

Trace gas fluxes of CO₂, CH₄ and N₂O in a permanent grassland soil exposed to elevated CO₂ in the Giessen FACE study

M. Kaleem Abbasi^{1,2} and C. Müller^{2,3}

¹Department of Soil and Environmental Sciences University of Azad Jammu and Kashmir, Faculty of Agriculture, Rawalakot, Azad Jammu and Kashmir, Pakistan

²Department of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany ³School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland

Received: 19 November 2010 – Published in Atmos. Chem. Phys. Discuss.: 4 February 2011 Revised: 6 April 2011 – Accepted: 23 August 2011 – Published: 9 September 2011

Abstract. Long-term field observations showed that N₂O fluxes observed shortly after N application were not significantly affected by elevated CO₂ in the Giessen Free Air Carbon dioxide Enrichment (FACE) study. To further investigate this unexpected result a ¹⁵N tracer study was carried out under controlled conditions where in parallel treatments either the NH₄⁺ pool (15 NH₄NO₃) or the NO₃⁻ pool (NH₄¹⁵NO₃) was enriched with ¹⁵N. Fluxes of CO₂, CH₄, and N₂O as well as the ¹⁵N enrichment of the N₂O were measured. Denitrifying Enzyme Activity (DEA), total denitrification $(N_2 + N_2O)$ and N2-to-N2O ratios were quantified in separate experiments. Over the 57 day incubation, N2O fluxes averaged $0.090 \text{ ng } N_2 \text{O-N } \text{g}^{-1} \text{h}^{-1}$ under ambient and $0.083 \text{ ng } N_2 \text{O-}$ $Ng^{-1}h^{-1}$ under elevated CO₂ (not significantly different). The N₂O production processes were identified by a twosource model. Results showed that N2O must have also been produced by a third source - possibly related to organic N transformation - which was stimulated by elevated CO₂. Soil CO₂ fluxes were approximately 20% higher under elevated CO₂ than soil from ambient but the differences were not significant. CH₄ oxidation rates were on average -1.75 ng CH₄-C g⁻¹ h⁻¹ in the elevated and -1.17 ng CH₄- $C g^{-1} h^{-1}$ in the ambient indicating that elevated CO_2 increased the CH₄ oxidation by 49% compared to ambient CO2 under controlled conditions. N fertilization increased CH₄ oxidation by 3-fold in both CO₂ treatments. CO₂ did not have any significant effect on DEA while total denitrification and N₂-to-N₂O ratios increased by 36 and 33 %, respectively. The results indicate that shortly after N application

Correspondence to: M. Kaleem Abbasi (kaleemabbasi@yahoo.com)

 (\mathbf{i})

CC

elevated CO_2 must have stimulated both the N_2O production and reduction to N_2 to explain the increased N_2 -to- N_2O ratio and at the same time explain the non-responsiveness of the N_2O emissions. Thus, the observed variation of the CO_2 effect on N_2O emissions throughout the year is possibly governed by the dynamics of the N_2O reductase activity.

1 Introduction

The level of earth's atmospheric carbon dioxide (CO2) concentration has risen from $\sim 280 \,\mu l \, l^{-1}$ at the start of the industrial revolution to greater than $385 \,\mu l^{-1}$ today, and is expected to exceed 700 μ l l⁻¹ by the end of this century (IPCC, 2007). Elevated atmospheric CO₂ increases the plant productivity and aboveground biomass resulting in a substantial allocation of carbon (C) to belowground that may lead to a general increase in C inputs in soil. This additional C is likely to fuel belowground microbial processes and may alter both C and N cycling in soil. Any change in C and N flow and transformation will affect the soil-atmosphere exchange of biogenic trace gases. The accumulation of greenhouse gases (GHG) in the atmosphere does alter the earth's radiative balance and is likely responsible for climate change (Watson et al., 1992; IPCC, 2007; Smith et al., 2010). Although CO₂ is by far the most abundant greenhouse gas, N₂O and CH₄ are important atmospheric trace gases because of their unique radiative properties and their long residence time in the atmosphere resulting in global warming potential of 296 and 21 times that of CO₂, respectively (IPCC, 2007). In addition, N₂O and CH₄ participate in other atmospheric reactions (e.g. stratospheric ozone depletion) of global environmental significance. Their concentration in the atmosphere is continuously rising and since the pre-industrial era it has increased by 15 and 145 %, respectively (Watson et al., 1992; Houghton et al., 1996; IPCC, 2007).

Soil plays a major role in the global accounting of C not only due to large amount of C stored in soil, but also since soil contribution to the annual flux of CO_2 to the atmosphere is 10 times that contributed by fossil fuel burning (Post et al., 1990). Respiration fluxes of CO_2 in grassland ecosystems under elevated CO_2 varied from a 10% decline to a 162% increase with a mean response of 51% increase (Zak et al., 2000). Reich et al. (2001) found a 13% greater CO_2 fluxes per unit mass under elevated atmospheric CO_2 . Similarly, Smith et al. (2010) reported that soil CO_2 flux in an arable soil was significantly greater under elevated CO_2 being in the range of 15% to 50% compared to ambient CO_2 .

In addition to soil CO₂ flux, elevated atmospheric CO₂ can affect other greenhouse and reactive trace gases i.e. CH₄ and N2O and studies so far provide contradictory results. Ineson et al. (1998) measured fluxes of N₂O, CH₄ and CO₂ from soils under ambient and elevated CO2 at the Swiss FACE experiment in plots of *Lolium perenne* and reported increased N₂O emissions by 27 % under elevated CO₂ while ambient plots oxidized consistently more CH₄ than the elevated plots indicating that elevated CO₂ may result in the inhibition of CH₄ oxidation. Cheng et al. (2006) reported a 58 % increase in CH₄ flux from rice paddies under elevated CO₂. This increase was attributed to greater root exudates and numbers of tillers, resulting in more surface area for the release of CH₄ to the atmosphere (Ziska et al., 1998; lnubushi et al., 2003). In another study, Arnon and Bohlen (1998) and Baggs et al. (2003a) reported that both N_2O and CO_2 fluxes under elevated CO₂ were 2-3 times higher than those observed under ambient CO_2 . This increase was attributed to increased belowground C allocation in elevated CO₂ providing energy for denitifiers or that there is increased O₂ consumption under elevated CO₂. However, Mosier et al. (2002) conducted an open-top-chamber CO2 enrichment study in the Colorado shortgrass steppe and reported that even though both C_3 and C₄ plant biomass increased and soil moisture content was typically higher under elevated CO₂, none of the trace gas fluxes were significantly altered by CO2 enrichment over the 43 months period of observation. Similarly, N₂O fluxes were not affected by elevated CO2 in a paddy, arable and grassland fields (Cheng et al., 2006; Smith et al., 2010; Dijkstra et al., 2010). However, Kettunen et al. (2006) showed that elevated CO2 increased both N2O flux from soil and soil water content.

A significant increase of N_2O emissions under elevated atmospheric CO_2 has been observed in the Giessen FACE study (Kammann et al., 2008). The more than 9-yr data set allowed for the first time the investigation of different time periods throughout the year. Unexpectedly, N_2O stimulation by elevated CO_2 in this N limited grassland ecosystem occurred throughout the vegetation period when mineral N supply was limited, while in the period following N application no significant difference in N_2O emissions was detected. Differences in N cycling and/or stimulation of different microbial groups under elevated CO₂ were made responsible for the observed results. A ¹⁵N tracing study with soil taken from the Giessen FACE study showed that under elevated CO₂ the turnover of N changed towards a higher N cycling speed (Müller et al., 2009). To explain the N₂O response to CO₂ it is particularly important to study in detail the periods following N fertilizer application because these are times when high N₂O emissions occur and when most of the annual N₂O is produced. Thus the objective of this study was to determine the extent to which elevated CO₂ concentration may change soil-atmosphere exchange of GHG (CO₂, CH₄ and N₂O) from grassland soil that had been under the influence of elevated CO₂ for more than 6 yr.

2 Material and methods

2.1 Site description

The grassland site (Environmental Monitoring Climate Impact Research Station) is located 50°32' N and 8°41.3' E at an elevation of 172 m above sea level near Giessen, Germany. The semi-natural non-grazed grassland has been managed extensively as a meadow for at least 50 yr, fertilized with $40 \text{ kg N} \text{ ha}^{-1} \text{ annum}^{-1}$ as calcium ammonium nitrate and mown twice per year. The annual mean precipitation and temperature (last 35 yr) are 644 mm and 9.9 °C. The vegetation, an Arrhenatheretum elatioris Br.Bl. Filipendula ulmaria sub-community, is dominated by 12 grass species, 2 legumes and 15 non-leguminous herbs. The soil is classified as a Fluvic Gleysol and has a sandy clay loam texture over a clay layer, with a mean C and N content of 4.5 % and 0.45 %, respectively and a pH of 6.2 (Müller et al., 2009, note the organic C content was not significantly different between the two CO₂ treatments, see Lenhart (2008). In May 1998, the long-term Giessen FACE system was established (Jäger et al., 2003).

2.2 Soil sampling and experimental set-up

Soil for the experiments reported here was sampled from the top 12 cm of the old grassland soil. The soil was taken from the ambient and elevated FACE rings where also soil had been sampled for the ¹⁵N tracing study described by Müller et al. (2009) (see this publication for more details). Fresh soil was sieved (5 mm) and sub-samples were taken for determining initial gravimetric moisture content at 105 °C for 24 h. The soil was stored for a week at 4 °C before the start of the incubation experiment. A set of twelve jars (Weck[®]) was arranged according to the treatments: (i) two soils i.e. elevated CO₂ soil and ambient soil; (ii) two N sources i.e. ¹⁵NH₄NO₃ or NH₄¹⁵NO₃ (60 atom %) with three repetitions per treatment. Soil portions of 200 g (fresh wt. equivalent)

were weighed out and filled into each jar. The soil was adjusted to a water content of $0.40 \text{ g H}_2\text{O g}^{-1}$ dry soil with distilled water and incubated for a week at 20 °C prior to fertilizer application. Both the soils (either from plots under elevated or ambient CO₂) were labelled with ¹⁵N at a rate of 100 µg N g⁻¹ fresh soil in 10.5 ml per jar using a sevenneedle applicator to assure an even distribution of the applied N in soil. The resulting water content was on average 0.45 g H₂O g⁻¹ dry soil. The jars were covered with parafilm that was perforated with a needle to ensure natural gas exchange and incubated at 20 °C. Samples were weighed at regular intervals during the incubation; water loss under present experimental set-up was almost negligible (~0.2 ml).

2.3 Gas samplings and measurements

In total, 13 gas samplings were carried out at day 0 (shortly after N application) and 1, 2, 4, 9, 14, 18, 24, 29, 35, 39, 48 and 57 days after N application. Four samplings were carried out (3, 4, 5, 7 days) before fertilizer application (control). At each sampling time the jars were closed for 0.5 to 2 h with a glass lid. Gas samples were taken through a septum in the lid with 60 ml disposable syringes at time zero and at the end of the incubation period. A 12 ml sub sample at the end of the incubation samples were transferred to evacuated exetainer (Labco, England) for ¹⁵N analysis. Gas samples were analyzed on a gas chromatograph equipped with ECD (N₂O, CO₂) and FID (O₂, CH₄) detector by standard gas chromatographic method (Mosier and Mack, 1980). The gas chromatograph (Shimadzu 14a) was equipped with a ⁶³Ni-electron capture detector ECD for N₂O and CO₂ (oven, valve and detector temperatures were operated at 65, 100 and 280 °C) and flame ionization detector (FID) for O₂ and CH₄ estimation. The ¹⁵N excess in N₂O was determined in separate samples by isotope-ratio mass-spectrometry (Stevens et al., 1993). The determination of the relative contribution of denitrification to the overall N2O flux was calculated based on the Method by Stevens et al. (1997). Briefly, the procedure assumes that N2O is produced either by nitrification (NH_4^+ oxidation) and/or denitrification (NO_3^- reduction) using the following equation: $d = (a_m - a_n)/(a_d - a_n)$ with d, the fraction derived from the denitrification pool; (1-d) = fraction derived from nitrification, a_d , ¹⁵N fraction of the NO₃⁻ pool; a_n , ¹⁵N fraction of the NH₄⁺ pool, a_m , ¹⁵N fraction of the N₂O (mixture).

If the calculation results in a negative value then the ¹⁵N abundance of the N₂O must have been lower than the ¹⁵N abundance from either the NO₃⁻ or the NH₄⁺ pool. Thus providing an indication that N₂O was produced by a third process that is not associated with the turnover of NH₄⁺ and/or NO₃⁻ (see also, Rütting et al., 2010).

2.4 Denitrification enzyme activity (DEA)

A set of twelve flasks (Brand) per sampling date (total of 8 sets) was arranged according to the treatments: (i) two soils i.e. elevated CO₂ soil and ambient soil; (ii) two C₂H₂ levels $(-C_2H_2; +C_2H_2)$ with three repetitions per treatment. Acetylene was used to inhibit the reduction of N₂O to N₂ during denitrification and thus allowing estimation of total denitrification by measurement of the accumulated N₂O (Abbasi and Adams, 2000a). Prior to DEA analysis, twenty grams of soil at a moisture content of 0.41 g H_2O g⁻¹ dry soil was pre-incubated at 20 °C for 7 days after adding $100 \,\mu\text{g}\,\text{N}\,\text{g}^{-1}$ fresh soil (as NH₄NO₃) following experiment 1. DEA analysis was carried out in 250 ml flasks (Brand) with a septum fitted in the lid for gas sampling, using an anaerobic slurry technique as described by Müller et al. (2002). At the start of the assay 50 ml of a nitrate-glucose solution were applied to each flask resulting in concentrations of $50 \,\mu\text{g} \,\text{NO}_3^-$ -N g⁻¹ (as KNO₃) and $300 \,\mu\text{g} \,\text{C} \,\text{g}^{-1}$ soil (as glucose). The bottles were immediately closed, evacuated and the headspace flushed (to atmosphere pressure) with pure N₂ with a double needle. Each evacuation and/or flushing lasted for 2 min and the internal atmosphere did not contain detectable oxygen, as confirmed by gas chromatography. In C2H2 treated flasks, 10% of headspace gas was removed and replace by adding 10 ml of C₂H₂ with a syringe and internal pressure was equilibrated to atmospheric pressure. The samples were placed at 20 °C on a rotary shaker at 120 rmp for a total of 40 min. The headspace atmosphere was removed (first sample) with 60 ml gas-tight syringes at 20 min. The extracted gas after the first sample was replaced by the same amount of N2. Following continuous shaking, a second sample was taken after 40 min. Gas samples were analyzed for O₂, CH₄, CO₂, and N₂O on a gas chromatograph (GC) equipped with an FID and ECD detector (Mosier and Mack, 1980). DEA was calculated as the difference in N₂O concentration increase during a 20 min incubation (40–20 min), accounting for bottles, soil, media and water volume. The concentrations of the sampling were adjusted for dissolved gas in soil solution using the Bunsen coefficient (Moraghan and Buresh, 1977).

2.5 Statistical analysis

Statistical analysis was carried out with Sigmaplot in combination with Sigmastat (version 3.1, SPSS, Inc.). During the analysis test for normality and equal variance are carried out before running the ANOVA and tests to determine significant differences via the Holm-Sidak test.

Fig. 1. Daily fluxes of CH₄ (μ g CH₄-C g⁻¹ h⁻¹) and CO₂ (μ g CO₂-g⁻¹ h⁻¹) (Avg. \pm SD) from temperate grassland soil exposed to elevated CO₂ and soil without elevated CO₂ treatment i.e. ambient incubated under controlled laboratory conditions following the application of NH₄¹⁵NO₃ and ¹⁵NH₄NO₃.

3 Results

3.1 Effect of elevated atmospheric CO₂ on CO₂ emissions

Soil carbon dioxide fluxes before N application were 1.00– 1.47 µg CO₂-C g⁻¹ under ambient and 1.13–1.42 under elevated CO₂ (Fig. 1). During 7 days samplings (average), the fluxes were 1.22 and 1.27 µg CO₂-C g⁻¹ in ambient and elevated CO₂ soils, respectively showing a non-significant response of elevated CO₂. Application of N fertilizer did not alter the CO₂ fluxes in both the soils: The maximum fluxes occurred during the first 14 days and thereafter CO₂ fluxes continuously decreased with incubation time. Over 57 days' sampling, CO₂ fluxes were on average 0.77 µg CO₂-C g⁻¹ and 0.93 µg CO₂-C g⁻¹ in ambient and elevated CO₂ soil, respectively indicating approximately 20 % higher soil CO₂ emissions under elevated CO₂ than soil from ambient CO₂ but the differences were not significant (p > 0.05).

3.2 Effect of elevated atmospheric CO₂ on CH₄ fluxes

Net CH₄ oxidation was observed in all samplings before and after N application (Fig. 1). The CH₄ oxidation rates before N application were -0.29 to -0.34 ng CH₄-C g⁻¹ h⁻¹ in ambient and -0.46 to -0.76 ng CH₄-C g⁻¹ h⁻¹ in elevated CO₂ soil indicating about a 22% higher oxidation rate in soil that had been under elevated CO₂. After N application, the rate of CH₄ oxidation increased from -0.21 to -3.1 ng CH₄-C g⁻¹ h⁻¹ in ambient and -0.45 to -4.26 ng CH₄-C g⁻¹ h⁻¹ in elevated CO₂. Maximum oxidation rates were observed 1 day after fertilizer application and increased steadily till 18–24 days of incubation. During this period the oxidation

rates in the ambient control were -1.19 to -3.07 ng CH₄-C g⁻¹ h⁻¹ while under elevated CO₂ the rates were -1.79 to -4.18 ng CH₄-C g⁻¹ h⁻¹. After day 24, the oxidation potential of soil decreased consistently to background level till the end of the incubation. On average over the incubation time, CH₄ oxidation rates before N application were -0.40 ng CH₄-C g⁻¹ h⁻¹ and became -1.46 ng CH₄-C g⁻¹ h⁻¹ after N application indicating a substantial increase in CH₄ oxidation with N fertilization. Average rates over sampling dates revealed that CH₄ oxidation in elevated CO₂ soil was -1.75 ng CH₄-C g⁻¹ h⁻¹ while the CH₄ oxidation in the ambient soil was -1.17 ng CH₄-C g⁻¹ h⁻¹ indicating a 49 % higher CH₄ oxidation under elevated compared to ambient CO₂.

3.3 Effect of elevated atmospheric CO₂ on N₂O emissions

In the week before fertilizer N application N₂O emissions were $0.019 \text{ ng} \text{ N}_2\text{O}-\text{Ng}^{-1}\text{ h}^{-1}$ in the ambient and $0.023 \text{ ng} \text{ N}_2\text{O}-\text{Ng}^{-1}\text{ h}^{-1}$ in the elevated CO₂ soils (Fig. 2). N₂O fluxes did not show any consistent pattern with time. Likewise, N₂O fluxes did not differ between elevated CO₂ and ambient treatments and both showed similar fluxes. After N application the flux rates increased substantially and reached 0.280 and 0.240 ng N₂O-N g⁻¹ h⁻¹ at day 0. Over the 57 days, N₂O fluxes averaged 0.090 ng N₂O-N g⁻¹ h⁻¹ in ambient and 0.083 ng N₂O-N g⁻¹ h⁻¹ in elevated CO₂ (not significantly different) resulted in a 3- to 4-fold increase after N application. The highest fluxes of 0.281 and 0.240 ng N₂O-N g⁻¹ h⁻¹ were measured from ambient and elevated CO₂ treatments, respectively just after N application (day 0). The

Fig. 2. Daily fluxes of N₂O (μ g N₂O-N g⁻¹ h⁻¹) (Avg. \pm SD) from temperate grassland soil exposed to elevated CO₂ and soil without elevated CO₂ treatment i.e. ambient incubated under controlled laboratory conditions following the application of NH₄¹⁵NO₃ and ¹⁵NH₄NO₃.

increase in emissions was short-lived (3–4 days) with fluxes returning to "background" levels 30 days after N application.

3.4 ¹⁵N enrichment of the N₂O

The ¹⁵N enrichment of the N₂O in the soil increased one day after N fertilizer application together with the increase in N₂O concentrations (Fig. 3). Ten days after fertilizer N application, the enrichment of the N2O was close to the enrichment in the applied N, indicating that the observed N2O originated from the applied fertilizer. Comparing the ¹⁵N enrichments in the N₂O from the ambient and elevated CO₂ soils, no significant difference was observed between the two soils labeled either with $NH_4^{15}NO_3$ or $^{15}NH_4NO_3$. The ¹⁵N enrichment of the N₂O in the treatments where $NO_3^$ was labelled, were relatively higher than the treatment where NH_{4}^{+} was labeled. The contribution of denitrification for N₂O production estimated by the 2-pool model of Stevens et al. (1997) indicated on day 1 after ¹⁵N application a contribution of 16 and 32 % under ambient and elevated CO₂ respectively. Negative values after 15 days showed that apart from N_2O contribution related to NH_4^+ and NO_3^- turnover a third process must have been in operation which was responsible for a dilution of the ¹⁵N N₂O abundance below the ¹⁵N abundance of NH_4^+ and NO_3^- .

3.5 Denitrification enzyme activity, total denitrification and ratio of N₂-to-N₂O

The measurement of denitrification enzyme activity (DEA) by measuring N_2O emissions during short incubation periods

Fig. 3. Nitrous oxide (N₂O) enrichments (Avg. \pm SD) in a temperate grassland soil exposed to elevated CO₂ and soil without elevated CO₂ treatment i.e. ambient following N fertilizer application where the nitrate pool (NH₄¹⁵NO₃) and the ammonium pool (¹⁵NH₄NO₃) were labelled with ¹⁵N at 60 atom % excess.

(anaerobic), total denitrification $(N_2O + N_2)$ and N_2/N_2O ratios was carried-out from both CO₂ treatments (Fig. 4). Before N application, one measurement was taken and DEA rates were 0.137 in ambient and 0.172 μ g N₂O-N g⁻¹ h⁻¹ in elevated CO₂ soil while total denitrification $(N_2O + N_2)$ was 0.456 in ambient and 0.514 μ g N₂O-N g⁻¹ h⁻¹ in elevated CO2 soil. The N2/N2O ratios were 3.33 for ambient and 2.99 for elevated CO₂ treatment. After N application, DEA rates (both N_2O and $N_2O + N_2$) increased in the first two samplings (day 0 and 1) but thereafter the rates continuously declined over time. DEA rates (N2O fluxes) in the elevated CO2 treatment were on average (20 days incubation) 16 % higher $(0.149 \text{ vs. } 0.128 \,\mu\text{g}\,\text{N}_2\text{O-N}\,\text{g}^{-1}\,\text{h}^{-1})$ than N₂O fluxes in the ambient CO₂ treatment. But the values of both treatments across different sampling days were not-significantly different. Total denitrification rates $(N_2O + N_2)$ indicated significantly higher fluxes (36%) in elevated CO₂ treatment than in ambient CO₂ ($P \le 0.05$). Similarly, the N₂ production was consistently higher under elevated CO₂ treatment and on average 54 % higher than the N2 production in the ambient CO2

Fig. 4. Emission of N₂O, total denitrification $(N_2O + N_2)$ (µg N g⁻¹ h⁻¹) and N₂/N₂O ratio (Avg. ± SD) from temperate grassland soil exposed to elevated CO₂ and soil without elevated CO₂ treatment i.e. ambient incubated under controlled laboratory conditions following the application of NH₄¹⁵NO₃ and ¹⁵NH₄NO₃.

treatment (Fig. 5). The N₂/N₂O ratio was 1.02 in the ambient and 1.36 in the elevated CO₂ treatment showing a 33 % higher ratio under elevated CO₂. Contribution of d (NO₃⁻ reduction) to total N₂O production at ambient and elevated CO₂ is shown in Fig. 5. Results indicated that shortly after N application N₂O production and reduction to N₂ substantially increased both in ambient and elevated CO₂ and the emissions decreased sharply with time. Elevated CO₂ stimulated both the N₂O production and reduction to N₂ compared to ambient CO₂.

Fig. 5. Contribution of d (NO₃⁻ reduction) to total N₂O production in grassland soil at ambient and elevated CO₂.

4 Discussion

4.1 CO₂ production and methane oxidation

Over the 57-day period of observation, CO₂ flux between the ambient and elevated CO₂ treatments was not significant suggesting that CO₂ flux was not affected by elevated atmospheric CO_2 . This was unexpected because in the field 25 % higher CO₂ fluxes were observed under CO₂ enrichment possibly caused by the enhanced biomass and root biomass production and general higher activity under elevated CO₂ (Kammann et al., 2008). In this laboratory study soil from both ambient and elevated CO₂ treatments was incubated under similar conditions thus, any discrepancy between laboratory and field studies can be associated with plant effects which was also confirmed by ¹³C studies in the FACE rings (Lenhart, 2008). Higher CO₂ fluxes under elevated CO₂ were also be observed in a number of other studies (Hungate et al., 1997; Arnone and Bohlen, 1998; Ambus and Robertson, 1999; Reich et al., 2001; Smith et al., 2010). However, there are also reports showing that ecosystem respiration (CO₂ flux) was not affected by elevated CO₂ (Ineson et al., 1998; Mosier et al., 2003). Hu et al. (2001) suggested that in the long term, soil microbial decomposition is slowed under elevated CO₂ because of N limitation and CO₂ production is either not affected or limited. In our study it was not the N limiting factor affecting CO₂ production in elevated CO₂ soils but some other unknown control factors which affected soil respiration.

Throughout the course of the experiment, the CH₄ oxidation potential was significantly greater in the elevated CO₂ (49%) than the ambient CO₂. These results were in contrast to the earlier studies where CH₄ consumption i.e. oxidation was lowered by an average of 17 μ g CH₄-C m⁻² h⁻¹ under elevated CO₂ (Ineson et al., 1998), more oxidation in ambient than elevated CO₂ soil (Mosier et al., 2003), or no effect of elevated CO2 on CH4 oxidation was observed (Mosier et al., 2002; Smith et al., 2010). Most of these studies were conducted under field conditions where two possibilities may tend to increase CH₄ production and decrease CH₄ oxidation (i) increased soil moisture under elevated CO₂ constrain and slow down the diffusive CH₄ (and O₂) transport from the atmosphere to the water-film covered microbial population and therefore inhibit CH₄ oxidation (Dörr et al., 1993), (ii) increased inhibition of CH₄ oxidation under elevated CO₂ or increased CH₄ production due to greater C availability in the soil under elevated CO₂ (van Kessel et al., 2000). In our study similar atmospheric conditions to both ambient and elevated CO₂ soils in the laboratory were maintained so that conditions for gas diffusion in the two soils were similar. Thus, the results from the study showed that the mechanism responsible for inhibiting CH₄ oxidation under elevated CO₂ as observed under field conditions, were not operative under laboratory conditions.

Average net CH₄ oxidation rates after N application were 3-fold compared to fluxes before N application. These results are in contrast to earlier findings that the application of NH_4^+ reduced CH₄ oxidation rates almost immediately (forest soils, Steudler et al., 1989; short-grass steppe, Mosier et al., 1991; laboratory incubations, Hütsch, 1998; Tlustos et al., 1998; Ullah et al., 2008). The reduced CH₄ oxidation in the field was attributed to suppression in the population growth and lower abundance of methane oxidizers and to an inhibition of de-novo enzyme synthesis (Kolb et al., 2005). The higher oxidation rates by N addition in the present study are difficult to explain but they show that either the activity of methanotrophic bacteria was enhanced under elevated CO₂ possibly increased methanogenesis under conditions when mineral N was available (Kammann et al., 2001). Therefore, the kinetics of CH₄ oxidation/production is complex and their dependence on soil N status or moisture are crucial for an accurate prediction of net CH₄ oxidation.

4.2 N₂O emissions

The present investigation indicated a substantial increase in N_2O emissions after N application in both CO_2 treatments. Furthermore, results indicated that N_2O emissions in both the treatments (ambient and elevated) appeared to be limited by available N as fluxes in N fertilized soils increased 3-to 4-fold. Application of fertilizer N had a direct effect on N_2O production by supplying N for both nitrification and denitrification (e.g. Mosier, 1994; Clayton et al., 1997; Abbasi and Adams, 2000b) which may occur simultaneously (Abbasi and Adams, 2000a, b). Calculations of the contribution of denitrification on the total N_2O was carried out according to the method of Stevens et al. (1997). Results indicated that in the first 8 days of the experiment (when calculated contributions were still positive) the average contribution of denitrification to N_2O production was 17 % higher under elevated compared to ambient CO₂ (i.e. ambient CO₂: 8 % and under elevated CO₂: 25 %) (Fig. 5). This method is based on the assumption that only nitrification and dentirification contribute to the observed N₂O production. However, as shown by Rütting et al. (2010) via a ¹⁵N tracing study in the New Zealand grassland FACE not only nitrification and denitrification but also heterotrophic processes, metabolizing organic N, may contribute to N₂O production. This is also the reason for negative values found in this study from day 15–20 onwards (Fig. 5), which occur in situation when the N₂O ¹⁵N abundance is below the ¹⁵N abundance of NH₄⁺ and NO₃⁻, thus indicating that a third source at natural or low abundance contributed to the N₂O emissions. Rütting et al. (2010) showed that denitrification increased from 4.7 % to 8 % under elevated CO₂, a similar trend was observed in our study.

The N₂O emissions observed before and after N application showed that elevated CO_2 did not show any significant effect on N₂O fluxes, rates of fluxes (average) were almost similar. The pre-existing organic fractions and resulting differences in microbial activity and dynamics under elevated CO₂ treatment (Kammann et al., 2008) could have had an effect on N₂O production but did not contribute to higher N₂O fluxes under elevated CO₂. This finding is in line with Rütting et al. (2010) who found no statistical evidence that elevated CO₂ stimulated N₂O production in grassland soil exposed to elevated CO₂ for 10 yr. Similarly, Barnard et al. (2005) concluded from a review of 20 experiments that field N₂O fluxes were not altered by elevated CO₂. However, in several studies it has been shown that N₂O flux rates were increased by elevated CO₂. Ineson et al. (1998) found 27 % higher N₂O emissions in grassland exposed to elevated CO₂. Similarly, in perennial grassland N₂O fluxes under elevated CO₂ were double than those observed under ambient CO₂ (Arnone and Bohlen, 1998). In contrast, there are also reports that elevated CO₂ either did not alter N₂O fluxes, or even reduced N2O emissions (Hungate et al., 1997; Mosier et al., 2002, 2003; Welzmiller et al., 2008). Baggs and Blum (2004) reported that the response of N₂O emissions to elevated CO2 in grass swards depend on the rate of N application. The response was non-significant at low rates while N₂O emissions significantly increased under elevated CO₂ when high rates of N fertilizer were applied. Observations in the Giessen FACE study were unexpected because enhanced N₂O emissions in the elevated CO₂ treatment (vs. ambient) were only observed during times of low N availability (Kammann et al., 2008). After N fertilizer application N2O emissions were not different between ambient and elevated CO₂. As highlighted by Kammann et al. (2008) it is important to take the temporal dynamics of N₂O emissions into account, which may identify time periods when N2O emissions are significantly higher and those which are not. Thus our results from the laboratory study and from other studies are only representative for certain time periods and are not representative of general response patterns.

 N_2O production and its concentration in atmosphere are linked to the soil N turnover (mineralization, nitrification, denitrification) (Müller et al., 2009; Rütting et al., 2010). The net and gross nitrification rates decreased while DEA (which is carried out under non-N limiting conditions) did not show any significant increase under elevated CO₂ (Kammann et al., 2008). Thus the potential for net N₂O production is not affected by elevated CO₂. Together with the increase in the contribution of denitrification to the overall N₂O flux this result indicates that the N₂O reductase activity must have been higher under elevated CO₂. Thus to confirm this, the N₂to-N₂O ratio was determined under optimum conditions for denitrification.

4.3 Total denitrification and N₂-to-N₂O ratio

Stimulation of denitrification and N₂-to-N₂O ratios was also observed from the soil incubation studies. However, apart from CO₂ the magnitude of emissions varies depending on type and timing of inorganic fertilizer application, soil temperature, moisture content, soil type which will vary throughout the year (Baggs et al., 2003a; Kammann et al., 2008).

Denitrification enzyme activity (DEA) was on average 16% higher in the elevated CO₂ than in the ambient treatment but the difference between the two CO₂ treatments was not significantly different, suggesting that elevated CO₂ had only a limited effect on the quantity of active denitrifying enzymes present in the soil. These results were in line with findings of Barnard et al. (2004) who also reported very little response of DEA to CO₂ treatment in German grassland soils. However, the total denitrification $(N_2O + N_2)$ and the ratio of N₂-to-N₂O were significantly higher (36%) and 33%) under elevated CO2 compared to the ambient treatment. In general the ratio under elevated CO₂ (average 1.358) was similar to the ranges reported by Rolston et al. (1976) (0.1-40) but were lower than the ratios (345 and410) reported by Baggs et al. (2003b). Thus, under elevated CO2 and under non-N limiting conditions most likely a stimulation of the N₂O reductase occurred while under N limiting conditions the higher N2O emissions under elevated CO2 may be related to a higher nirK/nosZ ratio (nitrite/nitrous oxide reductase) as observed by Regan et al. (2011) for this soil. Thus our studies provide indirect evidence that the kinetics of the reductase systems during denitrification in this grassland soils are linked to the enhanced C input in connection to Noxide availability (Dendooven et al., 1994).

The maximum ratios in both the treatments were found shortly after N application at day 0 in contrast to Baggs et al. (2003b) who found very low N₂-to-N₂O ratios till 8 days after fertilizer application and proposed different times lag for N₂ and N₂O production. Our results are in line with observations by Welzmiller et al. (2008) who also found constantly higher N₂-to-N₂O ratios under elevated CO₂. The higher N₂-to-N₂O ratios under elevated CO₂ emphasize the need for the consideration of N₂ measurements in future denitrification studies and showed that despite a non significant response to N_2O total denitrification may be altered. This might be due to a shift of the denitrifier community under elevated CO_2 which exhibit different of the different reductase dynamics during denitrification (Regan et al., 2011).

5 Conclusions

Most of the studies conducted so far have suggested higher N₂O emissions under elevated CO₂ while very few reported no response. We observed no statistically significant CO_2 enrichment effect on fluxes of CO2 and N2O in the laboratory study which was carried out under non-N limiting conditions. However, the relative rate of N₂O from denitrification and the N₂-to-N₂O ratio changed under elevated CO₂. Thus, elevated CO₂ appears to have an impact on the denitrification kinetics in this grassland soil which was also confirmed by molecular studies of this soil (Regan et al., 2011) The enhanced CH₄ oxidation under elevated CO₂ is surprising and shows that the potential for CH₄ oxidation may increase in this soil. However, this effect was not observed in the field suggesting that the combination of N application in combination with the environmental regulators (e.g. moisture, temperature) which were held constant in the current study have an impact under field conditions. The understanding of the stimulation of the microbial populations and activity of methanogenics and methanotrophic bacteria in response to changing substrate and abiotic factors are essential to predict the net CH₄ oxidation in terrestrial ecosystem under elevated CO₂. A mechanistic understanding of changes in the N cycle and associated GHG production under elevated atmospheric CO₂ concentrations is essential to predict GHG dynamics under climate change. Therefore, while this study does not directly contribute to a better understanding of atmospheric processes, it still can elucidate some of main drivers governing the exchange of GHGs between soil and the atmosphere which will aid the development of models that are aiming to simulate GHG dynamics.

Acknowledgements. This work was supported in part by a research fellowship (Georg Foster Fellowship) to M. Kaleem Abbasi by the Alexander von Humboldt foundation, Germany.

Edited by: C. Granier

References

- Abbasi, M. K. and Adams, W. A.: Gaseous N emission during simultaneous nitrification-denitrification associated with mineral N fertilization to a grassland soil under field conditions, Soil Biol. Biochem., 32, 1251–1259, 2000a.
- Abbasi, M. K. and Adams, W. A.: Estimation of simultaneous nitrification and denitrification in grassland soil associated with urea-N using ¹⁵N and nitrification inhibitor, Biol. Fertil. Soils, 31, 38–44, 2000b.

- Ambus, P. and Robertson, G. P.: Fluxes of CH₄ and N₂O in aspen stands grown under ambient and twice-ambient CO₂, Plant Soil, 209, 1–8, 1999.
- Arnone III., J. A. and Bohlen, P. J.: Stimulated N₂O flux from intact grassland monoliths after two growing seasons under elevated atmospheric CO₂, Oecologia, 116, 331–335, 1998.
- Baggs, E. M. and Blum, H.: CH₄ oxidation and emissions of CH₄ and N₂O from *Lolium perenne* swards under elevated atmospheric CO₂, Soil Biol. Biochem., 36, 713–723, 2004.
- Baggs, E. M., Richter, M., Hartwig, U. A., and Cadisch, G.:. Nitrous oxide emissions from grass swards during the eight years of elevated atmospheric *p*CO₂ (Swiss FACE), Global Change Biol., 9, 1214–1222, 2003a.
- Baggs, E. M., Richter, M., Cadisch, G., and Hartwig, U. A.: Denitrification in grass swards is increased under elevated atmospheric CO₂, Soil Biol. Biochem., 35, 729–732, 2003b.
- Barnard, R., Barthes, L., Le Roux, X. L., Harmens, H., Raschi, A., Soussana, J. F., Winkler, B., and Leadley, P. W.: Atmospheric CO₂ elevation has little effect on nitrifying and denitrifying enzyme activity in four European grasslands, Glob. Change Biol., 10, 488–497, 2004.
- Barnard, R., Leadley, P. W., and Hungate, B. A.: Global change, nitrification, and denitrification: a review, Global Biogeochem. Cy., 19, GB1007, doi:1010.1029/2004GB002282, 2005.
- Cheng, W., Yagi, K., Sakai, H., and Kobayashi, K.: Effects of elevated atmospheric CO₂ concentrations on CH₄, and N₂O emission from rice soil: An experiment in controlled-environment chambers, Biogeochem., 77, 351–373, 2006.
- Clayton, H., McTaggart, I. P., Parker, J., Swan, L., and Smith, K. A.: Nitrous oxide emissions from fertilised grassland: a two year study of the effects of N-fertiliser form and environmental conditions, Biol. Fertil. Soils, 25, 252–260, 1997.
- Dendooven, L., Splatt, P., Anderson, J. M., and Scholefield, D.: Kinetics of the denitrification process in a soil under permanent pasture. Soil Biol. Biochem., 26, 361–370, 1994.
- Dijkstra, F. A., Morgan, J. A., LeCain, D. R., and Follett, R. F.: Microbially mediated CH₄ consumption and N₂O emission is affected by elevated CO₂, soil water content, and composition of semi-arid grassland species, Plant Soil, 329, 269–281, 2010.
- Dörr, H., Katruff, L., and Levin, I.: Soil texture parameterization of the methane uptake in aerated soils, Chemosphere, 26, 697–713, 1993.
- Houghton, J. T., Meira, F. L. G., Treanton, L. B., Mamaty, I., Bonduki, Y., Griggs, D. J., and Callander, B. A.: Climate change 1995 – the science of climate change: contribution of Working Group 1 to the 2nd assessment report of the Intergovernmental panel on climate change, Cambridge University Press, Cambridge, 1996.
- Hu, S., Chapin III, F. S., Firestone, M. K., Field, C. B., and Chiariello, N. R.: Nitrogen limitation of microbial decomposition in a grassland under elevated CO₂, Nature, 409, 188–191, 2001.
- Hungate, B. A., Lund, C. P., Pearson, H. L., and Chapin, F. S.: Elevated CO₂ and nutrient addition alter N cycling and N trace gas fluxes with early season wet-up in a California annual grassland, Biogeochem., 37, 89–109, 1997.
- Hütsch, B. W.: Methane oxidation in arable soil as inhibited by ammonium, nitrite and organic manure with respect to soil pH, Biol. Fertil. Soils, 28, 27–35, 1998.

- Ineson, P., Coward, P. A., and Hartwig, U. A.: Soil gas fluxes of N₂O,CH₄ and CO₂ beneath *Lolium perenne* under elevated CO₂: the Swiss free air carbon dioxide enrichment experiment, Plant Soil, 198, 89–95, 1998.
- Inubushi, K., Cheng, W., Aonuma, S., Hoque, M., Kobayashi, K., Miura, S., Kim, H. Y., and Okada, M.: Effects of free-air CO₂ enrichment (FACE) on CH₄, emission from a rice paddy field, Global Change Biol., 9, 1458–1464, 2003.
- IPCC: "Climate change 2007: The physical science basis Summary for policymakers", 1–21, IPCC Secretariat, Geneva, Switzerland, 2007.
- Jäger, H. J., Schmidt, S. W., Kammann, C., Grünhage, L., Müller, C., and Hanewald, K.: The University of Giessen free-air carbon dioxide enrichment study: description of the experimental site and of a new enrichment system, J. Appl. Bot., 77, 117–127, 2003.
- Kammann, C., Grünhage L., Jager, H. J., and Wachinger, G.: Methane fluxes from differentially manged grassland study plots: the important role of CH₄ oxidation in grassland with a high potential for CH₄ production, Environ Pollut., 115, 261–273, 2001.
- Kammann, C., Müller, C., Grünhage, L., and Jäger, H. J.: Elevated CO₂ stimulates N₂O emissions in permanent grassland, Soil Biol. Biochem., 40, 2194–2205, 2008.
- Kettunen, R., Saamio, S., Martikainen, P. J., and Silvola, J.: Increase of N₂O fluxes in agricultural peat and sandy soil under elevated CO₂ concentration: concomitant changes in soil moisture, groundwater table and biomass production of *Phleum pretense*, Nutr. Cycl. Agroecosyst., 74, 175–189, 2006.
- Kolb, S., Carbrera, A., Kammann, C., Kämpfer, P., Conrad, R., and Jäckel, U.: Quantitative impact of CO₂ enriched atmosphere on abundances of methanotrophic bacteria in a meadow soil, Biol. Fertil. Soils, 41, 337–342, 2005.
- Lenhart, K.: The effects of long-term Free Air CO₂ Enrichment (FACE) on soil aggregation, soil carbon input, and ecosystem CO₂ dynamics in a temperate grassland ecosystem, Justus-Liebig University, Giessen, 2008.
- Moraghan, J. T. and Buresh, R. J.: Correction for dissolved nitrous oxide in nitrogen studies, Soil Sci. Soc. Am. J., 41, 1201–1202, 1977.
- Mosier, A. R.: Nitrous oxide emissions from agricultural soils, Fert. Res., 37, 191–200, 1994.
- Mosier, A. R. and Mack, L.: Gas chromatographic system for precise, rapid analysis of nitrous oxide, Soil Sci. Soc. Am. J., 44, 1121–1123, 1980.
- Mosier, A. R., Schimel, D. S., Valentine, D. W., Bronson, K., and Parton, W.: Methane and nitrous oxide fluxes in native, fertilized, and cultivated grasslands, Nature, 350, 330–332, 1991.
- Mosier, A. R., Morgan, J. A., King, J. Y., LeCain, D., and Milchunas, D. G.: Soil–atmosphere exchange of CH₄, CO₂, NO_x, and N₂O in the Colorado shortgrass steppe under elevated CO₂, Plant Soil, 240, 201–211, 2002.
- Mosier, A. R., Pendall, E., and Morgan, J. A.: Effect of water addition and nitrogen fertilization on the fluxes of CH₄, CO₂, NO_x, and N₂O following five years of elevated CO₂ in the Colorado Shortgrass Steppe, Atmos. Chem. Phys., 3, 1703–1708, doi:10.5194/acp-3-1703-2003, 2003.
- Müller, C., Martin, M., Stevens, R. J., Laughlin, R. J., Kammann, C., Ottow, J. C. G., and Jäger, H. J.: Processes leading to N₂O emissions in grassland soil during freezing and thawing, Soil

Biol. Biochem., 34, 1325-1331, 2002.

- Müller, C., Rütting, T., Abbasi, M. K., Laughlin, R. J., Kammann, C., Clough, T. J., Sherlock, R. R., Kattge, J., Jäger, H.-J., Watson, C. J., and Stevens, R. J.: Effect of elevated CO₂ on soil N dynamics in a temperate grassland soil, Soil Biol. Biochem., 41, 1996–2001, 2009.
- Post, W. M., Peng, T. H., Emanuel, W. R., King, A. W., Dale, V. H., and DeAngelis, D. L.: The global carbon cycle, Am. Sci., 78, 310–326, 1990.
- Regan, K., Kammann, C., Hartung, K., Lenhart, K., Müller, C., Philippot, L., Kandeler, E., and Marhan, S.: Can differences in microbial abundances help explain enhanced N₂O emissions in a permanent grassland under elevated atmospheric CO₂?, Glob. Change Biol., 17, 3176–3186, 2011.
- Reich, P. B., Knops, J., Tilman, D., Craine, J., Ellsworth, D., Tjoelker, M., Lee, T., Wedin, D., Naeem, S., Bahauddin, D., Hendrey, G., Jose, S., Wrage, K., Goth, J., and Bengston, W.: Plant diversity enhances ecosystem responses to elevated CO₂ and nitrogen deposition, Nature, 410, 809–812, 2001.
- Rolston, D. E., Fried, M., and Goldhame, D. A.: Denitrification measured directly from nitrogen and nitrous oxide gas fluxes, Soil Sci. Soc. Am. J., 40, 259–266, 1976.
- Rütting, T., Clough, T. J., Müller, C., Lieffering, M., and Newton, P. C. D.: Ten years of elevated atmospheric carbon dioxide alters soil nitrogen transformations in a sheep-grazed pasture, Glob. Change Biol., 16, 2530–2542, 2010.
- Smith, K. E., Runion, G. B., Prior, S. A., Rogers, H. H., and Torbert, H. A.: 2010. Effects of elevated CO₂ and agricultural management on flux of greenhouse gases from soil, Soil Sci., 175, 349–356, 2010.
- Steudler, P. A., Bowden, R. D., Melillo, J. M., and Aber, J. D.: Influence of nitrogen fertilisation on methane uptake in temperate forest soils, Nature, 341, 314–316, 1989.
- Stevens, R. J., Laughlin, R. J., Atkins, G. J., and Prosser, S. J.: Automated determination of 15N-labelled dinitrogen and nitrous oxide by mass spectrometry, Soil Sci. Soc. Am. J., 7, 981–988, 1993.

- Stevens, R. J., Laughlin, R. J., Burns, L. C., Arah, J. R. M., and Hood, R. C.: Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil, Soil Biol. Biochem., 29, 139–151, 1997.
- Tlustos, P., Willison, T. W., Baker, J. C., Murphy, D. V., Pavlikova, D., Goulding, K. W. T., and Powlson, D. S.: Short-term effects of nitrogen on methane oxidation in soils, Biol. Fertil. Soils, 28, 64–70, 1998.
- Ullah, S., Frasier, R., King, L., Picotte-Anderson, N., and Moore, T. R.: Potential fluxes of N₂O and CH₄ from soils of three forest types in Eastern Canada, Soil Biol. Biochem., 40, 986–994, 2008.
- van Kessel, C., Horwath, W. R., Hartwig, U. A., Harris, D., and Lüscher, A.: Net soil carbon input under ambient and elevated CO₂ concentrations: isotopic evidence after 4 years, Glob. Change Biol., 6, 435–444, 2000.
- Watson, R. T., Meira Filho, L. G., and Sanhueza, E.: Greenhouse gases: sources and sinks, in: Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment, edited by: Houghton, J. T., Callander, B. A., and Varney, S. K., Cambridge University Press, Cambridge, 24–46, 1992.
- Welzmiller, J. T., Matthias, A. D., White, S., and Thompson, T. L.: Elevated carbon dioxide and irrigation effects on soil nitrogen gas exchange in irrigated sorghum, Soil Sci. Soc. Am. J., 72, 393–401, 2008.
- Zak, D. R., Pregitzer, K. S., King, J. S., and Holmes, W. E.: Elevated atmospheric CO₂, fine roots and the response of soil microorganisms: a review and hypothesis, New Phytol., 147, 201–222, 2000.
- Ziska, L. H., Moya, T. B., Wassmann, R., Namuco, O. S., Lantin, R. S., Aduna, I. B., Abao Jr., E., Bronson, K. F., Neue, H. U., and Olszyk, D.: Long-term growth at elevated carbon dioxide stimulates methane emission in tropical paddy rice, Glob. Change Biol., 4, 657–665, 1998.