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Abstract. Long term changes in solar UV radiation affect
global bio-geochemistry and climate. The satellite-based
dataset of TOMS (Total Ozone Monitoring System) and OMI
(Ozone Monitoring Instrument) of erythemal UV product
was applied for the first time to estimate the long-term ul-
traviolet (UV) changes at the global scale. The analysis of
the uncertainty related to the different input information is
presented. OMI and GOME-2 (Global Ozone Monitoring
Experiment-2) products were compared in order to analyse
the differences in the global UV distribution and their effect
on the linear trend estimation.

The results showed that the differences in the inputs
(mainly surface albedo and aerosol information) used in
the retrieval, affect significantly the UV change calculation,
pointing out the importance of using a consistent dataset
when calculating long term UV changes. The areas where
these differences played a major role were identified us-
ing global maps of monthly UV changes. Despite the un-
certainties, significant positive UV changes (ranging from
0 to about 5 %/decade) were observed, with higher values
in the Southern Hemisphere at mid-latitudes during spring-
summer, where the largest ozone decrease was observed.

1 Introduction

The amount of solar ultraviolet (UV) radiation (200–400 nm)
reaching the Earth’s surface is affected by atmospheric
ozone absorption, cloudiness and aerosols together with solar
zenith angle (SZA) and surface albedo. On the global scale
the UV levels at the surface decrease moving from the trop-
ics to the polar regions due to the decrease of the maximum
solar elevation angle and to the ozone increase with increas-
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ing latitude. Moreover, the presence of clouds and aerosols
decreases the amount of radiation reaching the surface (Her-
man, 2010a).

Changes in UV radiation at the surface may strongly affect
human health and terrestrial and aquatic ecosystems (UNEP,
2007). Erythemal dose rate (EDR), or erythemal irradiance,
is one of the parameters used to estimate the damaging ef-
fects of solar UV radiation and is defined as the incoming
solar radiation on a horizontal surface weighted with the ery-
themal action spectrum over the whole UV range (Diffey and
McKinlay, 1987). Recently,Herman(2010b) used an im-
proved radiation amplification factor to estimate the effect of
total ozone changes on action spectrum weighted irradiances.

Surface UV radiation estimates have been provided from
the Ozone Monitoring Instrument (OMI), flying on the
NASA EOS Aura spacecraft since 15 July 2004. OMI is
a Dutch-Finnish instrument designed to monitor ozone and
other atmospheric species (Levelt et al., 2006). OMI UV
products are local solar noon irradiances at 305, 310, 324,
and 380 nm, as well as EDRs and erythemal daily doses
(EDDs). The OMI UV algorithm is based on the Total Ozone
Monitoring System (TOMS) heritage (Krotkov et al., 1998,
2002; Tanskanen et al., 2006). TOMS and OMI UV data val-
idation results were presented in several papers, analysing in
details their strengths and weaknesses (Brogniez et al., 2005;
Fioletov et al., 2002; Arola et al., 2005; Kazantzidis et al.,
2009; Arola et al., 2009; Ialongo et al., 2010).

Satellite-based instruments with daily global coverage of-
fer a geographical distribution suitable for global scale trend
studies. TOMS and OMI together include UV and total
ozone measurements from 1978 to 2010, and thus provide
a unique dataset to analyse long-term changes in UV radi-
ation at the surface and their relation to atmospheric ozone
changes on the global scale. During the last several years, the
ozone changes studies showed strong ozone decrease started
in 1979 at mid and high latitudes with no significant changes
in the tropical areas. The ozone levels then became stable
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during the last 10 years but remaining well below the 1979-
levels (WMO, 2007). Consequently, the UV levels should
be continuously monitored for their harmful effects on the
biological systems.

Ziemke et al.(2000) examined the distribution of long-
term trends in erythemal UV radiation for the period 1979–
1991 using measurements from the Nimbus 7 TOMS instru-
ment. Herman(2010a) estimated the global increase of UV
radiation caused by ozone and reflectivity changes (including
clouds and aerosols effects) during the period 1979–2008,
using an approach based on Beer’s law. The largest zonal av-
erage increases in UV irradiance were observed in the South-
ern Hemisphere (SH) where the ozone decrease has been the
largest. These changes were only partially moderated by the
decrease in aerosol transmission (i.e., the ratio of the trans-
mitted to the total incident radiation) to the Earth’s surface.

In this paper we investigate the first application of TOMS
and OMI UV products to estimate global UV changes. The
data are presented in Sect.2. In Sect.3 the methodology
is explained. The description of the results, including the
UV time series, the comparison between OMI and GOME-2
UV data and the UV linear trends, is presented in Sect.4.
Section5 concludes the paper.

2 Data

2.1 TOMS and OMI products

The OMI instrument onboard the NASA EOS Aura space-
craft (on flight from 14 July 2004) is a nadir viewing spec-
trometer that measures solar reflected and backscattered light
in a selected range of the UV and visible spectrum (Levelt et
al., 2006). The Aura satellite describes a sun-synchronous
polar orbit, crossing the equator at 13:45 local time. The
width of the instrument’s viewing swath is 2600 km and
provides global daily coverage with a spatial resolution of
13× 24 km2 in nadir viewing. OMI measurements of ozone
columns and profiles, aerosols, clouds, surface UV irradiance
and the trace gases (NO2, SO2, HCHO, BrO, and OClO) are
available at:http://mirador.gsfc.nasa.gov/.

In this work, both OMI and TOMS total ozone column,
TO3 (seeBhartia et al.(2002) for information about the to-
tal ozone retrieval algorithm) and EDR data have been used.
OMI Level-3 global gridded data (Version 3), with spatial
resolution of 1× 1 degree, were used.

The OMI surface UV retrievals are determined by means
of an extension of the TOMS UV algorithm developed by
NASA Goddard Space Flight Center (GSFC) (Tanskanen et
al., 2006). Firstly, the algorithm estimates the surface irra-
diance under clear-sky conditions by using as inputs OMI
satellite ozone data and climatological surface albedo. Af-
terwards the clear-sky irradiance is corrected by multiplying
it with a cloud modification factor derived from OMI data
that accounts for the attenuation of UV radiation by clouds

and non-absorbing aerosols. The current OMI surface UV al-
gorithm does not include absorbing aerosols, therefore OMI
UV data are expected to show an overestimation for regions
affected by absorbing aerosols (i.e., tropical regions or urban
sites). Otherwise, the TOMS algorithm includes also a cor-
rection for the absorbing aerosols based on the aerosol index
(AI) information. This means that OMI UV estimates could
be higher than TOMS data over the regions affected by the
absorbing aerosol.

Another relevant difference between TOMS and OMI
is the albedo information used as input in the algorithms.
TOMS uses the 360 nm Minimum Lambertian Equivalent
Reflectivity (MLER) climatology as described byHerman
and Celarier(1997). TOMS algorithm assumes that the sea-
sonal surface albedo cycle is the same every year. At high
latitudes, this assumption can lead to an underestimation of
the surface albedo over temporary snow covered surfaces.
To solve this problem, OMI uses the Moving Time-Window
(MTW) albedo climatology based on the work ofTanskanen
et al. (2003). The MTW method was applied to the TOMS
360 nm LER time-series during the period 1979–1992. At
high latitudes the new climatology gave larger surface albedo
than the MLER climatology, during the snow cover transi-
tion periods, where the MTW surface albedo is usually sev-
eral percent larger than the climatological values (Tanska-
nen and Manninen, 2007). Higher surface albedo produces
higher values of the surface UV estimates; thus, TOMS al-
gorithm produces UV levels lower than OMI estimates over
snow covered regions during transition periods.

The TOMS and OMI UV algorithms differ also for the
ozone ghost column (signifying the amount of O3 under the
clouds) height in the retrieval of TO3, which is used as input
in the UV algorithm. TOMS TO3 data showed a 2 % dif-
ference to OMI (TOMS TO3 higher than OMI), which can
produce an additional effect on the trend calculation (Yang
et al., 2008). These differences between OMI and TOMS
algorithms will be further analysed in this paper.

2.2 GOME-2 products

The Global Ozone Monitoring Experiment-2 (GOME-2) is
a scanning spectrometer that measures the light reflected
from the Earth’s surface and atmosphere. The spectrome-
ter splits the light into its spectral components covering the
UV/VIS region from 240 nm to 790 nm at a resolution of
0.2 nm to 0.4 nm. The instrument is mounted on the Eu-
ropean Metop-A satellite, which was launched in October
2006. The satellite flies on Sun-synchronous polar orbit
(morning orbit 09:30 local time). GOME-2 continues the
long-term monitoring of atmospheric properties started by
GOME on ERS-2 and SCIAMACHY on Envisat. Concentra-
tions of atmospheric O3, NO2, SO2 and further trace gases,
together with cloud properties and UV radiation intensity, are
provided. Each scan takes 6 s with a scan-width of 1920 km,
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so that the global coverage can be achieved within 1.5 days.
The ground pixel size is 80 km× 40 km (GOME-2, 2009).

The UV processing algorithm involves the gridding of
GOME-2 total ozone data, the inversion of cloud optical
depth from reflectance data, and finally the calculation of
surface UV quantities from radiative transfer model look-up
tables. The GOME-2 UV products (available from the O3M
SAF web-pagehttp://o3msaf.fmi.fi) include the daily dose
and maximum dose rates of integrated UV-B and UV-A ra-
diation together with values obtained by different biological
weighting functions and solar noon UV index (UVI).

For the estimation of diurnal cloud cover in the retrieval
of the surface UV levels, the cloud optical thickness is de-
rived from the Advanced Very High Resolution Radiometer
(AVHRR) instrument onboard both Metop and NOAA satel-
lites. As Metop is on a morning orbit and NOAA on an after-
noon orbit, at least two samples of the diurnal cycle can be
obtained globally.

The aerosol optical depths from a climatology combining
satellite and AERONET data (Kinne, 2009) are used to ac-
count for the aerosol effect. The MTW surface albedo clima-
tology is applied to regions with seasonally variable snow
and/or ice cover. These regions are determined from the
snow cover and sea ice extent maps of the National Snow and
Ice Data Center (NSIDC). The MLER climatology is used for
other regions.

3 Method

Noontime EDR data (also erythemal irradiance in the text)
derived from TOMS and OMI were used to produce the
global scale long term UV time series from 1978 to 2010.
The data were monthly and zonally averaged using 5 degree
latitude belts. The zonal averages minimize the effect of local
phenomena, such as polluted urban sites or mountain areas.

The statistical distribution, with the monthly data within
the zonal belts was analysed: it was observed that the dis-
tribution could be not always well described by the normal
distribution, being the data skewed towards lower or higher
values. As an example, in Fig.1 the EDR histogram for the
zonal belt 45◦–50◦ N on December 2008, together with the
scaled normal and log-normal probability distribution func-
tion (PDF), are shown. In this case, the log-normal PDF (blue
curve) represents better than the normal PDF (red curve), the
actual distribution of the data. The median for a log-normal
distribution can be derived aseµ whereµ = mean(log(x))

andx are the EDR values along the latitude band. The me-
dian values obtained using the normal and log-normal PDF
differ by about 4 %, which is below the variability within the
zonal belt (about 20 %).

Both mean and median were considered to estimate the
zonal monthly average, intended as the estimate of the cen-
tral tendency of the data: the median was selected as a more
robust parameter in presence of outliers (Kyrölä et al., 2006).
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Fig. 1. EDR data distribution at 45◦–50◦ N zonal belt for December
2008. The red and the blue curves indicate the normal and the log-
normal PDFs, respectively.
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tables. The GOME-2 UV products (available from the O3M
SAF web-page http://o3msaf.fmi.fi) include the daily dose
and maximum dose rates of integrated UV-B and UV-A ra-
diation together with values obtained by different biological
weighting functions and solar noon UV index (UVI).

For the estimation of diurnal cloud cover in the retrieval
of the surface UV levels, the cloud optical thickness is de-
rived from the Advanced Very High Resolution Radiometer
(AVHRR) instrument onboard both Metop and NOAA satel-
lites. As Metop is on a morning orbit and NOAA on an after-
noon orbit, at least two samples of the diurnal cycle can be
obtained globally.

The aerosol optical depths from a climatology combining
satellite and AERONET data (Kinne, 2009) are used to ac-
count for the aerosol effect. The MTW surface albedo clima-
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and/or ice cover. These regions are determined from the
snow cover and sea ice extent maps of the National Snow and
Ice Data Center (NSIDC). The MLER climatology is used for
other regions. GOME-2 UV data can be used in this paper to
account for the effect of the different OMI and TOMS albedo
assumptions on the trend calculation.

3 Method

Noontime EDR data (also erythemal irradiance in the text)
derived from TOMS and OMI were used to produce the
global scale long term UV time series from 1978 to 2010.
The data were monthly and zonally averaged using 5 degree
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phenomena, such as polluted urban sites or mountain areas.

The statistical distribution, with the monthly data within
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tribution could be not always well described by the normal
distribution, being the data skewed towards lower or higher
values. As an example, in Fig. 1 the EDR histogram for the
zonal belt 45◦–50◦ N on December 2008, together with the
scaled normal and log-normal probability distribution func-
tion (PDF), are shown. In this case, the log-normal PDF (blue
curve) represents better than the normal PDF (red curve), the
actual distribution of the data. The median for a log-normal
distribution can be derived as eµ where µ = mean(log(x))
and x are the EDR values along the latitude band. The me-
dian values obtained using the normal and log-normal PDF
differ by about 4 %, which is below the variability within the
zonal belt (about 20 %).

Both mean and median were considered to estimate the
zonal monthly average, intended as the estimate of the cen-
tral tendency of the data: the median was selected as a more
robust parameter in presence of outliers (Kyrölä et al., 2006).
No deseasonalized EDRs were used for the trend analysis.
The data during period with gaps were assumed to follow
the linear trend obtained from the available data. The vari-
ability of the data was estimated from the interquartile range
(IQR), and the percentage relative variability was estimated
as 100*IQR/Median. The value of IQR is calculated as
IQR = Q3-Q1, where Q1 and Q3 are the first and the third
quartile, respectively.

An accurate filtering for missing data was applied in order
to exclude the latitude belts with less than 50 % of the pixels
available for the zonal average. In the analysis it can be no-
ticed that the missing data affect the areas at latitudes pole-
ward of 50◦ N and 50◦ S during northern hemisphere (NH)
and SH winters, respectively, corresponding to high SZAs.

The monthly UV and total ozone changes over the period
1978–2010 were calculated in terms of zonal linear trends
per decade with latitude belts of 5◦. Assuming that the linear
equation can be written as y = ax + b, where the vector x
includes the years and the vector y the UV monthly average
for each year, the linear trend in percentage per decade (PD)
and the associated error (PDE) can be calculated as:

PD = 10× 100× (y(2)− y(1))/y(1) (1)

PDE = PD× sea/a; (2)

where a and sea are the slope and its standard error, respec-
tively.

In the regression analysis, the least squares approach was
applied to find the best linear fit for the data, thus the equation
of the straight line that minimizes the sum of squared resid-
uals (i.e., the gradient of this sum of squares is null) defined
as

(y − ax− b)′ × (y − ax− b), (3)

Fig. 1. EDR data distribution at 45◦–50◦ N zonal belt for December
2008. The red and the blue curves indicate the normal and the log-
normal PDFs, respectively.

No deseasonalized EDRs were used for the trend analysis.
The data during period with gaps were assumed to follow
the linear trend obtained from the available data. The vari-
ability of the data was estimated from the interquartile range
(IQR), and the percentage relative variability was estimated
as 100*IQR/Median. The value of IQR is calculated as
IQR = Q3-Q1, where Q1 and Q3 are the first and the third
quartile, respectively.

An accurate filtering for missing data was applied in order
to exclude the latitude belts with less than 50 % of the pixels
available for the zonal average. In the analysis it can be no-
ticed that the missing data affect the areas at latitudes pole-
ward of 50◦ N and 50◦ S during northern hemisphere (NH)
and SH winters, respectively, corresponding to high SZAs.

The monthly UV and total ozone changes over the period
1978–2010 were calculated in terms of zonal linear trends
per decade with latitude belts of 5◦. Assuming that the linear
equation can be written asy = ax +b, where the vectorx
includes the years and the vectory the UV monthly average
for each year, the linear trend in percentage per decade (PD)
and the associated error (PDE) can be calculated as:

PD= 10×100×(y(2)−y(1))/y(1) (1)

PDE= PD×sea/a; (2)

wherea and sea are the slope and its standard error, respec-
tively.

In the regression analysis, the least squares approach was
applied to find the best linear fit for the data, thus the equa-
tion of the straight line that minimizes the sum of squared
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residuals (i.e., the gradient of this sum of squares is null) de-
fined as

(y −ax −b)′ ×(y −ax −b), (3)

where the superscript in the first term indicates the transpose
of the vector. In order to check the effect of the inhomogene-
ity of the zonal variance on the results, the weighted least
squares was also applied. In this case, the squared residuals
in the sum are multiplied by the weights as in the following
expression:

(y −ax −b)′ ×w×(y −ax −b), (4)

wherew is the diagonal matrix of the weights, which are
equal to the reciprocal of the variances of the samples.

The monthly UV linear trends per decade were also calcu-
lated for every 5× 5 degrees latitude-longitude box, in order
to locate the regions where the effect of the different input
information (surface albedo or aerosol corrections) between
OMI and TOMS algorithms, played a major role on the long-
term UV change calculation. Thus, the monthly UV trend
maps were produced.

Data gaps between 1992 and 1996 and 2002 and 2004 are
due to a lack of data from Nimbus 7 and Earth Probe and
from Earth Probe and OMI, respectively. The correlation co-
efficient r and thep-value for the linear fit were also calcu-
lated to check if the results are statistically significant. The
p-value is the probability of getting a correlation as large as
the observed value by chance. If thep-value is smaller than
0.05, then the correlation is significant at the 95 % level. The
results are shown in Sect.4.

4 Results

4.1 UV time series

In Fig. 2, the EDR time-latitude plot is shown for the period
1979–2010. The data were monthly and zonally averaged
in the latitude range from 60◦ S to 60◦ N, using the median
as a measure of the central tendency of the data. The UV
data from 1979 to 1992 and from 1997 to 2001 correspond to
TOMS data (Nimbus 7 and Earth Probe, respectively), while
those from 2004 to 2010 to OMI data. Note the strong sea-
sonality effect on the UV time evolution and higher EDR
values in the SH summer, where the Earth’s elliptical orbit
is closer to the Sun and the average ozone at mid-latitudes is
lower with respect to the NH.

The monthly zonal variability (derived from the IQR) gen-
erally ranges from 0 to 15 mW m−2, with some peaks at
20–25 mW m−2. Larger variability was observed over the
SH; this is particularly significant over the tropical regions.
The percentage relative variability shows values that gener-
ally range from 0 to 15 %, increasing from the equator to the
mid-latitudes. The zonal belts over 50◦–60◦ N and 50◦–60◦ S
showed the highest values, with peaks of 20 % in variability.

This aspect, together with considerations about missing data
(see Sect.3), led us to remove these regions from the trend
analysis.

4.2 Intersatellite comparison between OMI and
GOME-2 UV data

The OMI EDR data were compared with GOME-2 UV prod-
ucts from 2007 to 2010. Before the comparison, the GOME-
2 data 0.5× 0.5 degree pixels were regridded with 1× 1 de-
gree pixels, averaging the four GOME-2 values within every
OMI pixel.

As an example, in Fig.3 is shown the zonal mean of the
daily relative difference between OMI and GOME-2 EDR
values every 1 degree of latitude, during 2008. The different
panels show the comparison results for every month, from
January to December. Only small differences (about±5 %)
have been found over tropical regions, most likely related to
the different ways to account for the aerosol effect. Large
positive differences have been observed from 60◦ S to 90◦ S,
particularly during SH summer, due to the different assump-
tions concerning the treatment of the ice sheets (around the
Antarctic continent) in the OMI and GOME-2 algorithms.
Similarly, in the NH the effect of snow cover albedo pro-
duces large positive differences which extend to about 35◦ N
during NH winter, likely because of the combined effect of
the snow-covered surface albedo and the different cloud in-
formation used in the algorithms.

The zonal EDR data distribution of OMI data has been
analysed in detail in comparison with GOME-2 UV prod-
ucts at 50◦ N during several days on February, when UV data
from both instruments were available. The distributions (not
plotted here) showed very similar features but large differ-
ences over several regions over land, where OMI shows very
high values respect to GOME-2 (the relative difference of the
average is about 15 %). This is related to the effect of non-
permanent snow cover over the land surface, which is not
accounted for in the MLER albedo climatology, and will be
analysed in Sect.4.3. These OMI UV peaks contribute sig-
nificantly to the zonal average calculation and can produce a
larger positive trend when compared with TOMS EDR. The
data showing a relative difference between OMI and GOME-
2 larger than about 10 %, were excluded from the trend anal-
ysis.

Additional differences between the two datasets can be re-
lated to the fact that in GOME-2 all the measurements taken
at SZA> 70◦ are excluded, while in OMI SZAs up to 85◦

are used. Different cloud cover assumptions in the OMI and
GOME-2 algorithms can also contribute to the differences
between the datasets.
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where the superscript in the first term indicates the transpose
of the vector. In order to check the effect of the inhomogene-
ity of the zonal variance on the results, the weighted least
squares was also applied. In this case, the squared residuals
in the sum are multiplied by the weights as in the following
expression:

(y − ax− b)′ ×w × (y − ax− b), (4)

where w is the diagonal matrix of the weights, which are
equal to the reciprocal of the variances of the samples.
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lated for every 5× 5 degrees latitude-longitude box, in order
to locate the regions where the effect of the different input
information (surface albedo or aerosol corrections) between
OMI and TOMS algorithms, played a major role on the long-
term UV change calculation. Thus, the monthly UV trend
maps were produced.
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due to a lack of data from Nimbus 7 and Earth Probe and
from Earth Probe and OMI, respectively. The correlation co-
efficient r and the p-value for the linear fit were also calcu-
lated to check if the results are statistically significant. The
p-value is the probability of getting a correlation as large as
the observed value by chance. If the p-value is smaller than
0.05, then the correlation is significant at the 95% level. The
results are shown in Sect. 4.
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1979-2010. The data were monthly and zonally averaged

in the latitude range from 60◦ S to 60◦ N, using the median
as a measure of the central tendency of the data. The UV
data from 1979 to 1992 and from 1997 to 2001 correspond to
TOMS data (Nimbus 7 and Earth Probe, respectively), while
those from 2004 to 2010 to OMI data. Note the strong sea-
sonality effect on the UV time evolution and higher EDR
values in the SH summer, where the Earth’s elliptical orbit
is closer to the Sun and the average ozone at mid-latitudes is
lower with respect to the NH.

The monthly zonal variability (derived from the IQR) gen-
erally ranges from 0 to 15 mW m−2, with some peaks at 20–
25 mW m−2. Larger variability was observed over the SH;
this is particularly significant over the tropical regions. The
percentage relative variability shows values that generally
range from 0 to 15 %, increasing from the equator to the mid-
latitudes. The zonal belts over 50◦–60◦ N and 50◦–60◦ S
showed the highest values, with peaks of 20 % in variabil-
ity. This aspect, together with considerations about missing
data (see Sect. 3), led us to remove these regions from the
trend analysis.

4.2 Intersatellite comparison between OMI and
GOME-2 UV data

The OMI EDR data were compared with GOME-2 UV prod-
ucts from 2007 to 2010. Before the comparison, the GOME-
2 data 0.5× 0.5 degree pixels were regridded with 1× 1 de-
gree pixels, averaging the four GOME-2 values within every
OMI pixel.

As an example, in Fig. 3 is shown the zonal mean of the
daily relative difference between OMI and GOME-2 EDR
values every 1 degree of latitude, during 2008. The different
panels show the comparison results for every month, from
January to December. Only small differences (about ±5 %)

Fig. 2. EDR (mWm−2) zonal monthly median time series from 1978 to 2010 every 5 latitude degrees from 60◦ S to 60◦ N. The data from
1978 to 1992 are derived from TOMS – Nimbus 7, those from 1996 to 2001 from TOMS – Earth Probe and those from 2004 to 2010
from OMI.
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Fig. 3. OMI/GOME-2 EDR daily zonal mean relative difference during 2008. The red (blue) in the color scale indicates when OMI
overestimates (underestimates) GOME-2 UV data. Different panels show different months from January to December, from left to right and
from the upper to the lower row.

have been found over tropical regions, most likely related to
the different ways to account for the aerosol effect. Large
positive differences have been observed from 60◦ S to 90◦ S,
particularly during SH summer, due to the different assump-
tions concerning the treatment of the ice sheets (around the
Antarctic continent) in the OMI and GOME-2 algorithms.
Similarly, in the NH the effect of snow cover albedo pro-
duces large positive differences which extend to about 35◦ N
during NH winter, likely because of the combined effect of
the snow-covered surface albedo and the different cloud in-
formation used in the algorithms.

The zonal EDR data distribution of OMI data has been
analysed in detail in comparison with GOME-2 UV prod-
ucts at 50◦ N during several days on February, when UV data
from both instruments were available. The distributions (not
plotted here) showed very similar features but large differ-
ences over several regions over land, where OMI shows very

high values respect to GOME-2 (the relative difference of the
average is about 15 %). This is related to the effect of non-
permanent snow cover over the land surface, which is not
accounted for in the MLER albedo climatology, and will be
analysed in Sect. 4.3. These OMI UV peaks contribute sig-
nificantly to the zonal average calculation and can produce a
larger positive trend when compared with TOMS EDR. The
data showing a relative difference between OMI and GOME-
2 larger than about 10 %, were excluded from the trend anal-
ysis.

Additional differences between the two datasets can be re-
lated to the fact that in GOME-2 all the measurements taken
at SZA>70◦ are excluded, while in OMI SZAs up to 85◦

are used. Different cloud cover assumptions in the OMI and
GOME-2 algorithms can also contribute to the differences
between the datasets.

Fig. 3. OMI/GOME-2 EDR daily zonal mean relative difference during 2008. The red (blue) in the color scale indicates when OMI
overestimates (underestimates) GOME-2 UV data. Different panels show different months from January to December, from left to right and
from the upper to the lower row.
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Fig. 4. UV zonal monthly linear trends (%/decade) derived from TOMS and OMI EDR data from 1979 to 2010 (upper left panel), where
the red color indicates the large positive trend values (up to 6 %/decade) and the blue color indicates the trend values close to zero. The
upper right panel shows the error on the linear trend (%/decade), where the color scale from blue to red refers to the errors ranging from
0.3 %/decade to 1.3 %/decade. The correlation coefficient r (red and blue indicate r values close to 1 and 0, respectively) and the p-value are
shown in the lower left and right panels, respectively. The green pixels in the lower right panel indicate the statistically significant trends at
the 95 % level (p-value < 0.05); otherwise, the gray pixels refer to results not statistically significant. The data are zonally averaged every 5
degrees of latitude from 50◦ N–50◦ S.

4.3 UV global change results

In Fig. 4 the zonal EDR linear regression results as a function
of month and latitude belt every 5 degrees, are shown. The
latitude range has been limited to 50◦ S–50◦ N, according to
what was discussed in Sect. 4.1. In addition, the results of
the comparison between OMI and GOME-2 UV data showed
that the higher differences were observed during the NH win-
ter, because of the anomalous effect of the snow/ice albedo
over land surfaces. Thus, the pixels between 30◦ N and 50◦ N
from November to March were also excluded from the analy-

sis as not realistic and appear as the white rectangles in Fig. 4.
The UV trends obtained for these pixels would reach the un-
reliable value of 7 %/decade, which does not correspond to
a significant decrease in the ozone amount, during the same
period and that is not consistent with the results obtained by
Herman (2010a).

First, it can be observed that no UV negative zonal trends
were obtained (Fig. 4 – upper left panel). The largest trends
(up to 6 %/decade) were found around 40◦–50◦ S from Oc-
tober to February. In the tropics the UV change values range
from 0 to 2 %/decade. The large positive UV trends ob-

Fig. 4. UV zonal monthly linear trends (%/decade) derived from TOMS and OMI EDR data from 1979 to 2010 (upper left panel), where
the red color indicates the large positive trend values (up to 6 %/decade) and the blue color indicates the trend values close to zero. The
upper right panel shows the error on the linear trend (%/decade), where the color scale from blue to red refers to the errors ranging from
0.3 %/decade to 1.3 %/decade. The correlation coefficientr (red and blue indicater values close to 1 and 0, respectively) and thep-value are
shown in the lower left and right panels, respectively. The green pixels in the lower right panel indicate the statistically significant trends at
the 95 % level (p-value< 0.05); otherwise, the gray pixels refer to results not statistically significant. The data are zonally averaged every 5
degrees of latitude from 50◦ N–50◦ S.

4.3 UV global change results

In Fig.4 the zonal EDR linear regression results as a function
of month and latitude belt every 5 degrees, are shown. The
latitude range has been limited to 50◦ S–50◦ N, according to
what was discussed in Sect.4.1. In addition, the results of
the comparison between OMI and GOME-2 UV data showed
that the higher differences were observed during the NH win-
ter, because of the anomalous effect of the snow/ice albedo
over land surfaces. Thus, the pixels between 30◦ N and 50◦ N
from November to March were also excluded from the analy-
sis as not realistic and appear as the white rectangles in Fig.4.
The UV trends obtained for these pixels would reach the un-
reliable value of 7 %/decade, which does not correspond to
a significant decrease in the ozone amount, during the same
period and that is not consistent with the results obtained by
Herman(2010a).

First, it can be observed that no UV negative zonal trends
were obtained (Fig.4 – upper left panel). The largest trends
(up to about 5 %/decade) were found around 40◦–50◦ S from
October to February. In the tropics the UV change values
range from 0 to 2 %/decade. The large positive UV trends
observed over the SH in January/February are mainly due to
the negative trends in the ozone observed in the same period.
Analysing the time-latitude distribution of the error in the
UV trend (Fig. 4 – upper right panel), the largest values can
be found during winter, which involves small EDR values.
The error values range from 0.3 to 1.3 %/decade.

Looking at the correlation coefficient distribution (Fig. 4
– lower left panel), higher values were found during NH
and SH summer. Correlation coefficientsr greater than 0.8,
were observed over the SH in January–February. In the NH,
high r values were found at mid-latitudes and during sum-
mer months over the tropics. Thep-values distribution (Fig.
4 – lower right panel) confirms the correlation coefficient
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features and provides information about the significance of
the trend results. No significant trends were observed in the
equatorial area and over the SH in winter. Otherwise, sig-
nificant values were found over SH during spring-summer
months and over NH during summer.

The color scale in Fig.4 (upper left panel) is dominated
by the high values at 40◦–50◦ S from November to March;
taking into account only the period from April to September,
the significant trends range from 1.5 to 4 %/decade mostly
over the NH mid-latitudes. Otherwise, focusing the analysis
on NH and SH summer, when the highest UV levels were ob-
served, the trend values are much lower in the NH (maximum
trend around 3.5 %/decade) than in the SH (maximum trend
around 5 %/decade). Consistently, the largest ozone negative
trends were observed in the SH.

TO3 trend values range from 0 to−3 %/decade (Fig.5).
The UV trends are quite consistent with the TO3 trend pat-
terns, so that negative TO3 trends correspond to positive UV
trends. Some differences between UV and TO3 trend distri-
butions could be related to cloud effects; the reduced cloud
transmission observed over the last 30 years particularly in
the SH (Herman, 2010a), could have reduced the UV in-
crease produced by the ozone reduction. This does not hap-
pen in the NH, where the mid-latitude transmission decrease
was negligible, thus producing a difference in the UV re-
sponse between the two hemispheres.

The results described above were obtained using the stan-
dard linear regression; these results were also compared to
the results achieved by means of the linear weighted regres-
sion, using the inverse of the variances as weights. In Fig.6
is plotted the month-latitude distribution of the difference be-
tween the linear trends obtained from the weighted linear re-
gression and those obtained by the standard linear regression.
The difference values range from−0.25 to +0.45 %/decade
and remain always below the errors on the linear trend (see
Fig. 4 – upper right panel). The larger is this difference, the
bigger is the role of the zonal distribution variability in the
trend calculation. The weighted regression affects also the
error estimate, producing differences in the estimated error
(not plotted here) ranging from about−0.1 to 0.02 %/decade.

The UV trend distribution is consistent with the results ob-
tained byHerman(2010a), using merged ozone data as input
in UV model estimates. The trend patterns agree well in the
tropical region and in the NH, while there are some differ-
ences in the SH during April–May.

The zonal linear trends were also calculated using GOME-
2 UV products (not plotted here) instead of OMI, to esti-
mate the effect of different input information in the UV es-
timates. The results showed a reduction in the trend val-
ues in the tropics (the average over the tropical region varies
from about 1.3 %/decade, using OMI, to 0.1 %/decade, using
GOME-2), where different aerosol information could play
a role. Nevertheless, the results remained almost always
statistically insignificant for the tropical regions. At mid-
latitudes, the trends obtained using GOME-2 data, showed
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Fig. 5. Total Ozone zonal monthly linear trends (%/decade) derived
from TOMS and OMI data from 1979 to 2010. The red color indi-
cates the trend values close to zero and the blue color the negative
trend values (up to −3 %/decade). The data are zonally averaged
every 5 degrees of latitude from 50◦ N–50◦ S.

served over the SH in January/February are mainly due to
the negative trends in the ozone observed in the same pe-
riod. Analysing the time-latitude distribution of the error in
the UV trend, the largest values can be found during winter,
which involves small EDR values. The error values range
from 0.3 to 1.3 %/decade.

Looking at the correlation coefficient distribution, higher
values were found during NH and SH summer. Correlation
coefficients r greater than 0.8, were observed over the SH
in January–February. In the NH, high r values were found
at mid-latitudes and during summer months over the tropics.
The p-values distribution confirms the correlation coefficient
features and provides information about the significance of
the trend results. No significant trends were observed in the
equatorial area and over the SH in winter. Otherwise, sig-
nificant values were found over SH during spring-summer
months and over NH during summer.

The color scale in Fig. 4 (upper left panel) is dominated
by the high values at 40◦–50◦ S from November to March;
taking into account only the period from April to September,
the significant trends range from 1.5 to 4 %/decade mostly
over the NH mid-latitudes. Otherwise, focusing the analysis
on NH and SH summer, when the highest UV levels were ob-
served, the trend values are much lower in the NH (maximum
trend around 3.5 %/decade) than in the SH (maximum trend
around 6 %/decade). Consistently, the largest ozone negative
trends were observed in the SH.

TO3 trend values range from 0 to −3 %/decade (Fig. 5).
The UV trends are quite consistent with the TO3 trend pat-
terns, so that negative TO3 trends correspond to positive UV
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Fig. 6. Difference (%/decade) between UV linear trends obtained
from weighted and standard linear regression. The color scale from
blue to red refers to the differences ranging from −0.3 %/decade
to 0.5 %/decade. The data are zonally averaged every 5 degrees of
latitude from 50◦ N–50◦ S.

trends. Some differences between UV and TO3 trend distri-
butions could be related to cloud effects; the reduced cloud
transmission observed over the last 30 years particularly in
the SH (Herman, 2010a), could have reduced the UV in-
crease produced by the ozone reduction. This does not hap-
pen in the NH, where the mid-latitude transmission decrease
was negligible, thus producing a difference in the UV re-
sponse between the two hemispheres.

The results described above were obtained using the stan-
dard linear regression; these results were also compared to
the results achieved by means of the linear weighted regres-
sion, using the inverse of the variances as weights. In Fig. 6
is plotted the month-latitude distribution of the difference be-
tween the linear trends obtained from the weighted linear re-
gression and those obtained by the standard linear regression.
The difference values range from −0.25 to +0.45 %/decade
and remain always below the errors on the linear trend (see
Fig. 4 – upper right panel). The larger is this difference, the
bigger is the role of the zonal distribution variability in the
trend calculation. The weighted regression affects also the
error estimate, producing differences in the estimated error
(not plotted here) ranging from about−0.1 to 0.02 %/decade.

The UV trend distribution is consistent with the results ob-
tained by Herman (2010a), using merged ozone data as input
in UV model estimates. The trend patterns agree well in the
tropical region and in the NH, while there are some differ-
ences in the SH during April–May.

The zonal linear trends were also calculated using GOME-
2 UV products (not plotted here) instead of OMI, to esti-
mate the effect of different input information in the UV es-

Fig. 5. Total Ozone zonal monthly linear trends (%/decade) derived
from TOMS and OMI data from 1979 to 2010. The red color indi-
cates the trend values close to zero and the blue color the negative
trend values (up to−3 %/decade). The data are zonally averaged
every 5 degrees of latitude from 50◦ N–50◦ S.I. Ialongo et al.: Global UV change 7

Fig. 5. Total Ozone zonal monthly linear trends (%/decade) derived
from TOMS and OMI data from 1979 to 2010. The red color indi-
cates the trend values close to zero and the blue color the negative
trend values (up to −3 %/decade). The data are zonally averaged
every 5 degrees of latitude from 50◦ N–50◦ S.

served over the SH in January/February are mainly due to
the negative trends in the ozone observed in the same pe-
riod. Analysing the time-latitude distribution of the error in
the UV trend, the largest values can be found during winter,
which involves small EDR values. The error values range
from 0.3 to 1.3 %/decade.

Looking at the correlation coefficient distribution, higher
values were found during NH and SH summer. Correlation
coefficients r greater than 0.8, were observed over the SH
in January–February. In the NH, high r values were found
at mid-latitudes and during summer months over the tropics.
The p-values distribution confirms the correlation coefficient
features and provides information about the significance of
the trend results. No significant trends were observed in the
equatorial area and over the SH in winter. Otherwise, sig-
nificant values were found over SH during spring-summer
months and over NH during summer.

The color scale in Fig. 4 (upper left panel) is dominated
by the high values at 40◦–50◦ S from November to March;
taking into account only the period from April to September,
the significant trends range from 1.5 to 4 %/decade mostly
over the NH mid-latitudes. Otherwise, focusing the analysis
on NH and SH summer, when the highest UV levels were ob-
served, the trend values are much lower in the NH (maximum
trend around 3.5 %/decade) than in the SH (maximum trend
around 6 %/decade). Consistently, the largest ozone negative
trends were observed in the SH.

TO3 trend values range from 0 to −3 %/decade (Fig. 5).
The UV trends are quite consistent with the TO3 trend pat-
terns, so that negative TO3 trends correspond to positive UV
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trends. Some differences between UV and TO3 trend distri-
butions could be related to cloud effects; the reduced cloud
transmission observed over the last 30 years particularly in
the SH (Herman, 2010a), could have reduced the UV in-
crease produced by the ozone reduction. This does not hap-
pen in the NH, where the mid-latitude transmission decrease
was negligible, thus producing a difference in the UV re-
sponse between the two hemispheres.

The results described above were obtained using the stan-
dard linear regression; these results were also compared to
the results achieved by means of the linear weighted regres-
sion, using the inverse of the variances as weights. In Fig. 6
is plotted the month-latitude distribution of the difference be-
tween the linear trends obtained from the weighted linear re-
gression and those obtained by the standard linear regression.
The difference values range from −0.25 to +0.45 %/decade
and remain always below the errors on the linear trend (see
Fig. 4 – upper right panel). The larger is this difference, the
bigger is the role of the zonal distribution variability in the
trend calculation. The weighted regression affects also the
error estimate, producing differences in the estimated error
(not plotted here) ranging from about−0.1 to 0.02 %/decade.

The UV trend distribution is consistent with the results ob-
tained by Herman (2010a), using merged ozone data as input
in UV model estimates. The trend patterns agree well in the
tropical region and in the NH, while there are some differ-
ences in the SH during April–May.

The zonal linear trends were also calculated using GOME-
2 UV products (not plotted here) instead of OMI, to esti-
mate the effect of different input information in the UV es-

Fig. 6. Difference (%/decade) between UV linear trends obtained
from weighted and standard linear regression. The color scale from
blue to red refers to the differences ranging from−0.3 %/decade
to 0.5 %/decade. The data are zonally averaged every 5 degrees of
latitude from 50◦ N–50◦ S.

similar high positive values in the SH during spring-summer,
as in the OMI-based results, corresponding to the observed
ozone decrease. Some differences were also observed: for
example, larger positive trends (up to about 4 %/decade) in
the GOME2-based results at mid-latitudes from April to July
in the NH.

In order to identify the regions where the different input
information played a major role in the trend calculation, the
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Fig. 7. Monthly UV linear trend (%/decade) global maps for March and October (upper and lower panel, respectively). Red indicates large
positive trends (up to +15 %/decade) while blue negative trends (up to −5 %/decade). The data are gridded in 5× 5 deg boxes. The pixels
above the black line (32.5◦ N) were flagged out in Fig. 4 and appear there as white rectangles.

timates. The results showed a reduction in the trend val-
ues in the tropics (the average over the tropical region varies
from about 1.3 %/decade, using OMI, to 0.1 %/decade, using
GOME-2), where different aerosol information could play
a role. Nevertheless, the results remained almost always
statistically insignificant for the tropical regions. At mid-
latitudes, the trends obtained using GOME-2 data, showed
similar high positive values in the SH during spring-summer,
as in the OMI-based results, corresponding to the observed
ozone decrease. Some differences were also observed: for
example, larger positive trends (up to about 4 %/decade) in
the GOME2-based results at mid-latitudes from April to July
in the NH.

In order to identify the regions where the different input
information played a major role in the trend calculation, the
monthly UV trend (%/decade) maps for March and October
are shown in Fig. 7 (upper and lower panel, respectively).
During March at NH mid-latitudes large values were ob-
served over land, mainly related to the surface albedo as-

sumption over snow-covered surfaces. The MTW albedo
used in OMI is generally higher than TOMS MLER albedo
where the non-permanent snow is observed, producing much
larger UV values and thus large positive UV changes. Sim-
ilar features were observed from November to March over
the same areas. In Fig. 7 (upper panel) the pixels above the
bold black line (32.5◦ N) correspond to those flagged out in
Fig. 4 (white rectangles). The large trend values reached the
value of 15 %/decade, which exceeded by about 10 percent-
age points the values obtained at the same latitude over sea.
Thus, the inter-satellite differences between OMI and TOMS
discussed here, add an additional uncertainty to the one pre-
sented in figure 4 (upper right panel).

Furthermore, large values were observed also over ex-
tensive areas in Eastern China, including Beijing and the
Sichuan basin, where the UV change is driven most likely
by the aerosol effect. In particular, over these areas the large
amount of scattering aerosols produced an overestimation of
the MTW surface reflectance estimates. The high aerosol

Fig. 7. Monthly UV linear trend (%/decade) global maps for March and October (upper and lower panel, respectively). Red indicates large
positive trends (up to +15 %/decade) while blue negative trends (up to−5 %/decade). The data are gridded in 5× 5 deg boxes. The pixels
above the black line (32.5◦ N) were flagged out in Fig.4 and appear there as white rectangles.

monthly UV trend ( %/decade) maps for March and October
are shown in Fig.7 (upper and lower panel, respectively).
During March at NH mid-latitudes large values were ob-
served over land, mainly related to the surface albedo as-
sumption over snow-covered surfaces. The MTW albedo
used in OMI is generally higher than TOMS MLER albedo
where the non-permanent snow is observed, producing much
larger UV values and thus large positive UV changes. Sim-
ilar features were observed from November to March over
the same areas. In Fig.7 (upper panel) the pixels above the
bold black line (32.5◦ N) correspond to those flagged out in
Fig. 4 (white rectangles). The large trend values reached the
value of 15 %/decade, which exceeded by about 10 percent-
age points the values obtained at the same latitude over sea.
Thus, the inter-satellite differences between OMI and TOMS
discussed here, add an additional uncertainty to the one pre-
sented in figure 4 (upper right panel).

Furthermore, large values were observed also over ex-
tensive areas in Eastern China, including Beijing and the
Sichuan basin, where the UV change is driven most likely
by the aerosol effect. In particular, over these areas the large
amount of scattering aerosols produced an overestimation of
the MTW surface reflectance estimates. The high aerosol
load that should decrease surface UV radiation amount, pro-
duced high surface albedo values, thus increasing the mod-
eled UV levels. In addition, the absorbing aerosols, which

are not taken into account in the current OMI algorithms, can
lead to an additional overestimation in the OMI UV level,
which in turn produces a positive UV change, when TOMS
and OMI data are combined. The aerosol index and the re-
flectivity values over these areas over Eastern-China are of-
ten those required for the application of the TOMS absorbing
aerosol correction (these values are AI> 0.5 and reflectiv-
ity < 0.15).

In October the ozone hole effect around 40◦–50◦ S is vis-
ible (note the zonal asymmetry due to the polar vortex dis-
placement in Fig.7 – lower panel). At the tropics a slight ef-
fect of the differences in the absorbing aerosol treatment can
be observed, most likely related to biomass burning (South
America) and desert dust (West-Africa).

5 Conclusions

The use of satellite UV products for estimating the global
long-term UV change was investigated in this paper. In par-
ticular, the effects of the input information used in the UV
retrieval were analysed in order to estimate the reliability of
the UV change results.

Satellite UV products from TOMS and OMI were used
to produce the UV time series from the mid-latitudes to the
tropics. A strong seasonality was observed, with high EDR
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values in the SH summer, where the Earth’s elliptical orbit is
closer to the Sun and the average ozone at the mid-latitude
is lower, with respect to the NH. The monthly zonal variabil-
ity has been defined from the interquartile range; the values
range from 0 to 15 mW m−2, with peaks at 20–25 mW m−2.
In terms of percentage relative zonal variability, the values
range from 0 to 15 %, increasing from the equator to the mid-
latitudes.

The comparison between OMI and GOME-2 EDR data
generally showed a good agreement (differences within
±10 % at tropics/mid-latitudes), also showing the differences
between the two algorithms. The main differences are ob-
served over the Antarctic continent ice-sheets or over the
snow-covered land surface at NH mid-latitudes and are re-
lated to the different surface albedo assumptions. GOME-2
data were also very useful to analyse the effect of the differ-
ent assumptions of the input parameters, such as aerosol and
surface albedo, when TOMS and OMI data are combined for
the linear trend calculation.

Satellite UV data have been used to calculate the ery-
themal UV change (%/decade) over 32-years from 1979 to
2010, applying the linear regression method every month at
several zonal belts. Thus, a time-latitude map of the lin-
ear trend results has been produced; only positive UV trends
were observed. The largest trends (up to about 5 %/decade)
have been found at SH mid-latitudes during spring-summer,
where the largest negative trend in the total ozone has been
observed. In the tropics the UV trend values are limited to
the range 0–2 %/decade and are mostly not statistically sig-
nificant as observed in the ozone changes. The error in the
UV trend estimates was determined, with error values rang-
ing from 0.3 to 1.3 %/decade. In general, the UV trends are
consistent with the total ozone trends, being the ozone anti-
correlated with UV.

The comparison between the trends obtained using OMI or
GOME-2 in combination with TOMS showed the largest dif-
ferences during NH autumn-winter at mid-latitudes, pointing
out that the differences in the surface albedo information play
the major role in these differences. The trend values obtained
using OMI or GOME-2 data differ by up to 5 %/decade.

Being the main scope of the paper the analysis of the
sources of uncertainty in using an UV long term dataset from
different instruments, the analysis of the different natural
proxies such as the annual and semiannual variability, the so-
lar cycle and the quasi-biennial oscillation (QBO), were not
taken into account at this stage.

The effect on the trend calculation of the inhomogeneous
variability within the zonal belt was analysed applying the
weighted linear regression. The differences between the
weighted and non-weighted linear regression results range
from −0.25 to +0.45 %/decade; the relative difference is typ-
ically from −10 to 10 %, with peaks around 30 % over the
NH tropics. The larger is the difference the bigger is the
effect on the trend calculation of the variability within the
zonal belt. The weighted regression affects also the error es-

timate, producing differences in the estimated error ranging
from about−0.1 to 0.02 %/decade. This difference remains
still below the uncertainty given on the trend estimates.

The monthly maps of the UV change, derived every 5× 5
latitude-longitude degrees showed that the sources of uncer-
tainty in the trend calculation are mostly related to the ef-
fect of the aerosols, which affects the zonal average values
over particular regions (such as areas over the Sahara, South
America and Beijing-East China) and to the snow-ice sur-
face albedo during transition periods (i.e., over Canada and
Northern Russia), which produced significant differences
when OMI and TOMS data were used together for the trend
calculation.

Discarding data at latitudes higher than 35◦ N pointed out
the importance of using a homogeneous dataset (i.e., using
the same input information in both instrument algorithms)
when calculating the long term UV changes.

Edited by: W. Lahoz
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