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Abstract. Dual carbon isotope analysis of marine aerosol
samples has been performed for the first time demonstrating
a potential in organic matter apportionment between three
principal sources: marine, terrestrial (non-fossil) and fossil
fuel due to unique isotopic signatures. The results presented
here, utilising combinations of dual carbon isotope analysis,
provides conclusive evidence of a dominant biogenic organic
fraction to organic aerosol over biologically active oceans. In
particular, the NE Atlantic, which is also subjected to notable
anthropogenic influences via pollution transport processes,
was found to contain 80 % organic aerosol matter of biogenic
origin directly linked to plankton emissions. The remaining
carbonaceous aerosol was of terrestrial origin. By contrast,
for polluted air advected out from Europe into the NE At-
lantic, the source apportionment is 30 % marine biogenic,
40 % fossil fuel, and 30 % continental non-fossil fuel. The
dominant marine organic aerosol source in the atmosphere
has significant implications for climate change feedback pro-
cesses.

Correspondence to:D. Ceburnis
(darius.ceburnis@nuigalway.ie)

1 Introduction

Aerosol particles in marine air can affect climate by acting
as nuclei for cloud condensation (Fors, 2010 #177) (Shaw,
1983; Charlson et al., 1987). It has been long postulated
that submicron sizes, where cloud nuclei number concentra-
tion is important, predominantly comprises sulphate mass;
however, recent studies (O’Dowd et al., 2004) revealed sig-
nificant enrichments of carbonaceous aerosol during periods
of high plankton activity, suggesting a biogenic source from
both organically-enriched sea-spray and condensable ocean-
derived organic vapours. Organic matter has been observed
in marine aerosol particles for many decades and has been
linked to enrichment of sea-spray by biogenic matter trans-
ferred from the sea-surface into the tropospheric boundary
layer through bubble-mediated production processes (Blan-
chard, 1964; Hoffman and Duce, 1977; Middlebrook et al.,
1998; Oppo et al., 1999; Russell et al., 2010). The en-
richment of organic matter in sea-spray has important im-
plications for marine aerosol haze and cloud layers, ulti-
mately contributing to current and future climate change.
Apart from identification of methane-sulphonic acid (MSA)
and plankton exudates (lipopolysaccharides) (Facchini et
al., 2008a), other postulated biogenic organic species (e.g.
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specific carboxylic acids, amines and carbohydrates) (Kawa-
mura and Sakaguchi, 1999; Mochida et al., 2002; Cavalli et
al., 2004; Facchini et al., 2008a; Russell et al., 2010) are not
necessarily exclusive to marine sources. Indeed, all afore-
mentioned compounds, except MSA and plankton exudates,
can be of terrestrial origin as well, either natural, anthro-
pogenic or biomass burning. Marine atmosphere can also be
significantly perturbed by terrestrial anthropogenic pollution
via long-range transport making Northern Hemisphere more
polluted than the Southern due to larger land masses. Ches-
selet et al. (1981) concluded that more than 80 % of atmo-
spheric particulate organic carbon was of continental origin
over remote marine areas in late 1970s.

The first long-term assessment of carbonaceous particulate
matter sources on a regional scale has been presented by Ge-
lencser et al. (2007). Using radiocarbon, thermal optical, or-
ganic tracer analysis and statistical techniques authors were
able to apportion carbonaceous particulate matter between
fossil fuel, biomass burning carbon, biological particles and
secondary organic aerosol. The approach was further devel-
oped in a study of Gilardoni et al. (2011) where more organic
tracer species and Quasi-Monte Carlo statistical method were
used to apportion between eight sources, and which included
seasonal analyses.

Stable carbon isotope analysis has been attempted to ap-
portion marine aerosol organic matter on several occasions
(Chesselet et al., 1981; Cachier, 1989; Turekian et al., 2003;
Narukawa et al., 2008; Miyazaki et al., 2010). A number of
studies have even attempted compound specific stable carbon
analysis: Turekian et al. (2003) were able to derive isotope
ratio of oxalate attributing it to mostly marine precursors;
Li et al. (2010) developed a method for isoprene biomark-
ers; Fisseha et al. (2006) and Wang and Kawamura (2006)
were able to perform stable carbon analysis of organic acids;
Kim et al. (2005) and Zhang et al. (2009) developed an iso-
tope analysis of polycyclic aromatic hydrocarbons. However,
stable carbon isotope analysis is somewhat inconclusive due
to inability to separate continental non-fossil and fossil fuel
sources which can only be reliably done by radiocarbon anal-
ysis (Szidat et al., 2009). Furthermore, without application of
strict sampling criteria to separate clean marine and anthro-
pogenicaly perturbed continental air masses, stable carbon
apportionment method has relatively large uncertainty.

The carbon isotope14C is produced in the upper atmo-
sphere and enters the biological carbon cycle with the rela-
tively constant initial ratio to12C (Currie, 2004; Szidat et al.,
2009). On the other hand,14C is completely depleted in fos-
sil fuels due to radioactive decay. The14C/12C ratio therefore
elucidates the contributions of contemporary carbon biomass
emissions and fossil fuel emissions. Gustafsson et al. (2009)
conclusively determined relative contribution of fossil fuel
versus biomass burning in brown clouds over South Asia.
Further, the ratio of13C/12C elucidates carbon emissions as-
sociated with different plants, both terrestrial and oceanic,
due to preferential photosynthesis uptake routes of heavier or

lighter inorganic carbon isotopes (Smith and Epstein, 1971;
Maberly et al., 1992). Thus, the combination of ratios of12C,
13C, and14C enables the quantification of different carbon
source contributions to carbonaceous samples. Such an ap-
proach was used by Raymond (2005) and Avery et al. (2006)
in an attempt to apportion carbonaceous material in rainwa-
ter, but has not been attempted in aerosol phase.

In this study, dual carbon isotope analysis of fine aerosol
particles in marine atmosphere has been conducted for the
first time demonstrating its potential in source apportionment
between three principal sources: marine, terrestrial (non-
fossil) and fossil fuel.

2 Experimental methods

Marine aerosol samples were collected over the N.E. At-
lantic at Mace Head(Jennings et al., 2003; O’Connor et
al., 2008) from January to November 2006 and on the R/V
Celtic Explorerduring June–July 2006 (MAP project). Fine
particulate matter samples (D50<1.5 µm) were collected on
a weekly basis (aiming at two samples per month) using au-
tomated sector control system to separate clean marine and
polluted air masses.

An automated control system separated clean marine air
masses by sampling air within 190–300 deg sector at Mace
Head (representing North Atlantic Ocean) when condensa-
tion nucleus counts (CN) did not exceed 700 particles cm−3

(measured by TSI 3010 particle counter). Active control
of the sampling conditions excluded sampling during occa-
sional short-term spikes of CN either due to coastal nucle-
ation events or occasional local ship traffic. Post-sampling
analysis revealed that such air masses did not have con-
tact with land for 4–5 days (as confirmed by air mass
back-trajectories) and BC concentration measured by an
Aaethalometer (AE-16, Magee Scientific, single wavelength
at 880 nm) did not exceed 50 ng m−3. Such air masses have
been spending the last 48 h (at least) in the marine boundary
layer as presented in Fig. 1 for selected samples discussed
in Figs. 4 and 5 using the HYSPLIT model (Draxler and
Hess, 1997). Taking into account the above sampling con-
ditions clean marine samples were among the cleanest pos-
sible to obtain in the anthropogenicaly perturbed Northern
Hemisphere. Despite the number of more remote regions
like Greenland or Northern Canada, the west coast of Ireland
can be as clean as the most remote locations in the North-
ern Hemisphere when exposed to the established oceanic air
masses.

Polluted air masses were sampled during all other condi-
tions but clean and thus represented varying degree of pol-
lution from the European continent. Clearly, “clean ma-
rine” and “polluted” definitions are somewhat ambiguous,
because clean marine samples can be slightly anthropogeni-
caly perturbed while polluted samples may contain signifi-
cant amount of biogenic matter. However, that was exactly

Atmos. Chem. Phys., 11, 8593–8606, 2011 www.atmos-chem-phys.net/11/8593/2011/



D. Ceburnis et al.: Quantification of the carbonaceous matter origin in submicron marine aerosol 8595

Fig. 1. HYSPLIT 120 h air mass back trajectory plots (every 12 h) ending at 100 m height along with trajectory height along the trajectory
during three marine samples presented in Fig. 5 of the paper: 12–26/04/06 (top), 12–15/06/06 (middle), 05–12/07/06 (bottom).

the scope of the study trying to quantify those contributions.
In total 915 sampling hours of clean marine air and 811 sam-
pling hours of polluted air were sampled during the entire
year. Samples were collected on quartz filters (SKC Inc.)

pre-fired at 900◦C before sampling using a HiVol Sierra An-
dersen sampler at 1 m3 min−1 flow rate, equipped with a cas-
cade impactor unit capable of separating particles at 1.5 µm.
Samples were frozen at−20◦C until analysis.
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Twelve clean marine samples were collected throughout
different seasons with a typical sample spanning approxi-
mately 1 calendar week (but for different number of hours
depending on clean sector conditions) to accumulate suffi-
cient mass for analysis. In addition, eight polluted sam-
ples were collected during all other non-clean-sector marine
conditions. Three of the clean sector samples among those
twelve were collected onboard the R/VCeltic Explorercruis-
ing outside continental shelf area off the west coast of Ireland
during June–July 2006. Chemical and physical similarities
between the samples collected at Mace Head and the R/V
Celtic Explorerhave been discussed in detail by Rinaldi et
al. (2009) concluding that clean marine samples collected at
the coastal site (under the strict sampling conditions) were
representative of the open ocean environment.

Carbon-13 and carbon-14 isotope analyses were per-
formed to quantify the biogenic marine carbon (i.e. carbon
derived from marine plants), continental non-fossil carbon
(i.e. carbon derived from terrestrial plant emissions and/or
biomass burning emissions), and fossil fuel carbon emis-
sions. The carbon isotopic composition of the carbonaceous
aerosol is assumed to be practically stable during transport
from source-to-receptor sites, even if they undergo chemical
transformations.

Isotopic fractionation has, indeed, been demonstrated by
Usdowski and Hoefs (1988) which would compromise the
above assumption. The study of Wang and Kawamura (2006)
suggested isotopic fractionation based on different isotopic
ratios of di-carboxylic acids (DCAs). However, one could
obtain different delta13C ratios of different DCAs if precur-
sors of various DCAs have different sources, e.g. some pro-
duced by secondary processes, some by heterogeneous age-
ing of primary material.

Physicochemical properties of isotopes arise from quan-
tum mechanical effects with lighter isotopes possessing
higher vibration energy levels and, therefore, weaker inter-
molecular bonds (Hoefs, 2009). Also lighter isotope species
have lower vapour pressures facilitating faster phase tran-
sitions. Consequently, secondary aerosol formation pro-
cesses can induce isotopic fractionation due to condensation
favouring the lighter isotope although for the large organic
molecules the effect would likely be small. However, most of
the marine organic aerosol is primary in origin according to
the latest research (O’Dowd et al., 2004; Sciare et al., 2009;
Rinaldi et al., 2010; Russell et al., 2010). If primary organic
matter is preserved and only gaining mass through oxidation
(addition of oxygen) then the carbon isotope ratio should re-
main unchanged. Condensation of lighter organic species
would drive isotope ratio to more negative values while evap-
oration – to more positive. Rinaldi et al. (2010) suggested
that there is likely a limited amount of truly secondary or-
ganic carbon in marine aerosol with the majority being ei-
ther primary or processed primary material, hence, little or-
ganic mass contributed via condensation processes. Frac-
tionation during evaporation in marine aerosol would only be

possible if primary sea spray organics would be losing mass
during oxidation processes producing small volatile organic
molecules when, for example, breaking unsaturated double
bonds. Evaporation of entirely primary organic compounds
will not change the isotope ratio and is probably hardly pos-
sible due to chemical species present (long chain hydrocar-
bons, typical of phospholipids (Facchini et al., 2008b)). In
summary, current knowledge about the origin and nature of
marine organic aerosol matter suggests that isotopic fraction-
ation is expected to be small and within analytical uncer-
tainty of ∼0.2 ‰ in marine organic aerosol. It should be
acknowledged that there is a lack of specific targeted stud-
ies at isotopic fractionation in the aerosol phase. Last but not
least is the absence of an isotopic fractionation signature in
polluted air masses (practically stable isotope ratio through-
out the year) where secondary processes, condensation and
evaporation are established phenomena (refer to discussion
of Fig. 4). Overall, while acknowledging the issue of iso-
topic fractionation it is not clear of how to estimate it quanti-
tatively.

Total carbon (TC) concentrations of all samples were per-
formed by an Analytik Jena Multi N/C2100 elemental ana-
lyzer equipped with a solid furnace module. Inside the in-
strument furnace, the sample was exposed to a constant tem-
perature of 950◦C in 100 % O2 and the TC was determined
as the total evolved CO2 by a non-dispersive infrared (NDIR)
detector.

OC/TC ratios of selected samples for14C analysis were
determined with a commercial thermo-optical transmission
instrument (semi-continuous OC/EC field analyzer RT 3042,
Sunset Laboratory Inc Hillsborough, NC, USA) using the
EUSAAR-2 protocol (Cavalli et al., 2010).

2.1 13C analyses

13C isotope analysis was performed using a stable Isotope
Ratio Mass Spectrometer (IRMS) calibrated by the primary
Pee Dee Belemnite (PDB) standard (Garbaras et al., 2008;
Garbaras et al., 2009). The filters were analysed with the el-
emental analyzer FlashEA 1112 connected to the stable iso-
tope ratio mass spectrometer Thermo Finnigan Delta Plus
Advantage. An 1/8th part of a filter was placed into the
tin capsule and combusted in the oxidation furnace at the
temperature of 1020C in excess of oxygen. Later this gas
was transferred into the reduction furnace (650C). The water
from the sample in the helium flow was removed by the mag-
nesium perchlorate trap. Then the gas mixture was separated
in the column PoraPlot Q (50C). Separated gas was delivered
to the mass spectrometer ionization cell through the gas dis-
tribution device ConFlow III. Before the analysis of a series
of samples the calibration CO2 gas was delivered to the mass
spectrometer until the isotopic ratio uncertainty was better
than 0.15 %.

The analysis comprised evaluation of the13C to 12C iso-
tope ratio (R), expressed asδ (delta) values and defined as the
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Table 1. Carbon 13 analyses results.

Sample TC, µg/m3 δ13C, ‰ δ13C∗
marine, ‰

Clean marine
11–18/01/2006 0.14±0.02 −24.38±0.79 −23.51±0.48
29/03–05/04/2006 0.14±0.02 −24.23±0.27 −22.83±0.74
12–26/04/2006 0.17±0.02 −21.61±0.22 −21.04±0.18
12–19/06/2006 0.26±0.03 −21.44±0.32 −20.31±0.34
19–28/06/2006 0.18±0.02 −21.76±0.25 −20.27±0.48
12–15/06/2006 0.35±0.04 −22.56±0.30 −21.90±0.24
16–20/06/2006 0.26±0.03 −23.42±0.19 −22.22±0.52
05–12/07/2006 0.35±0.04 −21.34±0.09 −20.77±0.17
16–23/08/2006 0.19±0.02 −22.54±0.17 −21.46±0.39
03–08/09/2006 0.075±0.01 −23.63±0.05 −22.56±0.49
05–11/10/2006 0.071±0.01 −23.28±0.11 −22.12±0.49
15–22/11/2006 0.070±0.01 −23.96±0.11 −23.17±0.39

Polluted

25–30/01/2006 0.41±0.04 −26.32±0.05
05–12/04/2006 0.11±0.01 −25.95±0.32
03–10/05/2006 0.6±0.06 −24.70±0.07
15–21/07/2006 1.40±0.07 −25.71±0.04
24–30/08/2006 0.33±0.03 −25.69±0.12
21–28/09/2006 0.42±0.04 −25.66±0.73
11–18/10/2006 1.57±0.07 −25.48±0.18
08–15/11/2006 0.36±0.04 −25.03±0.05

∗ δ13Cmarinewas calculated without fossil and continental non-fossil fuel contribution

and the uncertainty range is corresponding to the uncertainty of non-marineδ13C value

(−28±2 ‰).

standard-normalised difference from the reference standard,
and expressed asδ13C in parts per mill ( ‰):

δ13C=

[
Rsample
Rstandard

−1

]
×1000 (1)

Three replicates of each sample were analysed.13C analyt-
ical error (±1σ) was mostly within 1 % (0.5–3.0 %) of the
value which is listed in Table 1.

Filter blanks were measured and were also estimated from
regression analysis. Filter blanks for the measurements were
obtained by carrying pre-fired filter to the station and load-
ing it into the sampler, but not exposing it for the duration
of the sample. Direct analysis of the filter blank was quite
uncertain due to very low total carbon blank of the pre-fired
quartz filters. The measuredδ13C value of the filter blank
was−25.4±0.9 ‰ (average value of three blanks). An in-
dependent method was used to estimate the filter blank from
the regression analysis since the blankδ13C value was signif-
icantly different from theδ13C values of clean marine sam-
ples and the filter blank impact would be minimal at high car-
bon loading. The regression analysis ofδ13C versus total car-
bon mass is presented in Fig. 2, which yielded−25.6 ‰ filter
blank value with a regression correlation coefficientr = 0.84
(P�0.01). The uncertainty range of the intercept was also
clearly outside the range of clean marine samples. There-
fore, overall, the two approaches agreed very well. Standard
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Figure 2. 13C filter blank estimation by regression analysis. 
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Fig. 2. δ13C filter blank estimation by regression analysis.

least squares regression analysis is considered of limited re-
liability when two variables are of very different magnitude.
McArdle (1988) suggested that reduced major axis (RMA)
regression should be used when the error rate in x exceeds
one-third of the error rate in y as it is in our case. How-
ever, RMA produced the same result with a blank value of
−25.8±0.4 ‰. It should be noted, that the width of the 95 %
confidence limit is also dependent on the absence of very
low values (IRMS detection limit is around 200 mV in am-
plitude ofm/z 44) and very high values (TC concentration in
the clean sector is generally low). As the blank CO2 value
was very low (about 180 mV) we give preference to the re-
gressed value, but they both were very similar. The fieldδ13C
samples were corrected for blank contribution using isotope
mixing equation and CO2 signal in millivolts (mV) assuming
a constant contribution from filter field blank:

δ13TCsample×CO2(sample) = δ13TCblank×CO2(blank) (2)

+δ13TCaerosol×(CO2(sample) −CO2(blank))

where CO2(blank) and CO2(sample) are corresponding raw sig-
nals in mV of the measured blank (−25.4‰) and the sample
obtained by IRMS.

Similarly, δ13Cmarine was calculated to exclude fossil and
continental non-fossil contribution using Eq. (3) and pre-
sented in Table 1 and Fig. 4:

δ13TCsample×CO2(sample) = δ13TCmarine (3)

×(CO2(sample) −CO2(anthr))+δ13TCanthr×CO2(anthr)

where CO2 (non-marine) was calculated from Fig. 2 regres-
sion equation taking 50 ng m−3 concentration as explained
below.

BC measurements (by aethalometer AE16 and multi-angle
absorption photometer MAAP) are routinely performed at
the Mace Head station and show low but discernable BC
levels even in clean air masses.114C analysis is suggest-
ing the same based on corresponding ratios. We attempted
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Table 2. Carbon 14 analyses results.

Date Episode OC/TC 114C(TC) [‰] TCnf [ %] 114C(OC) [‰] OCnf [%]

12–26/04/2006 Clean 0.88±0.03 −176±19 78±2 −89±19∗ 84
12–15/06/2006 Clean 0.94±0.03 −222±21 73±2 −182±21∗ 76
05–12/07/2006 Clean n.d. −111±22 84±3 −63±22* 87
15–22/11/2006 Clean 0.99±0.11 n.d. n.d. n.d. n.d.
03–10/05/2006 Polluted n.d. −366±15 58±3 −281±17 67±2
21–28/09/2006 Polluted 0.85±0.02 −344±14 60±3 −260±14 69±2
11–18/10/2006 Polluted 0.86±0.05 −342±12 60±3 −154±17 78±3

nf is non-fossil

n.d. is not determined/measurement not performed
∗ 114C(OC) was estimated from the14C(TC) by subtraction of the EC component under the assumption of a non-fossil contribution of 20 % to EC.

to calculate marineδ13C ratio assuming a certain amount of
carbon being non-marine. The concentration of BC in clean
marine air masses is always below 50 ng m−3 (in selectively
sampled clean marine air masses as outlined in the Meth-
ods section), but some of this carbon must be organic carbon
(absorption measurements cannot distinguish between black
carbon and other absorbing OC species as found by Kanaya
et al. (2008) and Lack et al. (2008)). This calculation was
based on the assumption that all black carbon was from non-
marine sources and had aδ13C ratio of −28±2 ‰ which
is independent from the value of−29 ‰ (fossil fuel) and
−26 ‰ (continental non-fossil) obtained by error minimisa-
tion approach in chapter 2.3. The range of the reference an-
thropogenicδ13C literature values is rather broad:−29.2 ‰
for black carbon (Rumpel et al., 2006); wildfire originδ13C
value of−30.9 ‰ (Ulevicius et al., 2010);−27.3 ‰ (Huang
et al., 2006),−25.6 ‰ (Ho et al., 2006),−26 ‰ (Widory
et al., 2004),−27 ‰ (Currie, 2000). However, Bakwin et
al. (1998) presented a range of fossil fuel carbonδ13C val-
ues from a global network of sites with an average value of
−28.3±2.4 ‰ which encompasses all of the above values in-
cluding the ones of this study (the above value of−28 ‰
and the value of−29 ‰ from Sect. 2.3.). It should be noted
that none of the13C techniques can separate fossil and conti-
nental non-fossil sources, therefore, there is an inherent am-
biguity about fossil versus continental non-fossil carbon in
13C analysis. Accounting for the variability ofδ13C fos-
sil fuel values as−28±2 ‰ a corresponding range of cor-
rected marineδ13C values is presented in Table 1. Some of
the corrected marineδ13C values are more negative than the
reference value of−20 ‰ derived from dual carbon isotope
source apportionment which highlights the aforementioned
ambiguity and uncertainty in non-marine carbon concentra-
tion of 50 ng m−3.

Stable Isotope Ratio Mass Spectrometer (IRMS) raw CO2
signal in millivolts (mV) was compared against independent
total carbon (TC) analysis (above Sect. 2). A good agree-
ment between TC and CO2 signal amplitude (m/z 44 signal
in mV) presented in Fig. 3 (r = 0.98,P�0.01) showed that
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Figure 3. TC concentration versus IRMS CO2 (m/z 44) signal amplitude (mV). 
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Fig. 3. TC concentration versus IRMS CO2 (m/z 44) signal ampli-
tude (mV).

IRMS system was well tuned to provide consistent results,
even though the IRMS is not designed to provide a quantita-
tive TC concentration.

2.2 14C analyses

In a similar manner to13C, 114C is calculated from radio-
carbon analysis to determine the separation of fossil carbon
from non-fossil carbon, which was performed by accelerated
mass spectrometry (AMS) (Szidat et al., 2006; Szidat et al.,
2009). Three cases each of clean marine and polluted sample
sub-sets had sufficient total-carbon loadings to be analysed
for 114C due to analytical constraints. In addition,114C
analysis in polluted samples was also conducted for OC. For
clean marine samples,114C of OC was estimated from the
14C measurements of TC by subtraction of the EC compo-
nent (typically<10 % of TC) under the assumption of a non-
fossil contribution of 20 % to EC.

OC and TC were combusted for14C analysis from the
filters in pure oxygen at 340◦C and 650◦C, respectively
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(Szidat et al., 2004; Szidat et al., 2009). Evolving CO2
was cryo-trapped and then sealed in glass ampoules.14C
measurement was performed by mixing the CO2 with He
and transferring the mixture it into a cesium sputter gas ion
source – constructed for the 200 kV mini-radiocarbon dat-
ing system MICADAS (Ruff et al., 2007).114C values of
the filter samples were calculated according to Stuiver and
Polach (1977) and corrected for a filter blank using Eq. (4).
Individual sample measurements are summarised in Table 2.
The 14C results in Table 2 are accompanied by total uncer-
tainties (around 3–5 %) including contributions from the14C
measurements (mainly from counting statistics) and the cor-
rection of the field blank.

114C=

[
Rsample(norm)

Rstandard(corr)
−1

]
×1000 (4)

where the13C isotopic fractionation in the sample, irrespec-
tive of environment, is taken into account by normalizing
to δ13C =−25 ‰ and the standard is corrected for its decay
since the reference year 1950.

The filter blank for14C analysis was 0.19 µg cm−2 ob-
tained by analyzing 35 cm2 of filter material (mixture of
blank 1 and blank 2 filters) gaining approximately 6 µg of
carbon, with which we successfully performed the14C anal-
ysis. Both values (the amount in µg cm−2 and the14C re-
sult) were attributed with conservatively high uncertainties
of 30 % (1 sigma) in order to account for additional blank
variability which was not covered by the blank filters.

2.3 Isotope mixing equations and source contribution

The source quantification was performed using isotope mix-
ing equations applied to bothδ13C and114C isotope ratios
as follows:

δ13TC= δ13TCmarine×k1 (5)

+δ13TCcont×k2+δ13TCfossil×(1−k1−k2)

114TC= 114TCmarine×k1 (6)

+114TCcont×k2+114TCfossil×(1−k1−k2)

wherek1,k2,k3 are contributions of marine, continental (all
non-fossil sources, whether natural or man-made) and fossil
fuel sources

The above equations are solved when the calculated iso-
topic ratios converge to the measured ratios fixing reference
source ratios in all sample solutions, but allowingk coef-
ficients to vary for each sample. The above two equations
contain two unknowns for each sample and can be explic-
itly solved. It should be stressed that Eqs. (5) and (6) can be
solved explicitly only if individual source ratios are fixed (i.e.
firmly established). In fact, they are not and that makes the
solution slightly uncertain. However, the solution is rather

tightly constrained with little degrees of freedom when se-
lecting individual source ratios, primarily because Eq. (5)
clearly separates the marine source and Eq. (6) clearly sepa-
rates the fossil fuel source due to distinctly different source
ratios. One can start with any conceivable set of reference
source ratios and then fine tune them by error minimisation
approach. For marine, continental and fossil sources, the re-
spectiveδ13C ratios of−20 ‰, −26 ‰, −29 ‰, and114C
ratios of −50 ‰, 100 ‰,−1000 ‰ were obtained. These
ratios were obtained using the error minimisation approach
according to Eq. (6) until the error was minimised to match
the individual analytical error:

Smin = (7)√(
δ13TCcalc−δ13TCmeas

δ13TCmeas

)2

+

(
114TCcalc−114TCmeas

114TCmeas

)2

×100

whereδ13TCcalc and114TCcalc are the values obtained by
Eqs. (5) and (6) andδ13TCmeas and 114TCmeas are corre-
sponding measured values.

In the end there was only one unique set ofδ13C and114C
values and correspondingk coefficients to match calculated
and measured ratios with the smallest error (individual as
well as the total error

∑
S). Even more so, that obtained

typical source ratios (−20 ‰, −26 ‰, −29 ‰, and−50 ‰,
100 ‰,−1000 ‰) must have been the same for all samples
while k coefficients varied between the samples. The above
δ13C values are consistent with literature values ofδ13C and
114C values for marine, continental and fossil fuel sources
(Raymond, 2005). The uncertainty of thek coefficients was,
indeed, somewhat dependent on the reference source ratio
values. By varying referenceδ13C ratios within±1 ‰ and
114C ratios within±50 ‰, the uncertainty of thek coeffi-
cients was typically within 5 %. More of the uncertainty and
sensitivity analysis will be discussed later.

3 Results and discussion

The results of the13C isotope analysis are shown in Fig. 4.
The clean marine aerosol samples revealed distinctly differ-
entδ13C isotopic ratios when compared to polluted samples.
Marineδ13C values were in the range of−20 ‰ to−23.3 ‰,
with least-negative values occurring during summer months
(periods of high biological activity) while polluted sample
values exhibited more-negative values over a much smaller
range of−24.7 ‰ to−26.3 ‰ with little seasonality seen.
The absence of significant seasonal signal, especially when
compared winter and summer values, suggests that isotopic
fractionation was of limited importance overall as in polluted
air masses secondary particle formation processes, conden-
sation and evaporation (all of which should facilitate iso-
topic fractionation) are established phenomena (Jimenez et
al., 2009). The less-negative values ofδ13C, corresponding
to a higher concentrations of13C, occur during the period
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Fig. 4. Seasonal pattern ofδ13C in clean marine and polluted samples during 2006 at Mace Head (top). Also shown is the clean marine total
carbon concentration (TC) for the 2006 data (middle) and for 2002–2005 (Yoon et al., 2007) (bottom).

of peak organic aerosol enrichment associated with peak bi-
ological activity as has been detailed by Yoon et al. (2007)
whose data are presented for the purpose of consistency. This
enrichment results from carbon isotopic fractionation occur-
ring during photosynthetic carbon assimilation (Degens et
al., 1968) whereby marine plants get enriched in13C relative
to terrestrial plants due to limited supply of inorganic carbon
in water during peak biological activity. The isotopic shift in
δ13C to less-negative values during summer results from ac-
celerated plankton carbon fixation during bloom conditions
(Deuser, 1970). Indeed, many of the more recent studies re-
ported less negativeδ13C ratios of particulate organic car-
bon (−26.5 to −20.2 ‰) (Bentaleb et al., 1996; Bauer et
al., 2002), protein-like fraction, carbohydrates and dissolved
organic carbon in ocean water (−21.5 to−20.5 ‰) (Loh et
al., 2004). In clean marine air, larger negative values during
winter are most likely due to higher availability of inorganic
carbon when biological activity and water temperature are
at their lowest, according to mesocosm bloom experiments
performed by Benthien et al. (2007). Similarly, the more-
negative values during summer were observed in samples
during a significant storm onboard the R/VCeltic Explorer
which most likely resulted from mixing of organic material
from greater depths where the competition for inorganic car-
bon is lower. Distribution ofδ13C values suggested a lower
estimate of a marine sectorδ13C value which should be at
least−20 ‰ or less negative to accommodate any contribu-
tion of terrestrial sources (Table 1). This lower estimate has
a significantly less negative value than reported in any other
studies (Chesselet et al., 1981; Cachier, 1989; Turekian et al.,

2003; Narukawa et al., 2008; Miyazaki et al., 2010). The so-
lution of isotope mixing equations also required the marine
δ13C value of−20 ‰, demonstrating consistency between
13C and14C measurements.

Using Eq. (5) it is possible to separate the marine source
contribution to total organic carbon using onlyδ13C data due
to distinctly different marine source isotope ratio. It must
be noted, however, that such source apportionment would
have quite a large error, primarily due to a significant over-
lap of δ13C values of continental non-fossil and fossil fuel
sources and no constrain onδ13C values of either marine or
continental (non-fossil + fossil) sources (Eq. 2). Following
the above considerations and unconstrainedδ13C values for
marine (−19 to −21 ‰) and continental (−26 to −29 ‰)
sources, we get marine source contribution for clean marine
samples in the range of 55–96 %. Consequently, even using
rather conservative range ofδ13C values we obtain a large
uncertainty in marine source contribution. Therefore, with-
out114C it is impossible to separate the contribution of fossil
fuel sources and thereby continental non-fossil sources. In a
similar way it is not possible to separate the marine sources
using114C data alone. Combining both isotopes allows for
a separation of all three sources in a tightly constrained man-
ner. Using Eqs. (5) and (6) and a subset of six samples
where both isotope ratios were measured, the contribution
of the three principal sources was estimated and presented
in Fig. 5a. For three of the marine samples, between 70 %
and 84 % is marine organic, the remainder being fossil fuel
carbon (8–20 %) and continental non-fossil carbon (4–10 %).
Table 2 exhibits similar results based on114C data (within
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Fig. 5. (a) Source contribution to organic matter in marine and polluted air samples in terms of fossil fuel carbon (black), non-fossil fuel
continental carbon (dark green), and marine biogenic carbon (blue) sources;(b) same as(a) except for average source contributions over all
samples for marine and continental air masses.

the uncertainty range) given the absence of continental non-
fossil source. This marine contribution even makes up to 76–
87 % if considering only the OC fraction (Table 2). A small
fraction of continental non-fossil source is likely a remain-
der of North American emissions, while additional fossil fuel
source present in clean marine samples (since it is larger than
continental non-fossil source) could be from shipping fossil
fuel combustion.

By contrast, non-marine (polluted to a different degree)
samples comprised between 21 % and 37 % of continental
non-fossil carbon and about 37 % fossil fuel carbon with the
remainder being attributed to marine carbon (26 to 42 %).
There was a certain degree of variability from sample to
sample in both clean marine and polluted sample subsets;
however, within the subsets samples were similar to each
other. On average, as shown in Fig. 5b, carbon in marine
samples comprised 79 % marine biogenic carbon, 14 % fos-
sil fuel carbon and 7 % continental non-fossil carbon while
in non-marine air masses 37 % are attributed to fossil fuel,
31 % continental (non-fossil carbon) and 32 % marine bio-
genic carbon. The presence of a marine source in pol-
luted air masses (and of similar magnitude to the continental
non-fossil source) has significant implications in interpret-
ing other experimental results where isotope analysis was
not performed. Typically, all organic matter in polluted air
masses is attributed to terrestrial (continental non-fossil and
fossil fuel) sources.

Regarding the contribution of non-fossil sources in pol-
luted air masses we observe about 60 % of non-fossil carbon
which is in agreement with the study of Hodzic et al. (2010).
However, that same 60 % is split between marine and con-
tinental non-fossil sources, reducing the contribution of the
latter. Indeed, in many continental locations, marine source
contribution would be negligible, but that is not the case in
Ireland which is an island surrounded by biologically active
waters in the North Sea, the English Channel and the Irish
Sea.

We can hypothesize several reasons for the relatively large
contribution of fossil sources in continental air masses (espe-
cially during the warm season). Firstly, the United Kingdom
(UK) and Ireland have very little forested areas (under 10 %
in Ireland and just over 10 % in the United Kingdom com-
pared to an average of 46 % in continental Europe) with even
lower percentage of true forest ecosystems. It is well estab-
lished that forests contribute significantly to SOA formation
(Carslaw et al., 2010). Secondly, intensive shipping in the
English Channel and the Irish Sea can contribute additional
fossil carbon to that originating from traffic. The latter can
be supported by the fact that in the same air masses pass-
ing over the sea we observe significant contribution of ma-
rine sources, presumably from English Channel and the Irish
Sea. Continental air masses passing over relatively bare land
(mainly grasslands) and intensive shipping areas, can pos-
sibly explain the observed pattern. It is worth noting, how-
ever, that Heal et al. (2011) also observed large percentage of
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fossil fuel source over the British Midlands up to and above
of 50 %.

The other reason for a relatively large contribution of a fos-
sil fuel source in polluted air masses can be the low solubility
of particles containing larger percentage of fossil fuel carbon
(assuming larger contribution of elemental carbon and sig-
nificant degree of external mixture). The particles contain-
ing continental non-fossil carbon would be more soluble and
conceivably derived from secondary processes, facilitating a
more efficient washout from the boundary layer.

This study is a continuation of experimental work on
sources and chemical composition of marine aerosols being
performed at Mace Head over the last decade or more, but
this time using a combination of dual carbon isotope analy-
sis. The concept of clean marine air masses being sampled
at Mace Head has been discussed in several papers (Cavalli
et al., 2004; Yoon et al., 2007; Rinaldi et al., 2010) show-
ing typical air mass back-trajectories and discussing various
elemental tracers. This time in addition to back-trajectories
(Fig. 1), demonstrating that clean marine air masses (sam-
pled in this study) had no contact with land for at least 5
days before advecting at Mace Head and spent the last three-
to-four days in the boundary layer, we show that our clas-
sified marine aerosol also exhibited extremely low radon
concentrations (222Rn ∼100–200 mBq m−3 and220Rn ∼1–
2 mBq m−3) (Table 3). The latter fact is a quantitative proof
of truly marine air masses with no contact with land for about
a week (e.g. Biraud et al., 2000). Considering222Rn concen-
tration in polluted (continental) air masses of the order of
several thousands of mBq m−3, values presented for marine
samples are generally less then 10 % of the continental ones.
Allocating some of the222Rn measured in marine air masses
to continental shelf emissions (upwind of Mace Head) leaves
room for extremely low contribution of North American con-
tinental aerosol in clean marine air masses sampled at Mace
Head. Our results suggest that the North Atlantic marine
boundary layer can be exceptionally clean and largely de-
void of anthropogenic material even in the generally polluted
Northern Hemisphere most likely due to both dry and wet
deposition during long-range transport across the North At-
lantic Ocean. Indeed, the situation can be different above the
boundary layer where the absence of vigorous mixing and of-
ten clouds can preserve significant amounts of the terrestrial
carbon.

Previous studies of marine aerosolδ13C ratios have indi-
cated marine sources significantly contributing to submicron
carbonaceous aerosol: 20 % in the submicron mode and 80 %
in the supermicron (Chesselet et al., 1981); 38 % in both the
sub- and super-micron modes (Turekian et al., 2003); 45 %
in the sub-micron mode (Narukawa et al., 2008); 46–72 % in
the sub-micron mode (Miyazaki et al., 2010). All those stud-
ies only usedδ13C ratios and were conducted under condi-
tions of varying degrees of pollution and were not subjected
to our strict classification of clean marine air. Our results for
polluted marine air are consistent with the aforementioned

Table 3. Radon concentration (mBq m−3) during clean marine
sampling periods presented in Fig. 4 of the paper.

Sample period 222Rn 220Rn

11–18/01/2006 191 0.1
29/03–05/04/2006 n.d. n.d.
12–26/04/2006 n.d. n.d.
12–19/06/2006 n.d. n.d.
19–28/06/2006 145 2.53
12–15/06/2006 n.d. n.d.
16–20/06/2006 136 0.88
05–12/07/2006 223 1.23
16–23/08/2006 166 2.36
03–08/09/2006 123 0.68
05–11/10/2006 167 0.44
15–22/11/2006 60 0.1

n.d. no data

studies but, our results for clean marine air (up to 84 % of
carbon was deemed to be marine in origin) are in contrast to
these studies as a result of the unique combinations of both
δ13C and114C ratios and strict classification of clean marine
air masses.

These results are the first quantitative estimates of the
magnitude of marine versus anthropogenic source in marine
aerosol and they are very well in line with other measure-
ments performed at the site (Cavalli et al., 2004; O’Dowd et
al., 2004; Yoon et al., 2007; Dall’Osto et al., 2010) where a
dominant contribution of biogenic organic matter to marine
aerosol during periods of high biological activity in oceanic
surface waters has been demonstrated. The latest study pre-
sented by Ovadnevaite et al. (2011) has revealed an even
higher contribution of primary biogenic organic matter to
marine aerosol (2–3 µg m−3). This contribution is far greater
than previously determined by off-line measurement tech-
niques and can even exceed typical terrestrial concentrations
(1–3 µg m−3) (Dall’Osto et al., 2010). More specifically,
an almost negligible contribution of aromatic compounds in
clean marine air masses (Cavalli et al., 2004) compares well
with a small percentage of fossil fuel source quantified in this
study. Also, significant contribution of MSA in regionally
polluted air masses (Dall’Osto et al., 2010) supports a signif-
icant contribution of marine source in polluted air masses.

3.1 Sensitivity and uncertainty analysis

It was mentioned above that the uncertainty of source spe-
cific contributions was, indeed, somewhat dependent on the
selected reference source values. However, by varying ref-
erenceδ13C ratios within±1 ‰ and the114C ratio within
±50 ‰, the uncertainty of source specific contributions was
typically within 5 %, suggesting that the dual isotope method
was rather insensitive to the reference delta values of both
isotopes.
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The range of marineδ13C values found in the literature
is from −18 ‰ to −23 ‰ (Williams and Gordon, 1970;
Bauer et al., 2002). Quite clearly, a reference marine source
δ13C value of−23 ‰ can not apply as clean marine sam-
ples collected during summer had heavier isotope values
without even correcting for anthropogenic influence. Pol-
luted samples could utilise isotope value of−23 ‰, however,
we strongly believe that same reference marine sourceδ13C
value should apply for all clean and polluted samples. If we
used−23 ‰ δ13C value in marine samples, we would ob-
tain a discrepancy between measurements and calculations
in excess of 1 ‰, which is beyond any conceivable analytical
error. It is possible to accommodate a marine sourceδ13C
value of−18 ‰, but in this case continental non-fossil and
fossil fuel source values would have to be even more neg-
ative than the ones used in this study in order to bring clo-
sure to the equations. However, a fossil fuel source value
of −29 ‰ is already at the lower negative end of literature
values as discussed above. The source apportionment was,
however, quite insensitive to a small variation of either conti-
nental non-fossil or fossil fuel source values, as by definition
the 13C method cannot reliably distinguish between conti-
nental non-fossil and fossil fuel sources. After all, Bakwin et
al. (1998) presented a range of fossil fuel carbonδ13C val-
ues from a global network of sites with an average value
of −28.3±2.4 ‰, which encompasses both of our values,
−26 ‰ and−29 ‰.

A non-modern14C value of the reference marine source
(−50 ‰) may seem unexpected, but we believe it can be
justified. Beaupre and Druffel (2009) indicated for the Pa-
cific Ocean near California that114C values for surface
ocean waters were stable from 1991–2004. Assuming that
this is valid for the Atlantic Ocean, we can take the values
from Bauer et al. (2002) without correction so that114C for
Mace Head should be considered as−170 (±80) ‰. How-
ever, these are the values not from the open ocean but from
coastal (shallow) waters and from the slope (∼100km from
the coast). Taking only the slope values, which are closer
to the open ocean conditions, we calculate a value−210
(±60) ‰. This shows that open ocean might even be lower.
114C (POC) and114C (DIC) were 30 ‰ and 60 ‰ respec-
tively for the slope and thus also slightly lower than the bio-
genic value of the atmosphere, which was 120 ‰ in 1994.
In conclusion, we should assume for our campaign−210 ‰
for DOC (slope waters from Bauer et al. (2002) without any
correction for the time between 1994 and 2006), +30 ‰ for
DIC (value from Beaupre and Druffel (2009) for 2004 – dif-
ferences between Pacific and Atlantic Ocean should be neg-
ligible for DIC) and 0 ‰ for POC (if DIC decreases by 30 ‰
within the 10 years, we can justify the same for POC). A
reference selected value of−50 ‰ would lead to a POC vs.
DOC ratio of∼3:1 following a dominant contribution, in sea
spray samples, of water insoluble organic carbon attributed
to POC (Facchini et al., 2008b).

4 Conclusions

Dual carbon isotope analysis method was applied to a sub-
set of six clean marine and polluted aerosol samples demon-
strating the ability to discern contribution of three principal
sources to atmospheric aerosols: marine, continental non-
fossil and fossil fuel. We have conclusively demonstrated a
predominant (80 %) marine biogenic source for fine carbona-
ceous particles in clean marine air over the N.E. Atlantic al-
beit based on a limited number of samples. This biogenic car-
bon component resides in particle sizes predominantly con-
tributing to cloud nuclei, pointing to a direct link between
plankton and marine cloud-climate interactions. In addi-
tion, the anthropogenic contribution to marine organic car-
bon aerosol is still significant, illustrating the role of hemi-
spheric and long-range transport having notable impacts in
nominally pristine marine environments. Marine sources can
contribute around 30 % to the amount of total carbon in pol-
luted air masses sampled at Mace Head which has not been
quantified so far. The presence of marine source in polluted
air masses should not be neglected even though its absolute
magnitude may be relatively low.
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