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Abstract. We present size-segregated measurements of
cloud condensation nucleus (CCN) activity of aged aerosol
sampled at Finokalia, Crete, during the Finokalia Aerosol
Measurement Experiment of summer 2007 (FAME07).
From analysis of the data, hygroscopicity and activation ki-
netics distributions are derived. The CCN are found to be
highly hygroscopic, (expressed by a size- and time- averaged
hygroscopicity parameterκ ∼ 0.22), with the majority of par-
ticles activating at∼0.5–0.6 % supersaturation. Air masses
originating from Central-Eastern Europe tend to be associ-
ated with higher CCN concentrations and slightly lower hy-
groscopicity (κ ∼ 0.18) than for other airmass types. The
particles were always well mixed, as reflected by the high ac-
tivation ratios and narrow hygroscopicity distribution widths.
Smaller particles (∼40 nm) were found to be more hygro-
scopic (∼0.1κ units higher) than the larger ones (∼100 nm).
The particles with diameters less than 80 nm exhibited a di-
urnal hygroscopicity cycle (withκ peaking at∼14 h local
time), consistent with photochemical aging and volatiliza-
tion of less hygroscopic material from the aerosol. Use of
bulk chemical composition and the aerosol number distribu-
tion results in excellent CCN closure when applying Köhler
theory in its simplest form. Using asymptotic and threshold
droplet growth analysis, the “aged” organics present in the
aerosol were found not to suppress or delay the water uptake
kinetics of particles in this environment.

Correspondence to:A. Nenes
(athanasios.nenes@gatech.edu)

1 Introduction

Predicting the global distribution of cloud condensation nu-
clei (CCN) is required for an improved understanding of
aerosol-cloud-climate interactions (IPCC, 2007). Recent
studies address the relative importance of aerosol size distri-
bution, particle composition and mixing state on predictions
of CCN concentrations (Cubison et al., 2008; Roberts et al.,
2002; Ervens et al., 2005; Dusek et al., 2006; Quinn et al.,
2008). These studies help evaluate theory and also quantify
CCN prediction error associated with simplifications taken
to calculate CCN in indirect effect studies; if propagated
through a global model simulation of the aerosol indirect ef-
fect, this error can be expressed as an indirect forcing uncer-
tainty (Sotiropoulou et al., 2006, 2007).

Many of the recent CCN studies have focused on the im-
pact of organic compounds in the aerosol phase. These or-
ganics due to their chemical complexity and abundance in
global ambient aerosol (Zhang et al., 2007) introduce un-
certainties in predictions of CCN concentrations. Labora-
tory experiments suggest that the solubility of organic-rich
particles in water is important for their CCN activity (Cruz
and Pandis, 1997; Bilde and Svenningsson, 2004), although
residual water, inorganic water uptake, mutual deliquescence
and metastable states may allow sparingly-soluble organic
material to be available for activation as if they were com-
pletely soluble in water (Chang et al., 2007; Raymond and
Pandis, 2002, 2003; Broekhuizen et al., 2004; Padró et al,
2006; Marcolli et al., 2006; Chang et al., 2007; Bilde and
Svenningsson, 2004). The existence of surfactants that de-
press surface tension has also been shown to enhance CCN
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activity (e.g., Kuwata et al., 2008; Moore et al., 2008; Asa-
Awuku et al., 2008; Padró et al., 2010). Despite these effects,
the converging view is that the compositional complexity of
organic aerosol tends to yield material with little variability
in hygroscopicity, so that bulk chemical metrics of the or-
ganic phase (such as oxidation state) may serve as an indica-
tor of its CCN activity (Jimenez et al., 2009).

In lieu of the above, single-parameter approaches, such as
the hygroscopicity parameter,κ, (Petters and Kreidenweis,
2007) have been effectively used to parameterize the cumula-
tive effect of organics on the solute term of Köhler theory (the
theoretical basis of most approaches used to describe CCN
activity). Typical values of this parameter areκ = 0 for insol-
uble wettable materials that do not significantly affect water
activity via adsorption (Kumar et al., 2009, 2010),∼0.1 for
oxidized secondary organic aerosols (Engelhart et al., 2008,
2011; Duplissy et al., 2008; Petters and Kreidenweis, 2007;
Asa-Awuku, 2008, 2009; King et al., 2010),∼0.6 for am-
monium sulfate and nitrate, 0.95–1 for sea salt (Niedermeier
et al., 2008) and∼1.25 for pure sodium chloride particles
(Rose et al., 2010). The effective hygroscopicity parame-
ter of multicomponent aerosols can be approximated by a
volume-weighted average of theκ-values of the individual
chemical components (Kreidenweis et al., 2008; Gunthe et
al., 2009). Continental and marine aerosols tend to cluster
aroundκ ∼0.3 andκ ∼0.7, respectively (Andreae and Rosen-
feld, 2008; Kreidenweis et al., 2008; Pöschl et al., 2009),
with a fair amount of variability across space and time, de-
pending on the organic mass fraction (e.g., Gunthe et al.,
2009; Dusek et al., 2009, Cerully et al., 2011), relative abun-
dance of ammonium sulfate (Cerully et al., 2011; Mochida
et al., 2008, 2010) as well as the particle size (Wiedensohler
et al., 2009; Rose et al., 2010). Furthermore, the mixing of
non-hygroscopic primary organic aerosol (POA) and black
carbon (BC) particles with photochemically produced hygro-
scopic species take place in a few hours during daytime, sug-
gesting that away from primary sources, the number concen-
tration of CCN may be predicted accurately enough for cli-
mate model applications assuming an internal mixture and
using only the bulk chemical composition (Medina et al.,
2007; Lance et al., 2009; Sotiropoulou et al., 2006, 2007;
Wang et al., 2010).

Size-resolved CCN activity measurements can also be
used to infer the origin of the observed hygroscopicity in
ambient (and compositionally complex) aerosol samples, pri-
marily through characterization of their water-soluble (WS)
fraction. Padŕo et al. (2007) first introduced the method
of Köhler Theory Analysis (KTA) to infer the molar vol-
ume and solubility of organic compounds from size-resolved
CCN activity of aerosol generated from atomization of an
aqueous solution and demonstrated its applicability to sam-
ples of known composition. Moore et al. (2008) extended
KTA to include an inference of molar volume and surfac-
tant characteristics for marine organic matter isolated from
seawater collected near the Georgia coast. The analysis re-

vealed that the solute contribution was negligible and the pri-
mary effect of the organic matter on CCN activity is through
its impact on surface tension. When this analysis was ap-
plied to WS extracts of secondary organic aerosol (SOA)
from biogenic and anthropogenic parent hydrocarbons (En-
gelhart et al., 2008, 2011; Asa-Awuku, 2009, 2010), a re-
markably constantκ emerged (0.15± 0.08 when surface ten-
sion effects are deconvoluted,∼0.3 when they are implic-
itly included in theκ calculation). Analysis of the WS frac-
tion from biomass burning (Asa-Awuku et al., 2008) also re-
vealed a similar hygroscopicity parameter (κ ∼0.3). Padŕo et
al. (2010) determined the hygroscopicity of the WS fraction
of Mexico City aerosol collected during MILAGRO-2006;
κ was 0.28± 0.06 and remained fairly constant regardless
of location and organic fraction, reflecting a compensation
between shifts in molar volume and surface tension depres-
sion. All together, these studies suggest that the hygroscop-
icity of oxidized organic aerosol may be predicted solely
from knowledge of the water-soluble fraction of the mate-
rial. Bougiatioti et al. (2009) tested this postulation for East-
ern Mediterranean CCN and found that predictions of CCN
notably improved when using the measured WS fraction and
a prescribedκ = 0.3. Given the correlation between the latter
and the WS fraction of organic aerosol (Weber et al., 2007;
Hennigan et al., 2009), the constant value seen for WSκ may
give rise to the observed correlation between the oxidation
state andκ of organic aerosol (Jimenez et al., 2009).

Another uncertain aspect of cloud droplet formation is
the impact of slowly-dissolving compounds, droplet surface
films and aerosol amorphous states on the activation kinet-
ics of CCN. If prevalent, these kinetic limitations could have
an important impact on cloud droplet number and size dis-
tribution (e.g., Chuang et al., 1997; Nenes et al., 2001a,
2002; Lance et al., 2004). Observational studies on the acti-
vation kinetics of ambient or complex CCN (e.g., Moore et
al., 2008; Ruehl et al., 2008, 2009; Sorooshian et al., 2008;
Lance et al., 2009; Padró et al., 2010; Cerully et al., 2011)
have tested this hypothesis by comparing the size of activated
droplets (from the CCN in question) against those obtained
from calibration salt aerosol (used as a standard of rapid ac-
tivation). Differences in droplet sizes can be used to detect
kinetic limitations and can be parameterized as changes in
the water vapor uptake coefficient, as long as the concentra-
tion of CCN in the instrument is not high enough to deplete
supersaturation (Lathem et al., 2011). Evidence to date sug-
gests that dry organic-rich aerosol with low hygroscopicity
may exhibit activation delays, while aerosol rich in inorganic
salts or water-soluble organic carbon tends to exhibit rapid
activation kinetics (Moore et al., 2008; Ruehl et al., 2008;
Shantz et al., 2008; Asa-Awuku et al., 2009, 2011; Padró et
al., 2010; Cerully et al., 2011). Size-resolved droplet growth
analysis data provides information on the kinetic heterogene-
ity of CCN, allowing for the determination of kinetic pa-
rameter distributions (Ruehl et al., 2008, 2009) which would
not necessarily be seen when applying “Threshold Droplet
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Growth Analysis” (TDGA) on polydisperse CCN measure-
ments (Bougiatioti et al., 2009).

The Eastern Mediterranean is a climatically sensitive area
of the globe. Aerosols play an important role, with a top of
the atmosphere radiative cooling up to five times larger than
warming from greenhouse gases (Vrekoussis et al., 2005). In
the summertime, the combination of anthropogenic aerosol
inflow, the scarcity of precipitation and persistently high RH
values in the area can result in doubling (or more) of the to-
tal aerosol light scattering compared to winter (Kalivitis et
al., 2007). The organic aerosol is always in a highly oxi-
dized state, regardless of the aerosol source region (Hilde-
brandt et al., 2010), with about 70 % of the total organic
mass being water-soluble (Bougiatioti et al., 2009). Ear-
lier work has shown that most of the aerosol in this re-
gion activates at 0.6 % supersaturation, characteristic of the
aged nature of the aerosols; CCN calculations using the sim-
plest form of K̈ohler theory (i.e., size-invariant composi-
tion, and insoluble organic fraction) agrees with measure-
ments to within 10 % (for supersaturations between 0.2 and
0.73 %). Based on the aerosol “bulk” composition, an av-
erageκ of 0.24± 0.08 is found for the aerosol at Finokalia
(Bougiatioti et al., 2009). The variation of CCN properties
with size however is still unknown and was postulated to ex-
plain the supersaturation-dependent CCN closure bias seen
in Bougiatioti et al. (2009). The present study addresses
this issue and presents size-resolved CCN activity measure-
ments and characteristics of Eastern Mediterranean atmo-
spheric aerosols during the Finokalia Aerosol Measurement
Experiment – 2007 (FAME07) campaign. The focus of the
subsequent analysis is on the size-dependant hygroscopicity,
mixing state and activation kinetics of the aerosol.

2 Observational data set

2.1 Measurement site

Measurements took place at the Finokalia station (35◦32′ N,
25◦67′ E; http://finokalia.chemistry.uoc.gr) of the University
of Crete and constituted part of the Finokalia Aerosol Mea-
surement Experiment – 2007 (FAME07) campaign (Bougia-
tioti et al., 2009). A more detailed description of the site
can be found in Mihalopoulos et al. (1997) and Sciare et
al. (2003). This study focuses on the period during which
size-resolved measurements of CCN were carried out (July to
mid-August). HYSPLIT backtrajectory analysis (www.arl.
noaa.gov/ready/hysplit4.html) showed that throughout the
campaign a diversity of air masses was sampled, with influ-
ences from Europe, the former Soviet Union and Asia Minor
(Fig. 1a, b) to air masses with less anthropogenic influence
originating from the marine boundary layer or the free tropo-
sphere (Fig. 1c, d).

2.2 Instrumentation

Prior to measurement, the ambient aerosol was dried down to
∼5 % relative humidity (RH) with Silica-gel diffusional dry-
ers (Fig. 2); this ensures that particle sizing is not affected by
residual aerosol water, which can bias the analysis of CCN
activity data for very acidic particles (Murphy et al., 2008).
The dried particles were subsequently charged by passing
through a Kr-85 bipolar charger (TSI Model 3077) and clas-
sified by electrical mobility with a Differential Mobility An-
alyzer (DMA; TSI Model 3081). The DMA was operated
at a 10:1 sheath-to-aerosol flow ratio (6 and 0.6 l min−1 for
the sheath and aerosol flows, respectively). The classified
aerosol was then split into two streams, one sent to a Conden-
sation Particle Counter (TSI Model 3010) to measure their
concentration and the other to a Continuous Flow Stream-
wise Thermal Gradient CCN Chamber (CFSTGC; Roberts
and Nenes, 2005; Lance et al., 2006) to measure the num-
ber of particles which act as CCN. The flows at the CPC and
CFSTGC were monitored throughout the campaign. The ac-
tivated droplets in the CFSTGC are counted and sized at the
exit of its growth chamber with an Optical Particle Counter
(OPC) that detects droplets and classifies them into 20 size
bins (with diameter ranging from 0.7 to 10 µm). During the
campaign, two flow configurations were used (Fig. 2) which
differed as to the point of entry of the filtered make-up air
flow. In the first configuration (Fig. 2a) a make-up flow of
0.75 l min−1 is supplied to the classified aerosol stream be-
fore splitting the stream for the CPC and the CCN instru-
ment. The second configuration was used after 8 August
(Fig. 2b) and involved introducing the make-up flow to the
aerosol stream supplied to the CPC. This was done to reduce
the CFSTGC measurement uncertainty due to low particle
concentrations (Moore et al., 2010).

The instruments were operated in Scanning Mobility CCN
Analysis mode (SMCA; Moore et al., 2010), where the DMA
voltage is continuously cycled between a minimum and max-
imum value and the time series of CN and CCN concentra-
tions are recorded. The particle size distribution is then ob-
tained from the CN timeseries of a scan cycle using well-
established SMPS inversion techniques (e.g., Wang and Fla-
gan, 1989). The same inversion procedure is applied to the
CCN timeseries to obtain the CCN size distribution and the
size-resolved “activation fraction” (ratio of of CCN concen-
tration to CN concentration) and the droplet size from ac-
tivated CCN as a function of mobility diameter. Multiple
charge corrections were applied to the CCN inversion, as de-
tailed in Moore et al. (2010).

Throughout the campaign, the CFSTGC was operated at
a total flow rate of 0.5 l min−1, with a sheath-to-aerosol
flow ratio of 10:1, and a top-bottom column difference,
1T , between 4 and 15 K. CCN concentrations were mea-
sured at each supersaturation for 6 min, yielding size-
resolved CCN activation curves that cycled through 5 dif-
ferent supersaturations every 30 min. Calibration of the
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Fig. 1. Maps indicating the location of the sampling site and three-day HYSPLIT back trajectories for characteristic types of air masses
sampled during FAME07:(a) 14 July 2007,(b) 17 July 2007,(c) 24 July 2007, and(d) 1 August 2007.

instrument supersaturation was attained with the use of clas-
sified NaCl aerosol and following the procedure of Bougia-
tioti et al. (2009). The CCN instrument was calibrated at the
beginning and the end of the measurement campaign and was
found to have very little variability between them (Bougia-
tioti et al., 2009). For the lower supersaturations (0.2 and
0.38 %), the relative variability in instrument supersatura-
tion did not exceed 1 % between calibrations, whereas for
the highest supersaturation (0.73 %) the variability was un-
der 3 % (Bougiatioti et al., 2009).

2.3 Aerosol chemical composition and size distribution

A Scanning Mobility Particle Sizer (SMPS) was used to mea-
sure the particle size distribution for mobility diameters be-
tween 20 and 460 nm by placing them in 100 bins and using
a sheath-to-aerosol ratio of 10:1. The SMPS consists of a
scanning Differential Mobility Analyzer (DMA) running in
series with a Condensation Particle Counter (CPC) for which
a complete distribution is obtained every 3 min. The total
aerosol concentration (CN) was measured by a Condensa-
tion Particle Counter (CPC; TSI model 3010) with a 50 %
particle detection efficiency at 10 nm diameter.
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Fig. 2. Schematic of the setup used for the size-resolved CCN measurements.

2.4 Analysis of SMCA data

Each constant supersaturation segment (∼6-min long) was
screened to minimize observational biases and examined for
minimal fluctuations in the CFSTGC flow chamber tempera-
ture gradient and stability of the flows (data exhibiting max-
imum temperature deviation of more than 15 % from the
setpoint are discarded). The size-dependant activation ratio
function,Ra(dp), is then determined by computing the ratio
of CCN over CN concentration as a function of dry particle
diameter.Ra(dp) is then fit to a sigmoidal curve:

Ra
(
dp
)
=

CCN(dp)

CN(dp)
=

E

1+

(
dp50
dp

)C
(1)

wheredp is the particle dry diameter,E is the asymptote of
Ra(dp) for large particle sizes,dp50 is the characteristic dry
diameter for which 50 % of those particles act as CCN (and
corresponds to the inflection point of the sigmoid) andC

is an empirical coefficient. Equation (1) describes the size-
resolved CCN data well (e.g., Fig. 3a); the fitted sigmoids
upon integration also reproduce the measured CCN concen-
tration to within 2.3 % (R2

= 0.98; not shown).
Ra(dp) can be used to study the size-dependent hygroscop-

icty and mixing state as follows. The function is evaluated at
20, 30, 40, 50, 60, 70, 80 and 100 nm for all sigmoids ob-
tained during a supersaturation cycle. The supersaturation-
dependant activation ratio function,Ra(S), (the fraction of

particles of sizedp that are CCN atS), is thus determined
and fit to a sigmoidal function:

Ra(S) =
CCN(S,dp= const)

CN(dp= const)
=

E∗

1+(S/S∗)C
′

(2)

whereE∗ is the asymptote of the sigmoid for large supersat-
urations,S∗ is the location of the inflection point andC′ is
a fitting constant.E∗ indicates the fraction of hygroscopic
particles of sizedp, S∗ indicates their “characteristic” (most
probable) critical supersaturation, and,C′ is related to the ex-
tent of their chemical heterogeneity. Figure 3b presents typi-
cal examples ofRa(S), for 60 and 100 nm particles, obtained
at 3 August, with the error bars representing the observed
daily variability.

Equation (2) expresses the cumulative distribution func-
tion of critical supersaturations observed for particles of size
dp. Assuming that this distribution arises solely from chem-
ical heterogeneity of the particles (for a sheath-to-aerosol
ratio of 10:1 used in this study, Lance (2007) showed this
to be a very good assumption for values ofC

′

> −10, as
the width of the DMA transfer function introduces relatively
small dispersion), one can obtain a probability distribution
of hygroscopicities as follows. From the definition ofκ,
one can expressS∗

= ω(κ∗)−1/2 andS = ωκ−1/2 whereω =(
4
(

4Mwσw
RTρw

)3

27d3
p

)1/2

andκ∗ is the characteristic (most probable)

hygroscopicity of the distribution. Substitution into Eq. (2)
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Fig. 3. (a) CCN activation fraction and distribution from 25 July
at 11:49 a.m. (UTC + 2) with sigmoidal fit at 0.3 % supersaturation
and(b) example of CCN activity spectrum from 3 August (00:12–
11:58 a.m. (UTC + 2)) for 60 and 100 nm particles.

provides the hygroscopicity-dependant activation ratio func-
tion, Ra(κ), (the fraction of particles of sizedp that are CCN
with hygroscopicityκ),

Ra(κ) =
CCN(κ,dp = const)

CN(κ,dp = const)
=

E∗

1+(κ∗/κ)C
′
/2

(3)

Differentiation and normalization of Eq. (3) provides the
probability distribution function ofκ, p(κ), for particles of
diameterdp (Lance et al., 2007; Cerully et al., 2011),

p(κ) =
1

E∗

dRa(κ)

dκ
=

C′

2

(κ∗)C
∗/2

κ(C∗/2+1)
[
1+

(
κ∗

κ

)C∗/2
]2

(4)

from which one can compute the dispersion (standard devi-
ation) of the hygroscopicity parameter aroundκ∗ as σ 2

κ =

1∫
0

(κ−κ∗)2p(κ
′
)dκ

′

1∫
0

p(κ
′
)dκ

′

(Lance et al., 2007; Cerully et al., 2011).σκ

describes the “chemical dispersion” or the degree of chemi-
cal heterogeneity (i.e., mixing state) for the CCN of diameter
dp. The upper limit of hygroscopicity in the integrals is set
to unity (instead of∞) to reflect the range ofκ found in the
atmosphere (Cerully et al., 2011). Bothσκ andκ∗ are deter-
mined using the method discussed above for each diameter
and supersaturation cycle (∼30 min).

2.5 Activation kinetics

CCN activation kinetics and changes thereof from the pres-
ence of organics can be determined from the droplet size of
activated CCN measured at the OPC of the CFSTGC for all
supersaturations considered. Most often, TDGA is applied
to polydisperse CCN, which exhibit a range of critical super-
saturations and droplet sizes at the exit of the CFSTGC. If
activation kinetics is as fast as for the pure salt, the droplet
sizes observed in the OPC will thus be equal to (or larger)
than the standard for the range of supersaturations measured
(Sorooshian et al., 2008; Moore et al., 2008). If the sizes
of the droplets formed on ambient aerosol are statistically
smaller than the sizes of those formed on pure NaCl aerosol,
then the presence of organics likely delay CCN activation. In
this study, shifts in activation kinetics are detected by com-
paring the size of the activated ambient and (NaCl particles
with (i) Sc equal to the instrument supersaturation,Sin, (i.e.,
for particles with diameterdp50), and, (ii) particles of 100 nm
dry diameter (which tend to yield droplet sizes insensitive to
their critical supersaturation; Ruehl et al., 2009).

2.6 Ancillary measurements

The chemical composition of the aerosol was determined by
analysis of polytetrafluororoethylene (PTFE) (PM10, PM1.3
and PM1.3−10) and quartz (PM1 and PM10) daily and 4-h
filter samples, respectively. PTFE and quartz filters were an-
alyzed for water-soluble ions after extraction in ultrasonic
bath with nanopure water. The solutions obtained were an-
alyzed by ion chromatography (IC) for anions (Cl−, Br−,
NO−

3 , SO2−

4 , C2O2−

4 ) and cations (K+, Na+, NH+

4 , Mg2+,
Ca2+), using the procedure of Bardouki et al. (2003). Quartz
filters were also analyzed for organic and elemental carbon
using the OC/EC analyzer (SUNSET Laboratory Inc.) and
for water-soluble organic carbon (TOC-VCSH, Total Organic
Carbon Analyzer, SHIMATZU). Auxiliary chemical mea-
surements (O3, BC) and meteorological parameters (wind
speed and direction, pressure, temperature, relative humid-
ity) were also continuously monitored.
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Fig. 4. Time series of the CN and CCN measurements throughout
the measurement period.

3 Results and discussion

3.1 CCN Measurements

The complete time series of the CN and CCN measurements,
obtained from the integration of the SMPS and CCN activ-
ity spectra can be seen in Fig. 4. The CCN generally cor-
relate well with CN, with CCN concentrations increasing
(as expected) with supersaturation. Throughout the mea-
surement period, CCN concentrations at each supersatura-
tion level varied by up to a factor of 7. The measured CCN
concentrations at 0.51, 0.66 and 0.73 % supersaturation were
often very similar and close to CN concentrations (with av-
erage values of 2003± 1304 cm−3, 2205± 1407 cm−3 and
2203± 1432 cm−3, respectively). A two-sample t-test was
performed on CCN timeseries observed at the highest super-
saturations (0.51, 0.66 %, and 0.73 %). It was found that the
data at 0.51 % supersaturation are statistically different (at
the 95 % confidence level) from those collected at 0.66 and
0.73 %. Data collected at the latter two levels however were
statistically indistinguishable. The high activation fractions
at these supersaturations (0.8± 1.0), and the small change
between 0.5 % and 0.75 % suggests that most particles are
activated at∼0.6 % supersaturation. This behavior is con-
sistent with the findings of Bougiatioti et al. (2009) and re-
flects the characteristics of aged aerosol, where most parti-
cles are relatively large and contain significant amounts of
soluble material.

CCN size distributions (dCCN/d logDp) were calculated
by multiplyingRa(dp) (Eq. 1) with the corresponding aerosol
particle number size distribution obtained from the SMPS
(Moore et al., 2010). Examples of CCN size distributions
at the different supersaturations are shown in Fig. 5. As the
supersaturation increases, the CCN concentrations also in-
crease with the distributions converging towards the aerosol
total number distribution. At the lowest supersaturation
(0.2 %), all particles with diameters above 90–120 nm acti-
vate, while all particles above 60 nm form droplets at 0.38 %.

Figure 6a shows campaign averages ofRa(dp) at different
supersaturation levels. As expected, the diameter at which
half of the particles activate (dp50), increases with decreas-
ing supersaturation, althoughRa(dp) is remarkably consis-
tent throughout the measurement period. The CCN activity
(portrayed by the relationship betweenSc anddp50) for the
whole measurement period is presented in Fig. 6b. The hor-
izontal error bars represent the variability indp50 throughout
the study period; the variability reflects the shifts in aerosol
mixing state and composition throughout the campaign. The
vertical error bars denote the standard deviation of the in-
strument supersaturation between calibrations. The aerosol
sampled throughout the measurement period is highly CCN-
active even at the lower supersaturations. Figure 6c and d
showRa(S) for 40, 50, 60, 80 and 100 nm particles measured
on 14 July and 24 July, respectively. The case of 24 July
is chosen for being close to the campaign averages (within
15 %) and representative for the northeast and southeast sec-
tor. For air masses coming from Central and Eastern Eu-
rope (Fig. 6c) the activation fractions are somewhat lower
and do not exceed 80 %, even at the higher supersaturations
and larger particle sizes. This is not the case for local air
masses (Greece) and masses originating from the rest of the
geographic sectors (Fig. 6d), where the majority of the par-
ticle sizes (≥50 nm) are activated and form CCN (Ra ≥ 0.8)
even at 0.5 % supersaturation. Despite these variations, the
shape of the activation curves does not change significantly
which implies that the size dependence of the particle com-
position does not vary much over time. It is possible that the
lowerRa values observed for air masses coming from Central
and Eastern Europe are due to external mixing with bound-
ary layer aerosol and some less-hygroscopic material (e.g.,
soot). Indeed, for the time period of 14–24 July, BC aver-
age concentrations were in the order of 0.94± 0.47 ng m−3

while for the rest of the measurement period (10–14 July
and 25 July–6 August) average BC concentrations were of
0.67± 0.24 ng m−3. The particle size distributions (Fig. 7)
during that day (14 July) exhibited a bimodal profile, with
a pronounced maxima in the small particle range (40 nm).
Another possible explanation for the decrease in theRa val-
ues is the mixing and subsequent dilution of the aerosol with
“cleaner” air masses from aloft (Fig. 1a).

3.2 Time series and chemical composition

The complete time series of characteristic parameters de-
rived from Ra(S) (e.g.,E∗, κ∗, σκ ) and the chemical com-
position measured throughout the campaign are illustrated
in Fig. 8. The average particulate matter concentration of
the PM1 fraction during the measurement period was of
13.75± 4.8 µg m−3, accounting for 40± 9.5 % of the total
mass. Ammonium sulfate accounted for 89.9± 4.2 % of the
total inorganic PM1 mass fraction, with the remaining inor-
ganic mass consists mostly of K+, and on occasion, small
amounts of NO−3 and Cl−. The sulfate volume fraction on
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Fig. 5. Examples of daily average CCN distributions from 2 August at different levels of supersaturation.

Table 1. Average concentrations for organic components and major ions for PM1 and PM10.

PM1 PM10

Concentration 10–23 July 24 July–6 August10–23 July 24 July–6 August
(µg m−3)

OC 2.58± 1.12 3.04± 1.55 3.16± 1.48 3.72± 1.69
EC 0.36± 0.25 0.32± 0.17 0.39± 0.19 0.4± 0.22
WSOC 1.74± 0.86 1.93± 0.84 1.55± 0.62 1.61± 0.99
SO2−

4 7.01± 2.4 5.53± 1.69 8.36± 1.37 6.98± 1.01
NO−

3 0.17± 0.12 0.06± 0.04 2.53± 0.14 2.56± 0.09
Cl− 0.35± 0.23 0.05± 0.04 2.73± 0.95 1.47± 0.58
K+ 0.47± 0.28 0.24± 0.11 0.69± 0.18 0.34± 0.07
Na+ 0.03± 0.01 0.03± 0.02 0.48± 0.33 1.47± 0.4
NH+

4 2.12± 0.61 1.8± 0.5 2.32± 0.33 2.08± 0.3
Ca2+ 0.3± 0.23 0.02± 0.02 1.12± 0.31 0.97± 0.45

average was 0.3± 0.06 (Fig. 8b) and the sulfate concentra-
tion had a campaign average of 6.6± 2.8 µg m−3. As ex-
pected, air masses originating from Central-Eastern Europe
presented a higher particle load, which is expected for an-
thropogenic emission-laden air masses, but with a smaller
amount of sulfate (5.3± 1.6 µg m−3) and therefore this can
explain the lower hygroscopicity values observed during that
period. These air masses usually contain a larger number
of small particles that demonstrate larger activation diame-
ters, lower activation fractions, as well as lower hygroscop-
icity. The particulate organic matter (OM) concentrations
remained close to the mean value of 6± 2.7 µg m−3, nev-
ertheless it is expected that the CCN activity is influenced
by the nature of these organics (“fresh” vs. “aged”). From
the organic carbon analysis, the fine mode (PM1) repre-
sented 72.3± 17.7 % of the total organic carbon concentra-
tion, varying from 1.1 to 6.1 µg m−3. The WSOC analysis
showed that 51.6± 7.6 % of the total (bulk) organic carbon
was water-soluble, with this ratio reaching 67.1± 6.6 % in
the fine fraction. Although high, this ratio is consistent with

the aged nature of the aerosol (Jaffrezo et al., 2005 and refer-
ences within) and is consistent with PM1 WSOC reported for
the area (Bougiatioti et al., 2009). The carbon components
and major ion average concentrations for PM1 and PM10 are
presented in Table 1.

The effective hygroscopicity parameter (Fig. 8a) derived
from the PM10 filter analysis was 0.22± 0.04, which is in
similar toκ (0.24± 0.08) derived from PM10 measurements
at the same location but over a different time period (Bougia-
tioti et al., 2009).κ is calculated from the soluble fractions
of the organics and the sulfate (κ = κsεs + κorgεorg), with
κs = 0.6 andκorg = 0.16 (Bougiatioti et al., 2009). From
the SMCA analysis, we can derive a size-distribution aver-
age hygroscopicity parameter,κ,

κ =

∞∫
0

κ(dp)n(dp)ddp

∞∫
0

n(dp)ddp

(5)
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Fig. 6. (a) Averaged size-resolved CCN efficiency spectra at different levels of supersaturation (0.2–0.73 %): activated particle fraction
plotted against particle dry diameter,(b) CCN activation spectrum (Sc vs. dp50) for the whole measurement period,(c) Ra(S) for 14 July,
and,(d) Ra(S) for 24 July.
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Fig. 7. Daily average aerosol size distributions, characteristic of the
air masses sampled.

wheren(dp) is the aerosol number size distribution func-
tion (obtained from the SMPS observations). The averageκ

over the measurement period was 0.34± 0.04, and is some-
what higher than theκ derived from the PM10-filter measure-
ments but closer to theκ derived from the daily PM1 filters
(0.31± 0.06), suggesting an on average higher hygroscop-
icity of small particles (which would affectκ more than the
mass-weightedκ). Nevertheless, both hygroscopicity param-
eters are not considerably different and close to the average
value of 0.3 proposed for continental locations (Andreae and
Rosenfeld, 2008; P̈oschl et al., 2008; Rose et al., 2008).

Figure 8c shows campaign-average values ofE∗, κ∗ and
σκ deduced fromRa(S); Fig. 8d, e present the same quanti-
ties for 14 and 24 July, respectively. As expected, all par-
ticles are highly hygroscopic throughout the measurement
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Fig. 8. (a) Time series of the characteristic (SMCA, 100 nm diameter) and filter-derived hygroscopicity parameter for the totality of the
measurement period,(b) sulfate volume fraction time series and(c) chemical and mixing state parameters (E∗, κ∗, σκ ) averages for the
whole measurement period and for 14 July(d) and 24 July(e).

period. Larger particles exhibit somewhat largerE∗ (re-
flective of their age, or complete activation at the maximum
supersaturation measured) and lowerκ∗. The latter is con-
sistent with more sulfate condensation on the smaller parti-
cles, and confirms the postulation of Bougiatioti et al. (2009)

on size-dependant hygroscopicity. The chemical disper-
sion, portrayed byσκ , represents the standard deviation of
the fit aroundκ∗. It remains low and mostly constant
throughout the whole measurement period for all particle
sizes, consistent with the aged and well-mixed nature of the
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Fig. 9. (a)Time series of the hygroscopicity parameterκ∗ for the five dry particle sizes,(b) diurnal variability of the activated fraction (E∗)

for 14–15 July,(c) inferred hygroscopicity parameter (κ∗) for 14–15 July,(d) E∗ for 30–31 July, and(e)κ∗ for 30–31 July, respectively.

aerosol arriving at Finokalia. Comparing the characteristics
of aerosol in different air masses, Central-Eastern European
aerosol (Fig. 8d) exhibits 2.5 % smaller hygroscopicity pa-
rameter than particles from Greece and eastern/southern sec-
tor (Fig. 8e). The main difference was a small decrease in the
E∗ values, to around 0.85. This decrease may suggest that
the particles exhibit a small (but detectable) chemical hetero-
geneity which leads to a small fraction of them not activating
in the CFSTGC.

3.3 Diurnal behavior of CCN activity

The complete time series of the inferred hygroscopicity pa-
rameterκ∗ given as daily averages, for five of the dry parti-
cle sizes examined (40, 50, 60, 80 and 100 nm), is plotted in

Fig. 9a. We can see that the day-to-day variability ofκ∗ is
less pronounced as we shift to larger dry particle sizes, with
the smaller particles exhibiting greater hygroscopicity val-
ues (∼0.1κ units higher) and variability than the larger ones.
The greater variability for smaller particles can partially re-
flect their origin, as they tend to be less aged (hence more
heterogeneous in their properties) than accumulation mode
particles. After 20 July, the day-to-day variability within
the dry particle sizes decreases, even at the smallest sizes.
This is probably due to the fact that after 20 July the air
masses arriving at the site originated mainly from the “non-
polluted” areas, such as the Western Mediterranean, Eastern
and Southern sector, as well as local Northern sector (Greece
mainland, Southern France and Southern Italy). Therefore
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in the absence of “fresh” anthropogenic emission-laden air
masses, aerosol chemical composition (hence hygroscopic-
ity) is more uniform.

Having in mind that the smallest activation fractions were
found for air masses arriving from Central-Eastern Europe
at the beginning of the measurement campaign, we exam-
ined the diurnal variability of the activated fraction as well as
the hygroscopicity for the five dry particle sizes, for 14–15
July and for 30–31 July (which lies within the more “uni-
form” period). The results are presented in Fig. 9b, c, d
and e. It can be seen thatE∗ increases after 14 h local time,
for all particle sizes considered, with the average values be-
fore, and after 14 h being 0.76± 0.09 and 0.93± 0.1, respec-
tively. κ∗ also increases after 14 h, but mostly for particles
smaller than 80 nm diameter. Photochemical oxidation of
gas phase chemical species and subsequent condensation of
low volatility products is a plausible explanation, as when
e.g. SOA or sulfate condenses upon externally-mixed unac-
tivated particles, it may shift these particles into the CCN
active spectrum, with a corresponding increase inE∗, κ∗.
The connection between photochemical oxidation and CCN
activity is corroborated by the similar trends betweenκ∗ and
O3 concentrations which tend to follow each other (Fig. 10).
Furthermore, photochemical oxidation in the particle phase
may add functional groups to the organic constituents al-
ready present, making them more hygroscopic. This is con-
sistent with the conclusions of Hildebrandt et al. (2010), who
showed that the OA composition exhibits a statistically sig-
nificant diurnal variation with more oxidized OA present in
the afternoon (although there was no statistically significant
diurnal variation observed in the bulk composition of the
non-refractory submicron aerosol). The same trend is ob-
served in the CCN activity (with an increase inκ∗ values
after 14 h) but is less pronounced (Fig. 9). Finally,E∗ on
30–31 July shows a slight decrease (by 8 %) around 14 h lo-
cal time, which may be caused by the mixing and dilution
of the aerosol with air masses from aloft (Fig. 1d). A two-
sample t-test for unequal differences suggests this decrease
is statistically significant at the 95 % confidence level.

3.4 CCN closure

A closure study for the prediction of CCN concentrations is
performed using different assumptions about the hygroscopic
behavior of OM. The CCN concentration in each SMCA
scan was calculated by integrating the CCN size distribution,
Ra(dp)n(dp),

CCN=

∞∫
0

Ra(dp)n(dp)ddp (6)

The calculated CCN are then compared against predictions
usingκ-Köhler theory assuming a hygroscopicity parameter
κ = κsεs+κoεo, whereκs, κo, is the hygroscopicity of the salt
and organic fractions, respectively, andεs, εo their respective
volume fraction in the dry aerosol. Three closure approaches
are investigated: (a) assuming that the organic fraction is in-
soluble, i.e.κo = 0, (b) 70 % of the organics are water-soluble
(as suggested by a carbon mass balance of extracted filters;
Bougiatioti et al., 2009) and using the respective (variable)
hygroscopicity parameter resulting from the 4-h filter analy-
sis and, (c) using a prescribed CCN hygroscopicity parameter
value ofκ = 0.34, which is the average value for all investi-
gated particle sizes over the whole measurement period.

Table 2 presents the predicted against measured CCN for
the whole measurement period, assuming that the organics
are insoluble. Even with this simplified treatment, the CCN
closure is very good (relative error−2.8± 14 %,R2

= 0.93)
for the whole dataset. When the average organic water-
soluble fraction is considered in the CCN calculations, the
closure error is further reduced (+1.8± 12 %) and the under-
prediction bias and scatter is diminished (best fit slope 0.97,
R2

= 0.95). The underprediction bias at the low supersatura-
tions is also reduced at the higher supersaturations (Table 2).
Using the time-dependant WSOC/OC ratio does not substan-
tially affect the closure, as it changes CCN predictions by
only 1 % (not shown).

Table 2 also shows the predicted against measured CCN
using a hygroscopicity parameter value ofκ = 0.34. For this
case also the closure is very good (relative error 2.6± 22 %,
R2

= 0.92). The scatter is almost twofold higher than the
two cases examined above, reflective of the unresolved vari-
ability in κ, especially during the high-concentration periods
(Fig. 9). Overall, the changes in the predictedκ between
the three calculation scenarios do not affect closure consid-
erably, largely because of the generally large CCN activation
fraction and homogeneity of the aged aerosol population.

3.5 Droplet activation kinetics

Figure 11a shows the application of TDGA to the droplet
growth data for the whole measurement period, for large
aerosol particles (100 nm) while Fig. 11b shows the droplet
sizes for CCN withSc equal to the instrument supersatura-
tion,Sin (i.e., for particles with diameterdp50). The solid line
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Table 2. Regression statistics for the CCN closure.

Supersaturation (%) WSOC/OC = 0 WSOC/OC = 0.7 κ = 0.34

(number of data points)
CCNpredicted
CCNobserved

R2 CCNpredicted
CCNobserved

R2 CCNpredicted
CCNobserved

R2

0.21 (1012) 0.94 0.94 1.02 0.95 0.97 0.86
0.38 (865) 0.92 0.93 0.99 0.96 0.92 0.92
0.52 (942) 0.98 0.95 1.00 0.96 0.93 0.93
0.66 (816) 0.97 0.94 0.99 0.94 0.92 0.92
0.73 (762) 0.94 0.92 0.96 0.93 0.94 0.89
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Fig. 11. (a)Droplet sizes of CCN at the different supersaturations for ambient and calibration aerosol for large particles (100 nm)(b) Droplet
sizes of ambient CCN atdp50 and (c) Average droplet diameter at different dry particle sizes, all as measured at the exit of the growth
chamber.

represents the size of the activated calibration NaCl particles
(with Sc equal to the instrument supersaturation), while the
light-colored round points represent the average droplet size
from the ambient aerosol activation data with the respective
standard deviation. For large aerosol the droplet diameter
from ambient measurements is on average above the lower
limit established by the calibration aerosol. The percentile
of droplets smaller than the lower limit of the NaCl ones is

∼7.5 % at the lower supersaturations and does not exceed
12.5 % at the higher supersaturations. The variability in the
droplet size seen in the NaCl and ambient aerosol data is of
the same order as the OPC bin resolution (0.5 µm).

The droplet sizes fromdp50 particles exhibits larger scat-
ter than for 100 nm aerosol (Fig. 11b). This can also be seen
in Table 3, which summarizes the average values of droplet
sizes for both cases. The difference (∼67 %) between the
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Table 3. Average droplet size (standard deviation) measured by the
optical particle counter (µm) for different supersaturations. Results
shown for Finokalia and NaCl calibration aerosol with dry particle
diameter of sizedp50 and 100 nm.

Supersaturation Dry diameterdp50 Dry diameter 100 nm

(%) Finokalia NaCl Finokalia NaCl

0.21 2.2 (0.6) 3.0 (0.6) 3.7 (0.3) 4.0 (0.7)
0.38 4.9 (0.6) 5.4 (0.7) 6.4 (0.3) 6.4 (0.8)
0.52 6.8 (0.6) 6.7 (0.6) 7.9 (0.3) 8.1 (0.6)
0.66 7.9 (0.6) 7.5 (0.6) 8.7 (0.4) 9.0 (0.6)
0.73 8.1 (0.6) 8.0 (0.6) 9.3 (0.3) 9.9 (0.6)

two average values (2.21 vs. 3.68 µm) at the lowest super-
saturation diminishes as the latter increases (∼14 % at the
highest supersaturation). This is consistent with growth via
water vapor condensation, which tends to narrow the droplet
distribution as the supersaturation (and exposure time) in-
creases. Activated CCN withSc ∼ Sin occasionally yields
droplets that are smaller than those from calibration NaCl
particles. Given thatRa(dp) is steepest atdp50, small fluc-
tuations in the instrument conditions, the presence of some
multiply-charged particles and the finite width of the DMA
transfer function may broaden the distribution of ambient ac-
tivated droplets beyond what was seen in the NaCl calibra-
tions. Nevertheless, the percentile of droplets smaller than
the ones formed from NaCl does not exceed 6.5 % (of the to-
tal number) for the higher supersaturations and is∼7.8 % for
the lower supersaturations. These occurances are not corre-
lated with airmasses; it is therefore unclear if the observed
scatter in the droplet values is associated with experimen-
tal uncertainty rather than a kinetic limitation caused by the
presence of the organics in the aerosol sampled.

Finally, in Fig. 11c we plot the average droplet diameter
as a function of the CCNc instrument supersaturation for 5
different dry particle sizes. The vertical error bars repre-
sent the variability in the average droplet diameter through-
out the study period, calculated separately for each supersat-
uration and each dry particle diameter. The horizontal er-
ror bars represent the maximum supersaturation uncertainty
(8 %) quoted for the instrument (Rose et al., 2007). The
droplet growth is slightly greater for larger dry particle di-
ameters (Table 3); this is because their critical supersatura-
tion is lower than for small particles hence grow for a longer
time period during their residence in the CCNc. As the dry
particle sizes augments however, the activated droplet diame-
ter values converge, especially at the higher supersaturations.
This is consistent with droplets approaching the asymptotic
limit of diffusional growth,Dp → 2GτSin, whereτ is the ex-
posure time of the CCN to supersaturationSin, and,G is the
water vapor mass transfer coefficient to the droplet (Nenes
et al., 2001b). The convergence to a common limit for all

ambient particles suggests that the mass transfer coefficient
is the same for all particles, and implies that shifts in activa-
tion kinetics (which would manifest as changes inG) are not
considerable enough to affect the observed droplet size.

Based on the above it can be concluded that for the range
of supersaturations considered, the aged organics present in
the Eastern Mediterranean aerosol do not significantly delay
the CCN activation and growth process. This is consistent
with the abundant amounts of sulfate and highly oxidized or-
ganics (the extent of which is expressed by the high ratio
WSOC/OC) present in the aerosol, which tends to be asso-
ciated with rapid activation kinetics (Padró et al., 2010; En-
gelhart et al., 2008, 2011; Asa-Awuku et al., 2009, 2010;
Cerully et al., 2011). Although kinetic delays have been
previously observed in aerosol with anthropogenic influence
(Chang et al., 2007; Sorooshian et al., 2008; Murphy et al.,
2009; Ruehl et al., 2009; Mochida et al., 2010; Asa-Awuku
et al., 2011), this effect was not seen at Finokalia. This may
be a consequence of the highly aged (oxidized) nature of the
aerosol combined with its preconditioning (wetting) in the
marine boundary layer prior to sampling.

4 Summary and conclusions

Size-resolved CCN measurements from 0.21 to 0.73 % su-
persaturation, aerosol size distribution and chemical compo-
sition were carried out at the Finokalia measuring site of the
University of Crete during the FAME07 campaign in summer
2007. The sampled aerosols arrived at the site after long-
range transport with the organic fraction being mainly sec-
ondary, “aged” and highly oxidized. The majority of the par-
ticles tend to activate at a supersaturation of 0.6 %. When air
masses originated from Central-Eastern Europe, aerosol par-
ticle concentrations were higher and a statistically-significant
lower hygroscopicity parameter value was observed. The hy-
groscopicity of small particles (40 nm) is 0.1κ units higher
than the one of larger particles (100 nm) with all particles be-
ing highly hygroscopic. Particles smaller than 80 nm exhibit
higher hygroscopicity values after 14 h local time, which is
consistent with the condensation of secondary aerosol and
oxidation of organic constituents in the particle phase.

Application of Köhler theory using measurements of bulk
composition and size distribution resulted in excellent CCN
closure. Assuming that organics are insoluble, closure was
attained to within 2.8± 14 % for all supersaturations and
with including the effects of the water-soluble organic frac-
tion reduces the underprediction bias (to 1.8± 12 %) and the
scatter (fromR2

= 0.93 to 0.95). This level of closure is
consistent with the measurements carried out at Finokalia by
Bougiatioti et al. (2009). Our results show a relatively lower
error in closure than studies with aerosol with a variety of
distinct local sources (e.g., Medina et al., 2007; Gunthe et
al., 2009; Lance et al., 2009; Asa-Awuku et al., 2011), which
tend to overestimate CCN concentrations (especially under
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polluted conditions). Finally, analysis of the droplet sizes
using asymptotic and threshold droplet growth analysis sug-
gests that the activation kinetics of ambient CCN is mostly
similar to NaCl calibration aerosol. This finding is consistent
with evidence to date that highly oxidized aerosol grows as
quickly as calibration salt aerosol. The present study results
suggests that, in the case of hygroscopic aerosols, in areas
not influenced by local sources, CCN activity and droplet ac-
tivation kinetics can be successfully parameterized and pre-
dicted, even when size-resolved chemical composition mea-
surements are not available.
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Pöschl, U., Rose, D., and Andreae, M.O.: Climatologies of Cloud-
related Aerosols. Part 2. Particle Hygroscopicity and Cloud Con-
densation Nuclei Activity, Clouds in the Perturbed Climate Sys-
tem: their relationship to Energy Balance, Atmospheric Dynam-
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