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Abstract. Semi-volatile and reactive primary organic
aerosols are modeled on a global scale using the GISS GCM
II’ “unified” climate model. We employ the volatility basis
set framework to simulate emissions, chemical reactions and
phase partitioning of primary and secondary organic aerosol
(POA and SOA). The model also incorporates the emissions
and reactions of intermediate volatility organic compounds
(IVOCs) as a source of organic aerosol (OA), one that has
been missing in most prior work. Model predictions are
evaluated against a broad set of observational constraints in-
cluding mass concentrations, degree of oxygenation, volatil-
ity and isotopic composition. A traditional model that treats
POA as non-volatile and non-reactive is also compared to
the same set of observations to highlight the progress made
in this effort. The revised model predicts a global dominance
of SOA and brings the POA/SOA split into better agreement
with ambient measurements. This change is due to tradition-
ally defined POA evaporating and the evaporated vapors oxi-
dizing to form non-traditional SOA. IVOCs (traditionally not
included in chemical transport models) oxidize to form con-
densable products that account for a third of total OA, sug-
gesting that global models have been missing a large source
of OA. Predictions of the revised model for the SOA fraction
at 17 different locations compared much better to observa-
tions than predictions from the traditional model. Model-
predicted volatility is compared with thermodenuder data
collected at three different different field campaigns: FAME-
2008, MILAGRO-2006 and SOAR-2005. The revised model
predicts the OA volatility much more closely than the tradi-
tional model. When compared against monthly averaged OA
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mass concentrations measured by the IMPROVE network,
predictions of the revised model lie within a factor of two
in summer and mostly within a factor of five during win-
ter. A sensitivity analysis indicates that the winter compar-
ison can be improved either by increasing POA emissions
or lowering the volatility of those emissions. Model predic-
tions of the isotopic composition of OA are compared against
those computed via a radiocarbon isotope analysis of field
samples. The contemporary fraction, on average, is slightly
under-predicted (20 %) during the summer months but is a
factor of two lower during the winter months. We hypothe-
size that the large wintertime under-prediction of surface OA
mass concentrations and the contemporary fraction is due to
an under-representation of biofuel (particularly, residential
wood burning) emissions in the emissions inventory. Over-
all, the model evaluation highlights the importance of treat-
ing POA as semi-volatile and reactive in order to predict ac-
curately the sources, composition and properties of ambient
OA.

1 Introduction

Atmospheric aerosols play a key role in many ecological
and environmental processes. They influence the earth’s cli-
mate (IPCC, 2007) and have a large impact on public health
(Bernstein et al., 2004). Organics account for a significant
fraction of the fine atmospheric aerosol mass (Zhang et al.,
2007) and hence have been extensively studied using climate
models to determine their global impact (Penner et al., 1998;
Cooke et al., 1999; Koch, 2001; Chung and Seinfeld, 2002;
Park et al., 2003, 2006). However, when evaluated against
observations, these models usually under-predict surface or-
ganic aerosol (OA) mass concentrations (Liousse et al., 1996;
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Chung and Seinfeld, 2002; Park et al., 2003; Tsigaridis and
Kanakidou, 2003; De Gouw et al., 2005; Heald et al., 2005;
Volkamer et al., 2006). For example,Chung and Seinfeld
(2002), on average, under-predicted organic carbon (OC)
mass concentrations by a factor of 3 to 4.Tsigaridis and
Kanakidou(2003) observed a similar under-prediction over
rural and marine areas where measured OC mass concentra-
tions were lower than 1 µg m−3. Volkamer et al.(2006) noted
that the discrepancy between model predicted secondary OA
and observations increased with the photochemical age.Park
et al.(2006), however, predicted OA concentrations within a
factor of 2 with very little bias. This poor performance makes
it difficult to evaluate the effects of OA on global climate and
human health.

Previous quantitative evaluations of model performance
have mainly focussed on absolute OA mass concentrations
and not considered other properties such as chemical com-
position, volatility and isotopic composition. This has been
due to the lack of field measurements and/or the limited pre-
diction capabilities of models. Recently, instruments like
the Aerosol Mass Spectrometer (AMS), Particle-Into-Liquid
Sampler (PILS) and thermodenuders and techniques like ra-
diocarbon isotope analysis have provided new insight into the
sources, composition and reactivity of OA typically unavail-
able from mass measurements (Weber et al., 2001; Zhang
et al., 2005; An et al., 2007; Schichtel et al., 2008). For
example, global models tend to predict a dominance of pri-
mary organic aerosol (POA) or direct particulate emissions,
which have been assumed to be non-volatile and non-reactive
(Kanakidou et al., 2005; Jimenez et al., 2009). However,
AMS results suggest that atmospheric OA is dominated by
secondary organic aerosol or SOA which is aerosol mass
formed from the oxidation products of gas-phase organic pre-
cursors (Robinson et al., 2007; Zhang et al., 2007). This is
one example which points to potentially significant problems
with how OA is simulated in global models.

The shortcomings in current OA models may partly be
due to their assumption that POA is non-volatile and non-
reactive. Recently, various studies have challenged these
views (Robinson et al., 2007; Grieshop et al., 2009a,b; Huff-
man et al., 2009a). First, they showed that diesel engine,
biomass burning and meat cooking POA emissions are semi-
volatile, i.e. they contained species that span a large range of
vapor pressures that exist in a gas-particle equilibrium as dic-
tated by absorptive partitioning theory (Pankow, 1994). Sec-
ond,Robinson et al.(2007) argued that certain intermediate
volatility organic compounds (IVOCs), capable of forming
OA, were missing from emission inventories compiled us-
ing conventional techniques. Using source test data,Shrivas-
tava et al.(2008) estimated the missing IVOCs to account for
0.25 to 2.8 times the POA mass measured using conventional
filter techniques. Third, smog chamber experiments demon-
strated that photooxidation of diesel exhaust and woodsmoke
enhanced OA concentrations beyond that predicted by the
oxidation of conventional VOC precursors (Robinson et al.,

2007; Sage et al., 2008; Grieshop et al., 2009b; Miracolo
et al., 2010). It is suspected that semi-volatile and IVOC va-
pors oxidize to generate additional SOA; this SOA has been
recently termed non-traditional SOA (Donahue et al., 2009).

On a regional scale, recent efforts in modeling carbona-
ceous aerosols have considered the semi-volatile and reac-
tive nature of POA (Robinson et al., 2007; Shrivastava et al.,
2008; Murphy and Pandis, 2009). The only study, so far,
to have attempted that in a global model is that byPye and
Seinfeld(2010). All of these new models predict a global
dominance of SOA and bring the POA/SOA split in better
agreement with field measurements. Although they arrive at
similar qualitative conclusions, the schemes used to model
semi-volatile and reactive POA are not well constrained due
to the lack of available experimental data and are therefore
very uncertain. In light of this uncertainty, an important next
step is to assess these schemes by evaluating model perfor-
mance in direct comparison with observations.

In this paper, we model semi-volatile and reactive POA
and IVOC emissions using the volatility basis set (VBS) in
conjunction with a global climate model. The VBS is an
efficient framework for simulating the gas-particle partition-
ing, dilution and chemical aging of semi-volatile organics.
Model performance is evaluated using observations of sur-
face mass concentration, oxygenation, volatility and isotopic
composition.

2 Model description

In this work, we use a “unified” general circulation model
(GCM) to simulate global OA. The model is based on
the Goddard Institute for Space Studies General Circu-
lation Model II’ (GISS GCM II’) (Hansen et al., 1983;
Rind and Lerner, 1996; Rind et al., 1999) and includes on-
line tropospheric chemistry (Harvard tropospheric O3-NOx-
hydrocarbon chemical modelLiao et al., 2003) and aerosol
modules (Adams et al., 1999; Chung and Seinfeld, 2002;
Liao et al., 2004; Farina et al., 2010). The GCM has a hori-
zontal resolution of 4◦ latitude by 5◦ longitude with 9 vertical
layers. The simulated period represents a non-specific year
near the beginning of the 21st century. In addition to organ-
ics and elemental carbon (soot), the GCM explicitly treats
sulfate, nitrate, ammonium, sea salt and mineral dust as de-
scribed inLiao and Seinfeld(2005).

The OA model is based on the work ofFarina et al.(2010).
Farina et al.(2010) implemented the VBS to simulate the for-
mation and gas-particle partitioning of SOA produced from
the oxidation of VOC precursors (isoprene, monoterpenes,
sesquiterpenes, alkanes, alkenes and aromatics). In addi-
tion, they also used the VBS to model the gas-phase aging
of anthropogenic SOA. They assumed that POA was non-
volatile and non-reactive and also did not account for IVOCs.
In this paper we modified the model ofFarina et al.(2010)
to account explicitly for semi-volatile and reactive POA and
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Fig. 1. Schematic for the volatility basis set (VBS) framework as used in this study. The saturation concentration spectrum is divided into
semi-volatile (SVOC,C∗ = 0.01− 103 µg m−3) and intermediate volatility (IVOC,C∗ = 104

− 106 µg m−3) organic compounds. VOCs are
graphically presented withC∗ > 106. bVOCs and aVOCs are biogenic and anthropogenic VOCs respectively. See Sects.2.1.1and 2.1.2 for
a detailed discussion.

IVOCs. We use the VBS to describe their emissions, mixing,
gas-particle partitioning and aging. The ensuing sections de-
scribe in detail the revised OA model.

2.1 Organic Aerosol (OA) modeling

2.1.1 Volatility basis set and equilibrium partitioning

The VBS framework describes OA by separating low volatil-
ity organics into decadally spaced bins of effective satura-
tion concentration (C∗) between 0.01 to 106 µg m−3(Fig. 1)
(Donahue et al., 2006). C∗ (inverse of the Pankow-type par-
titioning coefficient,Kp) is proportional to the saturation va-
por pressure and is a semi-empirical property that describes
the gas-particle partitioning of an organic mixture (Pankow,
1994). EachC∗ “bin” contains species that span a range of
volatilities, i.e. the 1 µg m−3 bin contains species withC∗ be-
tween 0.3 µg m−3 and 3 µg m−3. The lowest volatility bin,
0.01 µg m−3 , contains all species lower in volatility than
0.03 µg m−3. TheC∗ spectrum is conventionally divided into
semi-volatile (SVOC, 0.01− 103 µg m−3) and intermediate
volatility (IVOC, 104

−106 µg m−3) organic compounds.
Unlike previous models, the revised model explicitly treats

the gas-particle partitioning of all low volatility organics.
The model assumes ambient OA to exist in an equilibrium
between the gas and particle phases as dictated by Raoult’s
law and that the organics in the particle phase form a pseudo-
ideal solution (Pankow, 1994). The partitioning equations
are as follows (Donahue et al., 2006):

ζi =

(
1+

C∗

i

COA

)−1

; COA =

N∑
i=1

ζi ×OCi (1)

whereζi is the fraction of organic mass in volatility bini in
the particulate phase,C∗

i is the effective saturation concen-
tration of bin i in µg m−3, COA is the total particulate OA
(POA + SOA) concentration in µg m−3, OCi is the total or-
ganic concentration (gas + particle) in bini in µg m−3 andN

is the number of basis set bins. An important uncertainty is
whether all components of OA absorb into the same phase as
this would affect the value ofCOA. Recent experimental ev-
idence on this issue are mixed where some studies indicate a
single phase (Asa-Awuku et al., 2009) while others indicate
multiple phases (Song et al., 2007). In the absence of conclu-
sive evidence that suggests phase separation for ambient OA,
we assume all OA (POA and SOA) to form a single phase. In
addition,Shrivastava et al.(2008) found that multiple phases
had a very small effect on predicted OA mass concentrations
in simulations that treated POA as semi-volatile and reactive.

Shifts in gas-particle partitioning due to changes in tem-
perature are represented using the Clausius-Clapeyron equa-
tion (Donahue et al., 2006),

C∗

i (T ) = C∗

i (Tref)exp

[
1Hv

R

(
1

Tref
−

1

T

)]
Tref

T
(2)

whereTref is the reference temperature (298 K),1Hv is the
enthalpy of vaporization andR is the universal gas constant.
1Hvap is an uncertain parameter and therefore simulations
are performed to assess the sensitivity of the results to a
varying1Hvap.
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2.1.2 OA terminology

OA has been traditionally divided into two categories: POA
and SOA. POA is organic material directly emitted in the
particle phase; it has traditionally been assumed to be non-
volatile and non-reactive. SOA is OA formed in the at-
mosphere from reactions of gaseous precursors; traditional
chemical transport models have only accounted for SOA pro-
duction from very volatile precursors. However, recent re-
search has blurred the distinction between POA and SOA.
Hence, it is necessary to revise certain conventionally used
terms that are now either obsolete and/or confusing.

Figure2 represents the various classes of OA with the help
of a tree diagram. Using the VBS framework, we define pri-
mary organic carbon (POC) as the sum of all the emissions
that have aC∗ lower than 106 µg m−3. This includes all tra-
ditionally defined POA emissions and any IVOC emissions
added to the model. We assume that organic emissions with
C∗ higher than 106 µg m−3 are explicitly accounted as VOC
species. As POC is semi-volatile, it dynamically partitions
between the gas and particle phases with changes in dilution
and temperature. We define POA as the particle phase com-
ponent of POC and primary organic gas (POG) as the vapor
phase component of POC. We further categorize POC into
SVOCs and IVOCs, where SVOCs refer to the gas + particle
organic mass in the 0.01 to 1000 µg m−3 bins and IVOCs re-
fer to the organic mass in the 104 to 106 µg m−3 bins. The
exact boundary between the SVOCs and IVOCs is somewhat
artificial; SVOCs exist in both the gas and particle phase
while IVOCs exist exclusively as vapors in the atmosphere
but are less volatile than VOCs. This distinction is made to
examine the influence of IVOCs on the OA budget, an in-
fluence that has been explored by only a handful of studies
(Shrivastava et al., 2008; Murphy and Pandis, 2009; Farina
et al., 2010; Pye and Seinfeld, 2010).

A key objective of this work is to study the fate of SVOC
and IVOC vapors which are believed to oxidize in the atmo-
sphere to form lower volatility products, which condense into
the particle phase. In this work, we use terminology used in
Tsimpidi et al.(2009) and define S-SOG and S-SOA as the
gas and particle phase components arising from the oxidation
of SVOC vapors. Similarly, we define I-SOG and I-SOA as
the gas and particle phase components arising from the ox-
idation of IVOC vapors. SI-SOG is the sum of S-SOG and
I-SOG and SI-SOA is the sum of S-SOA and I-SOA. The
sum of SI-SOG and SI-SOA is called SI-SOC.

Gas and particle phase products from the oxidation of
VOCs are referred as V-SOG and V-SOA respectively, with
their sum defined as V-SOC. The traditional abbreviations
are prefixed with “a” to identify the anthropogenic contribu-
tion and “b” for the biogenic contribution. OA, hence, is a
sum of POA, SI-SOA and V-SOA while SOA is the sum of
SI-SOA and V-SOA.

This VBS framework can efficiently track material from
any number of different sources and precursors. However,
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Fig. 2. Tree diagram of various classes of OA in the revised model.

given the computational resources available and the goals of
the paper, the model separately tracks four classes of organ-
ics as shown in Fig.1: POC, SI-SOC (S-SOC and I-SOC to-
gether), aV-SOC and bV-SOC. POC and SI-SOC are tracked
using two separate 9 bin VBS while bV-SOC and aV-SOC
are tracked using two separate 4 bin VBS (Fig.1). The VOC
precursors for V-SOC shown in Fig.1 are described in detail
in Farina et al.(2010).

Other recent papers have also proposed new definitions for
different classes of OA. To help the reader, Table1 relates the
different types of OA referred to in this paper to those used
in recent manuscripts that deal with semi-volatile POC and
SOC.

2.1.3 POC emissions

To simulate POC, we need to the know the total emissions of
low volatility (C∗< 106 µg m−3) organics and their volatil-
ity distribution. However, this information is only known
for a very small number of sources. Therefore, we estimate
the POC emissions using existing inventories and data from
studies of diesel exhaust and woodsmoke to distribute these
emissions in volatility space.

Table2 lists the annual global emissions of POC and ele-
mental carbon (EC) by source category. The POC emissions
are the sum of the traditional POA emissions from existing
inventories plus an estimate of the missing IVOC emissions.
The combined inventory, representative of emissions for the
early 21st century, provides a monthly averaged value for
each grid cell.

Traditional particulate matter emission inventories are
compiled using emission factors that are determined us-
ing quartz and/or teflon filters collected at elevated aerosol
concentrations (100–10 000 µg m−3). Hence, these invento-
ries do not capture all of the POC emissions up toC∗

=

106 µg m−3 (Shrivastava et al., 2008; Robinson et al., 2010).
Shrivastava et al.(2008) assumed that traditional emission
inventories account for all SVOC emissions but only a frac-
tion of the IVOC emissions. Source test data suggest that
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Table 1. Definitions and abbreviations used for classes of OA.

Publication

Categories This work/ Shrivastava Murphy and Pandis Dzepina et al. Dzepina et al.
Tsimpidi et al.(2009) (2008) (2009) (2009) (2010)

Unoxidized POA POA POA FPOA POA POA
or fresh POA

SOA from SVOCs S-SOA+ OPOA OPOA NT-SOA SOASVOC
and IVOCs or non- I-SOA= + SOAIVOC
traditional SOA SI-SOA

Biogenic and an- bV-SOA, Biogenic SOA, BSOA, T-SOA Traditional
thropogenic SOA aV-SOA Anthro. SOA ASOA SOA
from VOCs or traditional SOA

Table 2. Annual emissions of POC and elemental carbon (EC) by
source category.

Annual Emissions (Tg yr−1)

Source POCa EC

Fossil Fuels

North America (Heald)b 1.14 1.35
North America (Bond)c 0.66 0.42
Rest of the world (Bond)c 3.67 2.62

Bio Fuels

North America (Heald)b 2.04 0.19
North America (Bond)c 0.98 0.10
Rest of the world (Bond)c 10.7 1.52

Open Burning (GFEDv2)d 38.9 2.74

Total (Heald + Bond + GFEDv2) 56.4 8.42
Total (Bond + GFEDv2) 54.9 7.40

a Assuming an OM:OC of 1.8,b Heald et al.(2005), c Bond et al.(2004), d Van der
Werf et al.(2006).

the amount of IVOC emissions missing is between 0.25 and
2.8 times the POC emissions measured using a quartz filter
(Schauer et al., 1999, 2001, 2002).

For this work, we used the traditional fossil and biofuel
POA emissions fromBond et al.(2004), which are not based
on a specific year. The open burning emissions are based on
GFEDv2 (Van der Werf et al., 2006); they are from 2005
as the annual emissions for that year lie close to the me-
dian for the 1997 through 2006 period. Although theBond
et al. (2004) inventory is the most recent for fossil and bio-
fuel combustion emissions, the North American winter-time
predictions based on this inventory are a factor of 2 too low
when compared to observations (Heald et al., 2006b). There-
fore, we updated theBond et al.(2004) North American
traditional POA and EC emissions using theCooke et al.
(1999) fossil fuel inventory and thePark et al.(2003) biofuel

inventory (Heald et al., 2005). We use an organic-matter-
to-organic-carbon ratio of 1.8 to convert the POC emission
inventory values from TgC yr−1to Tg yr−1(Turpin and Lim,
2001; El-Zanan et al., 2005; Zhang et al., 2005).

Following the approach ofShrivastava et al.(2008), we
assume the SVOC emissions to be completely represented
by the traditional emission inventory or 56.4 Tg yr−1and that
the IVOC emissions are 1.5 times the traditional emission
inventory or 84.6 Tg yr−1.

Pye and Seinfeld(2010) used a different approach to es-
timate the missing IVOC emissions. They use naphthalene
as a surrogate and estimate IVOC emissions to be 27 Tg
yr−1which is close to the lower end of the range suggested by
the source test data. Given the large uncertainty, simulations
are performed to investigate the sensitivity of the predictions
to the amount of IVOC emissions.

The revised model requires that the POC emissions be dis-
tributed across the VBS. This requires knowing the volatility
distribution of the emissions. In this work, we assume that all
POC emission sources (fossil fuels, biofuels, open burning)
have the same volatility distribution as there are currently in-
adequate data to perform a more refined analysis (Robinson
et al., 2007). This volatility distribution is the same as that
determined for diesel exhaust (Robinson et al., 2007) and
used byShrivastava et al.(2008) to predict the evolution of
OA in the eastern US. In reality, the emissions from each
source have a distinct composition of organic species and
therefore a unique volatility distribution. However, volatility
data are available for very few sources (Robinson et al., 2007;
Grieshop et al., 2009a). To address potential uncertainty as-
sociated with our assumption we conducted different model
simulations using different volatility distributions.

2.1.4 Photochemical aging

Organic vapors react with atmospheric oxidants which
change their volatility, gas-particle phase partitioning and
hence the amount of OA. This process, within the bounds
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of the VBS, is termed aging. Here, aging does not include
the oxidation of VOCs, which is dealt with explicitly in other
parts of the model. In this paper, aging also does not include
the microphysical processes (condensation and coagulation)
that produce an internally mixed aerosol. Finally, the model
also does not account for any aging due to heterogeneous,
aqueous phase and condensed-phase reactions. We recog-
nize that these processes might be important but given the
uncertainty, we choose to focus on the gas phase aging of
organic vapors.

We use a simple aging mechanism as used in previous
studies employing the VBS (Lane et al., 2008; Shrivastava
et al., 2008; Farina et al., 2010). The basic scheme is illus-
trated using red arrows in Fig.1. Aging proceeds by a first-
order reaction of VBS vapors with OH radicals producing a
product that has aC∗ one order of magnitude lower than its
precursor. The vapor concentration after time1t is given in
Eq. (3) where OGti represents the mass of gas-phase organics
in bin i at timet , [OH] is the OH radical concentration and
kOH is the reaction rate constant.

OGt+1t
i = OGt

iexp(−kOH[OH]1t) (3)

+OGt
i+1

[
1−exp(−kOH[OH]1t)

]
We assume that the oxidation products in the vapor phase
continue to age and form even lower volatility products. Al-
though oxidation might result in additional mass being added
to the products, we are conservative in our aging scheme and
do not add any additional mass. Primary organic vapors or
POG and SI-SOG are assumed to age with a reaction rate of
4×10−11 cm3 molecules−1 s−1, based on the work ofShri-
vastava et al.(2008).

The aging mechanism used in this work is very different
from that ofPye and Seinfeld(2010). They model SVOC
aging using a single oxidation step that adds 50 % additional
mass and assign the aged products aC∗ value two orders of
magnitude lower than the precursors. They model IVOC oxi-
dation by assuming that the SOA forming potential of IVOCs
is the same as naphthalene. Therefore, a fundamental differ-
ence is thatPye and Seinfeld(2010) assume that the aging
process can be captured in a single oxidation step and hence
they have a specificC∗ for their aged products. Our mecha-
nism, in contrast, implicitly assumes that the gas phase aged
products continue to oxidize to form products that steadily
move down inC∗ space. In addition, our lowest VBSC∗ bin
(0.01 µg m−3) is much lower than most of theC∗s used by
Pye and Seinfeld(2010) to represent their aged products (0.2
and 16.46 µg m−3 for SVOCs and 0.0001 and 1.69 µg m−3

for IVOCs). Therefore, given time, our aging scheme will
tend to form more OA thanPye and Seinfeld(2010) though
it is difficult to say which is correct based on available data.
Although we know very little about how aging proceeds, we
believe it has a large influence on the OA budget and the abil-
ity of the model to reproduce observations. To illustrate its
influence, we run a simulation where the POC is treated as
semi-volatile but not allowed to age.

Farina et al.(2010) assumed that the SOA mass yields for
biogenic VOCs represent completed reactions and hence they
do not need to be aged. We realize that this is a significant
assumption that requires additional study that is outside the
scope of this manuscript. However, simple “first guess” ag-
ing parameterizations, when applied to biogenic SOA, lead
to gross over-predictions in regional models (Lane et al.,
2008; Murphy and Pandis, 2009). Hence, as perFarina et al.
(2010), the biogenic V-SOG is not allowed to age while the
anthropogenic V-SOG is allowed to age with a reaction rate
of 4×10−11 cm3 molecules−1 s−1.

Previous studies that have modeled POA as non-volatile
have considered a hydrophobic to hydrophilic conversion of
POA, which has been referred to as “aging” without being
very precise about what processes were being represented.
Although, it was initially meant to represent the evolution of
POA from an externally mixed to an internally mixed state
(Cooke et al., 1999), it has also been interpreted to repre-
sent a heterogeneous oxidation of OA to more hydrophilic
products. In either case, aging in traditional models is differ-
ent than aging here, which is defined as ongoing oxidation
of organics in the vapor phase. Moreover, we argue, based
on the arguments byKroll et al. (2011), that heterogenous
chemistry appears to be a much slower process than the pho-
tochemical aging described in this section.

2.1.5 Deposition

Gas and particle phase organics are subject to dry and wet
deposition. Dry deposition of gas-phase organics is based on
the resistance-in-series scheme ofWesley(1989). Particle-
phase dry deposition velocities are calculated based on the
treatment of sulfate as described inKoch et al.(1999). Wet
deposition of gas and particle phase organics are treated sep-
arately for large-scale and convective clouds, following the
GCM cloud schemes described inDel Genio and Yao(1993)
andDel Genio et al.(1996). Dissolved gases and aerosols
are scavenged within and below precipitating clouds. The
solubility of gases is defined by their Henry’s law constant
and all organic gases are assigned a Henry’s law constant
of 105 M atm−1. It is likely that higher volatility products
on account of being less oxygenated have a lower Henry’s
law constant and vice-versa but in the absence of any robust
data, we consider it to be constant across volatility. Also,
we do not perform a sensitivity simulation with the Henry’s
law constant because the effect was previously explored by
Farina et al.(2010).

The previous version of the unified model (Farina et al.,
2010) divided POA into hydrophobic and hydrophilic cat-
egories which had different wet deposition characteristics
(Chung and Seinfeld, 2002). By assuming that OA forms
a single phase (Sect.2.1.1), we use the same wet deposi-
tion characteristics for all OA and hence avoid this addi-
tional categorization all together. FollowingChung and Se-
infeld (2002), all organic particles are assigned a scavenging
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efficiency of 80 %. Again, it is likely that the scavenging ef-
ficiency, just like the Henry’s law constant, is a function of
volatility but in the absence of any robust data, we consider
it to be constant across volatility.

3 Simulations

Multiple simulations were performed to evaluate the perfor-
mance of the new modeling framework. Each simulation was
performed for a one-year period with four months of spin up
time to initialize concentration fields. Given the uncertainty
in many input variables, we have evaluated the sensitivity of
model results to the POC emissions, POC volatility distribu-
tion, IVOC emissions, partitioning process and photochemi-
cal aging. The sensitivity scenarios run in this study are listed
in Table3 and briefly described below.

– BASE: This simulation represents our best estimate for
all the input parameters. As described previously, fos-
sil and bio fuel emissions of POC are fromHeald et al.
(2006a) for North America andBond et al.(2004) for
the rest of the world and open burning emissions are
from GFEDv2 (Van der Werf et al., 2006). All POC
sources (fossil fuel, bio fuel, open burning) are treated
alike and have the same volatility distribution, as shown
in Fig. 3a. IVOC emissions are assumed to be 1.5 times
the published POC emissions. To represent the depen-
dence ofCOA on temperature, we use a1Hv value of
30 kJ mole−1, a value that has been used byFarina et al.
(2010).

– TRAD (TRAD itional): To compare and quantify the
progress made in this research effort, the model is also
run in the traditional configuration where we treat POC

as non-volatile and non-reactive. This is the same ver-
sion of the model thatFarina et al.(2010) ran except for
changes in the POC emission inventory.

– LOEM (LOw EM issions): To investigate the sensitiv-
ity of the model to the magnitude of the POC emissions,
we run the LOEM scenario that utilizes theBond et al.
(2004) inventory over North America. This reduces the
fossil and bio fuel POC emissions over North America
by slightly less than 50 %.

– LOVL (LOw VoLatility): To investigate the sensitiv-
ity of the model to the volatility distribution of the
POC emissions, we employ a low volatility distribution
which is constructed by moving half of the mass in the
SVOC bins to the lowest bin without altering the IVOC
distribution. Figure3b plots the LOVL volatility distri-
bution.

– NOIV (NO IV OC’s): To quantify the contribution of
IVOCs to global OA, we run the NOIV (NO IV OC’s)
scenario where no IVOCs are added to the inventory.

– HVAP (Heat of VAPorization): To quantify the sen-
sitivity of the results to the enthalpy of vaporization,
we use the work ofEpstein et al.(2010) to describe
1Hvap as a function ofC∗ and temperature.Epstein
et al. (2010) propose a much larger range of1Hvap’s
(40–150 kJ mole−1) than used in the BASE case. One
needs to exercise caution when interpreting results from
the HVAP scenario as yields for SOA formation have
been derived using a single value for the heat of vapor-
ization (1Hvap= 30− 60 kJ mole−1 depending on the
study). However, given that most SOA chamber ex-
periments are done quite close to 298 K – the reference

www.atmos-chem-phys.net/11/7727/2011/ Atmos. Chem. Phys., 11, 7727–7746, 2011
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Table 3. Overview of simulations.

Framework Name POA Aging? US Inventory Compared to BASE

Traditional TRAD Non-volatile No Heald Non-volatile and non-reactive POA

Revised

BASE Semi-volatile Yes Heald –
LOEM Semi-volatile Yes Bond Lower emissions in North America
LOVL Semi-volatile Yes Heald Lower volatility POC
NOIV Semi-volatile Yes Heald No IVOCs
HVAP Semi-volatile Yes Heald 1Hvap as a function ofC∗ andT

NOAG Semi-volatile No Heald No POC Aging

!"#$
%
&! !"'$

%
&! !!($

%
&! !!!$

%
!! !!($

%
)! !"'$

%
)! !"#$

%
&!

!!($
%
*!

!!+$
%
*!

!!!$
%
!!

!!+$
%
,!

!!($
%
,!

!

!

-./!0/123452!6!$7""!µ5!8
!+
9

$7"

"

"$

!"#$
%
&! !"'$

%
&! !!($

%
&! !!!$

%
!! !!($

%
)! !"'$

%
)! !"#$

%
&!

!!($
%
*!

!!+$
%
*!

!!!$
%
!!

!!+$
%
,!

!!($
%
,!

!

!

*-!*./!0/123452!6!$78'!µ5!9
!+
:

$7"

"

"$

!"#$
%
&! !"'$

%
&! !!($

%
&! !!!$

%
!! !!($

%
)! !"'$

%
)! !"#$

%
&!

!!($
%
*!

!!+$
%
*!

!!!$
%
!!

!!+$
%
,!

!!($
%
,!

!

!

-!*./!0/123452!6!$7+$!µ5!8
!+
9

$7"

"

"$

!"#$
%
&! !"'$

%
&! !!($

%
&! !!!$

%
!! !!($

%
)! !"'$

%
)! !"#$

%
&!

!!($
%
*!

!!+$
%
*!

!!!$
%
!!

!!+$
%
,!

!!($
%
,!

!

!

-.!/.012341!5!$6#+!µ4!7
!+
8

$6"

"

"$

Fig. 5: Annual-average surface concentrations of POA, SI-SOA, V-SOA and total OA in
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44

Fig. 4. Annual-average surface mass concentrations of POA, SI-SOA, V-SOA and total OA in µg m−3 for BASE simulation. Area-weighted
surface concentrations are shown in parentheses.

temperature for the VBS – using the revised heat of va-
porization values will not have a large effect on the SOA
mass yields.

– NOAG (NO AGing): To investigate the influence of
gas-phase POC aging on OA burdens, we run the NOAG
scenario where POC is treated as semi-volatile but the
vapors are not allowed to age to form SI-SOA.

4 Results

4.1 Model predictions

4.1.1 Surface concentrations

Figure 4 plots the annually-averaged global surface mass
concentration for POA, SI-SOA, V-SOA and total OA pre-
dicted using the BASE model. Their domain-averaged

surface mass concentrations are 0.11, 0.42, 0.30 and
0.83 µg m−3 , respectively. The highest OA mass concen-
trations are predicted in the Amazon, Congo and southeast
Asian tropical forests. They are due to a combination of
biomass burning emissions and SOA formed from biogenic
VOCs. Higher OA mass concentrations are also predicted in
the northeastern US and parts of India and China where there
are substantial fossil and biofuel combustion emissions.

Appreciable amounts of POA are only present in locations
where total OA mass concentrations are high (>5 µg m−3),
i.e. close to locations with high emissions. However, over
most of the modeling domain, OA mass concentrations are
low (< 5 µg m−3) and most (97 %) of the POC evaporates
leaving very little directly-emitted organic mass in the parti-
cle phase. Therefore, the POA concentrations in the revised
model are spatially inhomogeneous. In contrast, the spa-
tial distribution of SI-SOA, which is formed from POC va-
pors, is more homogenous and exhibits a well-mixed regional

Atmos. Chem. Phys., 11, 7727–7746, 2011 www.atmos-chem-phys.net/11/7727/2011/
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Fig. 5. (a) Comparison of observed OOA to OA ratios with model results of SOA to OA ratios from the BASE and TRAD scenarios.
Model-predicted global distribution of SOA to OA ratio for(b) TRAD and(c) BASE cases. Data in(a) are fromZhang et al.(2007).

presence. In fact, SI-SOA, although derived from POC emis-
sions, resembles traditional SOA or V-SOA in terms of its
spatial distribution.

In contrast to most previous models, the BASE model pre-
dicts a global distribution of OA that is dominated by SOA.
To illustrate this, Fig.5b–c plots the model-predicted global
distribution of the SOA-to-OA ratio using annually-averaged
values for the TRAD and BASE scenarios. The BASE model
consistently predicts a SOA-to-OA ratio of 0.8 or higher for
all locations except for the Amazon, Congo, Alaska and east
coast of China. In the TRAD case, OA in most locations
is predicted to be POA. For example, over land the SOA-
to-OA ratio ranges from 0.4 to 0.7 while over oceans the
ratio is close to 0.1. Therefore, the TRAD case predicts a
higher SOA fraction near source regions and a lower SOA
fraction away from source regions, a trend that is reversed in
the BASE case.

4.1.2 OA budgets

Figure 6 presents the breakdown of the overall OA bud-
get. POC emissions, directly and indirectly via chemistry,
contribute 57.5 Tg yr−1of OA and traditional VOC oxidation
forms 33.1 Tg yr−1of OA to yield a total OA production rate
of 90.6 Tg yr−1. Of the 141 Tg yr−1 (or 78.3 TgC yr−1) of
POC mass emissions, only 7.7 Tg yr−1(5 %) partitions into
the particle phase, without undergoing chemical reactions, to
form POA. The remainder (POG) is chemically transformed
in the atmosphere to form lower volatility products, some
of which (49.8 Tg yr−1) partitions into the condensed phase
to form SI-SOA. SVOC oxidation forms 22.5 Tg yr−1(45 %)
of SI-SOA which means that slightly less than half of the
traditional POC emissions are “recovered” into the particle
phase through the oxidation of SVOC vapors. IVOC oxi-
dation forms 27.3 Tg yr−1(55 %) of the SI-SOA and hence
contributes to more than half of the SI-SOA and to slightly
less than a third (30 %) of the total OA formed, making it an
important contributor to OA formation.

www.atmos-chem-phys.net/11/7727/2011/ Atmos. Chem. Phys., 11, 7727–7746, 2011
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Fig. 6. Schematic showing annual production (arrows, Tg yr−1) and burdens (textboxes, Tg) for the gas and particle phase classes of organic
aerosol predicted by the BASE model.

We can divide the amount of SI-SOA formed by the
amount of POG reacted to compute an effective aerosol mass
yield of 53 %. The yield, when compared at aCOA of
1 µg m−3, is much higher than the aerosol mass yields ob-
served for biogenic VOCs like alpha-pinene (4 %) and iso-
prene (1 %) in smog chamber experiments (Farina et al.,
2010). However, the yield is similar to those of aromatics
like benzene (33 %) and naphthalene (66 %) (Ng et al., 2007;
Chan et al., 2009). Hence, the mechanism used in this work
to represent the gas-phase chemistry of POC would be sim-
ilar to a traditional mechanism, which treated all POC like
aromatics.

Table4 lists the OA burdens from the different sensitivity
runs in this work and those from previous studies. Across the
set of sensitivity runs, the POA and SI-SOA burden, counted
together, remains fairly constant (1.34–1.45 Tg) except for in
the NOIV and NOAG scenarios. This suggests that the OA
burden is insensitive to the POC volatility distribution and
the1Hvap. This is because changes in partitioning affected
by changes in the volatility distribution and1Hvap are off-
set by the low volatility products formed via oxidation of
the evaporated vapors. Further, the difference in total OA
burden between the BASE and the NOIV scenario (0.89 Tg)
highlights the potential contribution that oxidation of IVOCs
can have on the global burden (38 % of the total). Of this
0.89 Tg, oxidation products of IVOCs contribute 0.73 Tg di-
rectly and 0.16 Tg indirectly by providing a larger absorbing
phase which shifts the gas-particle partitioning towards the
particle phase. In addition, the difference between the BASE
and NOAG scenarios (1.56 Tg) emphasizes the large contri-
bution that POC oxidation or “aging” has on the OA burden.

While our estimate for the total OA produced
(90.6 Tg yr−1) lies between that of previous studies (63
and 116 Tg yr−1) (Chung and Seinfeld, 2002; Kanakidou
et al., 2005; Hoyle et al., 2007; Heald et al., 2008; Henze
et al., 2008; Pye and Seinfeld, 2010), a detailed compar-
ison of the burdens predicted by BASE reveal important
differences from those predicted with models that treat
POA as non-volatile and non-reactive (Koch, 2001; Chung
and Seinfeld, 2002; Tsigaridis and Kanakidou, 2003; Liao
and Seinfeld, 2005; Farina et al., 2010). The BASE model
reduces the POA burden by an order of magnitude compared
to those other models, which significantly changes the
POA-SOA split. But, if the primary-in-origin OA, i.e. POA
and SI-SOA, are considered together, the burden is similar
to that predicted by other models. This indicates that
the evaporated POC returns back to the condensed phase
through the oxidation of SVOC and IVOC vapors to produce
roughly the same burden one would predict in a model
with non-volatile and non-reactive POA. Although we
predict a similar burden, we estimate a very different spatial
distribution of OA (Sect.4.1.1) and a very different extent of
oxygenation of OA (Sect.4.2.2).

The BASE burdens are much closer to the predictions
of Pye and Seinfeld(2010), which is the only other global
model that accounts for semi-volatile and reactive POC. The
BASE model predicts a POA/SOA split of 4/96 % whilePye
and Seinfeld(2010) predict it to be 2/98 %. In comparison,
the TRAD model predicts a POA/SOA split of 47/53 %. Sim-
ilarly, the BASE model predicts SI-SOA to account for 53 %
while Pye and Seinfeld(2010) predict SI-SOA to account for
54 % of the total OA burden.

Atmos. Chem. Phys., 11, 7727–7746, 2011 www.atmos-chem-phys.net/11/7727/2011/
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Table 4. Burden and lifetime for organic aerosol and its classes.

POA SI-SOA V-SOA OA

Burden (Tg)

BASE/LOEM 0.09 1.25 1.02 2.37
LOVL 0.45 1.00 1.04 2.48
NOIV 0.08 0.52 0.88 1.48
HVAP 0.15 1.21 2.07 3.43
NOAG 0.13 0.00 0.69 0.81
Griffin et al. (1999) – – 0.36 –
Kanakidou et al.(2000) 1.60–1.70 – 1.20–1.60 2.90–3.20
Koch (2001) 0.96 – – –
Chung and Seinfeld(2002) 1.20 – 0.19 1.39
Derwent et al.(2003) – – 1.40 –
Tsigaridis and Kanakidou(2003) – – 0.02–0.38 –
Lack et al.(2004) – – 0.38 –
Liao and Seinfeld(2005) 1.27 – 0.33 1.60
Farina et al.(2010) 1.10 – 0.98 2.08
Pye and Seinfeld(2010) 0.03 0.90 0.71 1.65

Lifetime (days)

BASE 0.6 9.2 11.2 9.6

In this work, we used the model ofFarina et al.(2010)
to treat SOA formation from VOCs. However, since the
simulation of POA and SOA is integrated under the VBS,
changes in handling the POA can influence the V-SOA bur-
den. Across the BASE, LOEM, LOVL and NOIV scenarios,
the V-SOA burden does not change significantly. However,
there is a two-fold increase in the V-SOA burden in the HVAP
scenario due to the enhanced sensitivity of the gas-particle
partitioning of biogenic V-SOCs to changes in temperature.
Our model does not allow for aging of biogenic V-SOCs,
which results in most (90 %) of the biogenic V-SOC mass
to exist in the gas phase. In the free troposphere, where tem-
peratures are lower, a lot of this gas-phase mass condenses
into the particle phase yielding a higher burden in the HVAP
scenario. In contrast, anthropogenic V-SOCs, which are al-
lowed to age, account for only 13 % of the total gas + particle
mass burden with a much lower fraction (50 %) in the gas
phase. Hence, we do not see a significant shift in the anthro-
pogenic V-SOA burden due to the changes in temperature in
the HVAP scenario.

4.2 Comparison with field measurements

To evaluate model performance, we compare predictions to a
wider set of observations than considered by previous stud-
ies. The evaluation considers OA composition, volatility and
isotopic composition in addition to surface OA mass con-
centrations. While total OA concentrations are important in
understanding the abundance, the other metrics are useful in
identifying the sources, chemistry and composition of ambi-
ent OA.

4.2.1 Surface OA concentrations

– United States: Fig. 7 shows scatter plots comparing
model-predicted total OA surface mass concentrations
from BASE, LOEM, LOVL, HVAP and NOAG with
measured values from the Interagency Monitoring of
Protected Visual Environments (IMPROVE) network
(IMPROVE, August, 1995). Table5 presents the sta-
tistical performance metrics for all the model runs in-
cluding the TRAD scenario. The IMPROVE network
measures PM concentrations across∼200, mostly re-
mote/rural, locations within the United States. Each
point on the scatter plot represents a monthly averaged
value at a particular grid cell. The IMPROVE net-
work reports OA mass concentrations in µg C m−3. To
compare with model predictions they are converted to
µg m−3 using a conservative organic-mass-to-organic-
carbon ratio of 1.8, based on the work ofTurpin and
Lim (2001) andAiken et al.(2008). In Fig.7, red points
represent the summer months of June, July and August
and blue points represent the winter months of Decem-
ber, January and February.

We initially compare observations to results from the
BASE scenario (Fig.7a) and then highlight differences
amongst the different sensitivity cases. In summer, the
BASE predictions for OA surface mass concentration
lie within a factor of 2 of observations with little bias.
The winter-time predictions of the BASE model, how-
ever, are centered around the 1:2 dashed line with most
(83 %) predictions lying within a factor of 5.
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Statistical metrics of fractional bias and fractional er-
ror were calculated to quantitatively evaluate model
performance.

Fractional Bias=
1

N

N∑
i=1

M −O

M+O
2

(4)

Fractional Error=
1

N

N∑
i=1

|M −O|

M+O
2

(5)

whereM are predicted values,O are observed values
andN is the sample size.

For the BASE scenario, both the fractional bias and
fractional error are smaller in summer than in winter.
The TRAD model, in comparison, has similar perfor-
mance metrics in summer but better metrics in winter
than the BASE model. So on an absolute OA mass
concentration basis, the TRAD model performs better
than the BASE model due to differences in wintertime
results. In the BASE model, reduced photochemistry

in winter results in reduced aerosol formation through
gas-phase oxidation of POC emissions. The TRAD
model, on the other hand, predicts higher OA concen-
trations because none of the POC emissions evaporate.
We are not surprised by the TRAD model performance
becausePark et al.(2006), using the same emissions in-
ventory and IMPROVE observations, arrived at a simi-
larly good model-measurement comparison.Park et al.
(2006) achieved the better model performance by in-
creasing the fossil and biofuel OC emissions over North
America by a factor of∼2.

Figure 7b indicates that the lower emissions (in the
LOEM case) lead to a greater under-prediction during
the winter months without significantly changing the
summer comparison. This result is consistent with the
finding of Heald et al.(2006a) that North American
winter-time predictions using theBond et al.(2004) in-
ventory are low when compared to observations. The
lower volatility distribution (in the LOVL case) im-
proves winter performance without significantly chang-
ing the summer performance. This occurs because the
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Table 5. Statistical metrics to evaluate comparison between model results from BASE, TRAD, LOEM, LOVL, HVAP and the IMPROVE
network for summer, winter and the entire year.

Fractional Bias Fractional Error Observed Mean Predicted Mean
(%) (%) (µg m−3) (µg m−3)

BASE
Summer −6 48 3.0 3.0
Winter −84 86 1.5 0.6
Annual −36 58 2.1 1.7

TRAD
Summer 6 54 3.0 3.7
Winter −10 48 1.5 1.5
Annual 2 52 2.1 2.6

LOEM
Summer −17 47 3.0 2.7
Winter −124 124 1.5 0.3
Annual −58 73 2.1 1.4

LOVL
Summer 11 50 3.0 3.7
Winter −26 50 1.5 1.3
Annual 3 49 2.1 2.4

HVAP
Summer 9 57 3.0 3.6
Winter −22 52 1.5 1.2
Annual 1 54 2.1 2.4

NOAG
Summer −59 75 3.0 2.0
Winter −135 135 1.5 0.3
Annual −98 104 2.1 1.0

OA formed from primary organic sources (POA and SI-
SOA) accounts for a larger fraction of the winter OA
(65 %) than the summer OA (30 %). Hence, any change
in the magnitude or volatility distribution of POC emis-
sions has a bigger influence over the OA mass con-
centrations in winter than in summer. The HVAP sce-
nario, using a wider range of enthalpy of vaporization
values, better reproduces the winter data with a slight
over-prediction during the summer. Overall, both the
LOVL and HVAP scenarios better predict the absolute
OA concentrations than the BASE and LOEM scenar-
ios due to an improved winter-time comparison. Both
LOVL and HVAP predict, on an annual basis, a neg-
ligible fractional bias and a fractional error of∼50 %.
Model predictions from the NOAG scenario suggest
that the model-measurement comparison worsens as the
OA mass concentration decreases. That model does
well in polluted locations (high OA mass concentra-
tions) presumably because the OA is very close to the
source and is still fresh. This implies that as the OA
moves away from source regions, there is an enhance-
ment in the OA mass that the NOAG model is not able
to reproduce. It is clear, when compared to the BASE
scenario, that aging the POC emissions is an essential
process that needs to be modeled in order to enable a
better model-measurement comparison.

Presumably, the wintertime comparison could also be
improved by aging biogenic SOA. However, given that
biogenic VOC emissions are higher and photochemical
processing is stronger in the summer, aging biogenic
SOA at the same rate as anthropogenic SOA would in-
fluence the summertime IMPROVE comparison much
more than the wintertime IMPROVE comparison.

– Rest of the World: Fig. 8 shows scatter plots com-
paring model-predicted OA surface mass concentrations
from BASE, LOVL, NOIV, HVAP and NOAG with ob-
servations from across the globe (Liousse et al., 1996;
Chung and Seinfeld, 2002; Zhang et al., 2007). The per-
formance in the summer and winter months across the
four comparisons is similar to that shown in Fig.7. The
scatter, however, is much greater than the IMPROVE
comparisons and the predictions sometimes lie an or-
der of magnitude below observations. For example,
for the BASE case, the annual fractional bias is−83 %
and the fractional error is 105 %, both much larger than
the annual IMPROVE metrics. The large scatter might
be due to inconsistent and non-standardized measure-
ment methods used by the different global networks
such as differences in artifact correction, carbon anal-
ysis method or sampling duration. The IMPROVE net-
work, in contrast, is an integrated effort employing stan-
dardized protocols and instruments for measurement,
making it a much more consistent dataset to compare
against.
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Fig. 8. Scatter plot comparing model predictions from BASE, LOVL, NOIV, HVAP and NOAG with observed values at rural, remote and
marine sites across the globe (Liousse et al., 1996; Chung and Seinfeld, 2002; Zhang et al., 2007). Red represents the months of June,
July and August (JJA), black represents the months of September, October and November (SON), blue represents the months of December,
January and February (DJF) and green represents the months of March, April and May (MAM) The solid grey line is the 1:1 line and the
dashed lines are the 1:10 and 10:1 lines.

4.2.2 Oxygenated organic aerosol

Recent work, using Aerosol Mass Spectroscopy and fac-
tor analysis, has identified two chemically distinct classes
of OA: hydrocarbon-like OA (HOA) and oxygenated OA
(OOA) (Zhang et al., 2005). HOA is oxygen depleted OA
and is associated with fresh POA emissions; and OOA is
oxygen rich OA and is associated with aged OA/SOA and
biomass burning (Zhang et al., 2005, 2007; Robinson et al.,
2007; Donahue et al., 2009). Zhang et al.(2007) estimated
the fraction of HOA and OOA in OA at numerous locations
around the world. We compare those estimates with model
predictions assuming HOA to be equivalent to POA and
OOA to be a sum of SI-SOA and V-SOA. Based on our dis-
cussion in Sect.2.1.4, for the TRAD model, we consider all
non-volatile POA to be “unaged” and therefore as HOA and
V-SOA to be OOA.

Figure 6a compares the observed OOA-to-OA ratio at
urban-downwind and rural/remote locations to predictions
of the SOA-to-OA ratio from the TRAD and BASE mod-
els. The comparison deliberately omits urban locations due
to the GCM’s low spatial resolution. The observations indi-
cate that OOA accounts for a large fraction of ambient OA.
The BASE case reproduces more accurately the fraction of
OOA with model predictions lying between−21 and +27 %
of observations. In comparison, the TRAD model, on an av-
erage, under-predicts the OOA fraction by a factor of two. To
determine the sensitivity of the model predictions to differ-
ent input parameters, we calculate a concentration-weighted
average SOA-to-OA ratio for the urban-downwind and ru-
ral/remote location categories for the various sensitivity runs.
The sensitivity runs predict a range from 0.79 to 0.93 for the
urban-downwind locations and 0.71 to 0.90 for rural/remote
locations respectively. The observed average, in comparison,
was 0.83 and 0.95. In contrast, the TRAD model-predicted
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average was 0.56 and 0.45 respectively. This suggests that a
high SOA-to-OA ratio that is consistent with observations is
an outcome of the revised framework (semi-volatile and re-
active POA) and is not sensitive across the range of possible
input parameters. Therefore, the revised framework better
predicts the high fractional contribution of SOA as reported
by field studies.

4.2.3 OA volatility

Figure 9 compares model-predicted OA volatility to mea-
surements from three different field campaigns: (a) FAME
campaign in May–June 2008 (FAME-2008) at Finokalia, a
remote site in the northeast of Crete, Greece, (b) Mexico
City campaign in March–April 2006 (MILAGRO-2006) and
(c) Riverside campaign in July–August 2005 (SOAR-2005).
The OA volatility was measured using thermodenuders and is
represented as a thermogram, which is a plot of the OA mass
fraction remaining as a function of temperature. The mea-
sured thermograms have been corrected for non-equilibrium
effects in the thermodenuder using the work ofLee et al.
(2010) for FAME-2008 and the work ofCappa and Jimenez
(2010) for MILAGRO-2006. For SOAR-2005, the thermo-
gram has not been corrected for non-equlibrium conditions in
the thermodenuder. A thermogram for the model predictions
is computed using a simple equilibrium model that changes
the OA gas-particle partitioning with temperature based on
the Clausius-Clapeyron equation.

At all three locations, the BASE case predicts the OA
volatility better than the TRAD case. The initial decrease
in the mass fraction remaining for the TRAD model is due
to the evaporation of semi-volatile V-SOC. At higher tem-
peratures, the flat response of the thermogram reflects the re-
maining POA, which is treated as non-volatile by the TRAD
model and does not evaporate at any temperature. Amongst
the various sensitivity runs, the NOIV scenario predicts a
somewhat more volatile OA while the LOVL predicts a
somewhat lower volatility OA; however, these differences are
likely to be within the measurement uncertainty. The HVAP
case, in contrast, predicts a much higher volatility OA, over-
predicting the evaporation of ambient OA with temperature
and highlighting the sensitivity of the gas-particle partition-
ing to 1Hvap. Cappa and Jimenez(2010) also found that
Epstein et al.(2010) formulation of1Hvap produces a much
too strongC∗ sensitivity to temperature.

For the MILAGRO data-set, a possible explanation for a
higher observed volatility could be the proximity of the mea-
surement site (T0 supersite) to the urban source region. This
means a shorter time for aging and thus a potentially more
volatile OA. The model results, on the other hand, are rep-
resentative of a well-mixed and aged aerosol in a 4◦latitude
x 5◦longitude grid cell. In contrast, FAME-2008 is a better
data-set to evaluate the model predictions against because it
is isolated from large sources and therefore indicative of OA

!" #"" #!" $"" $!"
"

"%$

"%&

"%'

"%(

#

)*+,*-./0-*12
°
34

5
.
6
6
17
-.
8
/9
:
;
1<
*
+
.
9;
9;
=

1

1
2841>?@<!$""!

!" #"" #!" $"" $!"
"

"%$

"%&

"%'

"%(

#

)*+,*-./0-*12
°
34

5
.
6
6
17
-.
8
/9
:
;
1<
*
+
.
9;
9;
=

1

1
2>415?@AB<C!$""'

!" #"" #!" $"" $!"
"

"%$

"%&

"%'

"%(

#

)*+,*-./0-*12
°
34

5
.
6
6
17
-.
8
/9
:
;
1<
*
+
.
9;
9;
=

1

1

7>5?!$""( )<>@ A>B? CDEC FDGE HE>I

2.417>5?!$""(

Measured

Measured

Measured

Fig. 9. Thermograms comparing equilibrium-corrected data from
the (a) the FAME-2008 campaign and(b) MILAGRO-2006 cam-
paign with model results.(c) Thermogram comparing raw mea-
sured data from SOAR-2005 with model results. Data are fromLee
et al.(2010), Cappa and Jimenez(2010) andHuffman et al.(2009b).

transported and aged over longer distances. For the SOAR
dataset, the BASE scenario predicts a slightly more volatile
OA perhaps because the field data is not in equilibrium dur-
ing measurement.
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Fig. 10: Contemporary fraction of OA at IMPROVE sites during the (a) summer and (b) winter
months compared with model results from BASE and BASE (Revised). Data are from Schichtel
et al. (2008).
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Fig. 10. Contemporary fraction of OA at IMPROVE sites during the(a) summer and(b) winter months compared with model results from
BASE and BASE (Revised). Data are fromSchichtel et al.(2008).

4.2.4 OA isotopic composition

The radioactive isotope of carbon (14C) is used to distinguish
fossil (coal, gasoline, diesel) and contemporary (wood, agri-
cultural waste, pollen, vegetation) contributions to ambient
OA (Szidat, 2009). Schichtel et al.(2008) present the iso-
topic composition for 12 rural sites collocated with the IM-
PROVE network. Figure10 shows a comparison between
Schichtel et al.(2008) measured contemporary fractions dur-
ing the (a) summer and (b) winter months and model results
from the BASE scenario (all sensitivity runs predict similar
results). To calculate the fossil and contemporary fractions,
we include both OC and EC. Fossil carbon includes EC, POA
and anthropogenic SOA from fossil fuel sources. Contempo-
rary carbon includes EC, POA and anthropogenic SOA from
biofuels and open burning, and biogenic SOA. The emission
inventory for VOC precursors of aV-SOA do not allow for
separate tracking of fossil and contemporary sources. Hence,
we divide aV-SOA into its fossil and contemporary fractions
in the same proportion as the total annual fossil and contem-
porary emissions of anthropogenic VOCs in the US.

For summer, the observed contemporary fractions vary
from 0.8 to 1.0, which the BASE model slightly under-
predicts (0.62 to 0.85). In winter, the observed contempo-
rary fractions range from 0.67 to 1.0 which are significantly
under-predicted by the BASE model (0.35 to 0.55). There
are two possible reasons for the shortcoming of the model in
predicting the contemporary fraction in winter. First, for the
observations, the EC on average, accounts for 15 % of the

total carbon (TC) in summer and 22 % of the TC in winter.
In comparison, the BASE model predicts that EC on average,
accounts for 22 % of the TC in summer and 60 % of the TC in
winter. Hence, the BASE model predicts the correct EC:TC
ratio in the summer but over-predicts EC concentrations in
the winter, which are mostly fossil in origin (80 % of US EC
emissions), at all locations except Mt Rainier (refer to Fig. S1
in Supplement). Second, the BASE scenario under-predicts
OC concentrations in winter, which are mostly contemporary
in origin (78 % of US OC emissions), at all locations except
Grand Canyon. This leads to a larger fossil fraction and a
smaller contemporary fraction in winter. Therefore, lower
predicted EC concentrations and higher predicted OC con-
centrations will likely improve wintertime comparisons. To
that effect, we take EC concentrations from the LOEM (LOw
EMissions) scenario and pair them with OC concentrations
from the LOVL (LO VoLatility) scenario to predict the con-
temporary fraction. This combination, labelled “BASE re-
vised” modestly improves the comparison during the winter
months.

It is also possible that the model-predicted contemporary
fraction in winter is low because the biogenic SOA, which is
all contemporary, is not allowed to age. However, as men-
tioned in Sect.4.2.1, this would badly over-predict the sum-
mertime OA mass concentration as was seen byLane et al.
(2008) andMurphy and Pandis(2009). Hence, it is not clear
whether the aging of biogenic SOA is important in predicting
the correct contemporary fraction in winter.
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5 Discussion and conclusions

In this work, we develop a global OA model that treats
POA as semi-volatile and reactive and incorporates the emis-
sions and oxidation of IVOCs as an additional source of
OA. The OA model employs the volatility basis set (VBS)
framework to simulate the emissions, chemical reactions
and phase partitioning of all OA. Model sensitivity was as-
sessed by varying the POC emissions, POC volatility dis-
tribution, IVOC emissions, partitioning process and photo-
chemical aging.

The BASE version of the revised model predicts an an-
nual OA production rate of 90.6 Tg yr−1and a global burden
of 2.37 Tg. In contrast to previous models that treat POA
as non-volatile and non-reactive, the revised model predicts
that most of OA is SOA, i.e. formed from the oxidation of
vapor/gas phase organics. This happens because most of
the POA evaporates and reacts with atmospheric oxidants
to form low volatility products that condense into the par-
ticle phase as SI-SOA. This brings the POA/SOA split pre-
dicted by the revised model in better agreement with ambient
measurements. This work also emphasizes the importance of
oxidation of IVOCs as an additional source of OA. The re-
vised model predicts that IVOCs contribute to more than a
third of the total OA formed in the atmosphere. This im-
plies that global and regional models that do not account for
IVOCs could be under-estimating OA formation by 50 %.
The amount of OA arising from IVOC oxidation depends
on the magnitude of IVOC emissions and the mechanisms
that model its oxidation in the atmosphere, both of which re-
main fairly uncertain.Pye and Seinfeld(2010) use a different
method to model IVOC emissions and reactivity, and hence
predict a very different (5 % compared to our 30 %) contri-
bution of IVOCs to the global OA budget. If we wish to
determine their true influence, more effort needs to be made
to constrain their emissions and reactivity in the atmosphere.

We evaluated model performance by comparing predic-
tions not only against ambient OA mass concentrations
but also against observations that provide insight into the
sources, chemistry and properties of OA. These additional
observations include degree of oxygenation, volatility and
isotopic composition. The revised versions of the model per-
form much better on all those additional observations than
the traditional version of the model. This illustrates that by
treating POA as semi-volatile and reactive and accounting
for emissions and oxidation of IVOCs, we have improved
the model’s capability in predicting the sources, chemistry
and properties of OA. For example, we are able to predict
the degree-of-oxygenation of OA. This has important im-
plications for climate models that determine the effects of
aerosols on radiative forcing since oxygenated OA have a
higher propensity to uptake water and affect cloud formation.
We are also able to predict the volatility of OA which is im-
portant in determining its lifetime and fate in the atmosphere.

Amongst the sensitivity runs, the scenario where IVOC
emissions are set to zero does reasonably well in predict-
ing the observed degree-of-oxygenation and volatility but
significantly under-predicts wintertime OA surface mass
concentrations over the United States. The BASE version
performs similar to the no-IVOC version but has a slightly
better wintertime performance. The simulation, where we
use the parameterization byEpstein et al.(2010) to repre-
sent the enthalpy of vaporization, performs well in predict-
ing the OA mass concentrations over the United States and
the degree-of-oxygenation. But, it predicts an ambient OA
that has a very high volatility compared to measurements at
the FAME, MILAGRO and SOAR field campaigns. The low
volatility version of the model, however, performs reason-
ably well across all three metrics. Given the simulations per-
formed in this work, we could argue that to get model pre-
dictions to agree with observations across mass concentra-
tions, degree-of-oxygenation and volatility, the ideal model
would need a (1) high IVOC contribution to the OA burden,
(2) volatility lower than that of diesel exhaust for POC emis-
sions and (3) a lower sensitivity of the OA to changes in tem-
perature than those proposed byEpstein et al.(2010).

A comparison of OA surface mass concentrations between
the revised model and the IMPROVE network revealed good
agreement in the summer months and an under-prediction
in the winter months. The sensitivity runs suggest that the
comparison during the winter months can be improved, with-
out affecting the summer comparison, by increasing emis-
sions or decreasing the volatility of the POC emissions. The
under-prediction of OA mass concentrations and the contem-
porary fraction in winter lead us to hypothesize that the emis-
sion inventory is probably under-representing a contempo-
rary source in winter. To support that argument,Bond et al.
(2004) show that about 60 % of contained POC emissions in
the US are from residential biofuel use and that more than
50 % of the uncertainty in those emissions arises from res-
idential wood burning. Hence, it is likely that residential
biofuel emissions are under-represented in the emission in-
ventory in winter.

Models that simulate the abundance and properties of OA
need to account for the semi-volatile and reactive nature of
POA. However, there are currently significant uncertainties
in building models that represent that behavior. Future work
needs to focus on quantifying the total (vapor + particle)
emissions, volatility and atmospheric processing of POC.
Further, models that are used to simulate OA need to be eval-
uated by comparing model predictions with observations of
intensive properties that provide clues about their physical
and chemical processes: degree of oxygenation, volatility
and isotopic composition.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/11/7727/2011/
acp-11-7727-2011-supplement.pdf.
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