments have been performed considering three latitudes of the observations: the Bwatdr, 40

80° N. We report the value of the objective functidrfor the analysis, the analysis at the observation locatigr), the analysis correlation

length scales obtained by fitting the analysis cross-sections (seB Biga Gaussian function, and the root mean square (RMS) between the
analysis and the expected Gaussian function.

Equator 40° N 8C° N
Expected| LL GG | LL GG | LL GG
J 0.5 0.5029 0.5208 0.5020 0.5200 0.5013 0.5166
H (X) 1.1 1.1015 1.0966 1.101 1.0971 1.0999 1.0967
L'r?t 600 576 622 576 619 581 622
Lo" 600 575 574 576 575 601 607
Ly 3 2.88 2.87 2.88 2.87 2.9 2.9
RMSi4t 0| 30x105 26x107°| 29x10° 20x107° | 23x10° 2.0x10°3
RMSion 0| 31x10° 12x10%|37x10° 13x10%| 7.3x10° 4.0x10*
RMSiey 0|54x105 20x10% | 52x10°° 1.7x107%4 | 47x10°° 1.6x1073
1.15 1.15 1.15
() lat/lon grid (b) ()
Gaussian grid
1.1 1.1 1.1
R
2
< 1.05 1.05] 1.05]
<
1 1 1
0.95 0.95 0.95
-30 -20 -10 0 10 20 30 150 160 170 180 190 200 5 10 15 20 25 30
54X 10° 5 10° 5 10°
Q
g |@ ) ®
g3 4 4
L
A 3 3
® 2
= 2 2
c
<1
7 1 1
[an]
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Fig. 1. Cross-sections of the analyses obtained by the assimilation of a single pseudo-observations located at the Equator using Gaussial
spatial correlation function and two target grids of the spectral transform: the lat/lon grid (blue line) and the Gaussian grid (red line). The
correlation length scales afg, = 600km horizontally and.y = 3 model levels vertically. The three top panels show the cross-section of
theses analyses along the latitydg the longitudgb) and the altitudéc), all crossing the observation location. The horizontal black lines

at value 1.1 indicate the theoretical analyses at the observation location. The bottom panels display the differences between the analyse
cross-sections and the expected cross-sections.

bell curve with a standard deviation that corresponds to thesections with the expected cross-sections are shown in the
correlation length scales, i.e. 600 km horizontally and 3 lev-lower panels of Figl. Both analyses present a maximum at
the location of the observation. As the distance to the obser-

Figure 1 displays the results of the experiments that con-vation location increases, the analyses decrease with a Gaus-
sider the observation at the Equator. It shows three crosssian shape. The GG analysis has a value at the observation lo-
sections of the analyses (upper panels) — along the latitudesation which is significantly different than the expected value
the longitude and the vertical directions, all of them crossingof 1.1. On the other hand, the LL analysis is (visually) closer
the observed location. The differences of the analysis crossto this expected value. This is confirmed by the Fig—f

els vertically.

Atmos. Chem. Phys., 12, 100180031, 2012
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Fig. 2. Power spectra of the analysis incrementst the observation
level obtained using two different spectral grids — the lat/lon grid

(blue line) and the Gaussian grid (red line). Parie)sand (b) are
obtained using a correlation length scaled.gf= 600km(a) and

300 km, respectively. In both cases, the experiments are based
a model resolution of 120 longitudes by 60 latitudes and 31 levels.
Results on pang(c) are obtained withL., = 600km and a model

resolution of 240 longitudes by 120 latitudes and 31 levels.
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Table 1 reports several scores obtained by the different
experiments and their expected theoretical values. For each
(computed or theoretical) analysis, the table provides the
value of the objective functiod, the analysis value at the
observation poin# (x) and the correlation length scales es-
timated by a fit of the cross-section lines in Figsa—c by
a Gaussian function. The table also provides the value of
the root mean square (RMS) of the differences between the
analyzed and the theoretical cross-section. Compared with
the GG analysis, the values @f H(x) and RMS from the
LL analysis are closer to the expected value. The correla-
tion length scales obtained by both analyses are close to each
other. However, correlation length scales found by the lati-
tude and longitude cross-sections from the LL experiments
are more consistent — they do not differ from more than
1km. This is not the case for the GG experiments where
the correlation length scales from the latitude cross-section is
around 620 km while those from the longitude cross-section
are around 575 km — around 45 km of differences.

We have also noted that the “fitted” correlation length
scales are slightly different from the expected values, around
575km instead of 600 horizontally and 2.88 levels instead
of 3 vertically. The reason for these deviations remains un-
known. This issue has not been investigated as we found sat-
isfactory the results of the single assimilation experiments
and real data assimilation (see Sect. 6).

Another way of comparing both analyses is to look at the
power spectrum of their increments, which are displayed at
the model level of the observation location (F2g). Recall
that the analysis increments are the difference between the
analysis and the background field and measure the impact
of the observations on the analyses. We see that the infor-
mation provided by the increments of both analyses differs
according to the wavenumber. This is even clearer when the
horizontal correlation length scale decreases up to 300 km,
i.e. a value closer to the resolution of the grid in the region
of the observation (Fig2b). Taking the LL experiments as
references, Fidza—b tell us how the mapping operation from
the Gaussian grid to the model grid degrades the GG exper-
iments. At low frequencies (i.e. high horizontal scales), the
GG analysis provides more information but decreases more
rapidly than the LL analysis, this later providing more in-
formation at high frequencies (i.e. small horizontal scales).
Therefore, the mapping operation tends to overestimate the
spatial correlations for high horizontal scale features and to
underestimate the spatial correlations for small horizontal

o’;‘.]cale features.

Finally, the power spectra of the analysis increments of
two additional LL and GG experiments (one each) are dis-
played on Fig.2c. These experiments consider a model
horizontal resolution four times higher (240 longitudes by
120 latitudes) than the previous experiments. Those exper-

where it can be seen that the LL analysis is usually closer taments have been run in order to get the optimal size of

theoretical cross-sections than the GG analysis.

www.atmos-chem-phys.net/12/10015/2012/

the model resolution. Considering, = 600km, one sees
that the increments does not provide additional information
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Fig. 3. Bias (top row) and standard deviation (bottom row) of the Observations-minus-Forecast (OmF) statistics between the analyses and
the MIPAS data, in percent. Statistics are done at five latitude bands denoted in the title of each plot. Blue and red lines represent the statistics
obtained, repectively, by the CORREL and DIAG runs.

above wavenumber85. As a consequence, a model reso-
lution of about 180 longitudes by 90 latitudes appears to be
optimal. While this result is valid for the LL and GG grid,

it is restricted to the correlation length scales of 600 km.
On the other hand, the the optimal resolution increase as
Ly decrease. For example, withy = 300 km, one finds (not
shown) an optimal truncation 6180 or a resolution of 360
longitudes by 180 latitudes. In the next section, assimilation
of real data will then be performed using a model horizontal
resolution of 180 longitudes by 90 latitudes with a correla-
tion length scales of 600 km.

(a) Analysis Increments [%] for run DIAG at 44.335 hPa

6 Assimilation of real data

In this section, the results of two chemical data assimilation
experiments are presented. The first one includes correlations
in the B matrix while the second one considers a diagonal
B. The experiments have been performed by means of the
4D-Var Belgian Assimilation System for Chemical ObsErva-
tions (BASCOE Errera et al.2008. In its usual configura-
tion, this system considers 57 stratospheric species advected
Fig. 4. Analysis increments of the runs DIA@) and CORREL(b) by the Flux-Form Semi-Lagrangian schenuin(and Rood

at the model level 2144 hPa) on 15 September 2003, in percent. 1996, 200 chemical reactions and a parameterization of the
Blue and red indicate, respectively, negative and positive incrementphysico-chemical processes due to the so-called Polar Strato-
while green indicates close to zero increments. spheric Clouds (PSCs). However, in this study, only the ad-
vection of ozone is considered (i.e. the chemical and PSC

Atmos. Chem. Phys., 12, 100130031, 2012 www.atmos-chem-phys.net/12/10015/2012/
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(a) Amundsen—Scott (90.0S,24.8W) Michelson Interferometer for Passive Atmospheric Sounding
\ \ (MIPAS) ESA off-line level 2 profiles between August and
October 2003, as in BASCOE past experiments discussed by
Geer et al(2006 andErrera et al(2008. MIPAS is a limb
fourier transform spectrometer onboard the Envisat platform
| operating between 2002 and 2012. Measuring in the infrared,
S osss A limb scans are inverted _to provide profiles of numerous trace
run DIAG 0% 1 gases, including ozon&ischer et al.2008.
o run CORREL| ‘ Both experiments described in this paper consider 30 %
Aug Sep Oct Nov standard deviation in the background fields. The experiment
in which spatial correlations are introduced — denoted COR-
(b) Mac Murdo (77.8S,166.63E) REL — considers a Gaussian correlation function in the hori-
‘ ‘ zontal and vertical directions with a correlation length scale
Ly =600km andLy =1 level, respectively. Note that this
combination of model horizontal resolution and horizontal
correlation length scale is optimal as mentioned in Sect.
The experiment using a diagoraiis denoted DIAG.

Figure 3 shows the Observations-minus-Forecast (OmF)
statistics for both runs and for the period of the 2003 Antarc-
', ‘ ‘ tic ozone hole (September—October 2003) and for five lat-

g Sep Oct Nov X i

itude bands as explained Errera et al.(2008 Sect. 3.4).

Generally, the biases of the OmF obtained by the CORREL
run are lower than those obtained by the DIAG run. This
is significant in the upper troposphere/lower stratosphere
(UTLS) region, between 70 and 300 hPa, particularly so in
the southern polar region. Regarding the standard deviations,
the statistics of both runs are very similar except at the South
Pole.

To understand the origin of the differences between both

o ‘ ‘ runs, their analysis increments on September 154&thPa
Aug Sep Oct Nov (i.e. at model level 21) are shown in Fig. In the DIAG
increments, the track of the satellite is clearly visible and
Fig. 5. Time series of the ozone partial column (10-100 hPa) pe.the increments are confined around the observation locations.

tween August and October 2003 obtained above three NDACC sta—on the other hand, the COR.RELllncrements arg spref’;ld over

tions in Antarctica by the ozone sondes (black circles), and the runé Much larger area, especially in southern high latitudes,

DIAG (red line) and CORREL (blue line), in Dobson unit (DU).  thanks to the non-diagonal nature Bf As shown by the
OmF statistics, this improves the assimilation.

To assess the improvements at the southern high lat-
schemes have been turned off) in order to reduce the CPltudes brought by the non-diagon8l, both experiments
time. By doing this, it is assumed that ozone behaves likehave been compared with ozonesonde observations at three
an inert tracer. This is a fair assumption by choosing an asNDACC (Network for the Detection of Atmospheric Compo-
similation window of one day and by excluding observations sition Change) stations in Antarctica (Amundsen-Scott, Mac
above 1 hPa where the ozone time scale is shorter than thilurdo and Neumayer). Figur® presents the time series of
assimilation window. the ozone partial column between 10 and 100 hPa during the

The horizontal resolution is set t6 2 2° lat/lon grid. This ~ formation of the ozone hole in the 2003 Antarctic winter,
is higher than past experiments based of63x 5° lat/lon along with the corresponding partial column from the analy-
(Geer et al.2006 Errera et al.2008 Viscardy et al.2010 or ses. As expected, the CORREL run agrees much better with
2.5°x3.75° lat/lon grid (Lahoz et al.2011, and the BASCOE the observations than the DIAG run. As a result, CORREL
Near Real Time service http://macc.aeronomie.peThe exhibits a deeper ozone hole than DIAG which is in better
vertical grid is represented by the BASCOE usual 37 verticalagreement with observations provided by the Total Ozone
levels from the surface to 0.1 hPa, these levels being a subMapping Spectrometer (TOMS) (Fi6).
set of the ECMWEF levels. In these experiments, the dynam- The comparison of both runs against ozone sondes in
ics is provided by the European Centre for Medium-Rangethe UTLS has not revealed any “winner” or “looser” (not
Weather Forecasts (ECMWF) ERA-Interim analysBed¢  shown). The possible reasons are that MIPAS observations
et al, 2011). The assimilated ozone data are taken by theare of lower quality in the UTLS. Around 100 hPa, it has been
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(8 run DIAG [DU] (b) run CORREL [DU] (c) EPTOMS[DU]

Fig. 6. Total ozone in the Southern Hemisphere on 1 October 2003 obtained by the rung&la® CORREL(b), and observed by the
Total Ozone Measurement Satellite (TOMS), in Dobson unit (DU).

found that MIPAS @ values are 5% to 25 % larger compared matrices are calibrated using optimization methods such as
to the majority of the other datase@drtesi et al.2007). Re-  those summarized bigannister(2008a Sect. 5). This latter
moving the bias in the MIPAS data could help to improve the method allows the implementation of non-separable spatial
analyses in this region. Nevertheless, this task has been leftorrelations. This has proved to be important in meteorology
for future studies. Moreover, the parameterBafithe COR-  but has never been studied in chemistry.
REL run have not been optimized. For instance, nothing tells The second outcome of this study is to provide the numer-
us that the background error standard deviation is 30 % of thécal Fortran code of the formulation of ti&ematrix (see the
first guess field, that the correlations have a Gaussian shaggupplement of this paper). During the course of this imple-
neither that the length scales are 600 km horizontally at everynentation, we realized that only the adjoint of the spectral
model level or 1 level vertically. In principle, a calibratBd  transform operator was necessary for variational assimila-
should improve the analyses. Several methods have been dgen, not the inverse. The problem with the inverse operator is
veloped by the NWP centers and are reviewedbynister  to restrict the target grid of the spectral transform to the (non-
(2008a Sect. 5). This optimization effort has not been im- equally spaced) Gaussian grid. On the other hand, the adjoint
plemented in the present study. Indeed, we aimed to focus onperator does not suffer this limitation thus allowing the use
the implementations of the correlations and not essentiallyof the (equally spaced) model grid. In this way, there is no
on the BASCOE results. We nevertheless plan to present theeed to implement a grid transformation from the Gaussian
optimization of the parameters Bfin future papers. grid to the lat/lon (model) grid, which degrades the analyses.
The spherical harmonic representatiorBohas been im-
plemented in the 4D-Var stratospheric chemical assimila-
7 Conclusions tion system BASCOE using the Michelson Interferometer for
Passive Atmosphere Sounding (MIPAS) ozone observations
There are several outcomes from this work. First, we havebetween August and October 2003. Two experiments were
gathered together all the material published so far in ordemperformed: the one considering a spectral formulatioB of
to provide a stand alone document describing the sphericand the other considering the diagomali.e. spatially un-
harmonic representation of the background error covarianceorrelated) implemented so far in BASCOE. In those exper-
matrix (theB matrix) in the case of univariate assimilation. iments, the chemical and PSC schemes of BASCOE were
The motivation of a spherical harmonic representatidB isf ~ turned off such that the influence of ozone observations on
based on the fact that, if horizontal correlations are assumedther modeled constituents has not been studied. At southern
homogeneous and isotropigcan be represented in the spec- high latitudes and during the ozone hole period, the spatially
tral space by a block diagonal matrix with repeated matri-correlated allows a great improvement of the analyses with
ces for each zonal wavenumbey which makes its numeri-  respect to the uncorrelated one. The correlations allow one to
cal computation feasible. Horizontal and vertical correlationsincrease the size of the analysis increments which allow one
can be implemented in two ways. The first one consists ofto produce ozone fields in good agreement against ozoneson-
providing correlation functions for the vertical and the hori- des and total ozone observations, which is not the case for the
zontal directions (not necessarily the same) along with correanalyses calculated with the diagoial
lation length scales. In the second method, these correlation

Atmos. Chem. Phys., 12, 100180031, 2012 www.atmos-chem-phys.net/12/10015/2012/
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In the future, two studies are planned. The first one isthe spherical harmonics

to adapt this formulation for BASCOE in the case where dr_(km)! o' sl N
the chemistry module is turned on and to evaluate the im- 2’411“ (n—m)! n Om _
provements to constituents other than ozone. The second / 25700 Om Schmit
study consists of estimating the correlation matrices by one/ Y QY[ 1M(Q)dQ = 53/5;;{ ON
of the methods reviewed bBannister(2008a Sect. 5) for ¢ 4 5;1:’ 5% Gar

separable and non-separable spatial correlations. In the at-
mosphere, the constituent’s concentrations can vary with
height by several orders of magnitude and chemical regimes (A6)

can completely change with altitude, for instance across thavhere the abbreviations have the following meaning: UN for
tropopause and stratopause. For those reasons, the horizontalormalizegd Schmit forSchmit semi-normalize®N for or-
and vertical lengths scales are likely to be strongly dependenthonormalized G4r for geodesy # (as in Courtier et al,

on height. Thus a non-separable three-dimensional error cort99§ and Gz for geodesy 2 (as in this paper and iBoer,
relation matrix could provide a better representation of the1983. These different normalizations of the spherical har-
background error for chemical variables than a separable mamonics define the value of the normalization constant:

28" 8 G2

trix. 1 UN
1/2 )
, [EZ;% Schmit
Appendix A 2n+1' 121 oo 12
n—m)'
NIT = ( A ) I:(n+m)!:| ON (A7)

Complement on spherical harmonic representation

T v7)
2+ 1L§Z = G
Al Normalization of spherical harmonics (2n+1)l [(n_m),]l/Z Gor

2 (n+m)! .

Let us recall the definition of the spherical harmonics: For practical reasons, computer code implementations often

Y7 O, 1) = N™ P™ ()€™ (A1) introduce the normalization factor into the associated Legen-
e nen dre functions (which is done in the code provided in the Sup-
where plement). In this case, we define the normalized associated

Legendre functionsP, (i) = N P" (w). Accordingly, the

(1— 2)'"/2 drtm computation of spherical harmonics is decomposed into the

2
Py () = 2y duntm (u” = 1" (A2) product of two functions or two operations, a Fourier term
and a Legendre term. For the normalized associated Legen-
are the associated Legendre functions. Since dre functions, we have
2 (n—m)!on’
ar prs | d#)!&’i UN
/ez(mfm ) = 2 8™ (A3) 1_m - Zniﬂfs,'; Schmit
: | PrawPledn =1 s ON (A8)
and -1 28;} Garn
3" G2r.
1
2 n+m)!| One easy way to check the choice of normalization is to ver-
[ Praoroodu = tml | (agy e SasywayTo checkt
2n+1/)| (n—m)! ifythat P, (wu=0)=N,/, i.e.
, _ 1 UN
(where we note that associated Legendre functions are not .
. 1 Schmit
orthogonal for different values af), we have 12
—0 1
Plo= (%) " on (A9)
27 +1 ven+1 G4r
Y G LY G g dppdi = on+1) Y2
0/ J (2)" o2

(N,;")Zs;;/ajg’( o )[(”J”")!] . (A5) However, note that this check does not make any difference
2n+1/) | (n—m)! . . .
between UN and Schmit normalization.
o . : ) : —m
The normalization constants”” take a different form fol- Finally, let us mention the following property, = =
lowing the choice of inner-product of the spherical harmon-(—l)’"PZ’ (which is not valid for unormalized associated
ics. For practical reasons, there are several ways to normalizeegendre functions). It follows thay'|* = (-1)™Y, ™.
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A2 Inverse of spectral transform from Table Al. List of operators and matrix operations that definend
non-Gaussian grid L*, and the routines in which they are coded.
It is worth noting that the inverse transform on other grids Operator  corresponding routine
than the Gaussian grid can be made by a quadrature devel- S S.DIRECT
oped byMachenhauer and Dal€$972), which has the same p S.ADJ
numerical accuracy (although not exact) as the method based g1 S INva
on the Gaussian grid (see alSwarztrauberl979 Swarz- AL2 SbR'[CORREL
trauber and Spof200Q Machenhaugrl 979 Sect. 4.6): G SG2MG
L K M- GT ADSG2MG
=) Y VG0 Z, (e (A10) > B STEDEV
k 1j=0 as-1js only coded for the transform from the

Gaussian grid to the spectral space.

- 1Y —_—
Z0 60 = ¢ 0L 00 [ L@ sngdn (ALD)
r=0 = A4 Homogeneous and isotropic horizontal correlations

— {1/2 for r=0 (A12) Let €(2) be a 2-D error field on the sphere as defined in
1 for r#0 Sect.2.6ande] its spectral coefficients. The physical repre-
sentation of the correlationg (2)[e(2)]*) and its spectral
and counterparte!” [e}’{f’]*) are related by
Cos(rqﬁ){m and - odd <e(sz>[e(sz/>1*>=i )3 i Z (erfen 1) Y@Ly (@)1 (AL7)
m and r even n & 1) ¥

(Alg) n=0m=—nnp'=0m'=—n’
and by the inverse relationship (using a geodesy@drm)

L.(¢)=
@) even and r odd

. m
sintr¢) [m odd and r even
_ | | @) = 1oz / / (€ @Ie@) 1Y @11 (@)1 dede . (AL8)
The integral on the right-hand side of E41(1) can be com-
puted exactly by a Gaussian guadrature. Assuming homogeneous and isotropic covariances usin

The code available in the Supplement provides the routlneE 9 Y b P 9
to calculate the inverse operatién® from the Gaussian grid (2), Eq. (A18) can be rewritten as
(but not from the equally spaced lat/lon grid). Such a rou- N _ - )
tine can be found in the SPHEREPACK module available at' & 17 = 772 ;f””/fp"”(cow)y:n(m[yﬁ @)I"dRde (A19)
www?2.cisl.ucar.edu/resources/legacy/spherepack @@
Using the addition theorem of spherical harmonics,

A3 Addition theorem of spherical harmonics Eq. (A19) becomes

The derivation of the spectral representation of homogeneous

and isotropic horizontal correlations requires the use of the mn _ iif”wo =
472 A

addition theorem of spherical harmonics. Suppose we have

two points on a unit sphe®@ = (A, n) andQ’ = (A/, u’). Let

6 denote the great circle angular separation between those

points which is defined by

//Y”’(Q) Z [Y’" @ryn @y @)rdede (A20)

which yields
cosd = sing sing’ 4 cosp cosp’ cog A’ — 1) (A14) /
_ N _ (€M™ 1) = b8 8" s by = fu/N? (A21)
where¢ = sin~! . The addition theorem of spherical har-
monics states thafckson1998 Sect. 3.6): as a result of the orthogonality of the spherical harmonics.

Equation A21) is a necessary condition when correlations

- m meey 2 are homogeneous and isotropic. By substituting B41j in
m;n Y@ (@O (N )" Pu(cO) (ALS) (A17) and using the addition theorem of spherical harmon-
ics, one finds Eq.22), thus proving that Eq.A21) is also
or sufficient.
n Let us see how this result is extended in three dimensions.
> @ [Y@)] = N Py(cosd) . (A16)  LetZ(S2, p) be a 3-D error field on the sphere wherale-
m=—n notes the altitude. Again, we assume thas unbiased and
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Table A2. List of precalculated variables and their Fortran and using the EqA6), the previous equation can be rewrit-
counterpart. ten as
. . N PR—
Variable names - _corresponding (€@ pIE@ . PO = CY(p. p) Y NybaPu(cosd) (A28)
Fortran names )

M mu which leads to Eq.A25). If spatial correlations are separa-

A lambda ble, Eq. A28) is a necessary condition. To prove that the

w wg condition is sufficient, we substitute EgpZ8) in

P Pnm

eim Eiml TeONTRY 1 ’ TR

G G (& (P, (PHIY) = 1.2 (€2, p)lg (€2, pHI")

G’ G.TRANSP Q@

(cHl/2 Cv YUY (@) dQdS . (A29)

by Values stored ifCh ) ) i i

b bg_std and using the orthogonality of the spherical harmonics and

the addition theorem, we can find EA23).

normalized such thatz (2, p)?) = 1. Equation A21) ob- Appendix B
tained in two dimensions is generalized in three dimensions
as follows:

mpem' %y __ NV N\ son’ em’
(6 8 17) =V bu(p)bu(p)C, (P, P8y &y - (A22)  1he Supplement of this paper provides a code that al-

whereC is the vertical correlation matrix for the wavenum- lows calculation of the operations and L* along with
bern and the coefficients, are now dependent on the alti- tWo test programs. The operations related to Biena-

Fortran code

tude. trix are given inbglib _sh.f90 (which means “Back-
If C¥ andb, (p) are independent of and p, respectively, Ground LIBrary gnd_ Spherical Harmonics representatiqn”).
(A22) might be rewritten as The length of this file is rather short. Moreover, we tried
to use Fortran variable names that are close to those
({f(p)[{r:'/’/(p/)]*) :anV(p,p,)SZ/(SZ;/ (A23) presented here. The correspondence between the different

. ) operators discussed in Se@.and their coded counter-
and we can prove that the spatial correlations are separablﬁart are given in TableAl. A very important routine is
lated by a tensor product of two sub-matrices. In this case, ihe different operators. They are described in T#fe The
the horizontal and vertical correlation matrices are denotedsgyssian latitudes and weights such as the associated Legen-
by C" andCY, then the 3-D spatial correlation mat®is gre functions are precalculated by the freely available soft-
defined by ware SHTOOLS (available altttp://www.ipgp.fr/wieczor/
h v SHTOOLS/SHTOOLS.htmiwhich needs to be installed be-
c=C"®C (A24) o . : .
fore compiling the code. The vertical correlation matrix is

where® denotes the Kronecker tensor product. In terms ofcalculated during the precomputing and its square root is cal-
matrix elements, and considering homogeneous and isotropieulated using singular value decomposition (SVD). The SVD

correlations, we have uses LAPACK libraries which also need to be installed.
In order to allow the user to check if this code fulfills his
CQ,p.Q.p)=fO)C"(p.p". (A25)  needs without having to install the SHTOOLS library or LA-

) ) . . PACK (while this later is usually installed), this code can
Indeed, the correlations in the physical space might have thg,q, pe compiled in a “demo” mode. In this case, the Gaus-

following spectral representation sian latitudes and weights, the associated Legendre functions
and the vertical correlation matrix are read in files also pro-

N n N & vided. However, this mode is only available for a size grid of
C@ @ pPTN=3 > > > 120x 60 x 31 in lon/lat/lev as for vertical Gaussian correla-

romE T =om= , tions with L, = 3 levels.

GGy (PO (@)]* . (A26) In addition to the library of the spectral representation of

B, the code is provided with two tests. The first one checks
that the test of the adjoint is satisfied, i(e,L x) = (L*X, x)

for any value ofx and x. This is the case if we exclude
round-off errors. This test is calculated tast _adj.f90

By using Eq. A23), Eq. (A26) takes the form

N n
(€(Q, P, PHY=CYp,p) Y D ba¥y (@IY (@] . (A27)

n=0m=—n
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The second test is the assimilation of a single pseudoBerre, L.: Estimation of synoptic and mesoscale forecast error co-

observation as presented in Séctfor this test, a simulator
is given 6imul _sh.f90 ) and the quasi-Newton minimizer

variances in a limited-area model, Mon. Weather Rev., 128, 644,
doi:10.1175/1520-0493(2000)128644:EOSAME-2.0.CO;2

M1QN3 (m1gn3.f90 , Gilbert and Lemarechal 989. 2000. , ,
Information necessary to compile and run the code, andpoer: G. J.: Homogeneous and isotropic turbulence on the sphere,

the conditions for its use, are provided in a README file _ o Atmos. Sci,, 40, 154-163, 1983. o
. . Boer, G. J. and Shepherd, T. G.: Large-scale two-dimensional tur-
given in the Supplement.

f ical f hi dei | bulence in the atmosphere, J. Atmos. Sci., 40, 164-184, 1983.
In terms of numerical performances, this code is very 0WCortesi, U., Lambert, J. C., De Clercq, C., Bianchini, G., Blumen-

demanding in computer resources (CPU and memory). On giock, T., Bracher, A., Castelli, E., Catoire, V., Chance, K. V.,
a single processor, the CPU time consumed by the operations pe Mazere, M., Demoulin, P., Godin-Beekmann, S., Jones, N.,
L andL* is lower than the time consumed by M1QN3. For  Jucks, K., Keim, C., Kerzenmacher, T., Kuellmann, H., Kut-
the real assimilation of MIPAS ozone data as discussed in tippurath, J., larlori, M., Liu, G. Y., Liu, Y., McDermid, I. S.,
Sect.6, the operations. andL* take less than 1 % of the to- Meijer, Y. J., Mencaraglia, F., Mikuteit, S., Oelhaf, H., Pic-
tal CPU time. On an AMD Opteron 1.15 GHz processor and  colo, C., Pirre, M., Raspollini, P., Ravegnani, F., Reburn, W. J.,
considering a model resolution of 1801 x 37 grid points, Redaelli, G., Remedios, J. J., Sembhi, H., Smale, D., Steck, T,

the total time necessary to calculate the operatioasdL * Taddei, A., Varotsos, C., Vigouroux, C., Waterfall, A., Wet-
is~1.15 (~0.55s each). zel, G., and Wood, S.: Geophysical validation of MIPAS-

ENVISAT operational ozone data, Atmos. Chem. Phys., 7, 4807—
4867,d0i:10.5194/acp-7-4807-2002007.

Courtier, P., Andersson, E., Heckley, W., Vasiljevic, D., Ham-
rud, M., Hollingsworth, A., Rabier, F., Fisher, M., and
Pailleux, J.: The ECMWF implementation of three-dimensional
variational assimilation (3D-Var). I: formulation, Q. J. R. Mete-
orol. Soc., 124, 1783-180dpi:10.1002/qj.49712455002998.

Dee, D. P.: On-line estimation of error covariance parameters for
atmospheric data assimilation, Mon. Weather Rev., 123, 1128,
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AcknowledgementsiVe wish to thank Mark Wieczorek for making 1995,

SHTOOLS available and Mark Buehner and Pierre GautierfortheirDee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
help in the implementation of, respectively, the adjoint oper&tor Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
and the calculation of the spectral correlation coefficients. We also Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L.,
would like to thank Vincent Letocart for his help in the prepara- Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M.,
tion of the Fortran code, anceBastien Viscardy for his help in the Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H.,
preparation of the manuscript. Last but not least, we would like to Holm, E. V., Isaksen, L., Ellberg, P., Kohler, M., Matricardi, M.,

thank Ross Bannister (referee #1) for his thorough review and for McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-
useful suggestions that help to improve the manuscript. K., Peubey, C., de Rosnay, P., Tavolato, C.&f#ut, J.-N., and

Vitart, F.: The ERA-Interim reanalysis: configuration and perfor-

Supplementary material related to this article is
available online at: http://www.atmos-chem-phys.net/12/
10015/2012/acp-12-10015-2012-supplement.zip

QE is supported by Belgian Science Policy (BELSPO) Prodex
program under the project A3C. Part of the data used in this mance of the data assimilation system, Q. J. R. Meteorol. Soc.,
publication were obtained as part of the Network for the Detection 137, 553-597¢0i:10.1002/q].8282011.

of Atmospheric Composition Change (NDACC) and are publicly Derber, J. and Rosati, A.: A global oceanic data assimilation

available (seéttp://www.ndacc.orj system, J. Phys. Oceanogr., 19, 1333-13r.,10.1175/1520-
0485(1989)0191333:AGODAS>2.0.C0;2 1989.

Dethof, A. and HIm, E. V.: Ozone assimilation in the ERA-40
reanalysis project, Q. J. R. Meteorol. Soc., 130, 2851-2872,
doi:10.1256/qj.03.1962004.

Elbern, H., Schwinger, J., and Botchorishvili, R.: Chemical state
estimation for the middle atmosphere by four-dimensional varia-
tional data assimilation: system configuration, J. Geophys. Res.,

Bannister, R. N.: A review of forecast error covariance statistics in 115, D06302¢d0i:10.1029/2009JD011952010.
atmospheric variational data assimilation. I: characteristics andErrera, Q., Daerden, F., Chabrillat, S., Lambert, J. C., Lahoz, W. A.,
measurements of forecast error covariances, Q. J. R. Meteorol. Viscardy, S., Bonjean, S., and Fonteyn, D.: 4D-Var assimilation
Soc., 134, 1951-1970, 2008a. of MIPAS chemical observations: ozone and nitrogen dioxide

Bannister, R. N.: A review of forecast error covariance statistics analyses, Atmos. Chem. Phys., 8, 6169-61®i;10.5194/acp-
in atmospheric variational data assimilation. 1l: modelling the  8-6169-20082008.
forecast error covariance statistics, Q. J. R. Meteorol. Soc., 134Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clar-
1971-1996, 2008b. mann, T., Delbouille, L., Dudhia, A., Ehhalt, D., Endemann, M.,

Bartello, P. and Mitchell, H. L.: A continuous three-dimensional  Flaud, J. M., Gessner, R., Kleinert, A., Koopman, R., Langen, J.,
model of short-range forecast error covariances, Tellus A, 44, Lopez-Puertas, M., Mosner, P., Nett, H., Oelhaf, H., Perron, G.,
217,d0i:10.1034/j.1600-0870.1992.t01-2-000Q2.292.

Edited by: W. Lahoz

References

Atmos. Chem. Phys., 12, 100180031, 2012 www.atmos-chem-phys.net/12/10015/2012/


http://www.atmos-chem-phys.net/12/10015/2012/acp-12-10015-2012-supplement.zip
http://www.atmos-chem-phys.net/12/10015/2012/acp-12-10015-2012-supplement.zip
http://www.ndacc.org
http://dx.doi.org/10.1034/j.1600-0870.1992.t01-2-00002.x
http://dx.doi.org/10.1175/1520-0493(2000)128<0644:EOSAMF>2.0.CO;2
http://dx.doi.org/10.5194/acp-7-4807-2007
http://dx.doi.org/10.1002/qj.49712455002
http://dx.doi.org/10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2
http://dx.doi.org/10.1002/qj.828
http://dx.doi.org/10.1175/1520-0485(1989)019<1333:AGODAS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0485(1989)019<1333:AGODAS>2.0.CO;2
http://dx.doi.org/10.1256/qj.03.196
http://dx.doi.org/10.1029/2009JD011953
http://dx.doi.org/10.5194/acp-8-6169-2008
http://dx.doi.org/10.5194/acp-8-6169-2008

Q. Errera and R. M énard: Spectral representation of background error covariances 10031

Remedios, J., Ridolfi, M., Stiller, G., and Zander, R.: MIPAS: an Monin, A. S. and Yaglom, A. M.: Statistical Fluid Mechanics: Me-

instrument for atmospheric and climate research, Atmos. Chem. chanics of Turbulence, vol. 1, The MIT Press, 1971.

Phys., 8, 2151-218810i:10.5194/acp-8-2151-2008008. Monin, A. S. and Yaglom, A. M.: Statistical Fluid Mechanics: Me-
Fisher, M.: Background error covariance modelling, in: Seminar chanics of Turbulence, vol. 2, The MIT Press, 1975.

on Recent developments in data assimilation for atmospheréPanchev, S.: Random Functions and Turbulence, International Se-

and ocean, 8-12 September 2003, edited by: ECMWF, Shinfield ries of Monograph in Natural Philosophy, Pergamon Press, 1971.

Park, Reading, 45-64, 2003. Parrish, D. F. and Derber, J. C.: The National Meteorological
Gaspari, G. and Cohn, S. E.: Construction of correlation functions Center’s spectral statistical-interpolation analysis system, Mon.

in two and three dimensions, Q. J. R. Meteorol. Soc., 125, 723— Weather Rev., 120, 1747-1763, 1992.

757, 1999. Phillips, N. A.: The spatial statistics of random geostrophic modes
Gauthier, P., Courtier, P., and Moll, P.: Assimilation and first-guess errors, Tellus A, 38, 31@ki:10.1111/j.1600-

of simulated wind lidar data with a Kalman filter, 0870.1986.tb00418,4.986.

Mon. Weather Rev.,, 121, 1803, db0.1175/1520- Purser, R. J., Wu, W.-S., Parrish, D. F., and Roberts, N. M.: Nu-

0493(1993)12£1803:A0OSWLD>2.0.C0O;2 1993. merical Aspects of the Application of Recursive Filters to Vari-
Geer, A. J., Lahoz, W. A, Bekki, S., Bormann, N., Errera, Q., Es- ational Statistical Analysis. Part I: Spatially Homogeneous and

kes, H. J., Fonteyn, D., Jackson, D. R., Juckes, M. N., Mas- Isotropic Gaussian Covariances, Mon. Weather Rev., 131, 1524—

sart, S., Peuch, V.-H., Rharmili, S., and Segers, A.: The ASSET 1535, 2003.

intercomparison of ozone analyses: method and first results, AtSatoh, M.: Atmospheric Circulation Dynamics and Circulation

mos. Chem. Phys., 6, 5445-5474, 46i5194/acp-6-5445-2006 Models, ISBN 978-3-540-42638-7, Springer, 2004.

2006. Schwinger, J. and Elbern, H.: Chemical state estimation
Gilbert, J.-C. and Lemarechal, C.: Some numerical experiments for the middle atmosphere by four-dimensional variational

with variable storage quasi-Newton algorithms, Math. Prog., 45, data assimilation: a posteriori validation of error statis-

407-435, 1989. tics in observation space, J. Geophys. Res., 115, D18307,
Jackson, J. D.: Classical Electrodynamics, 3rd edn., Wiley & Sons, doi:10.1029/2009JD013113010.
1998. Swarztrauber, P. N.: On the spectral approximation of discrete

Krishnamurti, T. N., Bedi, H. S., Hardiker, V. M., and Ra- scalar and vector functions on the sphere, SIAM J. Numer. Anal.,
maswamy, L.: An Introduction to Global Spectral Modeling, 2nd 16, 934-949d0i:10.1137/07160694.979.
revised and enlarged edition, Springer, 2006. Swarztrauber, P. N.: Discrete Fourier transforms and related topics,

Lahoz, W. A., Errera, Q., Viscardy, S., and Manney, G. L.: The available at: http://www.cisl.ucar.edu/css/staff/pauls/tutorials/
2009 stratospheric major warming described from synergistic index.htm| Lecture 1, 2003.
use of BASCOE water vapour analyses and MLS observationsSwarztrauber, P. N.: Computing on the sphere: Part I, avail-
Atmos. Chem. Phys., 11, 4689-47@®j:10.5194/acp-11-4689- able at: http://www.cisl.ucar.edu/css/staff/pauls/tutorials/index.
2011, 2011. html, Lecture 2, 2003.

Lin, S.-J. and Rood, R. B.: Multidimensional flux-form semi- Swarztrauber, P. N. and Spotz, W. F.: Generalized discrete spherical
Lagrangian transport schemes, Mon. Weather Rev., 124, 2046— harmonic transforms, J. Comp. Phys., 159, 213-230, 2000.
2070, 1996. Talagrand, O.: Assimilation of observations, an introduction, J. Me-

Machenhauer, B.: The spectral method, in: Numerical Methods teorol. Soc. Jpn, 277, 191-209, 1997.
used in Atmospheric Models, edited by: Kasahara, E. A., No. 17Viscardy, S., Errera, Q., Christophe, Y., Chabrillat, S., and Lam-
in GARP Publication Series, WMO, 1979. bert, J.-C.: Evaluation of ozone analyses from UARS MLS as-

Machenhauer, B. and Daley, R.: A baroclinic primitive equation  similation by BASCOE between 1992 and 1997, IEEE J. Sel.
model with a spectral representation in three dimensions, Tech. Top. Appl., 3, 190-202d0i:10.1109/JSTARS.2010.2040463
Rep. 4, Institute for Theoritical Meteorology, Copenhagen Uni-  2010.
versity, 1972. Weaver, A. and Courtier, P.: Correlation modelling on the sphere

using a generalized diffusion equation, Q. J. R. Meteorol. Soc.,
127, 1815-184640i:10.1002/qj.49712757518001.

www.atmos-chem-phys.net/12/10015/2012/ Atmos. Chem. Phys., 12, 1000831 2012


http://dx.doi.org/10.5194/acp-8-2151-2008
http://dx.doi.org/10.1175/1520-0493(1993)121<1803:AOSWLD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1993)121<1803:AOSWLD>2.0.CO;2
http://dx.doi.org/10.5194/acp-6-5445-2006
http://dx.doi.org/10.5194/acp-11-4689-2011
http://dx.doi.org/10.5194/acp-11-4689-2011
http://dx.doi.org/10.1111/j.1600-0870.1986.tb00418.x
http://dx.doi.org/10.1111/j.1600-0870.1986.tb00418.x
http://dx.doi.org/10.1029/2009JD013115
http://dx.doi.org/10.1137/0716069
http://www.cisl.ucar.edu/css/staff/pauls/tutorials/index.html
http://www.cisl.ucar.edu/css/staff/pauls/tutorials/index.html
http://www.cisl.ucar.edu/css/staff/pauls/tutorials/index.html
http://www.cisl.ucar.edu/css/staff/pauls/tutorials/index.html
http://dx.doi.org/10.1109/JSTARS.2010.2040463
http://dx.doi.org/10.1002/qj.49712757518

