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Abstract. China and India are the two largest anthropogenic
aerosol generating countries in the world. In this study, we
develop a new inventory of sulfur dioxide (SO2) and primary
carbonaceous aerosol (i.e., black and organic carbon, BC
and OC) emissions from these two countries for the period
1996–2010, using a technology-based methodology. Emis-
sions from major anthropogenic sources and open biomass
burning are included, and time-dependent trends in activity
rates and emission factors are incorporated in the calcula-
tion. Year-specific monthly temporal distributions for major
sectors and gridded emissions at a resolution of 0.1◦

×0.1◦

distributed by multiple year-by-year spatial proxies are also
developed. In China, the interaction between economic de-
velopment and environmental protection causes large tem-
poral variations in the emission trends. From 1996 to 2000,
emissions of all three species showed a decreasing trend (by
9 %–17 %) due to a slowdown in economic growth, a decline
in coal use in non-power sectors, and the implementation of
air pollution control measures. With the economic boom af-
ter 2000, emissions from China changed dramatically. BC
and OC emissions increased by 46 % and 33 % to 1.85 Tg
and 4.03 Tg in 2010. SO2 emissions first increased by 61 %
to 34.0 Tg in 2006, and then decreased by 9.2 % to 30.8 Tg in
2010 due to the wide application of flue-gas desulfurization
(FGD) equipment in power plants. Driven by the remark-
able energy consumption growth and relatively lax emission
controls, emissions from India increased by 70 %, 41 %, and
35 % to 8.81 Tg, 1.02 Tg, and 2.74 Tg in 2010 for SO2, BC,
and OC, respectively. Monte Carlo simulations are used to
quantify the emission uncertainties. The average 95 % confi-
dence intervals (CIs) of SO2, BC, and OC emissions are esti-
mated to be−16 %–17 %,−43 %–93 %, and−43 %–80 %
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for China, and−15 %–16 %,−41 %–87 %, and−44 %–
92 % for India, respectively. Sulfur content, fuel use, and
sulfur retention of hard coal and the actual FGD removal ef-
ficiency are the main contributors to the uncertainties of SO2
emissions. Biofuel combustion related parameters (i.e., tech-
nology divisions, fuel use, and emission factor determinants)
are the largest source of OC uncertainties, whereas BC emis-
sions are also sensitive to the parameters of coal combustion
in the residential and industrial sectors and the coke-making
process. Comparing our results with satellite observations,
we find that the trends of estimated emissions in both China
and India are in good agreement with the trends of aerosol
optical depth (AOD) and SO2 retrievals obtained from dif-
ferent satellites.

1 Introduction

Atmospheric aerosols affect Earth’s energy budget by scat-
tering and absorbing solar radiation and by altering cloud
properties and lifetimes. They also exert large influences
on public health, air quality, weather, atmospheric chemistry,
hydrological cycles, and ecosystems (e.g., Ramanathan and
Carmichael, 2008; Streets et al., 2006, 2009). China and
India are the two largest anthropogenic aerosol generating
countries in the world. In the past decade, they have been
identified as the two hot spots in terms of high aerosol opti-
cal depth (AOD) observed from space (Kharol et al., 2011;
Prasad and Singh, 2007; van Donkelaar et al., 2008). The
major active components of aerosols in these two countries
are sulfate (of which the precursor is sulfur dioxide, SO2)
and the primary carbonaceous aerosols black carbon (BC)
and organic carbon (OC), together accounting for more than
60 % of the AOD (Chin et al., 2009; Streets et al., 2009).
From a global perspective, anthropogenic SO2, BC, and OC
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emissions from China and India contribute 30 %–40 % of
current global emissions (Bond et al., 2004, 2007; JRC/PBL,
2010; Smith et al., 2011), and have received the greatest at-
tention from compilers of emission inventories.

Trends in anthropogenic emissions are closely tied to eco-
nomic growth and technology development. Over the past
two decades, China and India have undergone significant
economic reform and have emerged as two of the world’s
fastest developing economies. Even during 2008–2009,
China and India were the two nations that were least affected
by the global economic recession, maintaining GDP growth
rates of 9 % and 6 %, respectively (IEA, 2010). In response
to this economic growth and the rapid expansion in industrial
production, energy consumption has increased accordingly.
The share of energy use in China and India to the total world
energy consumption increased from about 10 % in 1990 to
21 % in 2008 (IEA, 2010). Meanwhile, environmental leg-
islation in both countries has promoted the introduction of
new emission control and production technologies into the
market, causing major changes in technology distributions
as well as emission factors in relevant sectors. As a result,
emissions of aerosols (and their precursors) have changed
dramatically since the 1990s. Although some previous stud-
ies have reported SO2, BC, and OC emissions from China
and India, none of them have presented year-by-year trends
with up-to-date activity rates and new technology penetration
rates, especially for the period after 2005 (see Sect. 3.3.1).
Therefore, the main purpose of this study is to use a consis-
tent methodology to develop a comprehensive inventory of
SO2, BC, and OC emissions from China and India for the
period 1996–2010 on the basis of time-dependent activity
rates, technology penetration, emission factors, spatial prox-
ies, monthly temporal distributions, etc.

There are sometimes disagreements between observations
and model simulations (which make use of bottom-up emis-
sion databases), especially for carbonaceous aerosols, imply-
ing potentially large uncertainties in emission inventories.
For example, Tan et al. (2004) suggested that increases in
the TRACE-P emission inventory of particulate carbon by
60–90 % would bring modeled results into agreement with
observations in China. Top-down estimates based on in-situ
measurements of BC and CO during the INDOEX campaign
yielded BC emissions of 2–3 Tg yr−1 for the South Asia con-
tinent (Dickerson et al., 2002), higher than bottom-up inven-
tories (<1 Tg yr−1). Ramanathan and Carmichael (2008) es-
timated a global BC forcing of 0.9 W m−2 based on observa-
tion, three times higher than the average values of 0.3 W m−2

computed by bottom-up inventories-based general circula-
tion models. Therefore, quantification of emission uncertain-
ties is as important as estimating central values. Streets et
al. (2003) estimated the uncertainty for each emitting sub-
sector in the TRACE-P inventory by combining the coef-
ficients of variation (CV, the standard deviation divided by
the mean) of the contributing factors. The uncertainties were
then added linearly or in quadrature based on the judgments

of dependent or independent correlations between different
emitting subsectors. The confidence intervals (CIs) of this
method are symmetric about the mean because all the un-
derlying parameters are assumed to be normally distributed.
However, the true probabilities of some parameters are asym-
metric. Bond et al. (2004) reviewed the emission charac-
teristics of various combustion sources, and found that the
lognormal distribution is more appropriate for emission fac-
tors of carbonaceous aerosols. To obtain an asymmetric CI
of each emitting source, they calculated the upper and lower
CIs separately by treating the one-sided CI in the underlying
distributions as uncertainties in a lognormal distribution and
combining them in quadrature. In the past two decades, the
Monte Carlo approach has been introduced into the emission
inventory community to quantify the uncertainties of bottom-
up emission estimates. It has been gradually extended from
an individual sector to multiple sectors in a country (Zhao
et al., 2011, and references therein). Taking advantage of
combining uncertainties of numerous parameters simultane-
ously and identifying the contribution of each parameter to
the output’s variance, we choose the Monte Carlo approach
to evaluate the uncertainties of emissions estimated in this
work.

The prime motivation of this study is to support the
modeling work of the National Aeronautics and Space Ad-
ministration’s Goddard Space Flight Center (NASA/GSFC).
NASA/GSFC is tasked to conduct a hindcast investiga-
tion of multi-decadal changes of atmospheric aerosols and
their effects on surface radiation using the Goddard Chem-
istry Aerosol Radiation and Transport (GOCART) model in
combination with aerosol data from satellite observations,
ground-based measurements, and field experiments. The
study is focused on the time period of the satellite era from
1980 to 2010. In our previous study, we have compiled
a time-varying, comprehensive global emission dataset of
aerosols and their precursors for the GOCART model for the
period 1980–2006 (Chin et al., 2009; Streets et al., 2006,
2009). This dataset is considered reliable from 1980 to the
mid-1990s, but thereafter updating is necessary to reflect new
statistical data availability and the transformation of technol-
ogy. The current work reported here addresses updated and
extended emission datasets for China and India, two of the
most important regions in the world. Subsequently, the work
will be extended to all world regions.

In this study, we estimate the SO2 and primary carbona-
ceous aerosol (i.e., BC and OC) emissions from China and
India for 1996–2010 using a detailed technology-based ap-
proach. Section 2 documents the methodology and data
sets used in this work. The results, including estimated
emissions, uncertainty analysis, comparison with other stud-
ies, gridded datasets, and seasonality of emissions are pre-
sented in Sect. 3. We also use satellite observations to verify
our emission trends, the discussion of which is included in
Sect. 4. Summary and conclusions are in Sect. 5.
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2 Methodology and data sets

2.1 Estimation of SO2 and carbonaceous aerosol
emissions

2.1.1 General methodology

A technology-specific methodology is more appropriate
and accurate for estimating emissions from anthropogenic
sources because of the wide variation in emission rates for
different types of processes and control technologies. In
our previous work, we reported the development of detailed
inventories of primary carbonaceous aerosol emissions for
China, Asia, and the world (Bond et al., 2004; Streets et
al., 2001, 2004). In particular, a detailed technology-based
global inventory of primary BC and OC emissions was re-
ported for the year 1996 (Bond et al., 2004). Using the an-
nual fuel-use trends by world region and economic growth
parameters included in the IMAGE model (National Institute
for Public Health and the Environment, 2001), which was de-
veloped for the Intergovernmental Panel on Climate Change
(IPCC), we further extended the 1996 inventory to an annual
trend for the period 1980–2000 and adapted the methodol-
ogy to calculate annual SO2 emissions over the same period
(Streets et al., 2006, 2008, 2009).

In this study, a similar approach is adopted. The emis-
sion sources are categorized into five major sectors (i.e.,
power generation, industry, residential, transport, and open
biomass burning) and more than 120 sector/fuel(or prod-
uct)/technology combinations, including both fuel combus-
tion and non-combustion sources. Total emission (Ei,j ) for
speciesj and countryi is given by the following equation:

Ei,j =

∑
l

∑
m

Ai,l,m

[∑
n

Xi,l,m,nEFi,j,l,m,n

]
(1)

wherel, m, andn represent the sector, the fuel/product type,
and the technology type for combustion and industrial pro-
cesses, respectively.A represents the activity rates, such as
fuel consumption and material production, andX represents
the fraction of fuel/product for a sector that is consumed by a
specific technology (i.e.,

∑
X = 1 for each fuel/product and

sector). EF is the net emission factor, and for sub-micrometer
carbonaceous aerosols, it is given by:

EFBC (or OC) = EFPM ·F1.0 ·FBC (or OC) ·Fcontrol (2)

where EFPM is the bulk particulate emission factor;F1.0 is
the fraction of the emissions with diameters smaller than
1 µm;FBC (orFOC) is the fraction of the PM1.0 (particles less
than 1.0 µm in aerodynamic diameter) that is BC (or OC);
andFcontrol is the fraction of PM1.0 that penetrates the con-
trol device. For SO2 from fuel combustion sources, EF can
be calculated by:

EFSO2 = 2·S ·(1−SR) ·(1−ηk) (3)

whereηk is the removal efficiency of control technologyk; S

and SR are the sulfur content of fuel and sulfur retention in
ash, respectively. Based on this framework, we estimated the
SO2 and carbonaceous aerosol emissions in China and India
for 1996–2010 by incorporating the time-dependent trends
in activity rates, technology penetration, emission controls,
coal sulfur content, etc.

2.1.2 Uncertainty analysis

Due to the various underlying probability distributions of in-
put parameters, the uncertainties cannot be combined ana-
lytically. In this work, we use a Monte Carlo approach to
determine the uncertainties in the emission estimates. The
procedure is to generate a set of values of the random vari-
ables in accordance with specified probability distributions,
so that a series of corresponding solutions is obtained. The
methods of statistical estimation and inference can then be
applied to such solutions to describe their uncertainties. For
Monte Carlo simulations, specifying the probability distri-
butions of the input parameters is a fundamental task. For
parameters with adequate data and reported distributions, we
applied them directly in our model, and for parameters with
limited or no observation data, probability distributions were
based on the authors’ expert judgment. These will be dis-
cussed in detail in the following sections. All of the input pa-
rameters (e.g., activity rates, emission factor determinants)
and their corresponding probability distributions were then
incorporated into a Monte Carlo framework with the Crystal
Ball software and at least 6000 valid simulations were per-
formed. Unless specified otherwise, the term “uncertainty”
in this article refers to a 95 % CI around the central estimate
(i.e., mean).

2.1.3 Activity rates

Energy and fossil fuel consumption data for most of the
sector/fuel/technology combinations were from the Interna-
tional Energy Agency (IEA, 2010), which provides informa-
tion on 102 flows (e.g., imports, exports, and sectoral con-
sumption) of 66 fuels. We separated and aggregated these
activities based on the emission characteristics of each com-
bustion process to fit the source types in our model (see Bond
et al., 2004 for details). At present, 2008 is the latest year for
which those data are available. Activity rates were therefore
extrapolated from 2008 to 2010 based on national fast-track
statistics. If no up-to-date data are available, values from the
most recent year are used. Since probability distributions are
not provided with official statistics, we applied normal dis-
tributions for all of the fossil fuel usage combinations. Gen-
erally, the uncertainties were assumed as follows: 10 % for
power generation, 20 % for industrial and liquid fossil fuels
in the residential sector, and 33 % for transport and coal use
in the residential sector. These values are based on a review
of previous studies (Bond et al., 2004; Streets et al., 2003;
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Smith et al., 2011; Zhao et al., 2011). It was reported that
the IEA statistical data (edition 2004) of coal consumption in
China may be underestimated during 1996–2003, and are not
recommended for use in emission inventory studies in China
during this period (Akimoto et al., 2006). However, IEA re-
vised China’s historical coal consumption data in the current
edition based on new economic surveys by the China Na-
tional Bureau of Statistics (NBS) (IEA, 2010). Hence, IEA
coal consumption statistics of China are used in this work.
For India, there are no official statistics for coal consump-
tion in the residential sector, and very little or no coal con-
sumption was assumed in several previous Indian emission
inventories (Parashar et al., 2005; Reddy and Venkataraman,
2002a). However, IEA reported that the residential sector
contributes about 20–30 % of the non-power-generation coal
use (IEA, 2010). For this reason, uncertainties of 50 % were
assigned to both industrial and residential coal consumption
in India. In India, a high gasoline price leads to the prac-
tice of fuel adulteration (i.e., mixing kerosene into gasoline).
The fraction of kerosene in fuel can reach as high as 50 %,
but the actual extent of this practice is unknown (Dickerson
et al., 2002; Patra and Mishra, 2000). Dickerson et al. (2002)
assumed that all spark-ignition engines burn 2/3 gasoline and
1/3 kerosene. Using the same assumption, we multiplied the
on-road gasoline consumption in India by 1.5, and assigned
an uncertainty of 50 % to it.

Historical biofuel consumption in China and India were
obtained from other data sources. For China, the provin-
cial consumption of biofuel was derived from the China En-
ergy Statistical Yearbook (CESY) (NBS, 1998–2010), and
the consumption patterns in rural areas were taken from
Zhang et al. (2009a). For India, previous estimates of biofuel
consumption contained large uncertainties due to the small
sample sizes and outdated energy surveys carried out during
1985–1992 (e.g., Bond et al., 2004; Reddy and Venkatara-
man, 2002b; Streets et al., 2003; Yevich and Logan, 2003;
Sinha et al., 1998). To address these drawbacks, Habib et
al. (2004) developed a new method based on food consump-
tion statistics and the specific energy requirement for food
preparation, and estimated Indian biofuel consumption for
cooking in year 2000. In this study, we followed a similar
methodology, and extended it to an annual trend for the pe-
riod 1996–2010. The probability distribution of biofuel use is
probably not symmetric. Yevich and Logan (2003) examined
both the range and the standard deviation of published per
capita biofuel usage, and assessed uncertainties of−40 % to
+95 % for biofuel consumption in Asia. Habib et al. (2004)
estimated that the 95 % CI of total biofuel consumption in
India is−35 %–54 % about the mean with lognormal distri-
bution. Therefore, we generally assumed lognormal distri-
butions for biofuel use for both China and India. The uncer-
tainties (upper 95 % CI about the mean) are 46 %, 74 %, and
86 % for Indian fuelwood, dung-cake and crop waste, respec-
tively (Habib et al., 2004), and 80 % for biofuel use in China
(authors’ judgment).

Four types of open biomass burning are included: tropical
forests, extra-tropical forests, savanna/grassland, and crop
residue burning in fields. The national dry matter burned
of forests and grassland were zonally aggregated accord-
ing to the country boundaries of China and India from the
Global Fire Emissions Database (GFED) version 3.1, which
calculates fire emissions based on a revised version of the
Carnegie-Ames-Stanford-Approach (CASA) biogeochemi-
cal model and improved satellite-derived estimates of area
burned, fire activity, and plant productivity (van der Werf
et al., 2010). The database provides the first global assess-
ment of the contributions of different sources to total global
fire emissions at 0.5◦×0.5◦ spatial resolution for the 1997–
2009 with a monthly time step. For years 1996 and 2010, we
used average values of data between 1997 and 2009. Regard-
ing the probability of open burning of each type of fire, nor-
mal distributions with year-specific uncertainties provided in
the GFED v3.1 were assumed. Although GFED v3.1 con-
tains fires from agricultural waste burning, these estimates
are likely a lower bound, since the method for measuring
burned area can only detect the relatively large fires (van der
Werf et al., 2010). Therefore, we adopted a different ap-
proach for estimating the burning of crop residue in fields,
using the product of the yield of different crops, the crop-
to-residue ratios, and the fraction of crop burnt in the field
(Cao et al., 2006; Sahai et al., 2010; Venkataraman et al.,
2006; Wang and Zhang, 2008). Crop production statistics
were obtained from the China Agricultural Yearbook (Min-
istry of Agriculture of China, 1997–2009) and the India Agri-
culture Statistics at a Glance (Ministry of Agriculture of In-
dia, 1996–2010) for China and India, respectively. Crop-to-
residue ratios and crop burnt fraction in the field were from
Cao et al. (2006) and Wang and Zhang (2008) for China, and
Sahai et al. (2010) and Venkataraman et al. (2006) for India.
Derived from Sahai et al. (2010) and Zhao et al. (2011), nor-
mal distributions with uncertainties of 40 % were assumed
for crop waste burned in fields.

We followed Bond et al. (2004)’s method to estimate open
waste burning of the two countries during 1996–2010. To-
tal open waste combustion was calculated by multiplying
per capita waste generation rates, urban populations (assume
waste generation in rural areas is low in developing coun-
tries because goods are inherently recycled), and fraction of
waste burned in urban areas. We acknowledge that our es-
timates of open waste burning are quite uncertain, and as-
sign uncertainties of 200 % to these estimates (Bond et al.,
2004). For non-combustion emissions, industrial production
levels were obtained from various sources, such as the China
Industry Economy Statistical Yearbook (NBS, 1997–2010a)
and the Handbook of Statistics on the Indian Economy (Re-
serve Bank of India, 2010). We applied normal distributions
with uncertainties of 20 % to these statistics based on expert
judgment.

Figure 1 shows annual energy consumption by sector
and fuel type in China and India between 1996 and 2010.
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Fig. 1. Energy consumption by sector and fuel type, and biomass
burned in(a) China and(b) India during 1996–2010.

Quantities of fuels were converted into energy equivalents
using net calorific values supplied in IEA Energy Statistics
(IEA, 2010) and the GAINS model (Klimont et al., 2009).
Energy consumption in China remained relatively stable dur-
ing 1996–2000 and then increased dramatically from 43.3 EJ
to 105.5 EJ during 2000–2010, with an annual growth rate
of 9.3 %. On average, the highest sectoral consumption is in
industry (39 %), followed by power plants (29 %), residen-
tial (24 %), and transportation (8 %). Different from China,
the energy consumption in India continuously increased from
17.8 EJ in 1996 to 29.3 EJ in 2010, with an annual growth
rate of 3.6 %. Industry, power plants, residential, and trans-
portation contribute 22 %, 31 %, 39 %, and 8 % of the na-
tional energy consumption, respectively. Figure 1 also shows
the amount of biomass burned in the two countries. Obvi-
ously, open biomass burning has significant interannual vari-
ability. The average dry mass burned in China and India dur-
ing 1996–2010 is 21.6 Mg yr−1 and 32.0 Mg yr−1 for forest
and grassland, and 130.5 Mg yr−1 and 91.2 Mg yr−1 for agri-
cultural waste.

2.1.4 Technology divisions

As shown in Eq. (1), we used parameterX to divide the sec-
tor/fuel (or product) combinations into different technolo-

gies. This procedure provides the ability to estimate emis-
sions dynamically, because the change of emission factors
over time can be represented as a change of technology pen-
etration. This is very important for rapidly developing coun-
tries like China and India since new technologies are con-
tinuously coming into the market, causing dramatic changes
in emission factors. For fuel use in the residential, power
generation, and industry sectors, the application rates of dif-
ferent combustion technologies (or processing technologies
for industrial products) and the distribution of emission con-
trol devices during 1996–2010 were compiled from a wide
range of literature, such as Lei et al. (2011), Klimont et
al. (2009), Lu et al. (2010), Streets et al. (2003), Reddy
and Venkataraman (2002a, b), and Zhao et al. (2011). For
the transportation sector, technologies refer to different vehi-
cle types with different emission standards. In the present
work, we classified on-road vehicles into four types, in-
cluding light-duty gasoline vehicles, light-duty diesel vehi-
cles, heavy-duty diesel vehicles, and motorcycles. Time-
dependent distribution of oil consumption between different
vehicle/standard types was derived from He et al. (2005) and
Wang et al. (2006) for China, and the GAINS-Asia model
(Klimont et al., 2009) for India. For off-road vehicles and
machinery, we directly tabulated the fuel use of ships, rail-
road locomotives, and agricultural vehicles from IEA statis-
tics. We also took into account the effect of superemitters of
each vehicle type, since they could contribute a large frac-
tion of carbonaceous aerosol emissions to the transportation
sector (Bond et al. 2004, and references therein), and rel-
evant information was derived from the Speciated Pollutant
Emission Wizard (SPEW)-Trend model (Yan et al., 2011).

It is difficult to directly quantify the uncertainties of tech-
nology divisions because (1) it is almost impossible to obtain
the probability distribution and CI ofX, and (2) the technol-
ogy fractions in each fuel/product sector are highly correlated
and should meet the constraint that

∑
X = 1. Alternatively,

Bond et al. (2004) assigned the uncertainties in technology
divisions by increasing the fraction of higher-emitting tech-
nologies so that they contribute an additional 10 % of the
total fraction, and decreasing the fraction of lower-emitting
technologies by an equal amount. Here, we modified this
method to generate random variables of technology frac-
tions. For fuel/product with two technology divisions (of
which fractions areX1 andX2), a uniform distribution was
assumed toX1 in the range of±0.1 about the mean (i.e.,
[X1,mean−0.1,X1,mean+0.1]), whileX2 was calculated as 1−
X1. For fuel/product with three or more divisions (of which
fractions areX1 − Xn), we assumed uniform distributions
in the range of±0.1 about the mean for both the highest-
emitting (i.e., [Xhigh,mean−0.1, Xhigh,mean+0.1]) and lowest-
emitting technology (i.e., [Xlow,mean−0.1, Xlow,mean+0.1]),
and simply determined the variation ranges of the other tech-
nology fractions as±(1-Xhigh−Xlow −

∑
Xother,mean)/(n−

2). If negative numbers were generated for any combination,
this series of random variables was discarded. In addition,
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when we believe our understanding of a certain technology
division is more uncertain, we alter the fraction by 0.3 in-
stead of 0.1 (e.g., for coke making with/without controls and
superemitter fractions in a vehicle fleet).

2.1.5 Emission factors

As shown in Eq. (3), the emission factor of SO2 is depen-
dent on the fuel sulfur content (S) and the sulfur retention
ratio in ash (SR). For China,S values of coal and oil con-
sumed by combustion sources were derived from our previ-
ous work and recent literature (Klimont et al., 2009; Ohara
et al., 2007; Zhao et al., 2008; Streets et al., 2003, 2006;
Lu et al., 2010). The national averageS of coal in China
was 1.10 % in 1996, 1.08 % in 2000, and 1.02 % in 2005.
We used interpolation values to representS in each year dur-
ing 1996–2005, and assumed the sulfur contents did not vary
after 2005, because no reliable data are available. TheS of
oil consumed in road transportation in China was determined
from the national standards and the GAINS model, and it de-
clined from 0.05 % to 0.005 % for gasoline and from 0.28 %
to 0.02 % for diesel during 1996–2010. For India, theS val-
ues of fossil fuels were based on the data reported by Reddy
and Venkataraman (2002a) and the GAINS model (Klimont
et al., 2009). The meanS of coal in India was determined
to be 0.55 %, and that of gasoline and diesel for road trans-
portation decreased from 0.18 % to 0.08 % and from 0.47 %
to 0.05 % between 1996 and 2010, respectively. Regarding
the probability distributions ofS, we assumed normal distri-
butions with uncertainties of 20 % for all fossil fuels (Smith
et al., 2011; Streets et al., 2003). The SR ratio for coal-
fired power plants in China was assumed to be 10 % with
beta distributions (95 % CI: 7.5 %–14 %) based on field mea-
surements by Zhao et al. (2011). For other sectors, SR ra-
tios were set at 5 %–45 %, depending on the process type,
combustion technology, and coal type. Due to the lack of in-
formation on field measurements, uniform distributions were
assumed in the range of minimum and maximum values re-
ported in the literature (Klimont et al., 2009; Ohara et al.,
2007; Reddy and Venkataraman, 2002a; Smith et al., 2011;
Streets et al., 2003; Zhao et al., 2011). The SO2 emission
factors of biofuel combustion were based on the measure-
ments by Habib et al. (2004), and we assumed normal dis-
tributions with uncertainties provided in their work. For SO2
emission factors of industrial processes, values in the GAINS
model were used and normal distributions with uncertainties
of 40 % were applied based on the authors’ judgment (Smith
et al., 2011; Streets et al., 2003).

The emission factor of SO2 is also strongly dependent
on the application rate and the removal efficiency of flue-
gas desulfurization (FGD) devices. FGD application rates of
power plants in China were estimated by the ratio of aver-
age FGD installed capacity to the average capacity of power
plants in each year. Relevant data were obtained from the
China Ministry of Environmental Protection (MEP) and the

China Electric Power Yearbook (State Electricity Regulatory
Commission, 2000–2009). Ideally, the SO2 removal effi-
ciency of FGD can reach 95 % (Zhao et al., 2011). How-
ever, actual operations rarely reach this (Xu et al., 2009). In
the present work, symmetrically triangular distributions were
assumed for the actual removal rate of FGD. We set the offi-
cial data as the most likely value, and the ideal value of 95 %
as the maximum to build the triangular distribution function.
For example, the official data from the China MEP reported
that 73.2 % of SO2 was removed from coal-fired power plants
equipped with FGD in 2007 (MEP, 2009). Thus, the mean
value of removal efficiency of FGD in 2007 was 73.2 % with
a triangular distribution in the range of 51.4 % to 95 %. For
Indian power plants, the application rate of FGD is very low
(<2 %) (Reddy and Venkataraman, 2002a) since Indian coal
has a much lower sulfur content. Therefore, the effect of
FGD on SO2 emissions from India was not considered in this
study.

Emission factor determinants of BC and OC for each of
the sectors, fuels, and technologies in Eq. (2) were updated
in collaboration with Professor Tami Bond on the basis of
their previous work (Bond et al., 2004). In addition, we intro-
duced minor adjustments after reviewing some new country-
specific measurements of emission factors for biofuel com-
bustion in India (Parashar et al., 2005; Venkataraman et al.,
2005; Habib et al., 2008) and China (Cao et al., 2006; Li et
al., 2009), and residential coal combustion in China (Chen
et al., 2009; Zhi et al., 2008). Regarding the uncertainties
of emission factor determinants, Bond et al. (2004) reviewed
the BC and OC emission characteristics of various combus-
tion sources comprehensively, and incorporated the informa-
tion (central estimate, lower and upper bounds, etc.) of each
parameter into a program called Speciated Particulate Emis-
sions Wizard (SPEW). For the bulk particulate emission fac-
tors (EFPM), Bond et al. (2004) found that the lognormal
distribution provides a reasonable fit to the measured data.
Hence, we assumed EFPM is lognormally distributed with
95 % CI at the lower and upper bounds provided in SPEW.
For other parameters (F1.0, FBC, FOC, andFcontrol), uniform
distributions in the range of lower and upper bounds provided
in SPEW were assumed due to the limited data availability.

Andreae and Merlet (2001) critically reviewed and eval-
uated the emission factors of trace gases and aerosols from
open biomass burning. Since not enough data are available,
uncertainties of SO2, BC, and OC emission factors for open
burning of forests, grasslands and agricultural wastes were
characterized by the means and standard deviations of their
data, assuming a normal distribution.

2.2 Spatial allocation method

We used a “top down” approach to transform country-level
emissions to gridded datasets. Sectoral emissions (exclud-
ing emissions from power plants and forest and savanna
burning) were first allocated to each province (or state),
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and then distributed on a 0.1◦
×0.1◦ grid using appropriate

year-by-year spatial proxies. For the first step, emission in-
formation at provincial (or state) level was obtained from
Lu et al. (2010) and Lei et al. (2011) for China, and the
GAINS model (Klimont et al., 2009) for India. We gen-
erated year-specific allocation factors at a resolution of a
0.1◦

×0.1◦ by using various types of Geographical Informa-
tion System (GIS) datasets: (1) total population data were
extracted from the LandScan Global Population Data Set de-
veloped by Oak Ridge National Laboratory for the period
2004–2008 (ORNL, 2009), and from the History Database of
the Global Environment (HYDE) developed by the Nether-
lands Environmental Assessment Agency for the period be-
fore 2004 (Goldewijk et al., 2011); (2) urban and rural pop-
ulation data were developed based on the total population
datasets and information from the Global Rural-Urban Map-
ping Project (GRUMP) (CIESIN et al., 2004); (3) cropland
cover data during 1996–2007 were obtained from an updated
version of the Global Cropland Dataset (Ramankutty and Fo-
ley, 1999); (4) road networks were extracted from the Digi-
tal Chart of the World (DMA, 1993); (5) China’s industrial
GDP at county level during 2000–2008 were obtained from
the China County Statistical Yearbook (NBS, 2001–2009).
The allocation rules are: (1) road networks for on-road trans-
portation emissions, (2) cropland cover for emissions from
agricultural waste burning and off-road tractors, (3) China’s
industrial GDP by county for industrial emissions in China,
(4) EDGAR 4.1 (JRC/PBL, 2010) industrial gridded emis-
sions for industrial emissions in India, (5) rural population
for residential biofuel combustion, (6) urban population for
emissions from residential coal-fired boilers and open waste
burning, and (7) total population for all other area sources.
It should be noted that assessing the uncertainty in the spa-
tial allocation is beyond the scope of this study and was not
considered.

Emissions from biomass burning and coal-fired power
plants were treated separately in this study. For open biomass
burning from forest and savanna, gridded data from GFED
v3.1 (van der Werf et al., 2010) were directly used. For
China’s coal-fired power sector emissions, year-by-year grid-
ded data were obtained from our collaborators at Tsinghua
University (Zhang et al., 2009b; Zhao et al., 2008). They
were generated from a detailed, unit-based inventory specifi-
cally for China’s power sector, and all power generation units
with capacity larger than 300 MW (∼400 units) were iden-
tified as large point sources (LPSs), while other plants were
treated as area sources. Similar to China, we also developed
a detailed, unit-based inventory for India’s power sector. The
unit-level information was derived from various series of
the Performance Review of Thermal Power Stations (Central
Electricity Authority, 2000–2010), and all power generation
units with capacity larger than 20 MW (∼500 units) were in-
cluded.

2.3 Estimation of seasonal variations

Year-specific monthly temporal distributions for SO2, BC,
and OC emissions from each major sector during 1996–2010
were developed. For the residential sector, we followed the
same methodology used in the TRACE-P inventory (Streets
et al., 2003), assuming a dependence of stove operation on
provincial (or state) monthly mean temperatures, to generate
monthly emissions. For the other sectors, monthly temporal
distributions were determined from monthly activity data of
power generation, industrial GDP (or industrial production
index), sulfuric acid and coke production, volume of pas-
senger and freight transported by ship, railway, and aviation,
etc. (Reserve Bank of India, 2010; Central Statistical Orga-
nization, 2000–2010; NBS, 1997–2010b, c). The monthly
emissions of open biomass burning from forest and savanna
were obtained directly from GFED v3.1 (van der Werf et al.,
2010), and those from agricultural waste burning were de-
termined based on the work of Wang and Zhang (2008) for
China and Venkataraman et al. (2006) for India.

2.4 Data sets of SO2 and AOD

SO2 and AOD satellite data are used to compare with our
emission estimates. The SO2 satellite data are from the
Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY, aboard the European Space
Agency’s ENVISAT satellite, launched in March 2002) and
the Ozone Monitoring Instrument (OMI, aboard NASA’s
EOS/Aura satellite, launched in July 2004). Appropri-
ate air-mass factors (AMF) are required to convert the re-
trieved slant columns of SO2 from both instruments into
vertical columns. The value of AMF is dependent on
the satellite viewing geometry, the SO2 vertical distribu-
tion, the reflectivity (albedo) of the earth’s surface, the to-
tal column ozone, aerosols, clouds, etc. (Krotkov et al.,
2008; Lee et al., 2009). For SCIAMACHY, we used the
monthly level-3 product with grid cells of 0.25◦

×0.25◦

from the Support to Aviation Control Service (SACS,http:
//sacs.aeronomie.be/index.php), for which the AMF was
pre-calculated with the radiative transfer model LIDORT.
For OMI, the planetary boundary layer (PBL) SO2 data
in the OMSO2 Level-2G products were used (a fixed
global AMF of 0.36 is applied), and they were acquired
from NASA’s Goddard Earth Sciences Data and Informa-
tion Services Center (GES-DISC) athttp://disc.sci.gsfc.nasa.
gov/Aura/data-holdings/OMI/omso2gv003.shtml. Daily re-
trievals were first filtered to remove data with large so-
lar zenith angle (>70◦), or relatively high radiative cloud
fraction (>0.3) and terrain height (>1.5 km), or anomalous
scenes, and then averaged at 0.5◦

×0.5◦ resolution to reduce
the noise (Nickolay Krotkov, personal communication). An-
nual mean SO2 column amounts were then calculated from
the daily data for the years 2005–2010.
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Table 1. Emissions of SO2, BC, and OC in China by sector and fuel type (Gg/year).

1996 2000 2004 2008 2010

SO2 Power plants 9104 9959 15 655 12 486 6587
Industry 11 436 8559 11 890 16 370 20 388
Residential 3212 1947 2048 2365 2931
Transport 499 614 865 819 857

Coal 22 737 19 448 27 697 28 881 27 372
Oil 709 845 1363 1274 1352
Biofuel 89 87 126 129 127
Other 716 699 1273 1756 1912

Forest & savanna burning 14 23 10 14 14
Agricultural waste burning 54 51 52 58 58

Total 24 318 21 153 30 520 32 112 30 834

BC Power plants 12 11 14 19 21
Industry 527 370 437 510 501
Residential 790 639 826 888 936
Transport 92 139 194 259 283

Coal 849 518 576 636 662
Oil 141 205 290 396 434
Biofuel 418 417 583 620 619
Other 14 18 21 24 25

Forest & savanna burning 12 19 10 13 12
Agricultural waste burning 90 86 88 97 97

Total 1524 1263 1569 1787 1850

OC Power plants 12 10 11 10 11
Industry 520 359 405 446 384
Residential 2150 1893 2519 2670 2790
Transport 85 152 197 241 260

Coal 1120 685 740 821 850
Oil 102 175 229 284 308
Biofuel 1528 1533 2138 2234 2257
Other 17 21 25 28 30

Forest & savanna burning 127 212 88 126 126
Agricultural waste burning 427 409 419 467 463

Total 3322 3035 3638 3959 4033

AOD satellite retrievals are from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) and Multi-angle
Imaging Spectroradiometer (MISR). The MODIS sensors are
aboard both the NASA EOS/Terra and EOS/Aqua satellites,
which were launched in December 1999 and May 2002, re-
spectively. The MODIS AOD retrieval is based on scene
brightness over dark surfaces, using empirical relationships
in the spectral variation in surface reflectivity (Remer et al.,
2005). The AOD data have discontinuities in some mesh
grid points, mainly in middle and high latitudes (i.e., bright
land surfaces such as the desert and snow-covered surfaces),
which were excluded in the analysis. Besides MODIS, the
EOS/Terra satellite also has the MISR instrument on board.

It uses observed differences in the reflective properties of
Earth’s surface with nine viewing angles to retrieve AOD
(Kahn et al., 2005). In this study, the monthly level-3 prod-
ucts of Terra-MODIS (v5.1, 550 nm), Aqua-MODIS (v5.1,
550 nm), and MISR (v31, 555 nm) are used, and they were
acquired using the NASA’s GES-DISC Interactive Online
Visualization and Analysis Infrastructure (Giovanni) (http:
//disc.sci.gsfc.nasa.gov/giovanni). Global coverage in the ab-
sence of clouds is obtained in one to two days for MODIS
and in six to nine days for MISR. Horizontal resolutions are
1◦

×1◦ and 0.5◦×0.5◦ for MODIS and MISR, respectively.

For the purpose of identifying the months in which an-
thropogenic emissions have the greatest impact on AOD, and
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Table 2. Emissions of SO2, BC, and OC in India by sector and fuel type (Gg/year).

1996 2000 2004 2008 2010

SO2 Power plants 2550 3251 3791 4708 5236
Industry 1945 1973 2102 2544 2784
Residential 374 321 350 543 583
Transport 263 225 207 192 144

Coal 3375 3779 4559 6019 6730
Oil 1533 1732 1593 1638 1661
Biofuel 87 84 87 99 99
Other 138 175 210 232 257

Forest & savanna burning 17 15 17 14 17
Agricultural waste burning 36 33 36 42 44

Total 5185 5819 6502 8044 8807

BC Power plants 3 4 4 5 5
Industry 155 168 198 217 227
Residential 402 421 481 563 579
Transport 80 88 88 107 111

Coal 177 172 209 276 295
Oil 117 126 124 153 159
Biofuel 338 373 426 449 454
Other 8 10 12 14 15

Forest & savanna burning 19 17 19 16 19
Agricultural waste burning 60 56 59 71 74

Total 718 753 850 979 1015

OC Power plants 6 8 10 12 14
Industry 155 166 195 208 214
Residential 1379 1476 1725 1899 1946
Transport 52 61 56 58 54

Coal 203 186 226 322 346
Oil 67 76 70 75 72
Biofuel 1313 1438 1676 1763 1792
Other 9 11 14 17 17

Forest & savanna burning 157 142 158 133 157
Agricultural waste burning 287 269 285 340 354

Total 2035 2122 2429 2651 2739

obtaining the conversion factors between AOD and emission
mass (see Sect. 4.1 in detail), we use results from the GO-
CART model updated to version c3.1 simulation for 2000–
2007 (Chin et al., 2009) (available on Giovanni). The GO-
CART model simulates physical and chemical processes of
major tropospheric aerosol components, including sulfate,
dust, BC, OC, and sea salt, as well as the precursor gaseous
species of SO2 and dimethylsulfide (DMS). It uses the assim-
ilated meteorological fields of the Goddard Earth Observing
System Data Assimilation System (GEOS DAS) version 4,
with a spatial resolution of 1◦ latitude by 1.25◦ longitude, and
30 vertical sigma layers. The annual anthropogenic emis-
sions of SO2, BC, and OC are based on our previous work

(Bond et al., 2004; Streets et al., 2006, 2009), and time-
varying emissions from aircraft and ships, biomass burning,
biogenic, oceanic and volcanic sources, wind-blown dust, sea
salt, and so on are also included. AOD in the model is deter-
mined from the dry mass concentrations and mass extinction
efficiencies which are calculated from Mie theory on the ba-
sis of size distributions, refractive indices, and hygroscopic
properties of individual aerosol types.
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Fig. 2. SO2 emissions by sector and fuel type in(a) China and(b) India during 1996–2010.

Fig. 3. BC emissions by sector and fuel type in(a) China and(b) India during 1996–2010.

3 Emissions of SO2, BC, and OC from China and India
during 1996–2010

3.1 Emissions overview

Tables 1 and 2 summarize SO2, BC, and OC emissions by
major emitting sector and fuel type in China and India, re-
spectively, during 1996–2010. The net emission factors are
shown in Tables S3 and S4 in the Supplement.

3.1.1 SO2

Figure 2a shows the annual trend of SO2 emissions and its
distribution among sectors and fuel types in China. Gener-
ally, the trend can be divided into three distinct time periods.
During 1996–2000, SO2 emissions decreased by 13 % from
24.3 Tg to 21.2 Tg. This is consistent with the estimates of
previous work (Ohara et al., 2007; Smith et al., 2011; Streets
et al., 2006, 2008), and the decline is attributed to the com-
bination of a slowdown in economic growth caused by the
Asian economic crisis, the fundamental restructuring of the
Chinese industrial economy, a decline in coal use in the resi-
dential and industrial sectors, and a reduction in the average
sulfur content of coal burned (Ohara et al., 2007; Streets et
al., 2003). After 2000, SO2 emissions in China increased
dramatically by 61 % from 21.2 Tg in 2000 to 34.0 Tg in

2006, with an annual growth rate (AGR) of 8.2 %. This
growth rate is slightly higher than our previous estimate of
7.3 % (Lu et al., 2010), which was calculated from official
Chinese energy statistics, but is still in good agreement with
values reported in other bottom-up inventories (6.3 %–9.9 %)
(Klimont et al., 2009; Ohara et al., 2007; Smith et al., 2011;
Zhang et al., 2009b) and derived from satellite constraints
(6.2 %–9.6 %) (van Donkelaar et al., 2008). The dramatic
change during this period was driven by the rapid increase of
energy consumption (87 % growth, Fig. 1a) due to the eco-
nomic boom (99 % growth in GDP). Although GDP and en-
ergy consumption in China were still increasing after 2006,
national SO2 emissions began to decrease, due to the appli-
cation of FGD technology and the phase-out of small, high-
emitting power generation units (Lu et al., 2010). During
2000–2010, the average FGD penetration rate in China in-
creased from 1 % to 78 %, and the net emission factor of
coal-fired power plants decreased by 76 % correspondingly
(Table S3 in the Supplement). By the end of 2010, FGD
penetration of power plants had risen to 83 %, which is esti-
mated to eliminate about 19.4 Tg SO2 in that year. In terms of
fuel-type and sectoral contribution, coal combustion was the
single largest contributor (89 %–93 %). Emissions from the
power sector increased from 37 % in 1996 to 51 % in 2004,
and later decreased to 21 % in 2010. The contribution of
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industry decreased from 47 % in 1996 to 38 % in 2002, but
increased to 66 % in 2010. The share of the residential sector
slightly varied between 6 % and 13 %. The ongoing tension
between two forces – economic development and environ-
mental protection – causes the emission trends to be decid-
edly non-linear, as the government imposes new measures to
address one aspect of air pollution or another, and it is im-
portant to reflect these significant changes from year to year
in emissions and impacts analysis.

The temporal evolution of SO2 emissions from India and
its sectoral and fuel-type distribution between 1996 and 2010
is shown in Fig. 2b. In contrast to the situation in China,
anthropogenic SO2 in India shows a continuously increas-
ing trend, which reflects rapid economic and social devel-
opment driven by growing fossil-fuel use and relatively lax
emission controls. The national emissions increased by 70 %
from 5.2 Tg in 1996 to 8.8 Tg in 2010 with an AGR of 3.9 %.
Power plants are the main sources of SO2 (contributing 49 %
in 1996 and 59 % in 2010 to the total emissions), followed
by industry (∼34 %), residential (∼6 %), and transportation
(∼3 %). Compared to a 35 % increase in emissions in other
sectors, SO2 emission from power plants increased by 105 %,
from 2.6 Tg in 1996 to 5.2 Tg in 2010, which can be viewed
in the context of a 117 % increase of total thermal-based
electricity generation during the same period. Although the
contribution of emissions from coal combustion (∼69 %) is
smaller than that of China (>89 %), it dominates the growth
of national emission. During 1996–2010, SO2 emissions
from coal combustion increased by 3.4 Tg, accounting for
93 % of the national growth.

3.1.2 BC

Figure 3 displays BC emissions by sector and by fuel type
in China and India. Although both SO2 and BC are mainly
from the process of fuel combustion, and the trends between
SO2 and BC emissions are similar to some extent in China
and India, the emission distributions among sectors and fuel
types are quite different. First, BC is produced mostly from
incomplete combustion in small, low-temperature facilities
and not power plants or large industrial facilities, whereas
SO2 emissions are closely related to the total coal and oil
use. Second, a significant amount of BC is produced from
biofuel combustion and open biomass burning, whereas both
of these generate little SO2.

In China, the trend of BC emissions is controlled by the
balance between decreasing net emission factors for major
sources and increasing activity rates. To improve air qual-
ity, the Chinese government has issued a series of emission
standards for PM emitting sources during 1996–2010, and
a large number of emission reduction measures have been
implemented. These include: replacing cyclones and wet
scrubbers on power and industrial boilers with electrostatic
precipitators and fabric filters; increasing the market share
of boilers with large capacity; converting residential coal use

from raw coal to briquettes, and introducing cleaner fuels
like LPG and electricity; phasing out beehive brick kilns and
indigenous coke production facilities; implementing vehicle
emission standards from Euro I to Euro IV, etc. (Chen et al.,
2009; Lei et al., 2011; Zhang et al., 2009b). As a result,
these measures caused dramatic changes in the technology
distribution as well as the emission factors in the relevant
sectors. For example, the mean BC emission factors of coal
consumed in the industrial and residential sector decreased
by 64 % and 34 %, respectively, during 1996–2010 (Table S3
in the Supplement). The decrease of emission factors for ma-
jor BC sources (except for biofuel combustion), along with
the decrease of industrial and residential coal consumption,
is the main reason for a 17 % BC emission decline in China
during 1996–2000 (Fig. 3a). Although the emission factors
for major BC sources were still decreasing after 2000, BC
emissions in China increased by 46 % from 1.26 Tg in 2000
to 1.85 Tg in 2010. This was driven by rapidly increasing
energy consumption (144 % growth, Fig. 1a), industrial pro-
duction (e.g., 292 % growth in coke production), and vehicle
population (366 % growth). The dramatic increase of activ-
ity rates counteracts the effect of technology improvements,
and makes the BC emissions continuously grow. Examining
the sectoral distributions, the residential sector is the main
source of BC (51 %±3 %). The contribution of the industry
sector decreased from 35 % in 1996 to 27 % in 2010, whereas
that of transportation increased from 6 % to 15 %.

Although there were some PM reduction measures in In-
dia during 1996–2010 (e.g., replacing traditional cookstoves
with improved cookstoves, implementing new emission stan-
dards for vehicles, etc.), the progress was not as fast as
in China. As shown in Table S4 in the Supplement, the
mean emission factors of major BC sources only have small
changes over time. Therefore, the trend of BC emissions in
India is governed by the trend of energy consumption. Fig-
ure 3b shows that BC emissions from India increased steadily
from 0.72 Tg in 1996 to 1.02 Tg in 2010, with an AGR of
2.5 %. Biofuel combustion was the dominant contributor
in India (45 %–52 %), followed by coal (22 %–29 %) and
oil (14 %–17 %). The distribution of BC emissions among
different sectors was relatively stable during 1996–2010, at
about 57 %, 22 %, 11 %, 8 %, and 2 % for residential, indus-
try, transportation, agricultural waste burning, and forest and
savanna burning, respectively.

3.1.3 OC

Similar to the BC trend for China, the anthropogenic OC
emissions (i.e., excluding forest and savanna burning) de-
creased from 3.20 Tg in 1996 to 2.82 Tg in 2000, but then
increased to 3.91 Tg in 2010 (Fig. 4a). The residential sector
(69 %), especially for biofuel combustion (56 %), is the dom-
inant contributor of anthropogenic OC emissions in China.
With the rapid increase of vehicle population and continuous
decrease of emission factor in industrial coal use, the share
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Fig. 4. OC emissions by sector and fuel type in(a) China and(b) India during 1996–2010.

of transportation increased from 3 % in 1996 to 7 % in 2010,
and that of industry decreased from 16 % to 10 %. Open
biomass burning of agricultural waste is another large source,
accounting for about 13 % of the anthropogenic OC emis-
sions. For India, anthropogenic OC increased by 38 % from
1.88 Tg to 2.58 Tg during 1996–2010 (Fig. 4b). The highest
sectoral contributor is from the residential sector (75 %, in
which biofuel combustion accounts for 96 %), followed by
agricultural waste burning (14 %), industry (8 %), and trans-
portation (3 %).

We note a significant year-to-year variation in OC emis-
sions from open biomass burning of forest and savanna,
which is determined by the extent of fires, and is driven
largely by precipitation amounts and soil moisture content.
OC emissions from this source type accounted for 2 %–11 %
and 4 %–18 % of the total emissions in China and India, de-
pending on the year. As shown in Fig. 4, 2003 was a year
of extensive open biomass burning in China, while 1999 was
such a year for India. This variability is the main cause of the
interannual fluctuations in the trend of total OC emissions in
China and India.

3.2 Uncertainties

Using the Monte Carlo approach, we provide 95 % CIs for
all the model outputs. The uncertainty ranges of SO2, BC,
and OC emissions by major sector and fuel type are shown
in Tables S1 and S2 in the Supplement for China and India,
respectively. The net emission factor uncertainties by sec-
tor and fuel type are listed in Tables S3 and S4 in the Sup-
plement. Since SO2 emission is largely dependent on sulfur
contents and activity rates of fossil fuels, it has lower uncer-
tainty than BC and OC emissions which are strongly influ-
enced by combustion condition. The average uncertainties
of SO2, BC, and OC emissions were estimated to be−16 %
to 17 %,−43 % to 93 %, and−43 % to 80 % for China, and
−15 % to 16 %,−41 % to 87 %, and−44 % to 92 % for In-
dia. The right subgraphs of Figs. 5 and 6 display the emis-
sion distributions of each species in the year 2010, according
to Monte Carlo simulations. The distribution of SO2 is ap-

proximately symmetric since most of the relevant parameters
were assumed to have normal or uniform distributions. BC
and OC distributions are asymmetric, reflecting our lognor-
mal treatment of emission factors and biofuel consumption.
Table 3 shows the average contribution of each sector to total
uncertainties during 1996–2010. Power plants and industry
contribute more than 83 % of the SO2 emission uncertainty
in both China and India. The residential sector is the sin-
gle largest contributor to uncertainty of carbonaceous aerosol
emissions (>60 % for BC and>67 % for OC), followed by
industry, open biomass burning, transportation, and power
plants. Examining the interannual variation of the uncer-
tainty for all three species in both countries, 95 % CIs have
no obvious change except for BC emissions in China (Ta-
bles S1 and S2 in the Supplement). The significant decrease
of China’s BC uncertainty over time can be explained by the
decreasing share of residential and industry emissions, which
are highly uncertain.

We also conducted sensitivity analysis of the outputs. As
shown in Fig. 7, the results are expressed as the contribu-
tion of each parameter in the model to the total variance of
emission estimates. In this study, more than 600 input pa-
rameters are included in the Monte Carlo framework. We
therefore aggregated them into several major parameters or
fuel/usage combinations. For example, the combination “oil”
in Fig. 7a and b includes the contributions of sulfur contents
and fuel use of all kinds of oils; the combination “Wood/RE”
in Fig. 7c–f includes the contributions of technology divi-
sions, fuel use, and all emission factor determinants of fuel-
wood combustion in the residential sector.

For SO2 emissions in China, hard-coal related parameters
contributed to more than 96 % of the variances before 2005
(Fig. 7a). The proportions of sulfur content, fuel use, and
sulfur retention in ash of hard coal were 61 %, 27 %, and
10 %, respectively. After 2005, SO2 emissions were sen-
sitive to the FGD removal efficiency, the shares of which
in the variances were in the range of 1 % to 16 %, depend-
ing on the year. As we mentioned previously, FGD devices
were widely installed during China’s 11th Five-Year Plan pe-
riod (2006–2010). However, the actual operation of FGD
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Fig. 5. Comparison of emission estimates (excluding emissions
from open biomass burning) for China:(a) SO2, (b) BC, and(c)
OC. The right subgraphs present the distributions of estimated emis-
sions in 2010. The blue bars are beyond the 95 % CIs.

equipment is unknown. It was reported that China’s offi-
cial data overestimated the actual performance of SO2 scrub-
bers before 2007 (Xu et al., 2009; Xu, 2011). For exam-
ple, official data announced that 73.2 % of SO2 was removed

Fig. 6. Comparison of emission estimates (excluding emissions
from open biomass burning) for India:(a) SO2, (b) BC, and(c) OC.
The right subgraphs present the distributions of estimated emissions
in 2010. The blue bars are beyond the 95 % CIs.

from coal-fired power plants that had FGD in 2007 (MEP,
2009), whereas this rate was found to be only 64.1 % in the
coastal province of Jiangsu, which has a relatively good track
record on environmental protection (Xu et al., 2009). Due to
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Fig. 7. The contributions of major parameters or fuel/usage combinations to variance in SO2 (a, b), BC (c, d), and OC(e, f) emissions from
China(a, c, e)and India(b, d, f) during 1996–2010. IN, RE, and TR represent industry, residential, and transportation sector, respectively.

Table 3. Average contribution of each sector to total uncertainties
during 1996–2010 (unit: %).

China India

SO2 BC OC SO2 BC OC

Power plants 37 2 0 46 1 1
Industry 47 29 14 37 23 8
Residential 13 60 67 10 65 74
Transport 2 6 6 3 6 1
Forest & savanna burning 0 1 2 1 2 4
Agricultural waste burning 1 3 11 3 5 12

the sharply expanded FGD installation and low FGD opera-
tion, the parameter “FGD removal efficiency” played an in-
creasingly important role in the uncertainty of national emis-
sions during 2005–2007 (Fig. 7a). However, the situation
has changed since 2007. To motivate the use of FGD equip-
ment, the Chinese government has taken several measures
since 2007, including the installation of continuous monitor-
ing systems in power plants with FGD, the implementation
of a premium/penalty scheme of electricity price that varies
with the FGD’s operation, and severe penalties for the non-
operation of FGD (Xu, 2011). These new policy incentives
were reported to be effective. For example, also in Jiangsu
province, FGD devices were found to be operating with SO2
removal efficiencies of over 90 % for more than 90 % of the
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time after July 2007 (Xu et al., 2009). Most FGD devices
in China operate properly in 2009 based on a series of field
interviews conducted by Xu (2011). Therefore, the impor-
tance of FGD removal efficiency to the emission uncertainty
is reducing after 2007 (Fig. 7a). Similar to China, hard-coal
related parameters are also the largest contributors to the SO2
emission variances in India (>89 %, Fig. 7b), and their con-
tributions are continuously increasing over time due to the
increasing share of hard coal in the Indian energy structure
(Fig. 1b).

The contributions of major fuel/usage combinations to
variances of carbonaceous aerosol emissions in China and
India are shown in Fig. 7c–f. For BC emissions in China,
combustion of residential agricultural waste, residential fuel-
wood, residential coal, industrial coal, and coke-making pro-
cess are the largest contributors, together comprising 91 %–
97 % of the variances (Fig. 7c). The shares of fuel/usage
combinations are changing over time, reflecting the changes
of technology divisions, emission characteristics, and activ-
ity rates. For example, we estimate the shares of the mecha-
nized and the indigenous (i.e., traditional) coking facilities by
using the coke productions of these two manufacturing tech-
nologies, which are reported annually in the China Industry
Economy Statistical Yearbook (NBS, 1997–2010a). Based
on the official statistics, the share of indigenous coking fa-
cilities, the emission characteristics of which are highly un-
certain, decreased from 50 % to 0 % during 1996–2010. As
a result, the contribution of the coke-making process to the
variance has decreased from about 15 % in 1996 to 2 % in
2010. Similarly, the contribution of residential coal combus-
tion to variance decreased from 36 % to 13 %, and the reason
is mainly attributed to the increasing proportion of briquettes
used in residential stoves. Different from BC, OC emis-
sions in China are much more sensitive to residential biofuel
combustion (Fig. 7e), which accounts for 64 %–84 % of the
variances. The second largest variance is due to residential
coal combustion, accounting for 4 %–20 % of the variances,
depending on the year. Due to the relatively lax applica-
tion of PM emission controls in India, the contributions of
major fuel/usage combinations to variances of carbonaceous
aerosol emissions were relatively stable during 1996–2010
(Fig. 7d and f). For BC emissions in India, the largest vari-
ance is due to the residential fuelwood combustion (∼70 %),
followed by coal combustion in the industrial (∼15 %) and
residential (∼5 %) sectors. Residential fuelwood combus-
tion accounts for an even higher rate for Indian OC emission
variances (>83 %). It should be noted that the transportation
sector is not a big contributor to variance of either species
in China and India (<3 %). This is different from the sit-
uation in regions like North America and Europe (Bond et
al., 2004), because carbonaceous aerosol emissions in China
and India are mainly from residential biofuel and coal com-
bustion, which have higher uncertainties. For both countries,
open biomass burning only contributes 1 % and 4 % of the
BC and OC emission variances, respectively. This is much

lower than the fractions estimated by Bond et al. (2004). The
reason is mainly due to the improved methodology in esti-
mating the open burning of agricultural waste and the use
of GFEDv3.1 datasets, the uncertainty of which is relatively
well quantified.

One benefit of Fig. 7 is that it can point out areas in which
additional research could help to reduce uncertainties. For
SO2 emissions, more information on sulfur contents of coals
and precise coal consumption data are essential to get reliable
emission estimates. More field measurements of PM emis-
sion characteristics in residential biofuel combustion, resi-
dential/industrial coal combustion, and coke making will be
critical to improve the carbonaceous aerosol emission esti-
mates in the future.

3.3 Comparison with previous studies

3.3.1 Bottom-up inventories

Figures 5 and 6 compare the emission estimated in this
study (excluding emissions from open biomass burning) to
other bottom-up inventories, including regional and global
inventories, such as GAINS (Klimont et al., 2009), REAS
(Ohara et al., 2007), TRACE-P (Streets et al., 2003), INTEX-
B (Zhang et al., 2009b), HTAP-EDGAR (http://edgar.jrc.it/
eolo/), EDGAR4.1 (JRC/PBL, 2010), AEROCOM (http://
dataipsl.ipsl.jussieu.fr/AEROCOM/emissions.html), Bond et
al. (2004, 2007), and Smith (2011); and country-specific
emission estimates, such as Lu et al. (2010), Streets et
al. (2000, 2001), Lei et al. (2011), Cao et al. (2006), and Zhao
et al. (2009, 2011) for China, and Reddy and Venkatara-
man (2002a, b), Venkataraman et al. (2005), Dickerson et
al. (2002), Parashar et al. (2005), Mitra and Sharma (2002),
Sahu et al. (2008), and Garg et al. (2006) for India. Some
of these other estimates are trends, and some are single-year
estimates.

As shown in Figs. 5a and 6a, most previous estimates of
SO2 emissions from China and India are within the 95 % CIs
of the current study, except for China’s SO2 emission esti-
mated by the REAS (Ohara et al., 2007) and reported by the
China MEP (MEP, 2011), and India’s emission estimated by
Garg et al. (2006). The discrepancies between different stud-
ies are caused by a combined effect of the different amounts
and distribution of fuel consumption between sectors and the
implied emission factor assumptions (Klimont et al., 2009).
China’s SO2 emissions in the REAS inventory have been
found to be too high by a number of researchers (Aikawa et
al., 2010; Klimont et al., 2009; Lu et al., 2010; Smith et al.,
2011; Zhang et al., 2009b; Zhao et al., 2011), especially for
the period after 2000. After examining the emissions care-
fully, we attribute the discrepancies mainly to the high emis-
sion factors chosen in the REAS inventory. For example, the
emission factor for industrial coal combustion in the REAS
inventory is 934.2 g GJ−1 in 2000, which is 70 % higher than
our value (549.2 g GJ−1) and outside our uncertainty range
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(449.9–660.1 g GJ−1) (Table S3 in the Supplement). Due to
this factor alone, SO2 emissions in China in REAS are over-
estimated by 4.2 Tg in 2000. Although efficiencies of SO2
removal by power plants were considered in three REAS sce-
narios in China, the main reason for the consistency between
the REAS and our estimate in 2010 is the seriously under-
estimated fuel consumption in China. The fuel consumption
was projected to be 57.9 EJ in the REAS reference scenario
of 2010, which is 45 % lower than our data (105.6 EJ, Fig. 1).
Comparing with REAS, China’s fuel consumption in 2010 in
the GAINS model (97.1 EJ) is much closer to the actual data.
However, the net emission factor of power plants for coal in
the GAINS model (677 g GJ−1 and 440 g GJ−1 for old and
new power plants, respectively) is much higher than the cur-
rent work (mean value of 204 g GJ−1, see Table S3 in the
Supplement and Sect. 3.1.1). For this reason, the GAINS’s
estimation in 2010 is higher than this study. Our estimates
follow the trend of values reported by the China MEP (MEP,
2011) (R = 0.83), but are significantly higher, which may
be caused by the omission of SO2 emissions from rural in-
dustries and biofuels in the China MEP inventory (Streets et
al., 2003; Zhang et al., 2009b). For India, all of the esti-
mates show an increasing SO2 emission trend during 1996–
2010 (Fig. 6a). The AGR of our estimates is 3.9 %, which
is in line with AGRs of 3.5 %–5.1 % estimated by other re-
searchers during this period. The Garg et al. (2006) values
are below the lower bounds of the 95 % CIs calculated in
this study. This is mainly due to the lower coal consumption
(25 % lower than this study) used in their calculation.

In general, the agreement among estimates of BC emis-
sions for China is reasonably good (Fig. 5b), though these
studies rely to a greater or lesser extent on the same original
emission factors presented by Streets et al. (2001) and Bond
et al. (2004), which, however, have a much larger uncertainty.
For India, the data are more scattered (Fig. 6b), mainly due
to the widely varying emission factors for residential bio-
fuel combustion that were applied in the different studies.
For example, the BC emission factors of residential biofuel
are about 1.0–1.3 g kg−1 in GAINS, REAS, TRACE-P, and
Parashar et al. (2005), which are at least twice the values
used in Bond et al. (2004, 2007), Reddy and Venkataraman
(2002b), and Venkataraman et al. (2005) (around 0.5 g kg−1).
In this work, new emission factors for biofuel combustion
obtained from field tests have been incorporated (Habib et
al., 2008; Parashar et al., 2005; Venkataraman et al., 2005).
However, it remains the situation that much of the underly-
ing analytical approach relies on emission factors extracted
from PM measurements in developed countries that may or
may not be reflective of the true nature of Chinese and/or
India emitters. Even when emission factors have been mea-
sured in field tests in developing countries, there is a surpris-
ingly high uncertainty, reflective of the fact that the condi-
tions of the stove, air flow, fuel, and combustion conditions
– which vary from household to household – dictate the na-
ture of the particles that are generated. The aggregate amount

of fuel burned in households must also inevitably be uncer-
tain. Besides the lower BC emission factors of residential
biofuel used in Venkataraman et al. (2005) and Reddy and
Venkataraman (2002a, b), the fact that emissions estimated
in these two studies are slightly below the lower bounds of
95 % CIs of this work is also attributed to the omission of
sources like residential coal combustion and/or biofuel con-
sumption for heating. Although Sahu et al. (2008)’s estima-
tion (1344 Gg) for 2001 lies within the uncertainty range es-
timated here, they used extremely high emission factors for
fossil fuels, which are no longer used by the community.

Figures 5c and 6c compare the OC emissions from China
and India estimated in this study to other work. For China,
the agreement among different estimates is quite good, al-
though the emission factors are highly uncertain. OC emis-
sion estimates are generally in the range of 2.0–3.5 Tg yr−1,
with the exception of the point estimate of 3.8 Tg for 2000 by
Cao et al. (2006), whose industrial emission value (1.12 Tg)
was much higher than other studies (around 0.03 Tg). The
agreement for OC emissions in India is even worse than for
BC. The poor agreement is attributed to the enhanced role
of biofuel/biomass burning and the difficulties in obtaining
good emission factors and estimating reliable activity levels
for these sources. The laboratory-test results of Venkatara-
man et al. (2005) and Habib et al. (2008) indicate that OC
emission factors of fuelwood are about 0.4 g kg−1 at low burn
rates, whereas they rise to 2.7 g kg−1 at high burn rates. Their
results also show that the OC emission factor varies in the
range of 0.6–4.7 g kg−1 between different types of agricul-
tural residue. For dung cake, their measurements give an
OC emission factor of about 2.4 g kg−1; however, Parashar
et al. (2005) found it could be as high as 12.6 g kg−1 un-
der smoldering conditions during its use as a source of en-
ergy in rural areas of India. OC emission factors of biofuel
used in other studies in Fig. 6c are 3.45 g kg−1 for GAINS,
5.0 g kg−1 for TRACE-P, and 6.28 g kg−1 for REAS. The
large range of emission factors brings high uncertainty to the
OC estimates, especially for India, where biofuel combustion
is dominant.

3.3.2 Uncertainty range

We have compared our uncertainty ranges with those re-
ported in other studies. Our estimated uncertainty ranges
of SO2 emissions (about±16 %) are close to the results
of TRACE-P (±13 %), INTEX-B (±12 %), and Zhao et
al. (2011) (±14 %) for China, but lower than TRACE-P
for India (±26 %) and Smith et al. (2011) for both China
(±29 %) and India (±24 %). Estimates of carbonaceous
aerosol emissions in this work are significantly improved.
The average uncertainty ranges of BC (−43 %–93 %) and
OC (−43 %–80 %) in China are much lower than the re-
sults in TRACE-P (−83 %–584 % for BC and−83 %–595 %
for OC), INTEX-B (−68 %–308 % for BC and−72 %–
358 % for OC), Lei et al. (2011) (−65 %–287 % for BC and
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Fig. 8. Emission distributions of SO2, BC, and OC at 0.5◦×0.5◦ resolution in 2000 and 2008. International shipping and aviation are not
included.

−70 %–329 % for OC), Bond et al. (2004) (−36 %–149 %
for BC and−44 %–103 % for OC), and Zhao et al. (2011)
(−25 %–136 % for BC and−40 %–121 % for OC). For India,
our results (−41 %–87 % for BC and−44 %–92 % for OC)
are also lower than the estimations of TRACE-P (−78 %–
459 % for BC and−84 %–644 % for OC) and Bond et
al. (2004) (−38 %–119 % for BC and−43 %–93 % for OC).
The following reasons may be attributed to the reduction of
uncertainties. First, we applied the Monte Carlo approach
to our detailed technology-based emission model, and the
“compensation-of-error” mechanism of Monte Carlo simu-
lation can reduce random errors significantly (Zhao et al.,
2011). Second, in the present work, we obtained more de-
tailed information about the technology distribution, activ-
ity rate, and emission characteristic for both China and In-

dia. Third, some newly developed methodologies or inven-
tories were incorporated, e.g., the GFED3.1 inventory, unit-
based power-plant emission inventories, newly estimated In-
dian biofuel consumption, etc.

3.3.3 Constraints from observations and models

Bottom-up emission inventories can be evaluated, con-
strained, and improved by observations directly (includ-
ing ground-, aircraft-, and balloon-based measurements and
satellite retrievals) or by the forward or inverse modeling
of these observations. In previous work, we compared the
SO2 emissions in China with a variety of observed sulfur
related quantities over East Asia, including SO2 and SO2−

4
concentrations, surface solar radiation, and AOD (Lu et al.,
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Fig. 9. Average seasonality of SO2, BC, and OC emissions(a) and monthly profiles of major sectors(b) in China and India during 1996–
2010.

2010). We found the trends of these observations are gener-
ally consistent with the trend of our SO2 emission estimates
during 2000–2008. Van Donkelaar et al. (2008) analyzed
AOD data from MISR and MODIS for 2000–2006 with the
GEOS-Chem model. They derived the annual growth in Chi-
nese sulfur emissions to be 6.2 % and 9.6 %, respectively,
which is in good agreement with our current work (8.2 %).
Aikawa et al. (2010) compared the measured sulfate concen-
tration at multiple sites over the East Asia Pacific Rim region
with CMAQ model simulations using both the REAS and the
China MEP SO2 inventories. They concluded that the REAS
inventory overestimates, whereas the China MEP inventory
underestimates the SO2 emissions from China. Our central
estimates as well as uncertainty ranges fall in the middle of
these two inventories. During the TRACE-P and the ACE-
Asia field experiments, intensive measurements were used in
conjunction with forward and inverse modeling analysis to
evaluate emission estimates for Asia. The results indicated
that SO2 emissions in the TRACE-P inventory are reason-
able (Carmichael et al., 2003; Russo et al., 2003), while BC
emissions are qualitatively correct at the national level, but
the spatial distributions are questionable (Carmichael et al.,
2003; Hakami et al., 2005). Recently, Kondo et al. (2011)
estimated the BC emission rate of China by comparing BC
concentrations observed at a remote site in the East China
Sea and those predicted by 3-D chemical transport models.
They derived the annually averaged BC emission flux over
China to be 1.92 Tg with an uncertainty of about 40 % dur-
ing 2008–2009. This value is very close to our estimation of
1.79 Tg with an uncertainty of−41 %–84 % in 2008.

3.4 Gridded emissions

Figures S1–S3 in the Supplement show the spatial distribu-
tions of SO2, BC, and OC emissions in China and India at a
resolution of 0.1◦×0.1◦ in 1996, 2000, 2005, and 2010. The
annual gridded emissions data by sector are available from
the corresponding author. To present the emissions from
LPSs more clearly (especially for SO2 emissions from power
plants), we give the emission distributions at a resolution of

0.5◦
×0.5◦ in Fig. 8. As shown in Fig. 8, a significant in-

crease of emissions can be seen in both countries between
2000 and 2008. For SO2, emission fluxes are high at grids
with power plants and industrialized city clusters (e.g., east-
ern central China and Sichuan Basin). More SO2 hot spots
are observed in China than in India during 2000–2008 be-
cause the increase of thermal based electricity generation in
China was realized by building new power plants – often
in undeveloped parts of the country – whereas that in India
was realized by increasing the capacities of existing plants.
Compared to SO2, high emission regions of carbonaceous
aerosols are not concentrated in hot spots, but spread across
eastern and central China and the northern and eastern states
of India where rural population densities are high and resi-
dential coal and biofuel combustion are prevalent.

3.5 Seasonality of emissions

Figure 9 presents the average seasonality of SO2, BC,
and OC emissions, as well as sectors with significant
monthly variations (maxima/minima>1.2) in China and In-
dia. Biomass burning of forest and savanna occurs usually
in February–June for both countries, and that of crop waste
burning peaks in July and October for China, and April and
September–November for India, corresponding to the major
harvest seasons. Residential emissions in China are higher
in December, January and February due to residential heat-
ing needs in winter. Significant monthly variations are also
found in the power and industry sectors of China. Emis-
sions are higher in December and lower in February, with
maxima-to-minima ratios of 1.4 and 1.5 for the power and
industry sectors, respectively. Regarding the seasonality of
each species, it is a combination of sectoral emissions on the
basis of their weight contribution to the total emissions. The
ratios of monthly SO2, BC, and OC emissions between max-
ima and minima are 1.4, 2.1, and 2.5 for China, and 1.1, 1.2,
and 1.5 for India (Fig. 9a).
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Fig. 10. AOD from GOCART model simulations and the MODIS (Terra and Aqua) and MISR satellite instruments over eastern central
China (latitude<45◦ N, longitude>100◦ E). (a) Monthly variation of GOCART AOD and the combined contribution from sulfate, BC, and
POM to total AOD during 2000–2007.(b) Monthly mean variability of satellite AOD retrievals during September to January 2000–2010.
Solid and dashed lines represent the linear tendencies before and after 2006, respectively.(c) Trend of estimated AOD due to SO2, BC,
and OC emissions, and evolutions of satellite AOD averaged between September and January during 2000–2010.R values shown are the
correlation coefficients of each satellite AOD with estimated AOD. Error bars express one standard deviation of the monthly mean.

4 Comparison of emission estimates and satellite
observations

As mentioned in Sect. 3.3.3, observations from field mea-
surements and satellites can be used directly to constrain
bottom-up emission inventories. Comparing with ground-,
aircraft-, and balloon-based measurements, satellite observa-
tions provide better temporal sampling and spatial coverage.
In the following section, we will use satellite retrievals of
AOD and SO2 to verify the emission trends of this study.

4.1 AOD

AOD is strongly influenced by the natural particulate com-
ponent (e.g., dust and sea salt) in China and India (Chin et
al., 2009; Streets et al., 2009). To compare the satellite AOD
and our emission estimates, the first step is to identify the
months in which anthropogenic emissions have the great-
est impact on AOD. Figures 10a and 11a show the monthly
AOD variations of the major aerosol components over east-
ern central China (latitude<45◦ N, longitude>100◦ E) and
India from GOCART model simulations. For eastern central
China, dust (originating mainly from the Taklimakan Desert
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Fig. 11. AOD from GOCART model simulations and the MODIS (Terra and Aqua) and MISR satellite instruments over India.(a) Monthly
variation of GOCART AOD and the combined contribution from sulfate, BC, and POM to total AOD during 2000–2007.(b) Monthly
mean variability of satellite AOD retrievals during October to February 2000–2010. Solid lines represent the linear tendencies.(c) Trend
of estimated AOD due to SO2, BC, and OC emissions, and evolutions of satellite AOD averaged between October and February during
2000–2010.R values shown are the correlation coefficients of each satellite AOD with estimated AOD. Error bars express one standard
deviation of the monthly mean.

and the Gobi Desert) comprises a large fraction of AOD in
spring (March–May, 33 %). The combined contribution from
sulfate, BC, and primary organic matter (POM) to total AOD
is high during June–January, accounting for 82 % of total
AOD. To minimize the potential effect of biomass burning
of forest and savanna in summer (June–August), we select
September–January as our study period for China. In India,
the monsoon meteorology can be divided into four basic pe-
riods: winter (December–February), summer/pre-monsoon
(March–June), monsoon (late June–September), and post-
monsoon (October–November). Since the transportation of
mineral dust from Iran, Afghanistan, and the Thar Desert

in western India is pronounced during summer and mon-
soon months (Kharol et al., 2011; Prasad and Singh, 2007),
October–February is selected as our study period for India
(the average combined contribution from sulfate, BC, and
POM to AOD is 79 %).

Figures 10b and 11b show the temporal variation of
monthly AOD values averaged over eastern central China
and India, respectively, from Terra/MODIS, Aqua/MODIS,
and MISR satellite retrievals during the selected study pe-
riods. Generally, Terra/MODIS has higher AOD values
over China and India, while values of MISR AOD are
lower. The correlations between the three datasets are high
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(R = 0.87–0.95 for China, and 0.95–0.97 for India). All
these findings are consistent with previous studies (Ahn et al.,
2008; Kharol et al., 2011; Prasad and Singh, 2007). The dis-
crepancies between different instruments may be caused by
the satellite characteristics, detection principle, measurement
time, retrieval algorithms, etc. The annual averages, as well
as the standard deviations of the monthly AOD, are shown in
Figs. 10c and 11c. Figures 10c and 11c also show the trends
of estimated AOD due to SO2, BC, and OC emissions in both
countries. In our previous work, we established a linear re-
lationship between AOD and the emission strengths of the
various aerosol precursors from a single-year (year 2001) run
of the GOCART model (Streets et al., 2009). In this study,
we follow a similar methodology, but use the results from
multiple-year (2000–2007), full runs of the GOCART model
for the purpose of capturing any year-to-year variability of
the relationships that might arise from long-term changes in
meteorology, chemistry, transport, etc. AOD value due to
speciesj in countryi for yeart is calculated by:

AODj,i,t = fj,i,t ·Emj,i,t (4)

where Em is the annual emission rate, andf is a linear con-
version factor between the GOCART AOD and the emission
mass. For years 2008–2010, averagef values between 2000
and 2007 were used. It should be noted that other natural
emissions contributing to the SO2, BC, and OC emissions
in China and India (e.g., biogenic, volcanic, and DMS emis-
sions) were also considered in the calculation, although they
are very small compared to anthropogenic and biomass burn-
ing emissions.

As shown in Figs. 10c and 11c, the trends of estimated
AOD due to SO2, BC, and OC emissions are in good agree-
ment with the trends of AOD satellite retrievals in both China
and India during the selected study periods (R = 0.67–0.83
for China, and 0.75–0.91 for India). This suggests a close re-
lationship between AOD and emissions of aerosols and their
precursors. For eastern central China, AOD retrievals from
three instruments were increasing during 2000–2006, cor-
responding to the dramatic increase of emissions in China
(Aqua/MODIS and MISR have statistically significant trends
at a 95 % confidence level). The AGRs are 4.1 %, 4.8 %,
and 5.7 % for Terra/MODIS, Aqua/MODIS, and MISR, re-
spectively, and are in line with the rates of 3.4 %–4.1 % re-
ported by van Donkelaar et al. (2008). After 2006, the de-
creasing tendency of satellite AOD retrievals in China also
corresponds well with our estimated AOD, which is based
on the current emission estimates (Terra/MODIS has a sta-
tistically significant trend at a 95 % confidence level). The
decline is mainly attributed to the pronounced decrease of
SO2 emissions in China and the dominant role of sulfate in
AOD (62 %, Fig. 10a). For India, although there is some
interannual variation, AOD values from different datasets
were continuously increasing during the last decade, with
AGRs of 2.0 %, 3.5 %, 2.5 %, and 3.5 % for Terra/MODIS,

Fig. 12. SO2 emissions in China and annual average SO2 column
from SCIAMACHY and OMI over eastern central China during
2004–2010.

Aqua/MODIS, MISR, and our estimated AOD, respectively.
All the linear tendencies in Fig. 11b are statistically sig-
nificant at a 95 % confidence level. This result is qualita-
tively and quantitatively in line with several Indian studies.
For example, Prasad and Singh (2007) compared the AOD
retrievals of both MISR and Terra/MODIS over the Indo-
Gangetic basin and observed an increase in satellite-derived
aerosol loading over major cities for the 2000–2005 win-
ter and summer seasons. Kharol et al. (2011) found that
AOD values over the urban region of Hyderabad from both
Terra/MODIS and Aqua/MODIS show increasing trends in
the period 2002–2008 with AGRs of 3.0 % and 4.4 % for
Terra/MODIS and Aqua/MODIS, respectively. All these im-
ply an increase in emissions driven by the growth of eco-
nomic, energy consumption, and population in India after
2000.

4.2 SO2

Due to the low sensitivity, the early remote sensing instru-
ments were only able to monitor and quantify SO2 emissions
from exceptional pollution events such as volcanic eruptions.
However, the sensitivity improvement of the current genera-
tion of instruments (e.g., SCIAMACHY and OMI) makes it
possible to identify strong anthropogenic SO2 signals from
LPSs (e.g., smelters and coal-fired power plants) or indus-
trial regions (e.g., China) (Krotkov et al., 2008; Lee et al.,
2009). In this section, we compare our SO2 emission trend
with trends of SO2 columns retrieved from satellites in east-
ern central China; unfortunately, SO2 signals over India are
too low to give reliable data at this time. Figure 12 shows
the annual average SO2 column from SCIAMACHY and
OMI over eastern central China during 2004–2010. It should
be noted that, although OMI columns appear to be higher
than SCIAMACHY columns, they use different AMF val-
ues (Sect. 2.4). Recently, Lee et al. (2009) developed a local
AMF algorithm by using SO2 and aerosol profiles simulated
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in a GEOS-Chem model. They suggested a seasonal aver-
age AMF of about 0.5 over China. Applying this factor,
the SCIAMACHY columns tend to be 0.6 DU higher than
OMI columns, which is consistent with the finding of Lee et
al. (2009) (0.4–0.7 DU over east China).

As shown in Fig. 12, the increase of SO2 emissions be-
fore 2006 and the decrease of SO2 emissions after 2007 are
captured in the trends of SO2 columns observed by both the
SCIAMACHY and the OMI instruments. However, there
are some discrepancies between the trends of emissions and
observations. For example, satellite observations peak in
2007, whereas SO2 emission in China peaks in 2006; and
SO2 emissions are estimated to continue to decrease in 2010,
whereas SO2 retrievals seem to suggest an increase. It is
really hard to tell the exact reasons for these discrepancies
since both emission estimates and satellite retrievals contain
substantial uncertainties. From the perspective of the emis-
sion inventory, national SO2 emissions are sensitive to the
actual FGD removal efficiency, especially for the year 2007
(16 % of the variances, Fig. 7a). As mentioned in Sect. 3.2,
the China MEP reported a SO2 removal rate of 73.2 % in
2007 for FGD equipped power plants, whereas this rate was
only 64.1 % in Jiangsu province, which has a relatively good
track record on environmental protection (Xu et al., 2009). If
the actual FGD removal efficiency was 10 % lower than the
value reported by the China MEP (i.e., 63 %), SO2 emissions
from China in 2007 would reach 34.2 Tg, higher than the es-
timated emissions in 2006. On the other hand, the retrieved
SO2 columns also contains large uncertainties, which are re-
lated to cloud cover, viewing geometry, SO2 profile (shape
factor), and aerosol loading, as well as interference by the
absorption signals of ozone (Krotkov et al., 2008; Lee et
al., 2009). The influence of cloud cover on AMF was be-
lieved to be minimized by filtering the daily retrievals with
high radiative cloud fraction (>0.3, see Sect. 2.4). Param-
eters such as SO2 profile and viewing geometry have either
relatively small effect on AMF correction over China or neg-
ligible change over time (Krotkov et al., 2008). However,
AMF uncertainties from aerosols might be very high over
polluted regions (Lee et al., 2009). Krotkov et al. (2008)
reported that the presence of UV absorbing aerosols (e.g.,
dust and secondary organic aerosol, SOA) in China would
reduce the AMF by half and double the retrieved SO2. A
reduction of aerosol absorption over Beijing since 2007 has
been reported through an analysis of observations of MODIS
and AERONET AOD, and long-term measurements of PM
chemical composition in Beijing (Lyapustin et al., 2011).
Hence, if absorbing aerosol loading over China in 2010 was
significantly lower than in previous years, it would be possi-
ble to obtain lower corrected SO2 columns.

In addition, the change of SO2 atmospheric chemistry
could also affect the relationship between emissions and ob-
servations. Using a global chemistry and aerosol model,
Manktelow et al. (2007) found that the surface sulfate con-
centration over East Asia increased at a greater rate than

the SO2emission, whereas the surface SO2 concentration in-
creased at a lower rate. This conclusion was later confirmed
by our analysis of SO2 and sulfate concentration monitored
in Japan and Korea (Lu et al., 2010), indicating that East Asia
is a less oxidant-limited area than other areas in the world. In
the past few years, the Chinese government has implemented
a series of air pollution control measures, especially during
preparations for the Beijing Olympic Games, and the primary
air pollutants as well as SO2 oxidants such as OH, H2O2, and
O3 have been reported to significantly decrease (e.g., He et
al., 2010; Wang et al., 2009). Hence, it is possible that the
conversion efficiency of SO2 to sulfate decreased over China
in recent years, and thus gaseous SO2 was preferentially ac-
cumulated in the atmosphere.

5 Summary and conclusions

In the present work, we use a detailed technology-based
methodology to estimate historical SO2 and primary car-
bonaceous aerosol (i.e., BC and OC) emissions in China and
India during the period 1996–2010. Emission sources are
categorized into five major sectors: power generation, in-
dustry, residential, transportation, and open biomass burning.
Time-dependent trends in activity rates, technology penetra-
tion, and emission factors are incorporated into the calcula-
tions to reflect the rapid increase of energy consumption and
the dramatic changes in technology distribution and hence
emission factors during this period. Emissions are gridded
at a resolution of 0.1◦×0.1◦ using year-by-year spatial prox-
ies and related datasets. In addition, year-specific monthly
temporal distributions for SO2, BC, and OC emissions from
each major sector during 1996–2010 are developed. All of
the input parameters and their corresponding probability dis-
tributions are incorporated into a Monte Carlo framework to
determine the uncertainties of emissions. Sensitivity anal-
ysis is conducted to identify the major contributors to the
emission uncertainties. Satellite retrievals of AOD (from
Terra/MODIS, Aqua/MODIS, and MISR) and SO2 (from
SCIAMACHY and OMI) are used to verify the bottom-up
emission trends, and good agreement is found.

China and India are the two largest national contributors
to the global anthropogenic aerosol budget. Our results indi-
cate very high growth of SO2, BC, and OC emissions in both
countries during the study period. Between 1996 and 2010,
emissions growth in China was 27 % for SO2, 21 % for BC,
and 21 % for OC, with periods of greater and lesser growth
during the entire timeframe. Emissions growth in India over
the same period was 70 % for SO2, 41 % for BC, and 35 % for
OC, at a steady pace throughout the period. Other things be-
ing equal, it can be expected that similar increases will have
occurred in ambient concentrations, deposition, and trans-
port of these species. As a consequence, significant impacts
on human health, air quality, atmospheric physics and chem-
istry, climate forcing, hydrological cycles, and ecosystems at
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local-, regional-, and global scales will have occurred. The
emission trends and annually gridded datasets developed in
the current work can be used by regional and global models
to address these associated issues and help us to better un-
derstand the effects of intensive release of aerosols (and their
precursors) on the environment during this period of rapid
economic development. Additionally, the Monte Carlo un-
certainty analysis provided in this work makes it possible for
modelers to estimate uncertainties in, for example, aerosol
radiative forcing due to uncertainties in aerosol emissions.

Supplement related to this article is available online at:
http://www.atmos-chem-phys.net/11/9839/2011/
acp-11-9839-2011-supplement.pdf.
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