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Abstract. For oceans to be a significant source of primary
organic aerosol (POA), sea spray aerosol (SSA) must be
highly enriched with organics relative to the bulk seawa-
ter. We propose that organic enrichment at the air-sea in-
terface, chemical composition of seawater, and the aerosol
size are three main parameters controlling the organic mass
fraction of sea spray aerosol (OMSSA). To test this hypoth-
esis, we developed a new marine POA emission function
based on a conceptual relationship between the organic en-
richment at the air-sea interface and surface wind speed. The
resulting parameterization is explored using aerosol chemi-
cal composition and surface wind speed from Atlantic and
Pacific coastal stations, and satellite-derived ocean concen-
trations of chlorophyll-a, dissolved organic carbon, and par-
ticulate organic carbon. Of all the parameters examined, a
multi-variable logistic regression revealed that the combina-
tion of 10 m wind speed and surface chlorophyll-a concentra-
tion ([Chl-a]) are the most consistent predictors of OMSSA.
This relationship, combined with the published aerosol size
dependence of OMSSA, resulted in a new parameterization
for the organic mass fraction of SSA. Global emissions of
marine POA are investigated here by applying this newly-
developed relationship to existing sea spray emission func-
tions, satellite-derived [Chl-a], and modeled 10 m winds.
Analysis of model simulations shows that global annual sub-
micron marine organic emission associated with sea spray
is estimated to be from 2.8 to 5.6 Tg C yr−1. This study
provides additional evidence that marine primary organic
aerosols are a globally significant source of organics in the
atmosphere.
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(nmeskhidze@ncsu.edu)

1 Introduction

Indirect radiative forcing of anthropogenic aerosols is the
major source of uncertainty in climate projections today
(IPCC, 2007). A large fraction of this uncertainty may be
related to the number concentration and size distribution of
marine aerosol that are prescribed or diagnosed in global cli-
mate models (GCMs) (Lohmann et al., 1999, 2007; Take-
mura et al., 2005; Wang and Penner, 2009), and the un-
certainties associated with forcings and feedbacks involving
marine clouds and precipitation (Bony and Dufresne, 2005;
Clement et al., 2009). Marine aerosols are particularly im-
portant as they contribute considerably to the global aerosol
load and are emitted from a large area of the Earth’s sur-
face underlying an atmosphere with low aerosol concentra-
tion. The lower bounds (typically from 10 to 40 cm−3) of
background aerosol concentration often prescribed in GCMs
can vary the simulated aerosol indirect effect by over 80 %
(Kirkevåg et al., 2008; Hoose et al., 2009). Changes of this
magnitude can have profound effects on the model-predicted
extent of human-induced climate change and highlight the
need for improved quantification of marine aerosol number
size distribution and chemical composition over remote ma-
rine regions.

Although sea-salt typically dominates total marine aerosol
mass burden and emission rates, organic aerosols of marine
origin can contribute a considerable fraction of the submi-
cron aerosol mass concentration near biologically productive
waters (O’Dowd et al., 2004). Marine boundary layer or-
ganic aerosol concentrations, while typically averaging be-
tween 0.2 and 0.5 µg m−3 (Russell et al., 2010), have been
shown to be up to 3.8 µg m−3 on the Atlantic coast of Ireland
during periods of onshore flow (Ovadnevaite et al., 2011)
where on average∼80 % of the carbonaceous material has
been directly linked to plankton emissions (Ceburnis et al.,
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2011). Cloud condensation nuclei (CCN) over the remote
oceans typically range from a few tens per cm3 over biolog-
ically inactive regions (seasons) to a few hundred per cm3

under biologically active conditions (Andreae, 2007). Since
cloud properties are most sensitive to the addition of parti-
cles when the background concentration is low (Platnick and
Twomey, 1994), ambient measurements, remote sensing, and
modeling studies indicate that ocean biology could influence
marine cloud microphysical properties (Shaw et al., 1983;
Charlson et al., 1987; Middlebrook et al., 1998; O’Dowd et
al., 2004; Meskhidze and Nenes, 2006; 2010; Bigg and Leck,
2008; Sorooshian et al., 2009; 2010; Thomas et al., 2010).

Organic aerosols in the marine boundary layer are pro-
posed to have different sources that can be broadly classified
as primary, produced from the mechanical process of bubble
bursting, and secondary (SOA), derived from precursor bio-
genic volatile organic compounds (BVOCs) emitted by phy-
toplankton and macroalgae (Bonsang et al., 1992) or from
the chemical transformation of primary or secondary compo-
nents present in the condensed phase (Rinaldi et al., 2010).
Such complex transformations could take place at the par-
ticle surface or in the aqueous phase, and may also involve
a further step through the gas phase in which semivolatile
aerosol components can be oxidized to form new condens-
able products (Rinaldi et al., 2010). Past studies have con-
sistently found that the marine aerosol OC concentration is
higher over regions of high biological activity (O’Dowd et
al., 2004; Sciare et al., 2009; Miyazaki et al., 2010). The
results of multiple ambient and laboratory studies indicated
that the upwind concentrations of chlorophyll-a ([Chl-a]),
dissolved organic carbon ([DOC]), and particulate organic
carbon ([POC]) can be used as a proxy for the organic mass
fraction of sea spray aerosol (OMSSA) (Gershey, 1983a, b;
Hoffman and Duce, 1976; O’Dowd et al., 2004, 2008; Rus-
sell et al., 2010). Most of the recent parameterizations of
marine POA emissions use [Chl-a] as a proxy for deriving
the organic mass fraction of sea spray aerosols (O’Dowd et
al., 2008; Vignati et al., 2010) or for determining the total
magnitude of the emissions (Spracklen et al., 2008). Due
to the potentially important contribution of marine organic
aerosol to the CCN budget over the remote ocean, improve-
ment of the fundamental process-level understanding of ma-
rine primary and secondary aerosol production mechanisms
is needed to develop more reliable parameterizations that
can be confidently applied in GCMs. These new parame-
terizations should capture the total mass of marine organic
aerosol emission as well as their cloud nucleating proper-
ties (i.e., number concentration and size dependent chemi-
cal composition of submicron SSA). Here, we examine the
factors that affect the emission of marine primary organic
aerosols (POA).

Laboratory and ambient measurements have revealed that
the ratios of organic carbon (OC) to sodium (Na) in subsur-
face waters range from 10−4 to 10−3, whereas submicron
aerosol-phase ratios of OC/Na range from 10−1 to 1 (Blan-

chard, 1964; Gershey, 1983a; Hoffman and Duce, 1974,
1976; Oppo et al., 1999; Keene et al., 2007; Facchini et
al., 2008; Russell et al., 2010). The exact mechanism for
such large organic mass fraction (and roughly by 2 to 3 or-
ders of magnitude organic enrichment relative to subsurface
waters) of submicron SSA is not well defined. It is thought
that when ocean bubbles generated by the entrainment of air
due to wave action rise to the surface, the surface active ma-
terial in the bulk water aggregates to the walls of the bub-
bles. When these bubbles reach the water surface after hav-
ing been enriched in organics relative to the bulk sea wa-
ter, they burst and eject the organics absorbed on their sur-
face into the atmosphere along with dissolved inorganic con-
stituents of seawater (Blanchard, 1964). The amount of or-
ganics absorbed on the bubble surface is thought to be mainly
controlled by the abundance of dissolved and particulate or-
ganic matter of the subsurface water (broadly characterized
as lipids, amino and fatty acids, mono- and poly-saccharides,
humic substances, and phytoplankton cell fragments) (Ben-
ner et al., 1992; Millero, 2006). However, not all the organic
material brought to the surface gets aerosolized. A signifi-
cant amount of biogenic organic matter can accumulate at the
air-sea interface, forming an organic film (the “sea surface
microlayer”, SML) (Blanchard, 1964; Gershey et al., 1983b;
Liss and Duce, 1997). Bubble-mediated processes also are
not the only mechanism for forming SML. Transparent ex-
opolymer particles (TEP) formed from dissolved exudates re-
leased by phytoplankton and bacteria are positively buoyant
and able to ascend the water column (Alldredge et al., 1993;
Azetsu-Scott and Passow, 2004). These gel-like clumps are
mostly polysaccharide, negatively charged, very sticky parti-
cles ranging in size from∼2 to∼200 µm and present in high
concentrations in most sea and freshwaters (Azetsu-Scott and
Passow, 2004). The ascending TEP can initiate the forma-
tion of natural biofilms on surfaces even under calm condi-
tions. Overall, a number of water column processes (convec-
tion, mobile biota, biota attached to buoyant particles, burst-
ing bubbles, buoyant TEPs, diffusion and wave motion) can
regulate the accumulation and reduction of material in SML
(Wurl and Obbard, 2004; Cunliffe et al., 2011). Past stud-
ies have shown that the SML can have a strong influence on
the bubble-bursting process at the air-sea interface and sub-
micron marine aerosol production and chemical composition
(e.g., Ellison et al., 1999; O’Dowd et al., 2004).

Currently there is a large uncertainty regarding the chem-
ical and biological heterogeneity, depth, and spatiotemporal
variability of the SML with no consensus even on the most
appropriate strategy for sampling (Agogué et al., 2004; Cun-
liffe et al., 2011). As the importance of ambient parame-
ters in the formation and distribution of the SML have not
been well established (Carlson, 1982, 1983; Williams et al.,
1986; Liu and Dickhut, 1998; Wurl et al., 2009, 2011), in
this study we consider the effect of the SML on OMSSA
as being in three different regimes based on sea surface
wind speed: (1) high OMSSA occurring under the conditions
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when biogenic SML covers the majority of the sea surface,
(2) moderate OMSSA when SML only covers a portion of the
sea surface often appearing as visible slicks or streaks, and
(3) low OMSSA when SML coverage is strongly reduced due
to wave action. Figure 1 shows our interpretation of the rela-
tionships between the organic fraction of sea spray aerosol,
SML coverage, and surface wind speed based on a review of
previous works described below. This figure suggests that for
given chemical composition of seawater, the largest coverage
of sea surface by SML is expected during calm winds. An in-
crease in wind speed above 3–4 m s−1 will cause a rapid de-
crease of the SML coverage (the Langmuir circulations starts
breaking up the film and formation of slicks and streaks),
and its effective removal for wind speeds in exceed 8 m s−1

(when the wave breaking thoroughly mixes the SML with
the underlying water resulting in homogeneous water col-
umn). Although there is significant spread in observational
data, most of the studies agree that SMLs in the open ocean
are more typically observed under completely calm condi-
tions when the large fraction of the ocean surface may be
covered by the monomolecular layer of the organics (Dietz
and Lafond, 1950; Williams et al., 1986; Romano, 1996). As
winds increase from 2 to 5 m s−1, SML can be collected into
visible streaks or slicks (Welander, 1963; Leibovich, 1983;
Williams et al., 1986; Liu and Dickhut, 1998; Obernosterer
et al., 2008) with the subsequent increase in the formation
of gaps and a decrease in the satellite-derived areal extent of
SML (Marmorino et al., 2008). This increase of gaps and
decrease in SML areal coverage is consistent with the Dys-
the (2006) model describing the tearing of a surface film in
a region of positive surface straining from Langmuir circula-
tions (Langmuir, 1938; Leibovich, 1983). Wurl et al. (2009)
also report a decrease in TEP concentrations in the SML
with wind speed, although such a reduction in the concen-
tration with wind speed was not consistent for total surface
active material (Wurl et al., 2011). When surface winds ex-
ceed 8 m s−1, the initiation of wave breaking is expected to
cause the destruction of the SML by mixing it into the un-
derlying seawater (Carlson, 1983). Extrapolation of the lin-
ear decrease in SML thickness with wind speed observed by
Liu and Dickhut (1998) predicts the absence of the SML at a
wind speed of∼8.5 m s−1, consistent with this picture.

In addition to total organic mass fraction of submicron
aerosol, several attempts have recently been carried out to
quantify and characterize size-dependent chemical composi-
tion of SSA. These measurements consistently have shown
that the organic mass fraction of submicron SSA increases
with decreasing particle size (Oppo et al., 1999; Keene et
al., 2007; Facchini et al., 2008; Fuentes et al., 2010), with a
small and relatively constant organic mass fraction for super-
micron particles with aerodynamic diameter<10 µm (Oppo
et al., 1999; Keene et al., 2007; Facchini et al., 2008). Keene
et al. (2007) reported that the water soluble organic car-
bon mass fraction of artificially generated aerosols within a
chamber was highest in size fraction with geometric mean
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Fig. 1. Conceptual relationship between the organic mass fraction
of sea spray aerosol (OMSSA) and surface wind speed. Different
colors depict potential regimes of the physical and chemical char-
acteristics of the sea surface microlayer (SML) and the gray shading
representing uncertainty in the OMSSA due other environment fac-
tors other than wind speed. These values represent global averages
and may not be applicable for any given location.

diameter of 0.13 µm. In this smallest size fraction sampled,
organic carbon comprised up to 80 % of aerosol mass and
dominated the mass of most individual particles (Keene et al.,
2007). Facchini et al. (2008) similarly reported a high contri-
bution of organic mass in submicron SSA (up to 77± 5 % in
the 0.125–0.25 µm size range). However, their analysis dis-
criminated between water soluble and insoluble organic car-
bon (WSOC and WIOC, respectively), finding a dominant
contribution (up to 94± 4 %) from the water insoluble frac-
tion. The high contribution of organics in small SSA sizes
(<0.1 µm in diameter) has not always been observed, as Mo-
dini et al. (2010a) and Fuentes et al. (2011) report organic
fractions of 8± 6 % and 8–37 %, respectively.

In this paper, using ambient data from two different
oceanic regions we develop a new parameterization for or-
ganic fraction of SSA based on the proxies for the chemical
composition of sea water, conceptual picture of Fig. 1 for
the SML coverage, and laboratory-measured size-dependent
chemical composition. The developed parameterization is
then used to estimate global emissions of marine primary or-
ganic aerosols.

2 Data and methods

2.1 Aerosol chemistry

Two coastal stations with long-term measurements of aerosol
chemistry were selected for this study; the Mace Head Atmo-
spheric Research Station (53.33◦ N, 9.90◦ W) on the Atlantic
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coast of Ireland and a site at the Point Reyes National
Seashore (38.12◦ N, 122.91◦ W) on the Pacific coast of Cal-
ifornia. At Mace Head, measurements of the∼50–100 h
average chemical composition of aerosols with an aerody-
namic diameter<1.5 µm taken during periods of “clean sec-
tor” conditions (wind direction from 180◦ to 300◦, par-
ticle concentration<700 cm−3, EC< 0.05 µg m−3) for the
years 2002 to 2006 (Cavalli et al., 2004; Yoon et al., 2007)
are included in this study 37 total data points). Measure-
ments of the chemical composition of aerosols with diame-
ters<2.5 µm at Point Reyes near San Francisco, CA were
taken as part of the United States’ Interagency Monitoring of
Protected Visual Environments (IMPROVE) network (http:
//vista.cira.colostate.edu/improve/). At Point Reyes, aerosols
are captured on filters for 24 h (midnight to midnight local
time) every 3 days and chemical composition is determined.
Point Reyes was selected from the large (170 stations) IM-
PROVE monitoring network because it is located very close
to the coast (∼4 km) in a rocky and grassy plain with little up-
wind anthropogenic influence and has the highest frequency
of aerosols exhibiting marine characteristics (White, 2008).
Because Point Reyes aerosol measurements do not have a
clean sector filtering at the site, we have adopted a data fil-
ter consistent to the one used at Mace Head (described in
Sect. 2.2).

Several compounds included in the analysis of aerosol
chemical composition are elemental carbon (EC), OC, and
Na. To avoid potential problems with Na measurements
caused by tube-generated X-ray fluorescence (White, 2008),
the data at Point Reyes were analyzed for the years 2000–
2001 and 2005–2007. The OC measurements from Mace
Head are further separated into WSOC and WIOC following
Cavalli et al. (2004). Unlike Mace Head, OC measurements
at Point Reyes obtained from the IMPROVE network do not
segregate WSOC and WIOC. In order to estimate the WIOC
concentrations, 70 % of the OC measured at Point Reyes is
assumed to be insoluble. This WIOC/OC fraction, which
is a potential source of uncertainty as described in Sect. 4,
is similar to that observed at Mace Head (Cavalli et al.,
2004; O’Dowd et al., 2004) and Amsterdam Island (37.80◦ S,
77.57◦ E) (Sciare et al., 2009) and thought to be representa-
tive of marine primary organic aerosols. The OMSSA can
then be determined by converting the OC measurements to
organic matter (OM) using a 1.4 OM/OC ratio (Decesari
et al., 2007; Facchini et al., 2008) and using the equation
OMSSA= WIOM/(WIOM + sea-salt), where sea-salt is esti-
mated as Na/0.3061 corresponding to the mass fraction of
sodium in dry sea-salt (Seinfeld and Pandis, 2006; O’Dowd
et al., 2008). OMSSA is used here as the primary variable of
the analysis because it is independent of the SSA concentra-
tion (considering that POA of marine origin and sea-salt have
similar production mechanisms and sinks) and can be easily
applied to published SSA emission parameterizations.

2.2 Meteorology

Wind speed and direction data used in this study are different
for the two stations. At Mace Head, 10 m wind speed and
direction was measured at the same location as the aerosol
measurements, with the speed recorded only during peri-
ods when aerosols were being measured. At Point Reyes,
hourly wind speed and direction at 5 m was measured at
the Bodega Bay buoy #46013 (38.24◦ N 123.30◦ W) as part
of the United States’ National Data Buoy Center network
(http://www.ndbc.noaa.gov/). This buoy is located∼37 km
west of Point Reyes in the Pacific Ocean. The 5 m wind speed
was converted to 10 m using the power-law wind-profile as

follows: U10 = U5

(
10
5

)0.11
(Hsu et al., 1994). Because

Point Reyes has no “clean sector” filter on site like Mace
Head, a wind direction filter was used on the Point Reyes
aerosol data including only days with all 24 h having on-
shore wind directions (between 180◦ and 315◦) according to
the buoy winds. Such rigorous filtering reduced the number
of qualifying days from 365 to 36. Further filtering of the
Point Reyes aerosol measurements included only days with
EC< 0.05 µg m−3 (11 total data points) in order to avoid po-
tential influence of OM from anthropogenic sources (Clarke,
1989) and to make them consistent with the Mace Head clean
sector conditions.

2.3 Ocean chemistry

The oceanic parameters derived from satellite data include
8-day average Level 3 surface [Chl-a], [POC], and [DOC]
from the Sea Wide Field-of-view Sensor (SeaWiFS) for the
years 2000–2007. [Chl-a] is determined using the OC4v4
algorithm (O’Reilly et al., 1998, 2000), and [POC] was cal-
culated from normalized water-leaving radiances at 443, 490,
and 555 nm using the method of Stramska et al. (2009). In
order to estimate the ocean [DOC] distribution, a sea sur-
face temperature (SST)-based approach (Siegel et al., 2002)
and a colored dissolved organic matter (CDOM)-based ap-
proach (Mannino et al., 2008) were combined to generate
the estimates of surface layer [DOC] for the years 2000–
2007. The 8-day average SST data was obtained from Mod-
erate Resolution Imaging Spectroradiometer (MODIS), and
the 8-day average normalized water leaving radiance data at
490 and 555 nm (required for the CDOM-based approach)
were retrieved from SeaWiFS. As each method is designed
to estimate the [DOC] in different parts of the ocean, the
SST-based approach was used for the open ocean and the
CDOM-based approach was used for coastal waters (Siegel
et al., 2002; Mannino et al., 2008). All of the satellite-
derived data was regridded to 1◦

× 1◦ spatial resolution.
The reported global root mean squared error of the [Chl-a],
[POC], and [DOC] were∼0.2 mg m−3, 20 mg m−3, and 2.6–
8.6 µmol l−1, respectively (Siegel et al., 2005; Stramska et
al., 2009; Mannino et al., 2008; Siegel et al., 2002). For each
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aerosol measurement, a non-weighted upwind average of the
temporally-collocated [Chl-a], [DOC] and [POC] was calcu-
lated using 24-hour back-trajectories based on the observed
wind speed and direction (grouped into 45◦ vectors).

3 Results and discussion

3.1 Factors affecting organics in SSA

3.1.1 Wind speed

A plot of OMSSA against surface wind speed in Fig. 2a shows
that for both the Mace Head and Point Reyes measurement
stations, the OMSSA decreases with increasing 10 m wind
speed in a manner consistent with our conceptual picture
given on Fig. 1. For wind speeds above 10 m s−1, SSA
are largely composed of sea-salt with very little contribution
from organics. As wind speeds decrease to 5 m s−1, a strong
increase in the organic fraction of SSA was observed. This
trend can be explained by the presence of a SML described
by our conceptual wind speed-organic enrichment relation-
ship. No data exists for surface winds of less than 4 m s−1

due to longer averaging time at the two stations (Mace
Head data was typically averaged over 50–100 h and Point
Reyes over 24 h). However, considering that wind speed of
≥4 m s−1 is typically associated with the onset of bubble for-
mation (Monahan and O’Muircheartaigh, 1986), enrichment
at wind speed values lower than that may not be environ-
mentally relevant. Nevertheless, according to our conceptual
picture on Fig. 1, OMSSA should not change much for low
wind speed values. Using the MATLAB curve fitting tool
and the proposed conceptual relationship, we have developed
a logistic function that is a moderate fit (R2

= 0.38–0.47) for
the existing ambient measurements and requires no artificial
cutoff. Despite this moderate fit, the different time scales
of the measurements (hours-days) and emission processes
(seconds-minutes) may lead to some uncertainties in its ap-
plication to sea spray production functions. However, the
general relationship between OMSSA and wind speed shown
on Fig. 2a suggests that winds (through their effect on the
SML coverage) could play a considerable role in determin-
ing the organic content of SSA.

It should be noted, that in addition to the wind speed/SML
coverage relationship, the regression shown in Fig. 2a could
be interpreted by having relatively constant marine POA flux,
diluted by wind speed-dependent sea-salt emissions. The dif-
ference between the two hypotheses occurs when applied to
a sea spray emission function for prediction of marine POA
emission rates. The wind speed/SML coverage relationship
predicts increasing marine POA emissions with wind speed
(roughly linearly due to the combination of the negative lo-
gistic relationship between OMSSA andU10 and the positive
exponential relationship between sea spray emissions and
U10) whereas the dilution hypothesis predicts emissions to be
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Fig. 2. Organic mass fraction of sea spray aerosol as a func-
tion of (a) observed 10 m wind speed (U10) and upwind averaged
ocean concentrations of 8-day averaged(b) [Chl-a], (c) [POC], and
(d) [DOC] for Mace Head and Point Reyes. In Fig. 2b, four out-
lier data points for Mace Head with [Chl-a] > 1.25 mg m−3 have
been excluded due to their occurrence during anomalously high
chlorophyll-a concentrations in the region. The aerosol sizes mea-
sured at Mace Head and Point Reyes were PM1.5 and PM2.5, re-
spectively, the solid lines show regression relationships for each
station, and the dotted lines show an extrapolation of the regression
relationship.

unrelated to wind speed. As the results of the recent studies
by Russell et al. (2010) and Ovadnevaite et al. (2011) sug-
gested a positive linear relationship between wind speed and
submicron marine-source organic aerosol concentration, we
believe the proposed wind speed/SML coverage relationship
is most consistent with the available ambient measurements.

3.1.2 Ocean chemistry

Analysis of ambient marine aerosol chemical composition
suggests that there is a maximum in OMSSA that, although
usually occurring at low wind speed, can be vastly differ-
ent for the measurement locations. Fig. 2b–d show that each
ocean chemistry parameter examined ([POC], [DOC], and
[Chl-a]) had a positive relationship with OMSSA although
none of the correlations were very strong. It is worth noting
that the relationship between OMSSA and [POC] (Fig. 2c)
was stronger than [DOC] (Fig. 2d) for Mace Head, consis-
tent with the hypothesis of Russell et al. (2010) that [POC]
influences organic mass fraction of Northern Atlantic SSA.
Overall, out of the three ocean parameters examined, the
strongest and most consistent relationship was found be-
tween OMSSA and [Chl-a] (Fig. 2b). Therefore, in our
new parameterization of the organic mass fraction of SSA,
[Chl-a] was chosen as a proxy for the ocean chemistry.
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Using the MATLAB surface fitting tool and a general multi-
variable logistic equation, the combined relationships of
OMSSA vs. U10 and OMSSA vs. [Chl-a] were found to be
very similar for both stations. The corresponding coefficients
in each equation were averaged to yield:

OMSSA(Chl−a,U10) =
OMmax

SSA

1+exp(−2.63[Chl−a]+0.18U10)
(1)

where [Chl-a] is in units of mg m−3 andU10 is in units of
m s−1. The magnitude-determining numerator of the equa-
tion, OMmax

SSA, is the maximum OMSSA observed at the two
sites during the entire measurement period (0.24 for Point
Reyes and 0.78 for Mace Head). As the contribution of sea-
salt to total marine aerosol mass increases considerably in
supermicron mode (de Leeuw et al., 2011), the large dif-
ference in the values for the two sites is believed to be as-
sociated with the aerosol sizes that were sampled at each
site (PM2.5 at Point Reyes vs. PM1.5 at Mace Head). When
compared to measurement data, theR2 value for Eq. (1) is
∼0.52 and 0.56 at Point Reyes and Mace Head, respectively
(see Fig. S1 for scatterplot). A 3D visualization of Eq. (1)
in Fig. 3 shows the interdependence of [Chl-a] and U10 in
determining OMSSA, where the steepest slope correspond-
ing to highest sensitivity occurs in the intermediate [Chl-a]
andU10 values and the shallowest slopes (constant OMSSA)

occur at the extreme values where [Chl-a] > 1 mg m−3 and
U10 > 15 m s−1 or U10 < 5 m s−1. Despite the relationship
between [Chl-a] and wind speed that exists because of sea-
sonal effects (high [Chl-a] and low winds in summer, low
[Chl-a] and high winds in winter), the inverse relationship
between OMSSA andU10 remains (albeit weak at times) even
when the Mace Head measurements are binned into “low”,
“moderate” and “high” [Chl-a] regimes (see Fig. S2). Com-
parison of Eq. (1) with a short term high organic aerosol con-
centration episode at Mace Head described in Ovadnevaite et
al. (2011) reveals remarkably good agreement (the observed
and predicted OMSSA were 0.57 and 0.54, respectively using
U10= 10 m s−1 and [Chl-a] = 1 mg m−3 based on Table 1 and
Fig. 1 from Ovadnevaite et al., 2011).

The differences between the relationship in Eq. (1) and
those of previous parameterizations such as Vignati et
al. (2010) are greatest at high and low wind speeds, which
can be viewed as a consequence of the wind speed effect on
SML coverage. For a given [Chl-a], our equivalent submi-
cron OMSSA will typically be lower than that of O’Dowd
et al. (2008) and Vignati et al. (2010) for strong winds and
higher for low wind conditions. Figure S3 shows that OMSSA
surface wind speed relationships derived in different studies
can yield considerably different values for the organic mass
fraction of sea spray aerosol.
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Fig. 3. Organic mass fraction of sea spray aerosol as a function
of both 10 m wind speed and [Chl-a] for (a) Mace Head (red) and
Point Reyes (black) with the surface regression based on Eq. (1) in
the same color scheme for each site.

3.1.3 Aerosol size

The differences in aerosol sizes (<1.5 µm from Mace Head
and <2.5 µm at Point Reyes) measured at each site were
likely to contribute to the differences in OMmax

SSA. Since
neither the Mace Head nor Point Reyes datasets had size-
resolved aerosol composition, to better constrain OMSSA as a
function of aerosol size we used published measurements of
the size-resolved organic mass fraction of aerosols generated
from bubble-bursting of seawater over the biologically-active
Northern Atlantic (Facchini et al., 2008). These emission
measurements, taken offshore up to 400 km, were compara-
ble to size-resolved ambient samples from Mace Head during
the same period (Facchini et al., 2008). Figure 4 shows the
OMSSA measurements from Facchini et al. (2008) fitted by
the following equation:

OMSSA(Dp) =
OMmax

SSA(Dp)

1+0.03exp(6.18Dp)
+OMmin

SSA(Dp) (2)

where Dp is the ambient (RH = 80± 8 %) aerosol aero-
dynamic diameter in micrometers, and OMmax

SSA(Dp) and
OMmin

SSA(Dp) are size-dependent maximum and minimum or-
ganic mass fraction of SSA with values of 0.82 and 0.03, re-
spectively. Although Eq. (2) is based on measurements of
aerosols from 0.125 to 8.0 µm in diameter, the asymptotic
nature of the high and low end of the logistic curve gives
confidence that it can be extrapolated to the size range of
SSA commonly used by global climate models (<25 µm in
diameter) (de Leeuw et al., 2011). Section 4.2 describes how
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Fig. 4. Observed organic mass fraction of sea spray aerosol (solid
circles) as a function of ambient aerosol aerodynamic diameter from
Facchini et al. (2008). The solid curve shows a logistic fit to the ge-
ometric mean of the diameter range, with the dashed curves corre-
sponding to the logistic fit of the high and low end of the individual
aerodynamic size ranges. Vertical bars show one standard deviation
from the mean as described in Facchini et al. (2008).

this assumption is most important and highly uncertain at the
largest aerosol sizes.

Our size-dependent OMSSA formulation in Eq. (2) is con-
sistent with other measurements/parameterizations. Size-
resolved measurements from Keene et al. (2007) give sim-
ilar results for the organic fraction of SSA, but the reported
OC (as water soluble only) is potentially incompatible with
the data from Mace Head. Both Oppo et al. (1999) and
Long et al. (2011) describe similar size-dependent OMSSA
through adsorption models, while Ellison et al. (1999) shows
a comparable size-dependence using the “inverted micelle”
model of an organic aerosol. There is some uncertainty asso-
ciated with the applicability of these measurements as high
OMSSA values of submicron SSA have not been always ob-
served (Modini et al., 2010a; Fuentes et al., 2010) and were
often characteristic of smaller (∼20 to 70 nm in diameter)
sized particles (Modini et al., 2010b; Fuentes et al., 2010);
see Sect. 4 for a brief summary of some of the caveats and
uncertainties in OMSSA calculations.

3.1.4 Combination of wind speed, [Chl-a], and SSA size

To create an OMSSA equation as a function of [Chl-a], U10,
and SSA size, we have combined Eqs. (1) and (2) in a way
that retains the size dependence of OMSSA from Eq. (2)
but scales with [Chl-a] and U10 as described in Eq. (1).
Specifically, the OMmax

SSA(Dp) and OMmin
SSA(Dp) values from

Eq. (2) were scaled with the OMSSA from Eq. (1) after set-
ting OMmax

SSA(Dp) to 1 reflecting the highest potential enrich-
ment of the organic fraction (Bigg and Leck, 2008). This al-
lows the size dependence from biologically-active Northern

Atlantic (Facchini et al., 2008) region to be globally appli-
cable to areas with vastly different winds and [Chl-a], and
removes the need for a site-specific OMmax

SSA. The resulting
final OMSSA parameterization is:

OMSSA(Chl−a,U10,Dp) =

1
1+exp(−2.63[Chl−a]+0.18U10)

1+0.03exp(6.81Dp)

+
0.03

1+exp(−2.63[Chl−a]+0.18U10)
(3)

There are two main advantages of Eq. (3): (i) it does not re-
quire any artificial cutoffs of wind speed, [Chl-a], or aerosol
size and (ii) it can give the size-resolved organic mass frac-
tion of SSA solely from globally-availableU10 and [Chl-a]
data. However, it should also be recognized that Eq. (3) is
based on limited available observational data and does not
incorporate parameters such as sea surface temperature and
marine ecosystem type that have been suggested to influence
other types of marine emissions (Mårtensson et al., 2003;
Gantt et al., 2009). Figure 5 examines the dependence of
OMSSA on three parameters: SSA size (Dp), chemical com-
position of ocean seawater ([Chl-a]), and the physical mech-
anism of aerosol emission (U10) described by Eq. (3). To
make the dependence of OMSSA on all three parameters eas-
ily visible, we have selected three different aerosol diameters
roughly corresponding to typical marine aerosol Aitken, ac-
cumulation, and coarse mode diameters (Yoon et al., 2007).
According to Fig. 5, OMSSA increases for higher ocean bio-
logical productivity and lower wind speed and shows very
strong dependence on aerosol size. These general trends
are non-linear; changes in OMSSA occur rapidly at moder-
ate wind speed and [Chl-a] and more slowly at the extremes
due to the plateaus found in the logistic curve. Our calcula-
tions suggest that there is little difference between the maxi-
mum organic fraction of the Aitken and accumulation mode
aerosols (∼0.8–0.9), while the coarse mode maximum or-
ganic fraction is substantially lower (<0.02) due to the in-
creasing dominance of sea-salt in these particles.

3.2 Estimated emission rate

To estimate marine POA fluxes in different parts of the
oceans, we have used Mårtensson et al. (2003) and Monahan
et al. (1986) sea spray functions with hourly averagedU10
calculated by the Community Atmosphere Model (CAM5)
(Collins et al., 2006) and monthly-averaged climatological
[Chl-a] retrieved by SeaWiFS. The M̊artensson et al. (2003)
function was used for dry particle diameters ranging from
∼0.02 to 2.8 µm and the Monahan et al. (1986) function
for diameters from∼2.8 to 10 µm. Both the M̊artensson
et al. (2003) and Monahan et al. (1986) functions are as-
sumed to represent SSA whose effective densities are deter-
mined by the fractional contribution of sea-salt and organ-
ics (ρorganic= 1 g cm−3 according to Cavalli et al. (2004) and
ρNaCl = 2.165 g cm−3). Since the magnitude of OMSSA can
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Fig. 5. Contour plots of the organic mass fraction of sea spray
aerosol as a function of [Chl-a] and 10 m wind speed (U10) for
sea spray aerosols with ambient aerodynamic diameters of(a) 0.05,
(b) 0.2, and(c) 2 µm.

also influence the hygroscopicity (kappa –κ) and resulting
growth factor (GF) of the SSA, a conversion between dry
and ambient aerosol diameters was achieved by changing the
OMSSA from Eq. (3) to an organic volume fraction using the
effective density and deriving a GF at a relative humidity
of 80 % assumingκorganic= 0 andκNaCl = 1.12 (Petters and
Kreidenweis, 2007).

The model-predicted global annual submicron (dry
aerosol diameter<1 µm) marine POA emission rate shown
in Fig. 6 reveals some of the important similarities and dif-
ferences between our parameterization and those of others
studies using only [Chl-a] as a proxy the for organic mass
fraction of submicron SSA (O’Dowd et al., 2008; Langmann
et al., 2008; Gantt et al., 2009; Vignati et al., 2010). Like
other parameterizations, the highest emissions occur over the
mid latitude waters such as the southern and northern At-
lantic Ocean where strong winds and high [Chl-a] are com-
mon throughout the year and the lowest emissions occur in
ocean gyres where winds are weak and [Chl-a] is low. Our
parameterization is more distinct in areas with strong winds
and low [Chl-a] and vice versa. Under similar [Chl-a] condi-
tions, marine POA emissions in our parameterization always
increase with increases in surface wind speed (due to the ex-
ponential wind speed dependence of sea spray emissions).
However, due to reduction in SML coverage, the predicted
enhancement of OMSSAand thus emission rates of marine or-
ganics under high wind conditions is lower compared to other
parameterizations. On the other hand, the predicted emission
rates in equatorial waters, which can have lower winds and
elevated [Chl-a], are larger than those from previous stud-
ies because of the higher OMSSA predicted by our param-
eterization. As there have been no marine POA flux mea-
surements in different oceanic regions, the predicted organic
emission rates are difficult to verify. Comparisons of model-
predicted marine-source POA concentrations with observa-
tions at the Northern and Southern Hemispheric coastal sites
(Meskhidze et al., 2011) show that including wind speed, in
addition to [Chl-a], as a factor in determining OMSSA yields
a more accurate representation for the seasonal cycle of ma-
rine organic aerosol mass concentrations.

ng C m-2 s-1

Fig. 6. Annual average submicron marine POA emission rate in
units of ng C m−2 s−1 using the M̊artensson et al. (2003) sea spray
function, monthly average climatological [Chl-a] from SeaWiFS,
modeledU10 from the CAM5 “current climate” (not based on any
particular year), and the estimated global submicron marine POA
emissions of 2.8 Tg C yr−1. See text for more details.

The estimated global marine POA emissions range from
15.9 to 18.7 Tg C yr−1 with 2.8 to 5.6 Tg C yr−1 emitted in
the submicron mode. The high end value of this range is ob-
tained when using a growth factor of aerosols composed of
100 % organic (GF = 1). A GF of 1 effectively assumes that
the aerosol diameter measurements of Facchini et al. (2008)
and thus theDp in Eq. (2) represent the dry aerosol diameter.
This assumption is based on some drying of SSA occurring
from the pressure drop at different stages of the Berner im-
pactor used in Facchini et al. (2008). The measurements of
Facchini et al. (2008) have only extended to particles with
an aerodynamic diameter of 8.0 µm and therefore model es-
timates beyond that are highly uncertain. Overall, global es-
timates of submicron marine POA emissions are similar to
some recently published values (5.5 and 5.8 Tg C yr−1 for
Spracklen et al. (2008) and Vignati et al. (2010), respec-
tively) but lower than the 17.7 Tg C yr−1 suggested by West-
ervelt et al. (2011). The considerable organic mass fraction in
the largest aerosol sizes (up to 40 % organic mass for aerosols
with a geometric mean diameter of 25.5 µm) reported in size-
dependent measurements of Keene et al. (2007), as well as a
recently estimated global value for total marine POA emis-
sions of 29 Tg C yr−1 by Long et al. (2011), suggests that our
value for global marine POA emissions (sub- and supermi-
cron together) could be viewed as a low-end estimate.

4 Caveats and uncertainty

One of the main caveats in our study arises from the use of
observed or estimated WIOC at two coastal sites as a proxy
for global marine POA. To derive OMSSA, we have used val-
ues reported by Facchini et al. (2008) which show a high con-
tribution (up to 77± 5 %) of organic matter in small diameter
sea spray particles. Although this large organic contribution
was also observed by Keene et al. (2007), such high fractions
of organics have not been found in all cases. Recently there
have been several studies measuring the hygroscopic growth
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of SSA that derived lower organic fractions (Sellegri et al.,
2008; Modini et al., 2010a, b; Fuentes et al., 2010, 2011).
Modini et al. (2010a), using a Volatility Hygroscopicity-
Tandem Differential Mobility Analyzer (HTDMA), found
that the organic volume fraction of aerosols produced from
bubble-bursting of coastal seawater was 8± 6 % for aerosols
between 71–77 nm in diameter and less than 20 % (with up to
40 %) for 40 nm particles at remote coastal location of Aus-
tralia. Fuentes et al. (2011) estimated a submicron aerosol
organic volume fraction of 8–37 % (with higher organic vol-
ume fractions for 20 to 70 nm size particles) from laboratory-
grown phytoplankton cultures via HTDMA measurements.
Additionally, the WIOC/OC ratio used for the Point Reyes
data is also uncertain as not all sites have observed this ratio.
Miyazaki et al. (2010), for example, reports a WIOC/OC ra-
tio of ∼40 % from western North Pacific submicron marine
aerosols. Aerosol samples collected during 2006 at Mace
Head have revealed that the WIOC/OC ratio reported in pre-
vious studies is not consistently observed, averaging∼23 %
and∼50 % during periods of high and low biological activity
(Rinaldi et al., 2010).

Coastal sites also suffer from uncertainties related to the
influence of the surf zone and continental aerosols. Even
though SSA production by surf-zone wave breaking were
shown to be 1–2 orders of magnitude higher than that of the
open ocean (de Leeuw et al., 2000; Vignati et al., 2001),
the greatest differences were with the coarse size particles
that are not included in this study. Previous studies have
suggested that aerosol chemical composition derived from
Mace Head measurements can provide a suitable proxy for
open ocean conditions (Ceburnis et al., 2008; Rinaldi et al.,
2009), although the comparatively higher offshore OMSSA
(63± 12 % and 54± 10 % for the open ocean and Mace Head
sites, respectively) reported by Rinaldi et al. (2009) suggests
a potential underestimation of organic aerosol mass in our
parameterization. At Point Reyes, no such studies have been
conducted but the site is similar to Cape Grim Baseline Air
Monitoring Station in Tasmania (both are∼90 m a.s.l. over
a rocky cliff on a grassy plain) which had similar aerosol
chemical composition to offshore ship measurements within
measurement uncertainties (Huebert et al., 1998). The use of
wind speed measurements near the aerosol sampling location
for both the Point Reyes and Mace Head sites also leads to
some uncertainty due to the size of the concentration foot-
print from which the SSA is emitted. Ceburnis et al. (2008)
describes that while the flux footprint of the Mace Head sta-
tion is typically within 5 km, the concentration footprint can
be 10–100 times further upwind. This uncertainty may not
result in large errors in the magnitude and direction of our
wind speed dependence due to the similarity between Mace
Head and Point Reyes nearshore and offshore wind speeds
derived from NASA’s Quick Scatterometer (QuikSCAT) (see
Fig. S4) when averaged over the sampling period. Continen-
tal sources of organic aerosols can potentially contribute to
OMSSA measurements at marine sites (Turekian et al., 2003),

though it is expected such sources to be minor in this study
due to the very long (thousands of kilometers) upwind fetch
of open ocean at both sites and evidence from a recent study
that 80 % of the onshore flow organic aerosols at Mace Head
had a marine source (Ceburnis et al., 2011). These incon-
sistencies and uncertainties highlight the difficulty in confi-
dently applying our OMSSA parameterization (derived using
limited spatiotemporal measurements) to the global scale.

When we compared our conceptual model to measurement
data from Mace Head and Point Reyes, we assumed con-
sistency between measured and estimated WIOM and POA.
Such an assumption may lead to additional uncertainty in
marine POA emissions, as it disregards the fraction of ma-
rine SOA that may be water insoluble or POA that is wa-
ter soluble (even though these contributions are expected to
be minimal). A well recognized SOA component of marine
aerosol derived from ocean-emitted BVOCs is methanesul-
fonate (MS−) from the oxidation of dimethyl sulfide (Saltz-
man et al., 1983), but other SOA precursor gases such as
biogenic isoprene and monoterpenes emitted from phyto-
plankton have also been postulated to affect marine organic
aerosols (Meskhidze and Nenes, 2006; Gantt et al., 2009;
Luo and Yu, 2010). Additionally, oxidation of marine pri-
mary OM has been suggested to lead to the formation of
WSOM which has typically been considered to have sec-
ondary sources (Ceburnis et al., 2008; Claeys et al., 2009;
Rinaldi et al., 2010; Ovadnevaite et al., 2011). Such un-
certainty regarding the origin of marine-source primary and
secondary organic aerosols and inadequate understanding of
marine organic aerosol formation processes adds to the diffi-
culty in estimating marine POA emissions.

These individual uncertainties in the calculation of OMSSA
and subsequent marine POA emissions, combined with
the uncertainties in SSA production (e.g., O’Dowd and de
Leeuw, 2007) and extremely limited number of long-term
measurements can add up to a large uncertainty when apply-
ing to global emissions. However, different parameter val-
ues used in this study are within commonly accepted range.
For example, if we change the effective value of OMmax

SSA
in Eq. (3) from 1 to∼0.1 based on Modini et al. (2010a),
the result is a factor of 10 decrease in the submicron global
marine POA emissions. On the other hand, using differ-
ent assumptions for the density and OM/OC ratio of marine
POA such as 1.4 g cm−3 (Moore et al., 2008) and 2.0 (Turpin
and Lim, 2001) would lead to a factor of 2 increase in the
emissions. Although accurate estimated for the global an-
nual mass emission of marine organic aerosol have not been
established, recent modeling efforts have shown that global
marine POA emissions of∼5.5 Tg C yr−1 lead to reasonable
predictions of surface concentrations (Spracklen et al., 2008;
Vignati et al., 2010).
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5 Conclusions

A conceptual relationship between wind speed and sea spray
aerosol (SSA) organic mass fraction (OMSSA) has been de-
veloped and used to calculate marine primary organic aerosol
(POA) emissions in different parts of the global oceans. Our
analysis predicts the highest organic enrichment of SSA dur-
ing calm winds when marine aerosol production is at a min-
imum and large fraction of water surface is covered by the
sea-surface microlayer (SML). Under such low wind con-
ditions marine aerosol POA emission rates are at minimum
and contribute little to overall marine organic aerosol budget.
An increase in wind speed (above 3–4 m s−1) increases sea
spray and associated marine POA emission rates, although
reduction in OMSSA is also predicted due to the initiation of
Langmuir circulations that starts breaking up the microlayer
and formation of slicks and streaks, consequently reducing
the sea surface area covered by the SML. Wave breaking
caused by wind speeds in excess of 8 m s−1, while enhanc-
ing sea spray and marine POA emissions, thoroughly mixes
the SML with the underlying water and considerably reduces
OMSSA. Derived relationships between observed 10 m wind
speed (U10) and remotely-sensed upwind oceanic concentra-
tions of chlorophyll-a ([Chl-a]), particulate organic carbon
([POC]), and dissolved organic carbon ([DOC]) were com-
pared to aerosol chemical composition from the Mace Head
(Atlantic) and Point Reyes (Pacific) coastal sites. Our re-
sults indicate that wind speed, [Chl-a], and aerosol size are
the three most important parameters regulating OMSSA from
among the variables examined in this study.

The new empirical parameterization using a logistic fit
for the relationship between OMSSA and [Chl-a], U10, and
aerosol diameter was then used to calculate size-resolved
global marine POA emissions using established sea spray
functions. Our model-predicted submicron marine POA
emission rate ranging from 2.8 to 5.6 Tg C yr−1 is compara-
ble to several recent studies (Spracklen et al., 2008; Vignati
et al., 2010); although the wind speed dependence of our pa-
rameterization gives a distinct spatial distribution for marine
POA emissions. Like other studies focused on organic en-
richment of SSA, the exponential wind speed dependence of
the sea spray emission function combined with the positive
relationship between enrichment and [Chl-a] in our study
leads to the highest marine POA emissions in productive ar-
eas with strong winds; however, compared to other emissions
formulations the inverse relationship between wind speed
and OMSSAemployed in our parameterization leads to higher
emissions in areas with lower winds. Additional compar-
ative modeling analysis of different marine POA emission
schemes, combined with long-term measurements of ma-
rine aerosol concentration in previously under-sampled areas
(i.e., tropical oceans) and process-based laboratory and field
studies, are needed to determine the accuracy of this wind
speed dependent size-resolved parameterization for the or-
ganic mass fraction of SSA.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/11/8777/2011/
acp-11-8777-2011-supplement.pdf.
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