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Abstract. Geophysical time series often feature missing data
or data acquired at irregular times. Procedures are needed
to either resample these series at systematic time intervals
or to generate reasonable estimates at specified times in or-
der to meet specific user requirements or to facilitate sub-
sequent analyses. Interpolation methods have long been
used to address this problem, taking into account the fact
that available measurements also include errors of measure-
ment or uncertainties. This paper inspects some of the cur-
rently used approaches to fill gaps and smooth time series
(smoothing splines, Singular Spectrum Analysis and Lomb-
Scargle) by comparing their performance in either recon-
structing the original record or in minimizing the Mean Ab-
solute Error (MAE), Mean Bias Error (MBE), chi-squared
test statistics and autocorrelation of residuals between the un-
derlying model and the available data, using both artificially-
generated series or well-known publicly available records.
Some methods make no assumption on the type of variability
in the data while others hypothesize the presence of at least
some dominant frequencies. It will be seen that each method
exhibits advantages and drawbacks, and that the choice of an
approach largely depends on the properties of the underlying
time series and the objective of the research.

1 Introduction

Time series analysis finds applications in a wide range of dis-
ciplines, from science to engineering and from marketing to
econometrics; it naturally plays a critical role in geophysics,
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meteorology, hydrology, or the exploitation of remote sens-
ing data. A time series is a finite, ordered set of couples of
numerical expressions{(ti,xi);i = 0,1,...,n}, one providing
a time reference and the other corresponding to the value of
a measurement or observation acquired at that time. For con-
ciseness, the sequence{xi} is often referred to as being the
time series. Records collected by analog instruments typi-
cally yield continuous time series, but most frequently these
series exist as finite sets of discrete records, either because
they have been acquired in this way or because a continuous
record has been digitized at a given temporal resolution. This
paper only considers discrete time series.

Analyzing time series is simplified when the temporal
sampling occurs at equally spaced time steps, and a host of
techniques have been developed for complete and regular se-
ries. Researchers may also want to analyze related but in-
dependently acquired time series, and thus need to resample
them on a common timeline, e.g.,Mahecha(2010). Yet, ac-
tual time series turn out to be incomplete or unsuitable for
standard analyses, either because some of the records may be
missing (e.g., due to instrument failure or inadequate observ-
ing conditions), or because the records were originally ac-
quired at unevenly distributed times. In addition, one might
be interested in determining the likely value of the variable
of interest at a time that may not coincide with a particular
measurement or observation. For these reasons, it is useful to
be able to generate reasonable estimates of the values of the
variable of interest for arbitrary time references, including to
replace missing values.

Multiple processes may simultaneously influence the val-
uesxi recorded in the time series, although not all of them
may be of interest. In many (but not all) practical cases,
the broad, slow variations that offer some degree of pre-
dictability are of greater interest than the fast changes, which
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often appear as random, unpredictable events of lesser conse-
quence, such as uncertainties in the measurements. By anal-
ogy with such fields as acoustics and radar, the interesting
variations in the time series are called the “signal” and all
other variations are referred to as “noise”. It is clear that the
presence of noise can interfere with the goal of accurately
filling the gaps in a time series.

The standard approach to estimate the values of the vari-
able of interest at arbitrary times, to separate the signal from
the noise or to understand past or forecast future values of the
series, calls for the determination of a mathematical model
that captures the essential (physical or statistical) properties
of the system. Although each of these three issues might
be addressed separately, using different tools, it is apparent
that the determination of an optimal underlying model should
prove beneficial to address all these issues in a systematic and
coherent manner.

The work described below has been motivated by inter-
est in describing the phenology of terrestrial vegetation over
wide areas, using satellite remote sensing measurements in
the solar spectral region as the main source of information.
Nowadays, such global data sets have been accumulated
daily or weekly for periods of up to one or more decades.
The accuracy of these measurements has improved in time,
thanks to technological advances, nevertheless geophysical
processes such as the ubiquitous cloud cover or the limited
availability of solar radiation at high latitudes in winter sea-
sons still result in a significant patchiness in the records.

Various researchers have addressed aspects of these ques-
tions (see, e.g.,Moffat et al., 2007), but recent advances in
the treatment of irregular time series (see, e.g.,Hocke and
Kämpfer, 2009; Kondrashov and Ghil, 2006) suggested to
conduct an evaluation of some of the methods recently pub-
lished or updated before pursuing a particular approach and
investing considerable resources in the processing of large
satellite databases. The purpose of this paper is thus to com-
pare the performance of a few published modern methods
to deal with the presence of gaps and noise in satellite data
records and to report on such findings, which might be of
interest to a wider scientific audience.

2 Outline of published approaches

2.1 Choosing an approach

Estimating the likely values of a time series at arbitrary times,
for instance to replace missing data, is a particular case of
the general problem of interpolation. The simplest approach
might be to fit piece-wise linear functions between succes-
sive values of the time series. However, this method yields
a very jagged series that may be continuous but not differ-
entiable at each point in the original time series. It is also
unlikely to provide reliable estimates: the values generated
in this manner are always strictly bounded by the existing

values in the time series and therefore tend to underestimate
the “true” values, on average.

Another simple approach consists in fitting the Lagrange
form of the interpolation polynomial through every record in
a time series. For each data valuexi this process involves
definition of a basis polynomial function which matches that
point at giventi and it is equal to 0 for all remainingt . All ba-
sis functions are then summed into a final form of the polyno-
mial that provides a unique, smooth, differentiable solution
everywhere. However, when the number of points in the time
series increases, so does the order of the polynomial, which
starts fluctuating wildly, not only between the observations
but also outside the range of the time series, thereby making
it inappropriate for most applications, including forecasting.
In this case, the interpolated values may not be realistic and
could take arbitrarily large values.

In both of these approaches, the interpolation problem has
a solution and it is unique, but severe undesirable side ef-
fects limit or void its applicability. These simple underlying
models (piece-wise linear functions or Lagrange polynomi-
als) force the solution to match exactly each original record,
which might excessively constrain the problem, especially
given that original measurements or observations always in-
clude some level of uncertainty (e.g., due to the finite preci-
sion and accuracy of the instruments, calibration limitations,
human errors, etc.).

A natural response to this issue is to relax the requirement
on the model to match existing records and only insist that it
takes on values that are “reasonably close” to these records
whenever they are available, and to use a relatively smooth
model formulation to catch the bulk of the variability of the
time series. In the context of polynomials, this means using
low-order functions. This approach clearly requires defining
a measure of “goodness of fit” and a criterion to decide how
close is “close enough”. Also, since it might be unrealistic to
globally fit a long time series exhibiting arbitrary fluctuations
with a single smooth function, the interpolation may be per-
formed on a local basis. Cubic splines have been developed
and used in this context; their performance will be evaluated
below.

An advantage of the methods discussed so far is that they
make no assumptions about the underlying nature of the pro-
cesses responsible for the variability exhibited in the time
series. As a result, they can be applied to series of arbitrary
complexity and work equally well if these underlying pro-
cesses themselves change in time. The price to pay for this
flexibility is that these approaches do not “learn” from the
available records what might be the nature and properties of
the processes responsible for the variations and thus exhibit
little or no inherent forecasting skill.

An entirely different approach to this problem then con-
sists in assuming that each of the relevant underlying pro-
cesses can be represented by its own model, and that the
entire time series can be reconstructed by a combination or
superposition of these elementary models. To guarantee the
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uniqueness of the solution, it is generally sufficient to se-
lect those constituent models from amongst a set of mutually
orthogonal functions.Fourier (1822) appears to be one of
the first researchers who developed the solution of a physical
problem (the propagation of heat in a condensed medium) in
the form of a superposition of trigonometric functions, open-
ing the way to what is now known as spectral analysis. This
method has proven extremely powerful and has been success-
fully applied in many fields of science, but works best to an-
alyze time series that are clearly combinations of elementary
periodic signals. When the fluctuations are aperiodic, and
especially when they include random or unique events, the
number of frequencies required to represent the time series
becomes very large and the approach loses some of its ap-
peal.

This drawback can be overcome, however, by selecting the
elementary functions from a different set (or base), such as
Legendre or Tchebicheff polynomials, or even as Empirical
Orthogonal Functions (EOFs), which are an extension of the
so-called Principal Component (or Factor) Analysis of the
time series. In this latter case, the elementary functions are
not explicitly prescribed a priori but are derived directly from
the dataset.

Significant progress has been achieved over the last
decade, so a modern approach in each of these categories
will be tested below. The Lomb-Scargle method, specifi-
cally designed to retrieve the periodogram of time series ac-
quired at unequally distributed instants is a modern appli-
cation of the Fourier approach to arbitrary time-dependent
records. It estimates the power spectrum of the time series
without requiring the original data to be provided on a reg-
ular time grid or to be complete in any sense of the word.
This method has been recently updated and applied to geo-
physical (or astrophysical) problems byHocke and K̈ampfer
(2009). The Singular Spectrum Analysis (SSA) employed
by Kondrashov and Ghil(2006) is a modern example of an
approach capitalizing on the exploitation of orthogonal func-
tions (EOFs, in this case) derived from the data themselves
rather than imposing at the outset the form of the base models
(e.g., trigonometric functions).

A key comparative advantage of these latter methods is
that by “learning” about the underlying processes that con-
trol the evolution of the system and thus of the time series,
these approaches may be quite suitable and efficient to pre-
dict the future evolution of that system, assuming of course
that the same underlying processes will continue to play a
similar role in the future. It will be seen that these methods
are computationally much more demanding than the simpler
approaches mentioned earlier.

2.2 The smoothing spline method

The polynomial smoothing spline method provides an attrac-
tive way of smoothing noisy data values observed atn arbi-
trarily located points over a finite time interval (Hutchinson

and de Hoog, 1985). Described byReinsch(1967), it is an
extension ofWhittaker(1923) spline. This method makes no
assumptions on the underlying causes of the variations or on
the mathematical structure of the series.

The smoothing spline constructs a continuous curve from
segments of cubic polynomials joined together at knot points
in such a way that the first and second derivatives of the re-
sulting curve are continuous throughout. This method is ap-
plicable to a wide range of datasets because it is both flexible
(i.e., it makes few assumptions) and adjustable through a sin-
gle smoothing parameterλ, which controls the “stiffness” or
“flexibility” of the spline curve. For small values ofλ, the
spline remains close to the data points, and in the limit case
λ → 0, the function simply interpolates the data. A contrario,
larger values ofλ increase the “stiffness” of the curve and
in the limit caseλ → ∞, the spline becomes a linear least
square fit. This simple method is robust and computationally
inexpensive, so it is suitable to process large data sets.

Craven and Wahba(1979) proposed an objective method
to determine an “optimal” value of the smoothing parameter,
based on the minimization of the Generalized Cross Valida-
tion (GCV) procedure, which is a direct measure of the pre-
dictive error of the fitted line. GCV is calculated by removing
each data point in turn, and forming a weighted sum of the
square of the discrepancy of each omitted data point from a
line fitted to all other data points (Hutchinson, 1998). The
weights are evaluated as the inverse of the standard deviation
applicable at each data point. To ensure reliable results with
the GCV procedure, the time series should include at least
25 to 30 observations, according toWahba(1990), and the
noise level should not be highly correlated with the signal
(Hutchinson, 1998). In this study, the smoothing parame-
ter was evaluated dynamically using the IMSL (International
Mathematics and Statistics Library) routine CSSMOOTH, as
implemented in the IDL (Interactive Data Language) envi-
ronment. This routine utilizes the GCV procedure proposed
by Craven and Wahba(1979) and was used across all exper-
iments.

2.3 The Singular Spectrum Analysis method

Kondrashov and Ghil(2006) proposed an approach to fill
gaps in time series based on the Singular Spectrum Analy-
sis (SSA) technique originally developed byBroomhead and
King (1986) andBroomhead et al.(1987). This method in-
corporates elements from a wide range of mathematical fields
including classical time series analysis, multivariate statistics
and geometry, dynamical systems, as well as signal process-
ing (Golyandina et al., 2001). It aims at describing the struc-
ture of the time series as a sum of simpler, elementary series
describing features such as a trend, various oscillations and
noise. The workflow of the SSA gap-filling and smoothing
algorithm proceeds in four phases:
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1. The first phase of the process, called embedding, in-
volves the transformation of a one-dimensional scalar
time series{xi};i = 1,2,...,n, into a multidimensional
trajectory matrix of lagged vectorsX = [X1,...,Xn′ ],
wheren′

= n−m+1 and each lagged vector is defined
asXj = (xj ,...,xj+m−1)

T ; j = 1,...,n′. Each one of
these vectors corresponds to a partial view of the orig-
inal time series, seen through a window of lengthm.
Choosing the most appropriate value form, (1≤ m ≤

n), is a matter of balancing the retrieval of information
on the structure of the underlying time series, which
would require larger values, and the degree of statisti-
cal confidence in the results, which is enhanced by us-
ing shorter but more numerous windows that repeatedly
capture the notable features of the series (Ghil et al.,
2002). The trajectory matrixX is thus a rectangular
Hankel matrix of the form

X =


x1 x2 x3 ... xn′

x2 x3 x4 ... xn′+1
x3 x4 x5 ... xn′+2
... ... ... ... ...

xm xm+1 xm+2 ... xn

 (1)

2. The second step consists in the Singular Value De-
composition (SVD) of the trajectory matrixX of size
m×n′, which is “decomposed” into a product of ma-
tricesX = U6V T whereU is a unitary matrix of size
m×m, 6 is a rectangular diagonal matrix of sizem×n

andV is a unitary matrix of sizen×n. The elements
of 6, called singular values, are the square roots of the
eigenvalues of the covariance matrixC = XXT of size
m×m. The rows ofU are the eigenvectors ofXXT and
are often referred to as the left singular vectors or the
Empirical Orthogonal Functions (EOFs) of the matrix
X. The columns ofV T are the eigenvectors ofXT X. If
all eigenvalues are distinct, the solution is unique. Fur-
thermore, if the eigenvalues are organized in decreasing
order of magnitude, then any subset of thed eigenvec-
tors (or EOFs), 1≤ d ≤ m, for which the eigenvalues are
strictly positive provides the best representation of the
matrixX as a sum of matricesXk, k = 1,...,d (Golyan-
dina et al., 2001). The triplets composed of an eigen-
value and its associated left and right eigenvectors are
called eigentriples of the trajectory matrixX.

3. The third step involves the partitioning of thesed eigen-
triples into p disjoint subgroups and summing them
within each group, such thatX =

∑p

1 Xp, where, ide-
ally, the matricesXp also have the structure of a Han-
kel matrix and thus correspond to the trajectory matri-
ces of the hypothesized simpler series that combine to
make the original time series. If these component series
can each be described by distinct subsets of eigentriples,
they are said to be separable by the SVD. In this case,

the original time series can be described as a superpo-
sition of a trend, some harmonic oscillations and noise,
for instance (Golyandina et al., 2001).

4. In practice, such an ideal situation rarely occurs and the
component time series do not exactly match completely
separate subsets of the eigenvectors ofX. The last step
of the SSA algorithm, known as “diagonal averaging”,
aims at transforming the matricesXp into Hankel ma-
trices, which then become the trajectory matrices of the
underlying time series, in such a way that the original
time series can be reconstructed as a sum of these com-
ponents. The entire procedure aims at defining in some
optimal way what those components are.

The SSA gap filling method can be generalized to pro-
cess spatio-temporal data or to regenerate missing values in
multivariate time series. Here, only univariate time series
were considered. We have implemented the code written
in R by Lukas Gudmundsson, available fromhttps://r-forge.
r-project.org/projects/simsalabim/, and processed the time
series described below using different window lengths and
a variable number of leading EOFs.

The first step of SSA iterative gap filling algorithm in-
cludes centering the original time series on zero by subtract-
ing the mean value of all its elements and zeroing the missing
data values.

The inner loop of the SSA procedure (decomposition,
grouping and reconstructing) is performed first on this cen-
tered, zero-filled time series. The missing values are replaced
by computed values of the leading EOF and on this basis the
first estimate of the first reconstructed component is gener-
ated. At the next iteration, the SSA algorithm is performed
again to produce a second estimation of the first component
on the basis of the new time series with missing values. re-
placed by the first estimation of the first leading component.
Missing values replaced by the first estimate are now re-
placed by the second estimate of the first leading component.
The convergence test between current estimation of the first
component and the previous estimate is then carried out. If
this test is positive then the inner loop stops and the first re-
constructed component is returned.

In the outer loop the next leading EOF is added to the first
reconstructed component. Then again the inner loop is per-
formed until the convergence criterion is met and the best
estimate of the second reconstructed component is returned.
The third leading EOF is added in the same way and this
process is carried out until the outer loop reaches the fixed
number of analyzed EOFs.

Two main parameters are necessary to implement the SSA
gap filling algorithm: window lengthm and maximum num-
ber of leading EOFsη, which create theη-th reconstructed
component. The optimum combination of these parameters
can be obtained by the cross-validation procedure, in which a
fixed amount of available data is removed, then the SSA algo-
rithm is performed and the RMSE (Root Mean Square Error)
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between original dataset and each of the reconstructed com-
ponents is calculated. This experiment is repeated several
times with the same set of parameters to obtain mean values
of RMSE over all experiments. Then the entire procedure
is repeated with the same number of leading EOFs, but with
different values of the window length (Kondrashov and Ghil,
2006). The values of parametersm andη corresponding to
the case with the smallest RMSE among all cross-validation
experiments is deemed optimal for the purpose of regenerat-
ing missing data.

The SSA gap filling algorithm is suitable for reconstruct-
ing time series with highly anharmonic oscillation shapes
(Vautard et al., 1992) or nonlinear trends (Ghil et al., 2002).
It can be economical in the sense that a small number of SSA
eigenmodes may be sufficient to reconstruct the original time
series. This is an advantage over traditional spectral methods
based on the classical Fourier analysis, which typically re-
quire many trigonometric functions with different phase and
amplitudes to provide a credible result. On the other hand,
the high computational requirements of the SSA gap-filling
algorithm may be a drawback in operational applications in-
volving large numbers of time series. Other limitations of
this method have been reported when the gaps in time series
are long and continuous (Kondrashov and Ghil, 2006).

2.4 The Lomb-Scargle method

Hocke and K̈ampfer(2009) used the Lomb-Scargle method
to compute the periodogram of unevenly sampled time se-
ries and reconstructed the missing values in an astrophysical
series from the amplitude and phase information of the dom-
inant frequencies.

In practice, the first two steps of this procedure involve re-
moving the mean value of original time series from each in-
dividual observation and applying a Hamming window to en-
hance spectral information. The Lomb-Scargle periodogram
is then calculated, yielding a result equivalent to a linear
least-squares fit of sine and cosine model functions to the
observed time series (Lomb, 1976, Press et al., 1992, Hocke
and K̈ampfer, 2009).

Once the periodogram has been retrieved, the signal is re-
constructed by considering only its most significant compo-
nents, i.e., those associated with a power larger than a given
threshold. The latter can be estimated either on the basis of a
confidence level analysis or simply set to a fixed fraction of
the largest peak in the periodogram. The reverse Hamming
window procedure is applied and the final result is of course
a continuous and complete series, which can be resampled at
any desired frequency.

While the Hamming window procedure improves the per-
formance of the algorithm in the bulk of the time series, it
also results in poorer results near either end of the series than
away from these borders. This can be remedied, however, by
applying a Kaiser-Bessel window instead (Harris, 1978), as
it features an adaptable shape parameter.

The optimal value of this shape parameter is obtained iter-
atively by calculating the RMSE for each smoothed and gap
filled time series against the original one and selecting the pa-
rameter value corresponding to the smallest RMSE. For the
purpose of this analysis, we have converted Hocke’s 2007
MatLab code (available as on-line supplement fromhttp:
//www.atmos-chem-phys.org/9/issue12.html) to the IDL lan-
guage. According to (Hocke and K̈ampfer, 2009), this ap-
proach should be suitable to process either periodic or non-
periodic time series.

3 Methodology

3.1 Choosing a quality fit criterion

An important methodological issue that requires careful at-
tention is the selection of a measure of “goodness of fit” be-
tween the models and the data (time series), and of a criteria
to judge when this measure is “good enough” for the stated
purpose.

The root mean square error (RMSE, or deviation RMSD)
has traditionally been used in this context because it enjoys
well-understood and desirable statistical properties. This
measure is defined as the square root of the mean square er-
ror, or the square root of the sum of the squares of the differ-
ences between the model predicted valuesyi = y(ti) and the
observationsxi = x(ti) recorded in the time series:

RMSE=

[
1

n

n∑
i=1

(yi −xi)
2

]1/2

(2)

wheren is the number of points in the time series. The square
of the deviations between the model and the records prevents
errors of different signs to compensate each other, and en-
hances the role of large deviations compared to smaller ones.
However,Willmott and Matsuura(2005) have argued that the
Mean Absolute Error (MAE) provides a better indicator of
the quality of the fit or the performance of the model in rep-
resenting a given data set. MAE is defined as follows:

MAE =

[
1

n

n∑
i=1

|yi −xi |

]
(3)

Both statistics measure the difference between modeled
values and the corresponding observations, assuming the lat-
ter are reliable, with larger values indicative of a worst fit;
they differ in the emphasis they give to particular situations:
RMSE penalizes large individual differences while MAE fo-
cuses on the mean overall performance. More importantly,
RMSE values are not representative of mean or typical errors
only: they range between MAE andn1/2

×MAE, increase
non-monotonically with MAE and vary with the square root
of n (Willmott and Matsuura, 2005). MAE will thus be used
in this evaluation.
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Another criteria that characterizes the fit of a model to ob-
servations is the mean bias error (MBE) or mean error (ME).
It assess on average if the model tends to overestimate or
underestimate reconstructed values. It is defined as a mean
value of residuals:

MBE =

[
1

n

n∑
i=1

yi −xi

]
(4)

The chi-square test as opposed to MAE and MBE is a cat-
egorical score which determines whether the difference in
distributions of observed and predicted values in one or
more classes are statistically significant. Predicted values are
based on particular theoretical distributions which fulfill a
null hypothesis. In an univariate case, the categorization of
data can be achieved by computation of a cumulative distri-
bution function (CDF) or a histogram of values. The min-
imum frequency (number of elements) in each class should
be greater than 5. The chi-square statistic is defined as:

χ2
=

[
c∑

i=1

(fo −fe)
2

fe

]
(5)

wherec is number of classes,fo is observed frequency, and
fe is expected frequency. The probability levelp associated
with χ2 is derived from the theoretical chi-squared distribu-
tion accounting for number of degrees of freedomdf defined
as:df = c−1. Commonly,p-values lower than 0.05 indicate
that differences between frequency distributions of observed
and predicted values are statistically significant and the null
hypothesis should be rejected.

While comparing the quality of fit between modelled and
observed values it is recommended to test if residuals are cor-
related within certain sampling lags. This can be achieved by
means of autocorrelation function defined as:

r(l) =

[∑n−l
i=1(ei −MBE)(ei+l −MBE)∑n

i=1(ei −MBE)2

]
(6)

wherel is a lag size defined as:l = 0,1,...,lmax; ei is a resid-
ual between observations and modelled valuesei = yi −xi .
According toBox and Jenkins(1976) the number of sam-
plesn in a time series should exceed 50 andlmax should not
be larger thann/4. If residualsei are randomly distributed
thenr(l) is equal to 0 or it is enclosed within confidence lim-
its 0±

z1−α/2
√

n
, wherez is the quantile function of the standard

normal distribution andα is the significance level. Serial cor-
relation in residuals may imply that the fitted model is miss-
specified or it fails to reconstruct some periodic fluctuations.

3.2 Smoothing over noise

Noise due to errors of measurement or uncertainties will im-
pact the ability and effectiveness of a method to reconstruct
values that may be missing from time series. As hinted ear-
lier, the underlying idea is to process the data in such a way

that typically high-frequency random variations considered
as noise are filtered out while low-frequency changes are left
unaffected. In the case of spectral methods, this is most eas-
ily implemented by decomposing the original series in terms
of a power spectrum and reconstructing the signal using all
frequencies lower than some given threshold. The sensitivity
of the methods to the presence of noise will be documented
in the tests below.

3.3 Designing artificial test cases

A large set of test cases was constructed to evaluate the per-
formance of the approaches described above when either the
number of missing observations or the level of noise in the
data increases. The idea of these tests is to generate complete
time series representing the “truth”, altering them by impos-
ing data gaps and adding noise, and then analyzing these
modified series with the methods described earlier to assess
to what extent they are capable of generating reasonable val-
ues to replace the missing ones. Three different “base” sig-
nals were considered: a single sine wave (Eq. (7), Fig. 20),
a superposition of three sine waves (Eq. (8), Fig. 21) and an
aperiodic signal (Eq. (9), Fig. 19), respectively. They intend
to represent functions resembling typical geophysical signals
of increasing complexity:

x1(t) = 0.5sin(t −π/2)+0.5 (7)

x2(t) = 0.28sin(t −π/2)+0.19sin(2t −π/2)+ (8)

0.16sin(0.5t −π/4)+0.6

x3(t) = 0.35sin(t −π/2)+0.15sin(20
√

t −π/2)+0.5 (9)

While these equations represent continuous time series,
we generated discrete base series by sampling these functions
in such a way that the argumentt of the sine functions is suc-
cessively incremented by 10 degrees over a total of 10 full
cycles (simulated years), thus creating time series ofn = 361
data points. These series were then “degraded” by introduc-
ing variable amounts of gaps and adding different levels of
noise as follows.

3.3.1 Gaps

The following three types of gaps (missing data) were con-
sidered:

– Uniformly distributed gaps (Fig.20). For each pre-
defined percentage of missing data, a random number
generatorU was used to iteratively select the location
of the next data point to be removed from the series:
xm = U[0,1]×n. This situation might arise when the
system of interest is occasionally unobservable, for in-
stance due to the presence of clouds, when analysing
satellite data.

– Seasonal gaps (Fig.19). In this case, the desired per-
centage of missing data was imposed by removing, from
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each cycle in the time series, the required number of
points around the lowest data values. In reality, this case
may occur at high latitude because a lack of solar irra-
diance (or the presence of snow) might systematically
prevent the acquisition of usable observations during the
winter.

– Prolonged gaps (Fig.21). For this scenario, a single
continuous period of missing data was imposed in the
middle of the time series, with a total length set to cor-
respond to the predefined percentage of gaps desired.
This pattern would emerge if the observing instrument
failed to operate correctly for some time, for instance.

The results described below only refer to the performance
of the methods to generate reasonable values in the artifi-
cial data gaps within the period of 10 cycles: no attempt was
made to extrapolate beyond either end of the original series.

3.3.2 Noise

The simulated noisy data valuex∗(t) corresponding to the
time series valuex(t) were estimated asx∗(t) = x(t)[1+

N(0,1)S], whereN(0,1) represents a normal (Gaussian) dis-
tribution of mean 0.0 and standard deviation 1.0, and where
S is a scaling factor to create different noise levels. In this
process, only those values ofN(0,1) falling within the range
[−1.0, 1.0] were considered.

3.4 Using actual time series

In addition to these artificial test cases, the approaches will
also be evaluated against a few actual time series, modified
by adding gaps as before. The following cases were consid-
ered:

1. Some 400 time series of the Fraction of Absorbed
Photosynthetically Active Radiation (FAPAR), derived
from an analysis of SeaWiFS data, generated as part
of the CarboEurope project database, were down-
loaded from the JRC FAPAR web site (http://fapar.jrc.
ec.europa.eu/). The SeaWiFS scanner instrument has
been in operation since September 1997. Complete data
coverage for large areas requires compositing the daily
acquisitions over longer periods, and standard products
are typically generated every 10 days or monthly. The
processing steps required for generating these products
are described inGobron et al.(2006). These time series
are typical of sequences that may exhibit gaps due to
cloudiness or lack of sunlight during the winter.

2. Sunspots have been observed by astronomers for cen-
turies, and include the well-known 11 year cycle, al-
though other fluctuations considerably affect the num-
ber of observable spots at anyone time. For the pur-
pose of this study, the monthly number of Sunspots
for the period 1900–2009 were obtained from the

National Geophysical Data Center (NGDC) of the
US National Oceanic and Atmospheric Administration
(NOAA) (http://www.ngdc.noaa.gov/). This series ex-
hibits strong periodicities but also some degree of un-
predictability.

3. The record of atmospheric carbon dioxide (CO2) con-
centration, in parts per million per volume, obtained at
Mauna Loa constitutes probably one of the most em-
blematic time series of our times, as it unequivocally
shows how human consumption of fossil fuels modifies
the composition of our atmosphere. The values used
here were downloaded from the Carbon Dioxide Infor-
mation Analysis Center (CDIAC) at the Oak Ridge Na-
tional Laboratory (ORNL) (http://cdiac.ornl.gov/). The
main advantage of this series in the current context is
that it exhibits a strong trend (itself somewhat variable
in time) as well as a clear seasonal signal.

4. The Dow Jones Index (DJI) is clearly not a geophys-
ical time series, but it offers the distinct advantage of
being a non-periodic signal, with wild fluctuations and
a strong overall trend. The mean weekly values of
DJI were obtained from a public domain source (http:
//finance.yahoo.com/) for the period 1981 to 2009.

4 Numerical experiments and results

4.1 Numerical experiments with artificial time series

In the artificial time series experiments, the accuracy of the
selected algorithms was estimated by calculating the statis-
tics of the quality fit criteria (MAE, MBE,χ2, p-value,r(l))
between series reconstructed by each of the methods de-
scribed above and the original smooth dataset (without noise
and gaps). Every experiment was repeated 10 times with
the same set of parameters (data type, gap pattern, levels of
noise, amount of gaps), but with different seed values for
the pseudorandom number generator, thereby generating 10
different data sets with the same model parameters and dif-
ferent noise patterns. The results reported here exhibit the
average of these 10 values, a compromise between available
computational resources and the desire to establish reason-
ably stable results. This exercise yielded an extensive set of
statistics computed as a function of five variables: gap-filling
method, data type, gap pattern, amount of gaps, and noise
level. As far as chi-squared test is concerned the frequencies
of data values were derived from the histogram function with
0.05 bin size. Expected frequencies were obtained from the
complete and noise-free time series generated according to
Eqs. (7), (8), (9). Thep-values reported correspond to one-
tailed probability of obtaining a value ofχ2 or greater with
20 degrees of freedom.
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Fig. 1. Average values and standard deviations for MAE derived
from an extensive set of the artificial time series. See text for details.

Fig. 2. Average values and standard deviations for MBE derived
from an extensive set of the artificial time series. See text for details.

4.1.1 Overall results classified by type of gap

Figures1 to 4 summarize the results for all experiments with
different amounts of data gaps and noise levels. Overall, the
selected algorithms reconstructions reveal the best agreement
with original datasets (smallest MAE, MBE andχ2 values,
with the highest relative probability of obtaining such results)
in case of random gaps scenario. This gap pattern clearly
have a less drastic effect on the signal reconstruction than
seasonal or very long gaps. In other words, when missing
values are sprinkled throughout the time series and do not
excessively mask the underlying signal, the remaining data
points still carry enough information to reconstruct a reason-
ably accurate version of the series.

Whenever missing values are clustered seasonally (as in
winter gaps, for instance) the signal becomes severely cor-
rupted because there is a deficit of information for some
ranges of frequencies and the power spectrum cannot be reli-
ably estimated. In this case, minor fluctuations in the data can

Fig. 3. Average values and standard deviations forχ2 derived from
an extensive set of the artificial time series. See text for details.

Fig. 4. Average values and standard deviations forp derived from
an extensive set of the artificial time series. The dashed line indi-
cates 0.05 probability level. See text for details.

induce the presence of spurious peaks when reconstructing
the time series with the Lomb-Scargle method, and even the
Kondrashov-Ghil algorithm is sensitive to this type of gaps
(Figs. 12 and19). The smoothing spline method is not af-
fected by this problem since it does not rely on the power
spectrum of the signal.

On the other hand, in the case of the “continuous gap” sce-
nario (Fig.21), the smoothing spline algorithm is not able to
take advantage of the power spectrum information recovered
from the rest of the time series to fill the large gap. The poly-
nomial function adopts various shapes, depending on the dis-
tribution of the few points immediately before and after the
continuous gap. The other approaches perform much better
in this case, as can be seen from the MAE statistics reported
in Fig. 1.
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Fig. 5. The distribution of MAE andp values as a function of data gaps and noise level, acquired during the experiment with artificial,
aperiodic time series with random gap patterns:(a) original version of Lomb-Scargle algorithm (LS1),(b) modified version of Lomb-Scargle
algorithm (LS2),(c) Kondrahov and Ghil algorithm (KG),(d) smoothing spline algorithm (SS).
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Fig. 5. The distribution of MAE andp values as a function of data
gaps and noise level, acquired during the experiment with artificial,
aperiodic time series with random gap patterns:(a) original version
of Lomb-Scargle algorithm (LS1),(b) modified version of Lomb-
Scargle algorithm (LS2),(c) Kondrahov and Ghil algorithm (KG),
(d) smoothing spline algorithm (SS).

4.1.2 Overall results classified by type of data pattern

The underlying structure of the data also influences the per-
formance of the time series reconstruction in the presence of
gaps and noise. Our tests included both periodic (Figs.20
and 21) and aperiodic times series (Fig.19), and methods
that essentially assume the existence of significant periodic
fluctuations in the data (such as the Lomb-Scargle algorithm)
naturally experience greater difficulties in regenerating reli-
able values for aperiodic time series (Hocke and K̈ampfer,
2009). This effect is illustrated in Fig.4 where in all aperi-
odic test cases Lomb-Scargle algorithm produced results that
were significantly different from the original data and thus
the p-values are equal to 0. The correlation of residuals is
also stronger for this method (Fig.22). By contrast, the data
pattern does not seem to substantially influence the MBE val-
ues (Fig.2).

Interestingly, statistics revealed some of the poorest re-
sults in the case of strictly periodic dataset composed of a
superposition of several sine waves. This might be due to
the presence of small second maxima (Fig.21) which is hard
to reconstruct when noise level and gaps amount are high.
Therefore, the quality of the reconstruction typically can be
affected by the shape of a particular time series.

4.1.3 Detailed results classified by type of gap

The performance of each gap-filling and noise-reducing tech-
nique was investigated against different distributions of data
gaps and noise. The graphical representation of the results
yields a set of contour plots (Figs.5 to 10) depicting the dis-
tribution of MAE andp-values for the indicated method as a

16 J. P. Musiale et al.: Gap-filling and smoothing time series

Fig. 6. The distribution of MAE andp values as a function of data gaps and noise level, acquired during the experiment with artificial,
superimposed time series with random gap patterns:(a) original version of Lomb-Scargle algorithm (LS1),(b) modified version of Lomb-
Scargle algorithm (LS2),(c) Kondrahov-Ghil algorithm (KG),(d) smoothing spline algorithm (SS).
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Fig. 6. The distribution of MAE andp values as a function of data
gaps and noise level, acquired during the experiment with artifi-
cial, superimposed time series with random gap patterns:(a) origi-
nal version of Lomb-Scargle algorithm (LS1),(b) modified version
of Lomb-Scargle algorithm (LS2),(c) Kondrahov-Ghil algorithm
(KG), (d) smoothing spline algorithm (SS).
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Fig. 7. The distribution of MAE andp values as a function of data gaps and noise level, acquired during the experiment with artificial,
aperiodic time series with winter gap pattern.(a) original version of Lomb-Scargle algorithm (LS1),(b) modified version of Lomb-Scargle
algorithm (LS2),(c) Kondrahov and Ghil algorithm (KG),(d) smoothing spline algorithm (SS).
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Fig. 7. The distribution of MAE andp values as a function of data
gaps and noise level, acquired during the experiment with artificial,
aperiodic time series with winter gap pattern.(a) original version
of Lomb-Scargle algorithm (LS1),(b) modified version of Lomb-
Scargle algorithm (LS2),(c) Kondrahov and Ghil algorithm (KG),
(d) smoothing spline algorithm (SS).

function of gap and noise percentages. Each plot was gener-
ated by linearly interpolating a 6×6 grid (hence the some-
times jagged appearance) composed of data points which
represent an average of 10 independent experiments. Both
axes have 10 % interval increments. The color scheme cor-
responds to fixed ranges of MAE values, as shown in the
legends. The interpretation of these graphs should consider
both the absolute values and the orientation of isolines. Ver-
tical patterns (Fig.5) indicate that the reconstruction of a
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Fig. 8. The distribution of MAE andp values as a function of data gaps and noise level, acquired during the experiment with artificial,
superimposed time series with winter gap pattern.(a) original version of Lomb-Scargle algorithm (LS1),(b) modified version of Lomb-
Scargle algorithm (LS2),(c) Kondrahov and Ghil algorithm (KG),(d) smoothing spline algorithm (SS).
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Fig. 8. The distribution of MAE andp values as a function of data
gaps and noise level, acquired during the experiment with artifi-
cial, superimposed time series with winter gap pattern.(a) original
version of Lomb-Scargle algorithm (LS1),(b) modified version of
Lomb-Scargle algorithm (LS2),(c) Kondrahov and Ghil algorithm
(KG), (d) smoothing spline algorithm (SS).
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Fig. 9. The distribution of MAE andp values as a function of data gaps and noise level, acquired during the experiment with artificial,
aperiodic time series with continuous gap pattern.(a) original version of Lomb-Scargle algorithm (LS1),(b) modified version of Lomb-
Scargle algorithm (LS2),(c) Kondrahov and Ghil algorithm (KG),(d) smoothing spline algorithm (SS).
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Fig. 9. The distribution of MAE andp values as a function of data
gaps and noise level, acquired during the experiment with artifi-
cial, aperiodic time series with continuous gap pattern.(a) original
version of Lomb-Scargle algorithm (LS1),(b) modified version of
Lomb-Scargle algorithm (LS2),(c) Kondrahov and Ghil algorithm
(KG), (d) smoothing spline algorithm (SS).

time series by a particular algorithm is more depended on
the noise level than on the amount of data gaps. The reverse
situation takes place when the isolines are horizontal (Fig.7a,
b, c). When the graph exhibits a diagonal pattern (Fig.7d),
noise level and data gaps both contribute to a degradation in
the quality of the reconstructed time series.
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Fig. 10. The distribution of MAE andp values as a function of data gaps and noise level, acquired during the experiment with artificial,
superimposed time series with continuous gap pattern.(a) original version of Lomb-Scargle algorithm (LS1),(b) modified version of
Lomb-Scargle algorithm (LS2),(c) Kondrahov and Ghil algorithm (KG),(d) smoothing spline algorithm (SS).
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Fig. 10.The distribution of MAE andp values as a function of data
gaps and noise level, acquired during the experiment with artificial,
superimposed time series with continuous gap pattern.(a) original
version of Lomb-Scargle algorithm (LS1),(b) modified version of
Lomb-Scargle algorithm (LS2),(c) Kondrahov and Ghil algorithm
(KG), (d) smoothing spline algorithm (SS).

– The distribution of MAE in therandom gapscenario
mainly depends on the level of noise (Figs.5b, c, d and
6). The statistical significance of the differences in re-
constructionp derived from the chi-squared test follows
the same vertical pattern. Allp-values lower than 0.05
indicate that the fitted model is significantly different
from the original complete and noise-free dataset. Even
when many data points are missing, most of selected
algorithms perform well in reconstructing the original
datasets provided the noise level remains low. It can
also be seen that selecting a Kaiser-Bessel window in-
stead of a Hamming window in the Lomb-Scargle al-
gorithm significantly improves the results (Figs.5a, b
and6a, b). However this technique is inferior to oth-
ers when the oscillations are not periodic resulting in
p-values equal to 0 for all combinations of noise and
gaps levels (Fig.5). Amongst all random gap scenar-
ios, the Kondrashov-Ghil algorithm yielded the small-
est MAE with relatively high confidence levels across
all types of artificial time series (Figs.1, 5c and6c),
though the differences in datasets reconstructions (and
MAE values) between this method and the smoothing
spline technique are very small (Figs.1, 5c, d and6c,
d). The autocorrelation of residuals (Fig.22) for these
two methods is significant only for small lag size (5–6
data points) although slightly better results are obtained
by the latter algorithm. Nevertheless, all selected tech-
niques in this particular gap scenario provide residuals
that are truly unbiased (Fig.2).
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– In the winter gapscenario, the MAE of the time se-
ries reconstruction by means of Kondrashov-Ghil and
Lomb-Scargle algorithms is relatively high due to the
appearance of spurious, intermittent peaks which occur
in the reconstructed time series where the gaps used to
be (Figs.7 and8). Analogically to thewinter gapsce-
nario one example of thesummer gapscenario was gen-
erated in order to verify if these peaks appear and if they
are negatively directed towards the original data. Fig-
ure 19 depicts both cases and it could easily be seen
that in the case ofwinter gapscenario Kondrashov-Ghil
and Lomb-Scargle will overestimate reconstructed val-
ues (Fig.2) whereas insummer gapscenario they will
underestimate them. The systematic presence and du-
ration of data gaps in the input time series strongly in-
fluence the performance of these two algorithms (hor-
izontal MAE isolines). However, the relative contribu-
tions of data gap percentages and noise levels in the total
MAE and probabilityp values are more balanced (diag-
onal pattern, Figs.7d and8d) in the case of smoothing
spline algorithm. The latter approach is unquestionably
the most appropriate method for gap-filling and smooth-
ing of datasets withwinter and summer gappatterns,
as it does not introduce spurious, intermittent features.
Also the autocorrelation of residuals derived from the
fitted model is weaker (Fig.22).

– In thecontinuous gapscenario, the distribution of MAE
depends more on the size of the gap than on the level
of noise (Figs.9 and10). The smoothing spline method
gives extremely odd results (Figs.9d and10d) because
it fits a polynomial function only to the few existing data
points at both ends of a large gap. Thus even averaging
the results over 10 experiments does not yield stable re-
sults or a smooth contour plot. In this case, the best
fit of reconstructed series to the original dataset is ob-
tained by the Kondrashov-Ghil algorithm (Figs.9c and
10c). However, the autocorrelation of residuals for this
method is relatively significant (Fig.22).

4.2 Numerical experiments with actual time series

Time series acquired directly from an instrument or retrieved
from observational data automatically include the noise in-
herent to the instrument and retrieval methods, so no addi-
tional noise was added in these experiments. Similarly, since
FAPAR time series naturally contain gaps, no further manip-
ulation of these series took place (neither noise nor data gaps
were introduced), and the goal was to compare the methods
described above when applied to the same time series. The
computation of the MAE and MBE values had to be modi-
fied, though, to include only those points for which data were
available initially. New values can be generated by the algo-
rithms within the gaps, but one must assume that the accuracy

Fig. 11.Average values and standard deviations for MAE and MBE
acquired during the experiment with FAPAR dataset. See text for
details.

of the latter is similar to that during the times when data are
available.

In the case of the atmospheric CO2, sun spots and Dow
Jones time series, the original records were complete so the
modifications included only the artificial introduction of ran-
dom, uniformly distributed gaps, and the MAE and MBE
were computed as done previously with artificial time series.

In evaluating these experiments, it is important to note that
we have compared the four gap-filling algorithms as such,
without any manual adjustment. It may be feasible to “tune”
each method to yield better results by tweaking individual
parameters, but the results would then depend on each par-
ticular record and on the amount of time and energy spent in
tuning. Our aim is to evaluate the performance of generally
applicable methods that could be applied automatically to a
large number of time series, without any human intervention.

4.2.1 Results from the SeaWiFS FAPAR time series
experiment

The outcome of the experiment with FAPAR time series at
monthly and decadal time resolutions is presented in Fig.11.
The patchiness of FAPAR datasets reflects the combination
of gap patterns previously tested in the experiment with arti-
ficial time series. Missing values originate mainly from the
temporary appearance of clouds or snow, though some are
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Fig. 12. Example of reconstruction of a FAPAR time series using
the indicated methods. The dataset was derived from the SeaW-
iFS sensor as a decadal mean of FAPAR for a single pixel located
around East Saltoun, UK (55.9◦N, 2.9◦W). Neither artificial gaps
nor noise were introduced in this case, because the original time
series contains these distortions. Some of the approaches generate
spurious peaks in the winter due to lack of constraint. See text for
details.

related to the lack of solar illumination at high latitudes dur-
ing the winter period (Fig.12).

The reconstruction based on the Lomb-Scargle algorithm
generates the highest MAE values because of the presence of
aperiodic components in the original signals. These phase-
and amplitude-modulated oscillations derive from natural
and human-induced constrains such as the variability of in-
coming solar irradiance at the surface, a time-evolving sup-
ply of water and nutrients in the soil, the strong dependency
of biochemical growth and development processes on ambi-
ent temperatures, agricultural practices, etc. (e.g.,Verstraete
et al. (2008)). The Kondrashov and Ghil method turns out
to be more accurate than both Lomb-Scargle algorithms, but
the best fit to the original data is produced by the smoothing
spline algorithm. As opposed to other techniques it provides
unbiased results with extremely small MBE values. While
data availability at higher frequencies may generally improve
the ability of a spectral method to reconstruct the signal, us-
ing temporally-averaged values tend to decrease the noise
level. This can be seen in Fig.11, which shows that recon-
struction results based on monthly data tend to be marginally
better than those based on decadal data, without altering the
ranking of the methods. It may also be easier to fit a smaller
set of points (fewer constraints), especially for the smoothing
spline method, where number of nodes is a crucial variable.

Fig. 13. Example of the reconstruction of sun spots time series
using the indicated methods. The proportion of missing points is
equal to(a) 1 % and(b) 50 %, no noise was introduced. See text for
details.

Fig. 14.Distribution of MAE and MBE values as a function of data
gaps quantity, acquired during the experiment with sun spots time
series. See text for details.
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Fig. 15. Example of the reconstruction of the CO2 record, expressed in ppm, from Mauna Loa station acquired by means of the indicated
methods. The data fragment in the rectangle has been enlarged on the right. The fraction of missing points is equal to(a) 10 % and(b) 20 %,
no noise was introduced. See text for details.

tion of the original time series into a superposition of trigono-
metric functions, each associated with a certain “strength”,
quantified by the corresponding power in the periodogram or
power spectrum. Assuming frequencies with limited power
represent less relevant fluctuations, the bulk of the original
signal can be reconstructed by summing only those compo-
nents that have a sufficient power in the periodogram.Hocke
and K̈ampfer(2009) proposed the use of the Hamming win-
dow to enhance the retrieval of the spectral information in the
time series, though the authors and our tests showed that the
performance of the approach degrades near both ends of the
record. The solution to this problem suggested by Hocke and
Kämpfer involves modifying the spectral window and using
only the middle part of the reconstructed data segment. This
may not be satisfactory if most or all of the data record is
required, but our investigation showed that this side effect
can be largely controlled by using the Kaiser-Bessel window
instead.

The strength of the Lomb-Scargle algorithm is also its
weakness: it is particularly appropriate to process strongly
periodic signals, but appears to be less apt than other methods

to deal with aperiodic time series. In fact, the experiments
with artificial time series described above showed that Lomb-
Scargle algorithm, together with the Kaiser-Bessel window,
is fully capable of regenerating credible values to fill gaps
when the underlying function is periodic and the distribution
of missing values is random. Aperiodic components in the
signal or a distribution of gaps that interferes with the base
frequencies of the signal are likely to cause less reliable re-
sults, up to the point of generating spurious, intermittent fluc-
tuations in the reconstructed signal that were never present in
the original data (e.g., in the “winter gap” and “summer gap”
scenarios). This approach is also sensitive to the presence
of a strong trend in the original data (as in the Mauna Loa
CO2 time series), which boosts the power spectrum at low
frequencies and may therefore mask other frequencies that
would be significant in the absence of that feature. This case
is best handled by removing the trend from the signal first,
processing the residuals, and then adding the trend back to
the results.

On the positive side, it must be recalled that the capability
of detecting significant frequencies in arbitrary time series is
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Fig. 15. Example of the reconstruction of the CO2 record, expressed in ppm, from Mauna Loa station acquired by means of the indicated
methods. The data fragment in the rectangle has been enlarged on the right. The fraction of missing points is equal to(a) 10 % and(b) 20 %,
no noise was introduced. See text for details.

4.2.2 Results from the Sunspots time series experiment

The results of reconstructing the historical record of monthly
sunspot numbers for the period 1900–2009 where some 50 %
of the data have been artificially removed can be seen in
Fig. 13. Clearly, all methods do a fair job in detecting and
properly representing the large 11-yr cycle present in this
time series, though the performance of these algorithms is ac-
tually quite variable. The Kondrashov-Ghil and the smooth-
ing spline approaches exhibit similar MAE and MBE over
all experiments, while the Lomb-Scargle algorithm does not
appear to do so well, especially near either end of the record.
However, it should be noted that this latter method smooths
the reconstructed curve (Fig.14) more extensively than the
other techniques, which generates higher MAE values.

4.2.3 Results from the Mauna Loa CO2 time series
experiment

The famous record of monthly concentration of atmospheric
CO2 measured byKeeling et al.(1996) at Mauna Loa since
1958 constitutes another emblematic and very useful time se-
ries to test these algorithms, because it includes a powerful
trend as well as a clear seasonal signal, both of which are
somewhat variable in time. This results in significant power
at very low frequency and smaller peaks to represent the sea-
sonal fluctuations and their variations. The time series for
the period 1958–2008 was artificially manipulated by intro-

Fig. 16.Distribution of MAE and MBE values as a function of data
gaps quantity, acquired during the experiment with the time series
of CO2 record from Mauna Loa station. See text for details.

ducing gaps, as explained earlier, to evaluate the capacity of
the gap-filling methods to reconstruct a reasonable approxi-
mation of the original record.

In their original analysis,Hocke and K̈ampfer(2009) pro-
posed two approaches to select the relevant spectral com-
ponents to use with the Lomb-Scargle algorithm (a fixed
threshold, set as a fraction of the highest peak in the power
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Fig. 17. Example of the reconstruction of Dow Jones time series
acquired by means of the selected methods. The amount of missing
points is equal to 40 %, no noise was introduced. See text for details.

spectrum or a statistical confidence analysis). Both ap-
proaches were tested in this experiment, and it turns out that,
for small proportions of data gaps, the Lomb-Scargle method
coupled with threshold set by statistical confidence was able
to recover the annual cycle of the time series (Fig.15, top
panel). However, when the percentage of data gaps exceeds
10 %, the strength of the annual peak in the power spectrum
decreases enough to become statistically insignificant and the
Lomb-Scargle method only retrieves the main trend (Fig.15,
bottom panel). In both cases, the MAE associated with the
Lomb-Scargle method remains significantly higher than the
MAE for the Kondrashov-Ghil and smoothing spline meth-
ods, which perform almost equally well (Fig.16).

In truth,Hocke and K̈ampfer(2009) do recommend to re-
move any trend before applying the Lomb-Scargle approach,
to process the residuals and then to add the trend back to
the processed data. We have not implemented such a pre-
processing step (which might be implemented in a variety of
ways) in this exercise because it could introduce a variable
and somewhat arbitrary bias in the comparison of gap-filling
and smoothing algorithms.

4.2.4 Dow Jones index

The last test involves the long record of weekly values of the
Dow Jones Index (DJI) for the period 1981 to 2009. This
time series is very irregular due to the wide range of eco-
nomical factors affecting this index. DJI is definitely not a
periodic time series, so that the Lomb-Scargle method is not
expected to be appropriate: In fact, it does capture the broad
features, but not the smaller scale and somewhat arbitrary
fluctuations. Figure17 shows to what extent the four meth-
ods are capable to represent the overall time series.

The Kondrashov-Ghil method can account for such an un-
usual signal, though its performance depends strongly on the
length of the window. If this parameter is large compared to
the entire record, say 468 data points (equivalent to 9 years),
the reconstruction is rather smooth but the MAE remains rel-

Fig. 18.Distribution of MAE and MBE values as a function of data
gaps, acquired during the experiment with the time series of Dow
Jones index. The SSA window size is 468 points (bottom panel)
and 52 points (top panel).

atively high (see Fig.18a). A shorter window, for instance of
52 data points (1 yr), yields results similar to the smoothing
spline approach (Fig.18b). As explained earlier, the length
of the window controls the degree of smoothing of this al-
gorithm and choosing the most appropriate value depends on
the nature of the problem at hand (Golyandina et al., 2001). If
the typical main periodicities were known or at least expected
in previous experiments (e.g., an annual cycle), no such in-
formation can be assumed in this case. The choice of a win-
dow length is thus somewhat more arbitrary, and although
this parameter can be optimized during the cross validation
(CV) procedure, that step is computationally demanding and
time consuming for such long time series (more than 1500
points). If the window length parameter is specified explic-
itly instead, that fact and the chosen value should be notified
explicitly since it does significantly affect the results of the
reconstruction.

5 Discussion

Gap-filling and smoothing unevenly sampled and noisy time
series is a common and necessary process, especially in the
analysis of geophysical signals. Various approaches to this
problem have been proposed, but the choice of the most ap-
propriate method for a particular dataset is non trivial. In
this paper, three gap-filling techniques (one of them in two
variants) were evaluated on the basis of experiments with
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Fig. 19. Examples of reconstructions of an aperiodic time se-
ries with winter and summer gaps acquired by means of the indi-
cated methods, to show the spurious peaks generated by the Kon-
drashov and Ghill as well as the Lomb-Scargle algorithms, but not
the smoothing spline method.

artificial time series as well as measurement datasets. The
strengths and limitations of these methods have been ex-
plored and are summarized below.

First and foremost, it must be realized that tests performed
cannot fully represent the range and diversity of goals in
any particular analysis. As mentioned earlier, a gap fill-
ing and smoothing algorithm that would exactly match each
and every available data point would yield a null MAE but
would also generate rather unrealistic and unusable values
anywhere else. Thus, if one desires a smooth approximation
to the original data, one must also accept larger values of the
goodness of fit criteria.

All methods discussed above include a mechanism to ad-
just the degree of smoothness, be it the window length in
the case of Kondrashov-Ghil, the threshold used to select the
power spectrum peaks to be retained in the Lomb-Scargle ap-
proach, or the stiffness parameter of the smoothing spline.
Objective algorithms have been proposed in each case to
establish an “optimal” value of this parameter, though this
step only formalizes a particular way of expressing the ulti-
mate goal. The results presented in this paper thus highlight
some of the strengths and weaknesses of these approaches in
particular conditions, but cannot substitute a personal judg-
ment that will also often involve other criteria, for instance

Fig. 20. Example of a reconstruction of a sine time series with ran-
dom gaps acquired by means of the indicated methods. The amount
of missing points is equal to 50 % and noise level is equal to 50 %.
See text for details.

Fig. 21. Example of a reconstruction of a time series composed
of superposition of trigonometric functions with a prolonged gap
acquired by means of the indicated methods. The amount of missing
points is equal to 20 % and noise level is equal to 30 %. See text for
details.

the need to extrapolate the time series outside the range of
available values or the need to achieve a minimum degree of
smoothness in the reconstruction.

5.1 Lomb-Scargle

The Lomb-Scargle technique permits the estimation of the
periodogram of a time series where the data points do not
need to be equally spread in time. This is an extension of the
classical Fourier approach, it leads to the natural decomposi-
tion of the original time series into a superposition of trigono-
metric functions, each associated with a certain “strength”,
quantified by the corresponding power in the periodogram or
power spectrum. Assuming frequencies with limited power
represent less relevant fluctuations, the bulk of the original
signal can be reconstructed by summing only those compo-
nents that have a sufficient power in the periodogram.Hocke
and K̈ampfer(2009) proposed the use of the Hamming win-
dow to enhance the retrieval of the spectral information in the
time series, though the authors and our tests showed that the
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Fig. 22. Average autocorrelations of residuals between original and reconstructed time series derived from an extensive set of the artificial
time series. Shaded areas indicate the 5 % confidence level that reported autocorrelations are not statistically significant. See text for details.

performance of the approach degrades near both ends of the
record. The solution to this problem suggested by Hocke and
Kämpfer involves modifying the spectral window and using
only the middle part of the reconstructed data segment. This
may not be satisfactory if most or all of the data record is
required, but our investigation showed that this side effect
can be largely controlled by using the Kaiser-Bessel window
instead.

The strength of the Lomb-Scargle algorithm is also its
weakness: it is particularly appropriate to process strongly
periodic signals, but appears to be less apt than other methods
to deal with aperiodic time series. In fact, the experiments
with artificial time series described above showed that Lomb-
Scargle algorithm, together with the Kaiser-Bessel window,
is fully capable of regenerating credible values to fill gaps
when the underlying function is periodic and the distribution
of missing values is random. Aperiodic components in the
signal or a distribution of gaps that interferes with the base

frequencies of the signal are likely to cause less reliable re-
sults, up to the point of generating spurious, intermittent fluc-
tuations in the reconstructed signal that were never present in
the original data (e.g., in the “winter gap” and “summer gap”
scenarios). This approach is also sensitive to the presence
of a strong trend in the original data (as in the Mauna Loa
CO2 time series), which boosts the power spectrum at low
frequencies and may therefore mask other frequencies that
would be significant in the absence of that feature. This case
is best handled by removing the trend from the signal first,
processing the residuals, and then adding the trend back to
the results.

On the positive side, it must be recalled that the capability
of detecting significant frequencies in arbitrary time series is
a very powerful tool, especially to project likely values of the
record in the future.

Atmos. Chem. Phys., 11, 7905–7923, 2011 www.atmos-chem-phys.net/11/7905/2011/



J. P. Musial et al.: Gap-filling and smoothing time series 7921

Fig. 23. The computational cost of selected methods expressed as
CPU time in seconds as a function of time series length. Two imple-
mentations of the Kondrashov and Ghil method were tested: with
and without the cross-validation procedure to optimize number of
leading EOFs. It should be noted that for this method, values re-
ported covary with different parameters such as: window length,
number of leading EOF to be concerned, convergence test, number
of runs required to optimize leading EOF (in the example presented
this value was set to 10 runs), and a programming language. Nev-
ertheless, overall relationship in computational cost should remain
similar. The test was performed on a Compaq nx7400 with Intel
Centrino Duo 2.00 GHz computer.

5.2 Kondrashov and Ghil

TheKondrashov and Ghil(2006) method, based on the Sin-
gular Spectrum Analysis (Golyandina et al., 2001), is a pow-
erful and effective approach to fill gaps and smooth a uni-
variate time series. Of all approaches tested here, this one
generated the smallest MAE values in experiments with arti-
ficial time series involving either randomly distributed gaps
or a long continuous period of missing data (Fig.1). How-
ever, when the distribution of these missing data followed a
seasonal patter (e.g., the “winter gap” scenario), it generated
spurious, intermittent peaks in the reconstructed data record
as did the Lomb-Scargle approach (see Fig.19). As noted
above, the simulated values remain reliable during those pe-
riods where a majority of the measurements are not miss-
ing, but neither the Kondrashov-Ghil nor the Lomb-Scargle
approach can be recommended for approximating the recon-
struction of the systematic seasonal gaps.

Experiments with real time series also demonstrated that
the Kondrashov-Ghil approach is very flexible and effective
in a wide range of applications. It handles datasets with
strong linear trends as well as aperiodic components. This is
not surprising, since decomposing a time series into a trend,
a set of periodic components and other signals constitutes a
primary objective of this approach. In principle, this tech-
nique should help suggest probable causes or explanatory
factors for the observed variations and, as was the case for
the Lomb-Scargle algorithm, the capacity to “learn” the pri-
mary modes of fluctuations from past records should provide
some skill in predicting future values.

In general, the Kondrashov-Ghil method generated MAE
values similar to slightly higher than those for the smooth-

ing spline method in the various tests on actual time series.
The statistics of the quality fit criteria from the artificial time
series experiments revealed that this method is particularly
suitable for reconstruction of long, continuous gaps. The
main drawback of this method is its complexity and espe-
cially the large computational requirements (Fig.23), which
may quickly become prohibitive when processing very long
or very many time series (Wang and Liang, 2008).

5.3 Smoothing spline

The smoothing spline algorithm delivers a piecewise cubic
approximation of the noisy, unevenly sampled time series.
The shape of the reconstructed spline depends on a smooth-
ing parameter, optimized through the General Cross Valida-
tion (GCV) procedure.

Experiments with artificial datasets demonstrated that this
method provides accurate reconstructions, comparable to the
Kondrashov-Ghil algorithm, for all types of data in the ran-
dom gap scenario. It performs much better than the latter
or the Lomb-Scargle method in the winter gap scenario, pre-
cisely because it does not exploit any spectral information
and thus does not introduce spurious peaks in the recon-
structed time series. Moreover, for both gap scenarios men-
tioned the autocorrelation of residuals is weak for the fitted
spline function. On the other hand, the smoothing spline al-
gorithm is not able to accurately reconstruct reasonable miss-
ing values during long, continuous periods.

The smoothing spline method generated some of the
smallest values of MAE in experiments involving real time
series, even producing marginally better results than the Kon-
drashov and Ghil technique, and even for very small propor-
tions of missing values (e.g., 1 %). As noted above, the main
limitation of the smoothing spline gap filling algorithm is its
inability to generate reasonable values when the missing val-
ues are clustered in one single long period. These results
are quite understandable, since the smoothing spline method
is essentially a “local” approximation, which takes advantage
of neighboring observations to generate an estimate, but does
not have any mechanism to “learn” the general properties of
the whole time series and therefore guess adequate values in
the absence of these neighbors. For the same reason, that
method should have little or no predictive skill.

6 Conclusions

Four methods were evaluated in terms of their performance
to fill gaps and filter noise in time series: two versions
of the Lomb-Scargle algorithm, with different windowing
schemes, the Kondrashov-Ghil approach and the smoothing
spline method. The Mean Absolute Error (MAE), Mean Bias
Error (MBE), chi-squared test and autocorrelation function
were chosen as the goodness of fit criteria. The various tests
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conducted showed that each method has its strengths and
weaknesses.

The Lomb-Scargle approach, which is an extension of the
classical Fourier analysis to the case where the observations
or measurements in the original time series can occur at arbi-
trary times, works well as long as the underlying signal can
be considered as a sum of periodic components. It there-
fore shares the same powerful theoretical basis as the classi-
cal spectral methods. However, when aperiodic fluctuations
are introduced, additional frequencies should be called upon
in the power spectrum, though the associated power may be
too small to be statistically significant. Limiting the recon-
struction to those frequencies associated with a statistically
significant power then leads to a limited capacity to fit the
original series. This method is of course particularly sensi-
tive to the systematic removal of data points at specific fre-
quencies (e.g., winter and summer gaps), in which case it can
generate spurious values, though the values in other seasons
remain credible. If a strong trend is present in the original
data, it should be removed before starting the analysis proper.
Lastly, it has been shown that the Kaiser-Bessel window ap-
pears to yield better results than the Hamming window, es-
pecially near either end of the reconstructed record.

The Kondrashov-Ghil method proved reliable and accu-
rate in reconstructing a wide range of time series. As for
the Lomb-Scargle method, it is not able to reconstruct peri-
odically missing fragments of the dataset, producing false,
intermittent peaks in these systematic gaps. In all other ex-
periments, it performed well, especially in the case of long,
continuous gap in the time series. From the analytical point
of view SSA (Singular Spectrum Analysis), the core of the
Kondrashov-Ghil algorithm, benefits from a strong theoreti-
cal foundation and provides a wide range of tools to process
time series. This method is thus valuable to estimate miss-
ing values and smooth time series, but also to investigate the
nature of underlying physical processes controlling this time
series. The main drawback of this approach is its consider-
able computational cost, especially for very long or numer-
ous time series, when it can quickly become prohibitive.

The smoothing spline gap filling method provided gener-
ally satisfying results, especially when the values of neigh-
boring data points provide sufficient information for a lo-
cal solution to guess the missing values (random or seasonal
gaps). The dataset reconstruction results were accurate for
most experiments with real and synthetic time series. The
main limitation of this method is associated with continuous
data gap scenario, where the algorithm is not able to utilize
the spectral information retrieved from whole time series to
fill a prolonged data gap. On the other hand, the computa-
tional cost of this approach is very limited, which is a definite
advantage in operational environments.

The choice of a particular approach to estimate the values
of missing observations in a time series thus depends very
much on the underlying nature of the signal, on the type and
distribution of the data gaps, and on the expectations of the

investigator in terms of staying close to the existing data (low
MAE) or requiring a smoother representation of the broad
features of the time series.

Supplement related to this article is available online at:
http://www.atmos-chem-phys.net/11/7905/2011/
acp-11-7905-2011-supplement.pdf.

Acknowledgements.The authors thank K. Hocke and S. Wunderle,
both at the University of Bern, Switzerland, for useful comments
on an earlier draft of this manuscript, as well as the journal Editor
and the Reviewers who provided very constructive remarks. The
first author gratefully acknowledges the Joint Research Centre of
the European Commission for financial support during an extended
visit (October 2009 to September 2010). Some of the figures in an
enhanced resolution are provided in the supplement.

Edited by: A. J. G. Baumgaertner

References

Box, G. E. P. and Jenkins, G. M.: Time Series Analysis Forecasting
and Control, Holden-Day, Oakland California, 1976.

Broomhead, D. S. and King, G. P.: Extracting qualitative dynamics
from experimental data, Phys. D, 20, 217–236, 1986.

Broomhead, D. S., Jones, R., and King, G. P.: Topological dimen-
sion and local coordinates from time series data, J. Phys. A, 20,
563–569, 1987.

Craven, P. and Wahba, G.: Smoothing noisy data with spline func-
tions estimating the correct degree of smoothing by the method
of generalized cross validation, Numerische Mathematik, 31,
377–403, 1979.

Fourier, J.: Theorie Analytique de la Chaleur, Firmin Didot (reis-
sued by Cambridge University Press, 2009; ISBN 978-1-108-
00180-9), 1822.

Ghil, M. Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D.,
Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi,
F., and Yiou, P.: Advanced Spectral Methods for Climatic Time
Series, Rev. Geophys., 40, 1–41, 2002.

Gobron, N., Pinty, B., Aussedat, O., Chen, J. M., Cohen, W.
B., Fensholt, R., Gond, V., Lavergne, T., Mélin, F., Priv-
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