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Abstract. Geophysical time series often feature missing datameteorology, hydrology, or the exploitation of remote sens-
or data acquired at irregular times. Procedures are neededg data. A time series is a finite, ordered set of couples of
to either resample these series at systematic time intervalsumerical expressionss;, x;);i =0,1,...,n}, one providing

or to generate reasonable estimates at specified times in oa time reference and the other corresponding to the value of
der to meet specific user requirements or to facilitate sub-a measurement or observation acquired at that time. For con-
sequent analyses. Interpolation methods have long beeciseness, the sequenge} is often referred to as being the
used to address this problem, taking into account the factime series. Records collected by analog instruments typi-
that available measurements also include errors of measur&ally yield continuous time series, but most frequently these
ment or uncertainties. This paper inspects some of the curseries exist as finite sets of discrete records, either because
rently used approaches to fill gaps and smooth time seriethey have been acquired in this way or because a continuous
(smoothing splines, Singular Spectrum Analysis and Lomb-record has been digitized at a given temporal resolution. This
Scargle) by comparing their performance in either recon-paper only considers discrete time series.

structing the original record or in minimizing the Mean Ab- Analyzing time series is simplified when the temporal
solute Error (MAE), Mean Bias Error (MBE), chi-squared sampling occurs at equally spaced time steps, and a host of
test statistics and autocorrelation of residuals between the Unechniques have been developed for complete and regular se-
derlying model and the available data, using both artificially- rjes  Researchers may also want to analyze related but in-
generated series or well-known publicly available records-dependently acquired time series, and thus need to resample
Some methods make no assumption on the type of variabilityphem on a common timeline, e.gdahecha2010. Yet, ac-

in the data while others hypothesize the presence of at leasf,5| time series turmn out to be incomplete or unsuitable for
some dominant frequencies. It will be seen that each methodangard analyses, either because some of the records may be
exhibits advantages and drawbacks, and that the choice of aissing (e.g., due to instrument failure or inadequate observ-
approach largely depends on the properties of the underlying,y conditions), or because the records were originally ac-
time series and the objective of the research. quired at unevenly distributed times. In addition, one might
be interested in determining the likely value of the variable
of interest at a time that may not coincide with a particular
measurement or observation. For these reasons, it is useful to
be able to generate reasonable estimates of the values of the

Time series analysis finds applications in a wide range of dis_variable of interest for arbitrary time references, including to

ciplines, from science to engineering and from marketing toreplace missing values.

econometrics; it naturally plays a critical role in geophysics, Multiple processes may simultaneously influence the val-
uesx; recorded in the time series, although not all of them
may be of interest. In many (but not all) practical cases,

Correspondence tal. P. Musial the broad, slow variations that offer some degree of pre-
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often appear as random, unpredictable events of lesser consealues in the time series and therefore tend to underestimate
quence, such as uncertainties in the measurements. By andhe “true” values, on average.

ogy with such fields as acoustics and radar, the interesting Another simple approach consists in fitting the Lagrange
variations in the time series are called the “signal” and allform of the interpolation polynomial through every record in
other variations are referred to as “noise”. It is clear that thea time series. For each data valgethis process involves
presence of noise can interfere with the goal of accuratelydefinition of a basis polynomial function which matches that
filling the gaps in a time series. point at giverr; and itis equal to O for all remaining All ba-

The standard approach to estimate the values of the varisis functions are then summed into a final form of the polyno-
able of interest at arbitrary times, to separate the signal frommial that provides a unique, smooth, differentiable solution
the noise or to understand past or forecast future values of theverywhere. However, when the number of points in the time
series, calls for the determination of a mathematical modekeries increases, so does the order of the polynomial, which
that captures the essential (physical or statistical) propertiestarts fluctuating wildly, not only between the observations
of the system. Although each of these three issues mighbut also outside the range of the time series, thereby making
be addressed separately, using different tools, it is apparerit inappropriate for most applications, including forecasting.
that the determination of an optimal underlying model shouldIn this case, the interpolated values may not be realistic and
prove beneficial to address all these issues in a systematic araduld take arbitrarily large values.
coherent manner. In both of these approaches, the interpolation problem has

The work described below has been motivated by inter-a solution and it is unique, but severe undesirable side ef-
est in describing the phenology of terrestrial vegetation oveifects limit or void its applicability. These simple underlying
wide areas, using satellite remote sensing measurements models (piece-wise linear functions or Lagrange polynomi-
the solar spectral region as the main source of informationals) force the solution to match exactly each original record,
Nowadays, such global data sets have been accumulatethich might excessively constrain the problem, especially
daily or weekly for periods of up to one or more decades.given that original measurements or observations always in-
The accuracy of these measurements has improved in timeglude some level of uncertainty (e.g., due to the finite preci-
thanks to technological advances, nevertheless geophysic&ion and accuracy of the instruments, calibration limitations,
processes such as the ubiquitous cloud cover or the limitedhuman errors, etc.).
availability of solar radiation at high latitudes in winter sea- A natural response to this issue is to relax the requirement
sons still result in a significant patchiness in the records. ~ on the model to match existing records and only insist that it

Various researchers have addressed aspects of these quékes on values that are “reasonably close” to these records
tions (see, e.gMoffat et al, 2007, but recent advances in Whenever they are available, and to use a relatively smooth
the treatment of irregular time series (see, epcke and ~ Model formulation to catch the bulk of the variability of the
Kampfer 2009 Kondrashov and Ghil200§ suggested to time series. In the context of polynomials, this means using
conduct an evaluation of some of the methods recently publow-order functions. This approach clearly requires defining
lished or updated before pursuing a particular approach an@ measure of “goodness of fit” and a criterion to decide how
investing considerable resources in the processing of larg€lose is “close enough”. Also, since it might be unrealistic to
satellite databases. The purpose of this paper is thus to con@lobally fit a long time series exhibiting arbitrary fluctuations
pare the performance of a few published modern methodavith a single smooth function, the interpolation may be per-
to deal with the presence of gaps and noise in satellite datformed on a local basis. Cubic splines have been developed
records and to report on such findings, which might be ofand used in this context; their performance will be evaluated

interest to a wider scientific audience. below.
An advantage of the methods discussed so far is that they

make no assumptions about the underlying nature of the pro-

2 Outline of published approaches cesses responsible for the variability exhibited in the time
series. As a result, they can be applied to series of arbitrary
2.1 Choosing an approach complexity and work equally well if these underlying pro-

cesses themselves change in time. The price to pay for this
Estimating the likely values of a time series at arbitrary times,flexibility is that these approaches do not “learn” from the
for instance to replace missing data, is a particular case oévailable records what might be the nature and properties of
the general problem of interpolation. The simplest approactthe processes responsible for the variations and thus exhibit
might be to fit piece-wise linear functions between succesHittle or no inherent forecasting skill.
sive values of the time series. However, this method yields An entirely different approach to this problem then con-
a very jagged series that may be continuous but not differsists in assuming that each of the relevant underlying pro-
entiable at each point in the original time series. It is alsocesses can be represented by its own model, and that the
unlikely to provide reliable estimates: the values generatecentire time series can be reconstructed by a combination or
in this manner are always strictly bounded by the existingsuperposition of these elementary models. To guarantee the
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uniqueness of the solution, it is generally sufficient to se-and de Hoog1985. Described byReinsch(1967), it is an
lect those constituent models from amongst a set of mutuallyextension ofVhittaker(1923 spline. This method makes no
orthogonal functions.Fourier (1822 appears to be one of assumptions on the underlying causes of the variations or on
the first researchers who developed the solution of a physicahe mathematical structure of the series.
problem (the propagation of heat in a condensed medium) in  The smoothing spline constructs a continuous curve from
the form of a superposition of trigopnometric functions, open- segments of cubic polynomials joined together at knot points
ing the way to what is now known as spectral analysis. Thisin such a way that the first and second derivatives of the re-
method has proven extremely powerful and has been successtllting curve are continuous throughout. This method is ap-
fully applied in many fields of science, but works best to an- plicable to a wide range of datasets because it is both flexible
alyze time series that are clearly combinations of elementaryi.e., it makes few assumptions) and adjustable through a sin-
periodic signals. When the fluctuations are aperiodic, andgle smoothing parameteér which controls the “stiffness” or
especially when they include random or unique events, théflexibility” of the spline curve. For small values of, the
number of frequencies required to represent the time seriespline remains close to the data points, and in the limit case
becomes very large and the approach loses some of its ap-— 0, the function simply interpolates the data. A contrario,
peal. larger values of increase the “stiffness” of the curve and
This drawback can be overcome, however, by selecting thén the limit caser — oo, the spline becomes a linear least
elementary functions from a different set (or base), such asquare fit. This simple method is robust and computationally
Legendre or Tchebicheff polynomials, or even as Empiricalinexpensive, so it is suitable to process large data sets.
Orthogonal Functions (EOFs), which are an extension of the Craven and Wahbél979 proposed an objective method
so-called Principal Component (or Factor) Analysis of the to determine an “optimal” value of the smoothing parameter,
time series. In this latter case, the elementary functions ardased on the minimization of the Generalized Cross Valida-
not explicitly prescribed a priori but are derived directly from tion (GCV) procedure, which is a direct measure of the pre-
the dataset. dictive error of the fitted line. GCV is calculated by removing
Significant progress has been achieved over the laseach data point in turn, and forming a weighted sum of the
decade, so a modern approach in each of these categoriéguare of the discrepancy of each omitted data point from a
will be tested below. The Lomb-Scargle method, specifi-line fitted to all other data pointddtchinson 1998. The
cally designed to retrieve the periodogram of time series acweights are evaluated as the inverse of the standard deviation
quired at unequally distributed instants is a modern appli-applicable at each data point. To ensure reliable results with
cation of the Fourier approach to arbitrary time-dependenthe GCV procedure, the time series should include at least
records. It estimates the power spectrum of the time serie@5 to 30 observations, according Wahba(1990, and the
without requiring the original data to be provided on a reg- noise level should not be highly correlated with the signal
ular time grid or to be complete in any sense of the word.(Hutchinson 1998. In this study, the smoothing parame-
This method has been recently updated and applied to geder was evaluated dynamically using the IMSL (International
physical (or astrophysical) problems Bipcke and Kampfer ~ Mathematics and Statistics Library) routine CSSMOOTH, as
(2009. The Singular Spectrum Analysis (SSA) employed implemented in the IDL (Interactive Data Language) envi-
by Kondrashov and Ghi{2006 is a modern example of an ronment. This routine utilizes the GCV procedure proposed
approach capitalizing on the exploitation of orthogonal func- by Craven and Wahb@l 979 and was used across all exper-
tions (EOFs, in this case) derived from the data themselvegments.

rather than imposing at the outset the form of the base models ) ]
(e.g., trigonometric functions). 2.3 The Singular Spectrum Analysis method

A key comparative advantage of these latter methods iskon drashov and Ghi(2006 proposed an approach to fill

that by “learning” about the underlying processes that con- aps in time series based on the Sinaular Spectrum Analy-
trol the evolution of the system and thus of the time series,g. P . - 9 . y
sis (SSA) technigue originally developed Byoomhead and

these approaches may be quite suitable and efficient to pres-: ) .
dict the future evolution of that system, assuming of cour:sg<Ing (1989 andBroomhead et ak1987. This method in-

. . . corporates elements from a wide range of mathematical fields
that the same underlying processes will continue to play a

S . . Including classical time series analysis, multivariate statistics
similar role in the future. It will be seen that these methods ) .
i ) . and geometry, dynamical systems, as well as signal process-
are computationally much more demanding than the simpler . : o
. : Ing (Golyandina et a).2001). It aims at describing the struc-
approaches mentioned earlier. . . . .
ture of the time series as a sum of simpler, elementary series
describing features such as a trend, various oscillations and
noise. The workflow of the SSA gap-filling and smoothing

algorithm proceeds in four phases:

2.2 The smoothing spline method
The polynomial smoothing spline method provides an attrac

tive way of smoothing noisy data values observed atbi-
trarily located points over a finite time intervaligtchinson
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1. The first phase of the process, called embedding, in-

volves the transformation of a one-dimensional scalar
time serieg(x;};i =1,2,...,n, into a multidimensional
trajectory matrix of lagged vectors = [X3,..., X,/],
wheren’ =n —m + 1 and each lagged vector is defined
asX; = (xj,....xj+m-17; j=1,...,n". Each one of

J. P. Musial et al.: Gap-filling and smoothing time series

the original time series can be described as a superpo-
sition of a trend, some harmonic oscillations and noise,
for instance Golyandina et a).2002).

. In practice, such an ideal situation rarely occurs and the

component time series do not exactly match completely
separate subsets of the eigenvectorX off he last step

these vectors corresponds to a partial view of the orig-
inal time series, seen through a window of length
Choosing the most appropriate value far (1 <m <

n), is a matter of balancing the retrieval of information
on the structure of the underlying time series, which
would require larger values, and the degree of statisti-
cal confidence in the results, which is enhanced by us-
ing shorter but more numerous windows that repeatedly
capture the notable features of the seriéhil et al,
2002. The trajectory matriXX is thus a rectangular
Hankel matrix of the form

of the SSA algorithm, known as “diagonal averaging”,
aims at transforming the matrices, into Hankel ma-
trices, which then become the trajectory matrices of the
underlying time series, in such a way that the original
time series can be reconstructed as a sum of these com-
ponents. The entire procedure aims at defining in some
optimal way what those components are.

The SSA gap filling method can be generalized to pro-
cess spatio-temporal data or to regenerate missing values in
multivariate time series. Here, only univariate time series
were considered. We have implemented the code written

X1 X2 X3 ... Xy in R by Lukas Gudmundsson, available frdwtps://r-forge.
X2 X3 X4 Xpia1 r-project.org/projects/simsalabimand processed the time
X=| x3 xa X5 . X2 (2) series described below using different window lengths and
a variable number of leading EOFs.
Xm Xm+1l Xm42 ... Xp The first step of SSA iterative gap filling algorithm in-

cludes centering the original time series on zero by subtract-
2. The second step consists in the Singular Value De-ing the mean value of all its elements and zeroing the missing
composition (SVD) of the trajectory matriX of size  data values.
m x n’, which is “decomposed” into a product of ma-  The inner loop of the SSA procedure (decomposition,
tricesX = U X VT whereU is a unitary matrix of size  grouping and reconstructing) is performed first on this cen-
m xm, ¥ is a rectangular diagonal matrix of sizex n tered, zero-filled time series. The missing values are replaced
andV is a unitary matrix of size: x n. The elements by computed values of the leading EOF and on this basis the
of ¥, called singular values, are the square roots of thefirst estimate of the first reconstructed component is gener-
eigenvalues of the covariance matfix= XX’ of size ated. At the next iteration, the SSA algorithm is performed
m x m. The rows ofU are the eigenvectors &fX” and again to produce a second estimation of the first component
are often referred to as the left singular vectors or theon the basis of the new time series with missing values. re-
Empirical Orthogonal Functions (EOFs) of the matrix placed by the first estimation of the first leading component.
X. The columns oV T are the eigenvectors & X. If Missing values replaced by the first estimate are now re-
all eigenvalues are distinct, the solution is unique. Fur-placed by the second estimate of the first leading component.
thermore, if the eigenvalues are organized in decreasind he convergence test between current estimation of the first
order of magnitude, then any subset of theigenvec- ~ component and the previous estimate is then carried out. If
tors (or EOFs), k d <m, for which the eigenvalues are this test is positive then the inner loop stops and the first re-
strictly positive provides the best representation of theconstructed component is returned.
matrix X as a sum of matriceX, k=1,...,d (Golyan- In the outer loop the next leading EOF is added to the first
dina et al, 2001). The triplets composed of an eigen- reconstructed component. Then again the inner loop is per-
value and its associated left and right eigenvectors ardormed until the convergence criterion is met and the best
called eigentriples of the trajectory matdx estimate of the second reconstructed component is returned.
The third leading EOF is added in the same way and this
3. The third step involves the partitioning of theseigen-  process is carried out until the outer loop reaches the fixed
triples into p disjoint subgroups and summing them number of analyzed EOFs.
within each group, such that = Z’l’x,,, where, ide- Two main parameters are necessary to implement the SSA
ally, the matricesX,, also have the structure of a Han- gap filling algorithm: window lengtt: and maximum num-
kel matrix and thus correspond to the trajectory matri- ber of leading EOFg, which create the-th reconstructed
ces of the hypothesized simpler series that combine t&component. The optimum combination of these parameters
make the original time series. If these component seriesan be obtained by the cross-validation procedure, in which a
can each be described by distinct subsets of eigentripledjxed amount of available data is removed, then the SSA algo-
they are said to be separable by the SVD. In this caserithm is performed and the RMSE (Root Mean Square Error)

Atmos. Chem. Phys., 11, 7906323 2011 www.atmos-chem-phys.net/11/7905/2011/
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between original dataset and each of the reconstructed com- The optimal value of this shape parameter is obtained iter-
ponents is calculated. This experiment is repeated severadtively by calculating the RMSE for each smoothed and gap
times with the same set of parameters to obtain mean valuefilled time series against the original one and selecting the pa-
of RMSE over all experiments. Then the entire procedurerameter value corresponding to the smallest RMSE. For the
is repeated with the same number of leading EOFs, but withpurpose of this analysis, we have converted Hocke’'s 2007
different values of the window lengtiK¢ndrashov and Ghil  MatLab code (available as on-line supplement frattp:
2006. The values of parametens andn corresponding to  //www.atmos-chem-phys.org/9/issuel2.Httalthe IDL lan-
the case with the smallest RMSE among all cross-validatiorguage. According toHocke and Kampfer 2009, this ap-
experiments is deemed optimal for the purpose of regeneratproach should be suitable to process either periodic or non-
ing missing data. periodic time series.

The SSA gap filling algorithm is suitable for reconstruct-
ing time series with highly anharmonic oscillation shapes
(Vautard et al.1992 or nonlinear trendsGhil et al, 2003. 3 Methodology
It can be economical in the sense that a small number of SS%
eigenmodes may be sufficient to reconstruct the original time

series. Thisis an ad_vantage over tradit_ional s_pectra_l methodg, important methodological issue that requires careful at-
based on the classical Fourier analysis, which typically re-aniion is the selection of a measure of sgoodness of fit" be-

quire many trigonometric functions with different phase and yeen the models and the data (time series), and of a criteria

amplitudes to provide a credible result. On the other hand, judge when this measure is “good enough” for the stated

the high computational requirements of the SSA gap-filling purpose.

algo_rithm may be a drawbgck in operational ap_pli_cat_ions in- The root mean square error (RMSE, or deviation RMSD)

volving large numbers of time series. Other limitations of ), {raditionally been used in this context because it enjoys

this method have been reported when the gaps in time serigge||_understood and desirable statistical properties. This

are long and continuouggndrashov and Ghik008§. measure is defined as the square root of the mean square er-
ror, or the square root of the sum of the squares of the differ-
ences between the model predicted valyes y(z;) and the

d observations; = x(;) recorded in the time series:

.1 Choosing a quality fit criterion

2.4 The Lomb-Scargle method

Hocke and Kampfer(2009 used the Lomb-Scargle metho
to compute the periodogram of unevenly sampled time se- n 1/2

ries and reconstructed the missing values in an astrophysicgMSE= |:} Z(yi _xi)Z} 2)
series from the amplitude and phase information of the dom- ni=

inant frequencies.

In practice, the first two steps of this procedure involve re-Wheren is the number of points in the time series. The square

moving the mean value of original time series from each in_of the deviations between the model and the records prevents

dividual observation and applying a Hamming window to en- €™ " of different signs to compensate each other, and en-
hance spectral information. The Lomb-Scargle periodogranﬂances the role of large deviations compared to smaller ones.

is then calculated, yielding a result equivalent to a linear owever,Willmott and MatsuurdZ0.0E) have argut_ad t.hat the
least-squares fit of sine and cosine model functions to thé\/lean Apsolute Ef“’r (MAE) provides a better |nd|c§tor of
observed time seriet ¢mb, 1976 Press et al.1992 Hocke the qugllty of.the fit or the performancg of the model |.n rep-
and Kampfer 2009. resenting a given data set. MAE is defined as follows:
Once the periodogram has been retrieved, the signal is re- 1
constructed by considering only its most significant compo-MAE = |:— Z'yi —xi|:| 3)
nents, i.e., those associated with a power larger than a given =
threshold. The latter can be estimated either on the basis of a g statistics measure the difference between modeled
confidence level analysis or simply set to a fixed fraction of 65 and the corresponding observations, assuming the lat-
the largest peak in the periodogram. The reverse Hammingg, 4re reliable, with larger values indicative of a worst fit;
window procedure is applied and the final result is of coursey, ey, iffer in the emphasis they give to particular situations:
a continuous and complete series, which can be resampled gfy1sg penalizes large individual differences while MAE fo-
any desired frequency. _ cuses on the mean overall performance. More importantly,
While the Hamming window procedure improves the per- pise yalues are not representative of mean or typical errors
formance of the algorithm in the bulk of the time series, it only: they range between MAE and/2 x MAE, increase

also results in poorer results near either end of the series thaﬁon-monotonically with MAE and vary with the square root
away from these borders. This can be remedied, however, by (Willmott and Matsuura2005. MAE will thus be used
applying a Kaiser-Bessel window insteddaris 1978, as i, this evaluation.

it features an adaptable shape parameter.

www.atmos-chem-phys.net/11/7905/2011/ Atmos. Chem. Phys., 11, 79952011
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Another criteria that characterizes the fit of a model to ob-that typically high-frequency random variations considered
servations is the mean bias error (MBE) or mean error (ME).as noise are filtered out while low-frequency changes are left
It assess on average if the model tends to overestimate amaffected. In the case of spectral methods, this is most eas-
underestimate reconstructed values. It is defined as a medly implemented by decomposing the original series in terms

value of residuals: of a power spectrum and reconstructing the signal using all

" frequencies lower than some given threshold. The sensitivity

MBE = [E Zyl' —x,} (4)  of the methods to the presence of noise will be documented
ni= in the tests below.

The chi-square test as opposed to MAE and MBE is a catg 3 Designing artificial test cases
egorical score which determines whether the difference in
distributions of observed and predicted values in one orA large set of test cases was constructed to evaluate the per-
more classes are statistically significant. Predicted values arfiormance of the approaches described above when either the
based on particular theoretical distributions which fulfill a number of missing observations or the level of noise in the
null hypothesis. In an univariate case, the categorization otlata increases. The idea of these tests is to generate complete
data can be achieved by computation of a cumulative distritime series representing the “truth”, altering them by impos-
bution function (CDF) or a histogram of values. The min- ing data gaps and adding noise, and then analyzing these
imum frequency (number of elements) in each class shouldnodified series with the methods described earlier to assess
be greater than 5. The chi-square statistic is defined as:  to what extent they are capable of generating reasonable val-
. ) ues to replace the missing ones. Three different “base” sig-

(2= |:Z (fo—fe) ] ®) nals were considered: a single sine wave (&3, Fig. 20),

~ fe a superposition of three sine waves (E), Fig. 21) and an

aperiodic signal (Eq.9), Fig. 19), respectively. They intend

wherec is number of classey, is observed frequency, and tg represent functions resembling typical geophysical signals
fe is expected frequency. The probability leyebssociated of increasing complexity:

with x2 is derived from the theoretical chi-squared distribu-

tion accounting for number of degrees of freedofidefined  x1(r) = 0.5sin(z —n/2) +0.5 )
as:df =c—1. Commonly,p-values lower than 0.05 indicate () — 0.28 i — 77/2) +0.19sin(2¢ — 7/2) + (8)
that dlffer_ences between freq_ue_ncy dls_tr|b_u_t|ons of observed 0.16SiM0.5¢ —7/4)+ 0.6

and predicted values are statistically significant and the null ) .
hypothesis should be rejected. x3(t) = 0.35sint —7/2) +0.15siN20vt —7/2) +0.5 (9)

While comparing the quality of fit between modelled and \\hjje these equations represent continuous time series,

observed. va_llues It '.S recommended to tgst if reS|duaI§ are Cofyq generated discrete base series by sampling these functions
related within certain sampling lags. This can be achieved by <1, away that the argumeraf the sine functions is suc-

means of autocorrelation function defined as: cessively incremented by 10 degrees over a total of 10 full
[Z(z—i (e; —MBE) (i) — MBE)} cycles (simulated years), thus creating time series-6861
r)= L=

S (e —MBE)? (6)  data points. These series were then “degraded” by introduc-
i=13% ing variable amounts of gaps and adding different levels of

wherel is a lag size defined as=0,1,...,Imax ¢; is aresid-  noise as follows.
ual between observations and modelled vakjes y; — x;.

According toBox and Jenking1976 the number of sam-
plesn in a time series should exceed 50 dpgx should not
be larger tham /4. If residualse; are randomly distributed

3.3.1 Gaps

The following three types of gaps (missing data) were con-

thenr (/) is equal to O or it is enclosed within confidence lim- sidered:
its Oi“:/‘%/z, wherez is the quantile function of the standard ~ — Uniformly distributed gaps (Fig20). For each pre-
normal distribution and is the significance level. Serial cor- defined percentage of missing data, a random number
relation in residuals may imply that the fitted model is miss- generato/ was used to iteratively select the location
specified or it fails to reconstruct some periodic fluctuations. of the next data point to be removed from the series:
xm =U[0,1] x n. This situation might arise when the
3.2 Smoothing over noise system of interest is occasionally unobservable, for in-
stance due to the presence of clouds, when analysing
Noise due to errors of measurement or uncertainties will im- satellite data.

pact the ability and effectiveness of a method to reconstruct
values that may be missing from time series. As hinted ear- — Seasonal gaps (Fid9). In this case, the desired per-
lier, the underlying idea is to process the data in such away  centage of missing data was imposed by removing, from
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each cycle in the time series, the required number of
points around the lowest data values. In reality, this case
may occur at high latitude because a lack of solar irra-
diance (or the presence of snow) might systematically
prevent the acquisition of usable observations during the
winter.

Prolonged gaps (Figel). For this scenario, a single
continuous period of missing data was imposed in the
middle of the time series, with a total length set to cor-
respond to the predefined percentage of gaps desired.
This pattern would emerge if the observing instrument
failed to operate correctly for some time, for instance.

The results described below only refer to the performance
of the methods to generate reasonable values in the artifi-
cial data gaps within the period of 10 cycles: no attempt was
made to extrapolate beyond either end of the original series.

3.3.2 Noise

The simulated noisy data valu€ () corresponding to the
time series value(r) were estimated as*(¢) = x(#)[1+

N(0,1)S], whereN (0, 1) represents a normal (Gaussian) dis-
tribution of mean 0.0 and standard deviation 1.0, and where
S is a scaling factor to create different noise levels. In this

process, only those values 80, 1) falling within the range
[—1.0, 1.0] were considered.

3.4 Using actual time series

7911

National Geophysical Data Center (NGDC) of the
US National Oceanic and Atmospheric Administration
(NOAA) (http://lwww.ngdc.noaa.gou/ This series ex-
hibits strong periodicities but also some degree of un-
predictability.

. The record of atmospheric carbon dioxide (£@on-

centration, in parts per million per volume, obtained at
Mauna Loa constitutes probably one of the most em-
blematic time series of our times, as it unequivocally
shows how human consumption of fossil fuels modifies
the composition of our atmosphere. The values used
here were downloaded from the Carbon Dioxide Infor-
mation Analysis Center (CDIAC) at the Oak Ridge Na-
tional Laboratory (ORNL) fittp://cdiac.ornl.goy/ The
main advantage of this series in the current context is
that it exhibits a strong trend (itself somewhat variable
in time) as well as a clear seasonal signal.

. The Dow Jones Index (DJI) is clearly not a geophys-

ical time series, but it offers the distinct advantage of
being a non-periodic signal, with wild fluctuations and
a strong overall trend. The mean weekly values of
DJI were obtained from a public domain sourtetf:
/[finance.yahoo.compfor the period 1981 to 2009.

4 Numerical experiments and results

4.1 Numerical experiments with artificial time series

In addition to these artificial test cases, the approaches willn the artificial time series experiments, the accuracy of the
also be evaluated against a few actual time series, modifiedelected algorithms was estimated by calculating the statis-
by adding gaps as before. The following cases were considtics of the quality fit criteria (MAE, MBEx 2, p-value,r (1))

ered:

www.atmos-chem-phys.net/11/7905/2011/

between series reconstructed by each of the methods de-
] ) ] scribed above and the original smooth dataset (without noise
1. Some 400 time series of the Fraction of Absorbed;ng gaps). Every experiment was repeated 10 times with
Photosynthetically Active Radiation (FAPAR), derived e same set of parameters (data type, gap pattern, levels of
from an analysis of SeaWiFS data, generated as parfsise amount of gaps), but with different seed values for
of the CarboEurope project database, were down+ne pseudorandom number generator, thereby generating 10
loaded from the JRC FAPAR web sitbtlp:/faparjrc.  giterent data sets with the same model parameters and dif-
ec.europa.el/ The SeaWiFS scanner instrument has tgrent noise patterns. The results reported here exhibit the
been in operation since September 1997. Complete datg,qrage of these 10 values, a compromise between available
coverage for large areas requires compositing the daily,ompytational resources and the desire to establish reason-
acquisitions over longer periods, and standard productg,y stable results. This exercise yielded an extensive set of
are typically generated every 10 days or monthly. Thegaiistics computed as a function of five variables: gap-filling
processing steps required for generating these prf)d“cﬁ%ethod, data type, gap pattern, amount of gaps, and noise
are described iGobron et al(200§. These time series |gyg|. As far as chi-squared test is concerned the frequencies
are typical of sequences that may exhibit gaps due tQy 4ata values were derived from the histogram function with
cloudiness or lack of sunlight during the winter. 0.05 bin size. Expected frequencies were obtained from the
somplete and noise-free time series generated according to
Egs. ), (8), (9). The p-values reported correspond to one-

turies, and include the well-known 11 year cycle, al- =* ) all 5 )
though other fluctuations considerably affect the num-t&iled probability of obtaining a value of* or greater with
20 degrees of freedom.

ber of observable spots at anyone time. For the pur-
pose of this study, the monthly number of Sunspots
for the period 1900-2009 were obtained from the

. Sunspots have been observed by astronomers for ce
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Fig. 1. Average values and standard deviations for MAE derived Fig. 3. Average values and standard deviationsférderived from
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Fig. 2. Average values and standard deviations for MBE derivedgig 4 average values and standard deviations faterived from
from an extensive set of the artificial time series. See text for details 5, extensive set of the artificial time series. The dashed line indi-

cates 0.05 probability level. See text for details.

4.1.1 Overall results classified by type of gap

) ) ] ~induce the presence of spurious peaks when reconstructing
Figuresl to 4 summarize the results for all experiments with e time series with the Lomb-Scargle method, and even the
different amoqnts of data gaps _and noise levels. Overall, thgqndrashov-Ghil algorithm is sensitive to this type of gaps
selected algorithms reconstructions reveal the best agreemeniigs_ 12 and19). The smoothing spline method is not af-
with original datasets (smallest MAE, MBE and values, fected by this problem since it does not rely on the power
with the highest relative probability of obtaining such results) spectrum of the signal.
in case of randon_1 gaps scenario. _This gap pattern clearly’ on the other hand, in the case of the “continuous gap” sce-
have a less drastic effect on the signal reconstruct|or_1 tr_larﬁario (Fig.21), the smoothing spline algorithm is not able to
seasonal or very long gaps. In other words, when missingaye advantage of the power spectrum information recovered
values are sprinkled throughout the time series and do Nofom the rest of the time series to fill the large gap. The poly-
excessively mask the underlying signal, the remaining data,omia function adopts various shapes, depending on the dis-
points still carry en_ough mforma_tlon to reconstruct a reason+yipution of the few points immediately before and after the
ably accurate version of the series. continuous gap. The other approaches perform much better

‘Whenever missing values are clustered seasonally (as ifh this case, as can be seen from the MAE statistics reported
winter gaps, for instance) the signal becomes severely corin Fig. 1.

rupted because there is a deficit of information for some
ranges of frequencies and the power spectrum cannot be reli-
ably estimated. In this case, minor fluctuations in the data can
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Fig. 5. The distribution of MAE andp values as a function of data  Fig. 6. The distribution of MAE and values as a function of data
gaps and noise level, acquired during the experiment with artificial,gaps and noise level, acquired during the experiment with artifi-
aperiodic time series with random gap pattef@goriginal version  cial, superimposed time series with random gap pattég)rigi-

of Lomb-Scargle algorithm (LS1)b) modified version of Lomb-  nal version of Lomb-Scargle algorithm (LS{) modified version
Scargle algorithm (LS2)c) Kondrahov and Ghil algorithm (KG),  of Lomb-Scargle algorithm (LS2)c) Kondrahov-Ghil algorithm

(d) smoothing spline algorithm (SS). (KG), (d) smoothing spline algorithm (SS).
4.1.2 Overall results classified by type of data pattern el A BN LR L A

The underlying structure of the data also influences the per-% %
formance of the time series reconstruction in the presence of:
gaps and noise. Our tests included both periodic (F20s.
and 21) and aperiodic times series (Fi§9), and methods
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fluctuations in the data (such as the Lomb-Scargle algorithm)

B 0.15 to 0.20

naturally experience greater difficulties in regenerating reli- 020 to 0.25
. . . . g Y 0.25 to 0.30

able values for aperiodic time seridddcke and Kampfer 8 8 0.30 to 0.40
2009. This effect is illustrated in Figd where in all aperi- c o = I 0 00

odic test cases Lomb-Scargle algorithm produced results that§

were significantly different from the original data and thus :

the p-values are equal to 0. The correlation of residuals is o 1 2 3 4 s o 10 2 3

. . PERCENT OF NOISE PERCENT OF NOISE

also stronger for this method (Fig2). By contrast, the data

pattern does not seem to substantially influence the MBE valgig 7 The distribution of MAE and values as a function of data

ues (Fig.2). gaps and noise level, acquired during the experiment with artificial,
Interestingly, statistics revealed some of the poorest re-aperiodic time series with winter gap pattera) original version

sults in the case of strictly periodic dataset composed of af Lomb-Scargle algorithm (LS1)b) modified version of Lomb-

superposition of several sine waves. This might be due tdScargle algorithm (LS2),c) Kondrahov and Ghil algorithm (KG),

the presence of small second maxima (Rit).which is hard ~ (d) smoothing spline algorithm (SS).

to reconstruct when noise level and gaps amount are high.

Therefore, the quality of the reconstruction typically can be

50

affected by the shape of a particular time series. function of gap and noise percentages. Each plot was gener-
ated by linearly interpolating a>66 grid (hence the some-
4.1.3 Detailed results classified by type of gap times jagged appearance) composed of data points which

represent an average of 10 independent experiments. Both
The performance of each gap-filling and noise-reducing techaxes have 10 % interval increments. The color scheme cor-
nigue was investigated against different distributions of dataresponds to fixed ranges of MAE values, as shown in the
gaps and noise. The graphical representation of the resultegends. The interpretation of these graphs should consider
yields a set of contour plots (FigSto 10) depicting the dis-  both the absolute values and the orientation of isolines. Ver-
tribution of MAE andp-values for the indicated method as a tical patterns (Fig5) indicate that the reconstruction of a
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time series by a particular algorithm is more depended on
the noise level than on the amount of data gaps. The reverse
situation takes place when the isolines are horizontal {f@&g.

b, ¢). When the graph exhibits a diagonal pattern (Fd),
noise level and data gaps both contribute to a degradation in
the quality of the reconstructed time series.
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— The distribution of MAE in therandom gapscenario

mainly depends on the level of noise (Figb, c, d and

6). The statistical significance of the differences in re-
constructiorp derived from the chi-squared test follows
the same vertical pattern. Afl-values lower than 0.05
indicate that the fitted model is significantly different
from the original complete and noise-free dataset. Even
when many data points are missing, most of selected
algorithms perform well in reconstructing the original
datasets provided the noise level remains low. It can
also be seen that selecting a Kaiser-Bessel window in-
stead of a Hamming window in the Lomb-Scargle al-
gorithm significantly improves the results (Figsm, b
and6a, b). However this technique is inferior to oth-
ers when the oscillations are not periodic resulting in
p-values equal to 0 for all combinations of noise and
gaps levels (Figs). Amongst all random gap scenar-
ios, the Kondrashov-Ghil algorithm yielded the small-
est MAE with relatively high confidence levels across
all types of artificial time series (Fig4, 5c and6c),
though the differences in datasets reconstructions (and
MAE values) between this method and the smoothing
spline technique are very small (Fidl.5c, d andéc,

d). The autocorrelation of residuals (FRR) for these
two methods is significant only for small lag size (5-6
data points) although slightly better results are obtained
by the latter algorithm. Nevertheless, all selected tech-
nigues in this particular gap scenario provide residuals
that are truly unbiased (Fi@).
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— In the winter gapscenario, the MAE of the time se- Average MAE values
ries reconstruction by means of Kondrashov-Ghil and 0-12f B Lomb Mogified
Lomb-Scargle algorithms is relatively high due to the 0.10
appearance of spurious, intermittent peaks which occur; ;g £
in the reconstructed time series where the gaps usedto |
be (Figs.7 and8). Analogically to thewinter gapsce- C
nario one example of theummer gaggcenario was gen-  0.04 |
erated in order to verify if these peaks appear and if they ¢ o,
are negatively directed towards the original data. Fig- 0.005

Smoothing Spline 1
Il Lomb Original I Kondrashov & Ghil =

ure 1_9 depicts bot_h cases and it _could easily be seen DECADAL DATA MONTHLY DATA
that in the case afiinter gapscenario Kondrashov-Ghil Average MBE values
- i i - 0.06
and Lqmb Scargle w_|II overestimate reco.nstructed_ val _ B Lomb Modified Smoothing Spline
ues (Fig.2) whereas irsummer gagscenario they will i B Lomb Original B Kondroshov & Ghil 1

underestimate them. The systematic presence and du?04 ¢
ration of data gaps in the input time series strongly in- I ]
fluence the performance of these two algorithms (hor- 0021 ]
izontal MAE isolines). However, the relative contribu-
tions of data gap percentages and noise levels in the totaP00f
MAE and probabilityp values are more balanced (diag- oot . . .~ |
onal pattern, Figsrd and8d) in the case of smoothing DECADAL DATA MONTHLY DATA

spline algorithm. The latter approach is unquestionably

the most appropriate method for gap-filling and smooth-

ing of datasets witlwinter and summer gappatterns,  Fig. 11. Average values and standard deviations for MAE and MBE
as it does not introduce spurious, intermittent features acquired during the experiment with FAPAR dataset. See text for
Also the autocorrelation of residuals derived from the details.

fitted model is weaker (Fi®22).

— In thecontinuous gagcenario, the distribution of MAE
depends more on the size of the gap than on the IeveJ)
of noise (Figs9 and10). The smoothing spline method
gives extremely odd results (Figdd and10d) because
it fits a polynomial function only to the few existing data

f the latter is similar to that during the times when data are
available.

In the case of the atmospheric gGun spots and Dow

points at both ends of a large gap. Thus even averagin#mes time series, the original records were complete so the
the results over 10 experiments does not yield stable rel odifications included only the artificial introduction of ran-

sults or a smooth contour plot. In this case, the bestdom' uniformly distributed 9aps, an(_j the MAE _and ME_”E
fit of reconstructed series to the original dataset is ob-were computed as done previously with artificial time series.

tained by the Kondrashov-Ghil algorithm (Fig& and In evaluating these experiments, it is important to note that
10c). However, the autocorrelation of residuals for this W& have compared the four gap-filling algorithms as such,
method is relatively significant (Fig2). without any manual adjustment. It may be feasible to “tune”

each method to yield better results by tweaking individual
parameters, but the results would then depend on each par-
ticular record and on the amount of time and energy spent in
tuning. Our aim is to evaluate the performance of generally

Time series acquired directly from an instrument or retrieved@Pplicable methods that could be applied automatically to a
from observational data automatically include the noise in-large number of time series, without any human intervention.
herent to the instrument and retrieval methods, so no addi-

tional noise was added in these experiments. Similarly, sincé.2.1  Results from the SeaWiFS FAPAR time series
FAPAR time series naturally contain gaps, no further manip- experiment

ulation of these series took place (neither noise nor data gaps

were introduced), and the goal was to compare the method¥he outcome of the experiment with FAPAR time series at
described above when applied to the same time series. Thmonthly and decadal time resolutions is presented inHig.
computation of the MAE and MBE values had to be modi- The patchiness of FAPAR datasets reflects the combination
fied, though, to include only those points for which data wereof gap patterns previously tested in the experiment with arti-
available initially. New values can be generated by the algoicial time series. Missing values originate mainly from the
rithms within the gaps, but one must assume that the accuracgemporary appearance of clouds or snow, though some are

4.2 Numerical experiments with actual time series

www.atmos-chem-phys.net/11/7905/2011/ Atmos. Chem. Phys., 11, 79952011
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details.

Fig. 13. Example of the reconstruction of sun spots time series
using the indicated methods. The proportion of missing points is

related to the lack of solar illumination at high latitudes dur- €3ua! to(@) 1% and(b) 50 %, no noise was introduced. See text for

ing the winter period (Figl2). tails.
The reconstruction based on the Lomb-Scargle algorithm
generates the highest MAE values because of the presence of
aperiodic components in the original signals. These phase-
and amplitude-modulated oscillations derive from natural ;}’]AE MBE of Sun spots time series ﬁeCO”StrUCt'?Q
and human-induced constrains such as the variability of in- — Lomb Mod — Lomb Org_ Spline — Kond & chil 3

ply of water and nutrients in the soil, the strong dependency
of biochemical growth and development processes on ambi-
ent temperatures, agricultural practices, etc. (¥grstraete

et al. (2008). The Kondrashov and Ghil method turns out
to be more accurate than both Lomb-Scargle algorithms, buts Fo....

coming solar irradiance at the surface, a time-evolving sup- 3o ’ N

o
MBE

the best fit to the original data is produced by the smoothing ' :
spline algorithm. As opposed to other techniques it provides | \ k
unbiased results with extremely small MBE values. While E \ Y-t
data availability at higher frequencies may generally improve 5 b \\§
the ability of a spectral method to reconstruct the signal, us- . Y

ing temporally-averaged values tend to decrease the noise oo . . . . . . . + . . . + . . . -2
level. This can be seen in Fig1, which shows that recon- 0 20 et qops 60
struction results based on monthly data tend to be marginally

better than those based on decadal data, without altering thﬁg 14. Distribution of MAE and MBE values as a function of data
ranking of the methods. It may also be easier to fit a smaller gaps quantity, acquired during the experiment with sun spots time
set of points (fewer constraints), especially for the smoothingseries. See text for details.

spline method, where number of nodes is a crucial variable.

o]
o
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Fig. 15. Example of the reconstruction of the G@ecord, expressed in ppm, from Mauna Loa station acquired by means of the indicated
methods. The data fragment in the rectangle has been enlarged on the right. The fraction of missing points iG¢d0&ttandb) 20 %,
no noise was introduced. See text for details.

4.2.2 Results from the Sunspots time series experiment MAEG MBE of Mauna Loo CO2 time series r,ecc,’”s,truczt'on

— Lomb Mod — Lomb Org Spline — Kond & Ghil
— MAE - - MBE

The results of reconstructing the historical record of monthly 5
sunspot numbers for the period 1900—-2009 where some 50 %
of the data have been artificially removed can be seen in
Fig. 13. Clearly, all methods do a fair job in detecting and
properly representing the large 11-yr cycle present in this w
time series, though the performance of these algorithms is ac- =
tually quite variable. The Kondrashov-Ghil and the smooth-
ing spline approaches exhibit similar MAE and MBE over

all experiments, while the Lomb-Scargle algorithm does not
appear to do so well, especially near either end of the record. '
However, it should be noted that this latter method smooths

the reconstructed curve (Fi@g4) more extensively than the 0

-
S

-
s S b
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5
o
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other techniques, which generates higher MAE values. 0 Percent of gaps
4.2.3 Results from the Mauna Loa CQ time series Fig. 16. Distribution of MAE and MBE values as a function of data
experiment gaps quantity, acquired during the experiment with the time series

of CO, record from Mauna Loa station. See text for details.
The famous record of monthly concentration of atmospheric
COy measured b¥eeling et al.(1996 at Mauna Loa since
1958 constitutes another emblematic and very useful time seducing gaps, as explained earlier, to evaluate the capacity of
ries to test these algorithms, because it includes a powerfuihe gap-filling methods to reconstruct a reasonable approxi-
trend as well as a clear seasonal signal, both of which arénation of the original record.
somewhat variable in time. This results in significant power In their original analysistHocke and Kampfer(2009 pro-
at very low frequency and smaller peaks to represent the segposed two approaches to select the relevant spectral com-
sonal fluctuations and their variations. The time series forponents to use with the Lomb-Scargle algorithm (a fixed
the period 1958-2008 was artificially manipulated by intro- threshold, set as a fraction of the highest peak in the power
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Fig. 17. Example of the reconstruction of Dow Jones time series 300§

3100
acquired by means of the selected methods. The amount of missing E

points is equal to 40 %, no noise was introduced. See text for details. § 200 / s 0 §
100 — — -100

spectrum or a statistical confidence analysis). Both ap- of 200

proaches were tested in this experiment, and it turns out that, o 20 20 60 0

for small proportions of data gaps, the Lomb-Scargle method Percent of gaps

coupled with threshold set by statistical confidence was able
to recover the annual cycle of the time series (Hif. top _ o _
panel). However, when the percentage of data gaps exceeddd- 18. Distribution of MAE and MBE values as a function of data
10 %, the strength of the annual peak in the power specmmgaps, acquired during the experiment with the time series of Dow
' L L ones index. The SSA window size is 468 points (bottom panel)
decreases enough to become statistically insignificant and thg .
. . nd 52 points (top panel).
Lomb-Scargle method only retrieves the main trend (E&j.
bottom panel). In both cases, the MAE associated with the

Lomb-Scargle method remains significantly higher than theatively high (see FigL8a). A shorter window, for instance of

MAE for the Kondrashov-Ghil and smoothing spline meth- 55 yata points (1yr), yields results similar to the smoothing
ods, which perform almost equally well (Fige). spline approach (Figl8b). As explained earlier, the length

In truth, Hocke and Kampfer(2009 do recommend to re- of the window controls the degree of smoothing of this al-
move any trend before applying the Lomb-Scargle approachgorithm and choosing the most appropriate value depends on
to process the residuals and then to add the trend back tge nature of the problem at har@dlyandina et aJ 2001). If
the processed data. We have not implemented such a prene typical main periodicities were known or at least expected
processing step (which might be implemented in a variety ofin previous experiments (e.g., an annual cycle), no such in-
ways) in this exercise because it could introduce a variablggrmation can be assumed in this case. The choice of a win-
and somewhat arbitrary bias in the comparison of gap-fillingggyy length is thus somewhat more arbitrary, and although

and smoothing algorithms. this parameter can be optimized during the cross validation
. (CV) procedure, that step is computationally demanding and
4.2.4 Dow Jones index time consuming for such long time series (more than 1500

points). If the window length parameter is specified explic-

The last test involves the long record of weekly values of theitly instead, that fact and the chosen value should be notified
Dow Jones Index (DJI) for the period 1981 to 2009. This explicitly since it does significantly affect the results of the
time series is very irregular due to the wide range of eco-reconstruction.
nomical factors affecting this index. DJI is definitely not a
periodic time series, so that the Lomb-Scargle method is not
expected to be appropriate: In fact, it does capture the broad Discussion
features, but not the smaller scale and somewhat arbitrary
fluctuations. Figurel7 shows to what extent the four meth- Gap-filling and smoothing unevenly sampled and noisy time
ods are capable to represent the overall time series. series is a common and necessary process, especially in the

The Kondrashov-Ghil method can account for such an un-analysis of geophysical signals. Various approaches to this
usual signal, though its performance depends strongly on theroblem have been proposed, but the choice of the most ap-
length of the window. If this parameter is large compared topropriate method for a particular dataset is non trivial. In
the entire record, say 468 data points (equivalent to 9 years}his paper, three gap-filling techniques (one of them in two
the reconstruction is rather smooth but the MAE remains rel-variants) were evaluated on the basis of experiments with
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Aperiodic Summer Gap 40% of gaps 10% of noise Sine Random Gap 50% of gaps 50% of noise
r oNoisy Data with Gaps - - Lomb Org 1 2.0F oNoisy Data with Gaps - - Lomb Org

1.5k — Original Data Spline _ r — Original Data Spline o]
Foooe Lomb Mod — Kond & Ghil 1 1.5F - Lomb Mod . — Kond & Ghil ]

0.5F

0.0f

- - - - - - 05k . . . . . .
0 51 103 154 206 257 309 360 0 51 103 154 206 257 309 360
Aperiodic Winter Gap 40% of gaps 10% of noise
15F o'Noisy Doto with Gaps - -- Lomb O:'g ] Fig. 20. Example of a reconstruction of a sine time series with ran-
— Original Data Spline 1 dom gaps acquired by means of the indicated methods. The amount
------ Lomb Mod — Kond & Ghil | of missing points is equal to 50 % and noise level is equal to 50 %.

See text for details.

SuperP Prolonged Gap 20% of gaps 30% of noise

r o'Noisy Data with Gaps =~ --- Lomb Org
1.5 — Original Data Spline

RIS Lomb Mod — Kond & Ghil
) ) o 0.5
Fig. 19. Examples of reconstructions of an aperiodic time se-

| % o -S : AN A’ | »:

© e of u: o ‘ .

ries with winter and summer gaps acquired by means of the indi- 3 : o

cated methods, to show the spurious peaks generated by the Kon-"" % ’ i

drashov and Ghill as well as the Lomb-Scargle algorithms, but not — ' ' '
the smoothing spline method.

=T
-

51 103 154 206 257 309 360

Fig. 21. Example of a reconstruction of a time series composed

of superposition of trigonometric functions with a prolonged gap
artificial time series as well as measurement datasets. Thacquired by means of the indicated methods. The amount of missing
strengths and limitations of these methods have been expoints is equal to 20 % and noise level is equal to 30 %. See text for
plored and are summarized below. detalils.

First and foremost, it must be realized that tests performed
cannot fully represent the range and diversity of goals in
any particular analysis. As mentioned earlier, a gap fill-
ing and smoothing algorithm that would exactly match each
and every available data point would yield a null MAE but
would also generate rather unrealistic and unusable valueg 1 Lomb-Scargle
anywhere else. Thus, if one desires a smooth approximation

to the original data, one must also accept larger values of thehe Lomb-Scargle technique permits the estimation of the
goodness of fit criteria. periodogram of a time series where the data points do not
All methods discussed above include a mechanism to adneed to be equally spread in time. This is an extension of the
just the degree of smoothness, be it the window length inclassical Fourier approach, it leads to the natural decomposi-
the case of Kondrashov-Ghil, the threshold used to select thdon of the original time series into a superposition of trigono-
power spectrum peaks to be retained in the Lomb-Scargle apmetric functions, each associated with a certain “strength”,
proach, or the stiffness parameter of the smoothing splinequantified by the corresponding power in the periodogram or
Objective algorithms have been proposed in each case tpower spectrum. Assuming frequencies with limited power
establish an “optimal” value of this parameter, though thisrepresent less relevant fluctuations, the bulk of the original
step only formalizes a particular way of expressing the ulti- signal can be reconstructed by summing only those compo-
mate goal. The results presented in this paper thus highlightients that have a sufficient power in the periodograiocke
some of the strengths and weaknesses of these approachesaind Kampfer(2009 proposed the use of the Hamming win-
particular conditions, but cannot substitute a personal judg-dow to enhance the retrieval of the spectral information in the
ment that will also often involve other criteria, for instance time series, though the authors and our tests showed that the

the need to extrapolate the time series outside the range of
available values or the need to achieve a minimum degree of
smoothness in the reconstruction.
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Fig. 22. Average autocorrelations of residuals between original and reconstructed time series derived from an extensive set of the artificial
time series. Shaded areas indicate the 5% confidence level that reported autocorrelations are not statistically significant. See text for details

performance of the approach degrades near both ends of tHfeequencies of the signal are likely to cause less reliable re-
record. The solution to this problem suggested by Hocke andults, up to the point of generating spurious, intermittent fluc-
Kampfer involves modifying the spectral window and using tuations in the reconstructed signal that were never present in
only the middle part of the reconstructed data segment. Thishe original data (e.g., in the “winter gap” and “summer gap”
may not be satisfactory if most or all of the data record isscenarios). This approach is also sensitive to the presence
required, but our investigation showed that this side effectof a strong trend in the original data (as in the Mauna Loa
can be largely controlled by using the Kaiser-Bessel windowCO, time series), which boosts the power spectrum at low
instead. frequencies and may therefore mask other frequencies that
The strength of the Lomb-Scargle algorithm is also its yvould be significant in the absence of that feature. This case

weakness: it is particularly appropriate to process strongly'S Pest handled by removing the trend from the signal first,
periodic signals, but appears to be less apt than other method¥0cessing the residuals, and then adding the trend back to
to deal with aperiodic time series. In fact, the experimentsthe resufts. 3
with artificial time series described above showed that Lomb- ©On the positive side, it must be recalled that the capability
Scargle algorithm, together with the Kaiser-Bessel window,Of detecting significant frequenmes in arb|_trary time series is
is fully capable of regenerating credible values to fill gaps & Very powerful tool, especially to project likely values of the
when the underlying function is periodic and the distribution reécord in the future.

of missing values is random. Aperiodic components in the

signal or a distribution of gaps that interferes with the base
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CPU usage time ing spline method in the various tests on actual time series.

1000.00 ™ ‘ ‘ Spline - e e e

10000k —— Lomb org The statistics of the quality fit criteria from the artificial time
w — Lomb mod series experiments revealed that this method is particularly
e 10004 T KG with CV suitable for reconstruction of long, continuous gaps. The
100k T T KGnocv main drawback of this method is its complexity and espe-
& o 1o§ cially the large computational requirements (F2§), which

R may quickly become prohibitive when processing very long
0.01

‘ ‘ : : ‘ ‘ ‘ or very many time seriedNang and Liang2008.
200 400 600 800 1000 1200 1400 1600 y y w g g 8

Time series length
5.3 Smoothing spline
Fig. 23. The computational cost of selected methods expressed as
CPU time in seconds as a function of time series length. Two imple-The smoothing spline algorithm delivers a piecewise cubic
mentations of the Kondrashov and Ghil method were tested: Withapproximation of the noisy, unevenly sampled time series.

and without the cross-validation procedure to optimize number of-l-he shape of the reconstructed spline depends on a smooth-
leading EOFs. It should be noted that for this method, values re- . .

S o ing parameter, optimized through the General Cross Valida-
ported covary with different parameters such as: window length,

number of leading EOF to be concerned, convergence test, numbdfon (GCV) procedure.
of runs required to optimize leading EOF (in the example presented EXperimentS with artificial datasets demonstrated that this
this value was set to 10 runs), and a programming language. Nevimethod provides accurate reconstructions, comparable to the
ertheless, overall relationship in computational cost should remairKondrashov-Ghil algorithm, for all types of data in the ran-
similar. The test was performed on a Compag nx7400 with Inteldom gap scenario. It performs much better than the latter
Centrino Duo 2.00 GHz computer. or the Lomb-Scargle method in the winter gap scenario, pre-
cisely because it does not exploit any spectral information
) and thus does not introduce spurious peaks in the recon-
5.2 Kondrashov and Ghil structed time series. Moreover, for both gap scenarios men-
. . tioned the autocorrelation of residuals is weak for the fitted
The Kondrashov and Gh{200§ method, based on the Sin- spline function. On the other hand, the smoothing spline al-

guflalr SP dectfrrumfAnaIystolKatndfl_rllla et aJ.20(()jD 1sa ﬁ?w' . gorithm is not able to accurately reconstruct reasonable miss-
ertul and efiective approach 1o il gaps and smooth a unl'ing values during long, continuous periods.

variate time series. Of all approaches tested here, this one The smoothing spline method generated some of the
generated the smallest MAE values in experiments with arti- 9 sp 9

ficial time series involving either randomly distributed gaps zgﬂfsé \;ar:ueri dOfcb?]AEnI:r gﬁgﬁ”?:t?ésr r'g\slo:;/;’r;ﬁ;s?rl]gr;gn_
or a long continuous period of missing data (Fig. How- 'es, even producing ginally u

ever, when the distribution of these missing data followed a(jrarl]sho]c\/ n?indishill t?chnlque, ir:; e\fn:oz \:jer)[)s\r/nallﬂi) rorgoirr}
seasonal patter (e.g., the “winter gap” scenario), it generate ons ot missing values _(e.g., . 0). AS 10ted above, the ma
mitation of the smoothing spline gap filling algorithm is its

spurious, intermittent peaks in the reconstructed data recorInabilit 10 cenerate reasonable values when the missing val-
as did the Lomb-Scargle approach (see Eg. As noted ytog i i . 9
ues are clustered in one single long period. These results

above, the simulated values remain reliable during those peélre uite understandable, since the smoothing spline method
riods where a majority of the measurements are not miss: q ' gsp

ing, but neither the Kondrashov-Ghil nor the Lomb-ScargIe's essentially a “local” approximation, which takes advantage

approach can be recommended for approximating the recong]:)?Eg\?ebggn?noeishearxg:ng F‘(I)e?;:”etrr?;e ngf;m?;e’emgﬁs
struction of the systematic seasonal gaps. y 9 prop

Experiments with real time series also demonstrated thaEhe whole time series and therefore guess adequate values in

. . . . “the absence of these neighbors. For the same reason, that

the Kondrashov-Ghil approach is very flexible and effective . L .
. . o .. method should have little or no predictive skill.
in a wide range of applications. It handles datasets with
strong linear trends as well as aperiodic components. This is
not surprising, since decomposing a time series into a trend,
a set of periodic components and other signals constitutes & Conclusions
primary objective of this approach. In principle, this tech-
nigue should help suggest probable causes or explanatofyour methods were evaluated in terms of their performance
factors for the observed variations and, as was the case fap fill gaps and filter noise in time series: two versions
the Lomb-Scargle algorithm, the capacity to “learn” the pri- of the Lomb-Scargle algorithm, with different windowing
mary modes of fluctuations from past records should provideschemes, the Kondrashov-Ghil approach and the smoothing
some skill in predicting future values. spline method. The Mean Absolute Error (MAE), Mean Bias

In general, the Kondrashov-Ghil method generated MAEError (MBE), chi-squared test and autocorrelation function
values similar to slightly higher than those for the smooth-were chosen as the goodness of fit criteria. The various tests
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conducted showed that each method has its strengths aridvestigator in terms of staying close to the existing data (low

weaknesses. MAE) or requiring a smoother representation of the broad
The Lomb-Scargle approach, which is an extension of thefeatures of the time series.

classical Fourier analysis to the case where the observations

or measurements in the original time series can occur at arbiSupplement related to this article is available online at:

trary times, works well as long as the underlying signal canhttp://www.atmos-chem-phys.net/11/7905/2011/

be considered as a sum of periodic components. It thereacp-11-7905-2011-supplement.pdf

fore shares the same powerful theoretical basis as the classi-
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