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Abstract. Clouds play a central role in many aspects of the
climate system and their forms and shapes are remarkably di-
verse. Appropriate representation of clouds in climate mod-
els is a major challenge because cloud processes span at least
eight orders of magnitude in spatial scales. Here we show
that there exists order in cloud size distribution of low-level
clouds, and that it follows a power-law distribution with ex-
ponentγ close to 2.γ is insensitive to yearly variations in en-
vironmental conditions, but has regional variations and land-
ocean contrasts. More importantly, we demonstrate this self-
organizing behavior of clouds emerges naturally from a com-
plex network model with simple, physical organizing princi-
ples: random clumping and merging. We also demonstrate
symmetry between clear and cloudy skies in terms of macro-
scopic organization because of similar fundamental underly-
ing organizing principles. The order in the apparently com-
plex cloud-clear field thus has its root in random local inter-
actions. Studying cloud organization with complex network
models is an attractive new approach that has wide applica-
tions in climate science. We also propose a concept of cloud
statistic mechanics approach. This approach is fully com-
plementary to deterministic models, and the two approaches
provide a powerful framework to meet the challenge of rep-
resenting clouds in our climate models when working in tan-
dem.

1 Introduction

Low-level warm clouds exert a strong negative radiative ef-
fect on the climate system by reflecting a large fraction of
incoming solar radiation back to space while emitting a sim-
ilar amount of longwave radiation as the Earth’s surface
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(Ramanathan et al., 1989; Hartmann and Doelling, 1991).
These warm clouds appear in widely different and seemingly
chaotic forms and sizes. For instance, while stratocumulus
cloud sheets over oceans can have a relatively homogeneous
appearance at spatial scales of∼100 km, the inhomogene-
ity of trade cumulus and fair weather cumulus clouds can be
easily appreciated at scales as small as 10m (Wielicki and
Welch, 1986; Cahalan and Joseph, 1989; Zhao and Di Giro-
lamo, 2007). The appearance, or macroscopic organization,
of these clouds is regulated by a set of complex and interact-
ing micro- and macro- scale processes (Klein and Hartmann,
1993; Stevens and Feingold, 2009) operating at spatial scales
ranging from Kolmogorov scale∼1 mm to typical meteoro-
logical mesoscale∼100 km, a span of eight orders of mag-
nitudes. The large spatial scale range is an insurmountable
challenge for deterministic physical cloud models (Siebesma
and Jonker, 2000; Stevens, 2005) and will be in the foresee-
able future. Yet, these clouds are at the heart of uncertain-
ties related to future climate simulations (Bony et al., 2006).
We have to rely on observational and modeling techniques
to derive the most essential part of cloud variability and its
relationship with the environment in order to appropriately
account for them in climate models.

2 Data and method

Here we use the MODerate resolution Imaging and Spectro-
radiometer (MODIS) cloud product to look at cloud macro-
scopic organization. The MODIS cloud product provides a
1-km resolution cloud mask. Cloud thermodynamic phase
(i.e., a determination of whether a cloudy pixel is liquid, ice,
or mixed) and retrieval quality assurance data are also avail-
able at the same spatial resolution (Platnick et al., 2003).
Based on MODIS cloud mask data, we define a cloud as a
patch of cloudy pixels connected through four-neighbor con-
nectivity (i.e., diagonal neighbors are ignored). Results in the
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paper are not affected by the choice of four-neighbor or eight-
neighbor connectivity. The size of a cloud is simply taken
as the number of pixels a cloud contains. For each level-2
granule (approximately 2340× 2030 km), only “confidently
cloudy” pixels are retained based on the cloud mask and
quality assurance flags (for details see Platnick et al., 2003).
We then scan this filtered cloud mask field and find individ-
ual clouds as defined above. Since in this study we are only
interested in warm liquid clouds, any cloud that contains a
non-liquid (mixed or ice phased) pixel is not included in our
sampling database. Finally, we are only interested in clouds
that have relatively larger size, and any cloud whose diame-
ter is smaller than 3 km is removed. This is recognizing first
that data at MODIS resolution (1 km) would introduce large
uncertainties when used to study clouds at smaller scales
(Wielicki and Welch, 1986; Zhao and Di Girolamo, 2007).
It is also because we are interested in cloud organizations at
scales larger than the typical break scale (∼1 km) observed
for trade cumuli (Cahalan and Joseph, 1989), even though
small-scale statistics are also rich and important (Neggers et
al., 2003; Koren et al., 2008; Jiang et al., 2009).

3 Results

Previous studies have shown that despite the highly inho-
mogeneous appearance of trade cumulus and fair-weather
cumulus clouds, there exists order in a statistical sense for
small (less than∼1 km in diameter) clouds (Cahalan and
Joseph, 1989; Benner and Curry, 1998). In Fig. 1 normalized
number frequency is plotted against cloud size on a log-log
scale for a trade-cumulus dominated region [5◦ N∼30◦ N,
170◦ W∼155◦ W]. The normalized number frequency is de-
fined asPk = Nk/(N Sk), where Nk is the number of clouds
within thekth size bin,N is the total number of clouds in a
sample, andSk is the size ofkth bin. The different curves
are based on July data of different years (2003–2010). The
number of clouds sampled for each curve is on the order
of 100 000. We find that similar to small clouds, the cloud
size distribution of larger warm clouds studied here follows a
power-law:Pk = CK−γ . The scale-free power law relation-
ship between number frequency and cloud size holds for all
the years (2003–2010) analyzed. The multi-year mean of the
exponentγ for the power law relationship is 1.95± 0.036,
with 0.036 being the standard deviation. Correlation coef-
ficient between Log(Pk) and Log(K) is always greater than
0.99 (same for other plots), indicating a good fit to the power-
law.

Interestingly, the observedγ is nearly identical to esti-
mates for warm oceanic convective clouds that are smaller
than∼1 km (Kuo et al., 1993; Benner and Curry, 1998; Zhao
and Di Girolamo, 2007). We postulate that the scale-free be-
havior has no break between scales ofO (10 m) and ofO
(100 km), four orders of magnitude difference. The break re-
ported in previous studies is probably due to insufficient sam-

pling of larger clouds (recall thatPk ∼ K−γ ) because those
studies used only a few cloudy scenes with each covering
an area∼10 000 km2 or less (Zhao and Di Girolamo, 2007).
In comparison, we used about 200 cloudy scenes every year
with each covering∼1 000 000 km2, a roughly 4 orders of
magnitude increase in total sampling for larger clouds. More
importantly, the ratio between the size of a scene and the
cloud size is too small for previous studies that used high
resolution data, but small granule size. As a result, larger
clouds in previous studies are exceedingly less likely to be
sampled, and even if they are present in a scene, it is very
likely that they are on the edge and therefore not completely
sampled, leading to a low bias in their observed frequency of
occurrence.

Another important feature is that the power law expo-
nentγ is rather constant during the eight-year period. This
is unexpected because, despite the generally homogeneous
trade wind circulation within a particular month, there exists
strong interannual variation. For example, the mean cloud
fraction reported by MODIS fluctuates by more than 30 %
over these years. The invariant behavior indicates the warm
cloud organization is much less sensitive to environmental
conditions than the bulk cloud fraction. Observing the scale-
free behavior and the insensitivity of the exponent to large-
scale conditions, we hypothesize that these warm trade cu-
mulus clouds have robust intrinsic statistical organization,
i.e., they are self-organized. The notion of self-organization
generally refers to the property of a system where emerging
order or structure appears on its own without any external in-
volvement. In other words, in self-organizing systems, the
system-wide, emerging order or structure results automati-
cally from micro-scale interactions among internal compo-
nents of the system.

This self-organizing behavior is supported by our analy-
ses from other regions as well as previous studies (Cahalan
and Joseph, 1989; Benner and Curry, 1998; Kuo et al., 1993;
Benner and Curry, 1998; Zhao and Di Girolamo, 2007). We
analyzed data for trade cumuli over the Caribbean Ocean and
Subtropical South Pacific (not shown here) and fair-weather
cumuli over the west Amazon Basin (Fig. 3a). Cloud orga-
nization at these locations have similar characteristics: the
cloud size distribution follows a power law (Pk

′
∼ K−γ ′

,
P

′

k = Pk∗Sk) and the exponentγ
′

(γ
′

= γ −1) is insensitive to

yearly variations in large-scale condition. However,γ
′

does
have regional differences; for instance, it is 1.1 for trade wind
cumulus over the Caribbean ocean and 0.83 (Terra)∼ 0.91
(Aqua) for fair-weather cumulus over the Amazon. Further-
more, the diurnal variation of the cloud self-organization has
interesting land-ocean contrast:γ

′

has larger variation over
land than over ocean (Fig. 1); and while values in the early
afternoon (Aqua MODIS) are consistently smaller than those
in the mid-morning (Terra MODIS) over ocean, suggesting
an increase in overall cloud size, it is the opposite over land
(here we show data from over the Amazon during the month
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Fig. 1. (A) a MODIS visible image covering roughly the area between 15◦ N and 30◦ N and between 163◦ W and 176◦ W. The diversity and
complexity of apparent cloud appearance can be appreciated.(B) Cloud size frequency distributions for eight years using Terra data.(C)
same as in(B) but using Aqua data. The interannual variation in cloud organization is small. The diurnal variation (Terra versus Aqua) is
also small for each year.

of September) (Fig. 3a). It is counter intuitive that the clouds
are smaller in the afternoon than those in the morning over
land because clouds do generally grow in size from morn-
ing to afternoon. We think this contrast is probably due to
our sampling: only liquid phased clouds are included, while
clouds over land usually grow not only in the horizontal but
also in the vertical, making them more likely to be mixed
phased or ice phased in the afternoon. Over the trade cu-
mulus region, however, clouds cannot grow in the vertical as
much due to capping trade inversion.

4 A stochastic model

Large eddy simulation models have demonstrated that simu-
lated small convective cloud sizes (smaller than 1km in diam-
eter) follow a power-law distribution (Neggers et al., 2003;
Jiang et al., 2009). However, the physical explanation for
this cloud behavior is still a scientific challenge (Neggers
et al., 2003). Here we introduce a new stochastic complex
network model approach to explain the observed cloud self-

organization. Using stochastic complex network models to
study both fundamental physics (e.g., statistical mechanics
and magnetism) and other natural (e.g., cell biology) and so-
cial systems (collaborative network) is an active interdisci-
plinary research area (Albert and Barabasi, 2002; Newman,
2003). These models are usually based on a connected graph
that evolves based on a set of rules that mimic the studied sys-
tem. With the model we want to address the question: what
stochastic mechanisms are driving the clouds to organize in
the observed fashion?

In this model a cloud, a collection of connected cloudy
pixels, is abstracted as a vertex in a graph with the edges
connected to the vertex as the cloudy pixels. The degree
of a vertex is the number of edges connected to it. It then
represents cloud size, and the cloudPk −K relationship is
characterized by the degree distribution of a graph (Barabasi
and Albert, 1999). To construct and evolve the graph, we
note two key physical cloud-organizing processes and repre-
sent them with corresponding organizing principles (or rules)
in the stochastic complex network model. First we observe
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Fig. 2. A diagram illustrating the two operations in the model.(I) attachment, where a new vertex is added to the graph and it is connected
to an old vertex by an edge;(II) merging, where vertices a and b are merged into vertexa

′

; any edge between a and b is removed; if a and b
have a comment neighbor, c in this case, after the merging only one edge remains between a

′

and c.

that in nature cloud merging is common (Tao and Simpson,
1984) (Nicholls and LeMone, 1980; Wilcox, 2003), which
can be readily appreciated with the naked eye in the after-
noon of a summertime fair-weather day. One of the orga-
nizing principles for our network model is, thus, two ver-
tices can be randomly selected and merged atN vertices per
time interval while vertices are created atC per interval. If
the merged vertices are already connected, the edge between
them will be removed after merging. Redundant edges be-
tween the merged vertices and their common neighbors are
also removed, i.e., only one edge will connect the merged
vertex and the common neighbors of merged vertices (see
Fig. 2). Second, we recognize the observation that clouds
often appear in patches over the ocean (Malkus, 1954). It is
hypothesized that clouds tend to “clump” together because
existing clouds can provide a favorable environment for new
cloud formations (Randall and Huffman, 1980). To reflect
cloud clumping, our second organizing principle is prefer-
ential attachment: when a new vertex is added to the graph,
edges will be created atM per time interval to randomly se-
lected vertices. The probability of selecting a vertex j is pro-

portional tokj/
n∑

i=1
ki , whereki , kj are degrees of verticesi

andj , n is the number of vertices in the network at present
time. In other words, larger clouds have a better chance of
growing.

We start the graph with a few vertices and edges by ran-
dom assignment, the choice of which does not affect the fi-
nal outcome of the model. The network grows in size and
evolves in its structure based on two organizing principles,
merging and clumping, as described above. At each time in-
terval,C new vertices are added to the network andM edges
are created for each newly added vertex. The edges are at-
tached to an existing vertex (j ) with probability 5, so that

5 = kj/
n∑

i=1
ki . At each time intervalN vertices are merged.

The set of parameters are thereforeM, N , andC. We can
sample the model after it grows sufficiently large (here 4000
vertices are chosen). A degree distribution is shown in Fig. 3
as an example. The degree distribution follows a power law
and the exponentγg is around 1.14, comparable to cloud
fields over the Caribbean. Our model can effectively repro-
duce the range of observedγ with different combinations
of M, N , andC. We have the following conceptual pic-
ture from this model: individual cloud patches and cloudy
pixels randomly pop up constantly, the cloud fields orga-
nize by randomly merging and clumping, and through these
local random interactions macroscopic order (a power law
distribution in cloud size) emerges. Here we note a strik-
ing analogy between statistical mechanics and cloud organi-
zation (or macroscopic behavior of cloud system): macro-
scopic order emerges based on random, simple microscopic
interactions. We propose to adopt a “cloud statistical me-
chanics” approach to study macroscopic behavior of clouds
(Yuan and Li, 2010). In this approach individual clouds or
cloudy volumes can be treated as the basic elements of the
system, and macroscopic cloud behaviors can then be de-
scribed as the behavior of a system composed of a large num-
ber of these basic elements, just like in statistical mechanics
where the thermodynamics of a system can be interpreted
and explained by statistical behavior of large ensemble of
basic elements. The behavior of these elements at its native
scales can be measured and studied with traditional instru-
ments and physical deterministic models. The macroscopic
behavior of cloud system can then be described using math-
ematical tools such as probability theory and network theory
(as here). The rich and growing arsenal for studying com-
plex networks can provide powerful tools for studying cloud
organization with more sophisticated network models. Due
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Fig. 3. (A) Cloud size frequency distributions for September 2008
over the clean West Amazon. The two lines are for data from Aqua
(in red) and Terra (in black). A more pronounced diurnal variation
is noted compared to that over ocean.(B) Degree distributions from
the stochastic model run withM = 2, C = 3 andN = 1. We run
the model until it has 4000 vertices. The exponent is close to that
observed for trade cumuli over the Caribbean.

to the abstract construct of the model, the approach can be
used to understand and study a host of phenomena in climate
sciences. A few examples are provided in the following.

Stratocumulus clouds often appear as relatively homoge-
neous and inter-connected cloud decks. The cloud size dis-
tribution for closed cell convection regions does not often
obey power law as defined here [SOM]. However, in light of
recent fascinating developments on the organization of open
cell convection as stratocumulus decks breaking up (Stevens
et al., 2005; Xue et al., 2008; Wang and Feingold, 2009;
Feingold et al., 2010), we note an intriguing analogy between
the organization of trade cumuli and that of clear sky patches
inside the open cell stratocumulus region (Fig. 4). First, pre-
cipitation is mechanically organizing these open cells of con-
vection by generating mesoscale circulations (Stevens et al.,
2005; Xue et al., 2008; Wang and Feingold, 2009; Feingold
et al., 2010), and two “clear sky patches” can merge if some
clouds at the cell edge randomly disappear due to depleted

water or insufficient aerosol. Second, similar to cloud clump-
ing, as a clear sky patch grows in size it is increasingly diffi-
cult for new clouds to generate inside them due to the spatial
limit of the influence of precipitation outflow and possibly a
limiting availability of aerosol particles due to drizzle (Wood
et al., 2011). Given these two observations, we postulate
that fundamental organizing principles are nearly identical
for trade cumuli and clear sky patches inside regions of open
cells. Our analysis of clear sky statistics over two regions
with frequent appearance of open cell convection (Wood and
Hartmann, 2006) confirms this postulation (Fig. 4). The sizes
of clear sky cells follow a power law distribution. In other
words, there is a striking symmetry between organizations of
cloudy and clear skies. However, we argue that this naturally
results from the same set of fundamental organizing princi-
ples, merging and clumping, when viewed abstractly.

5 Discussion and summary

It has been shown that the size distribution has similar scal-
ing behavior for deep convective clouds (Mapes and Houze,
1993; Machado and Rossow, 1993; Wilcox and Ramanathan,
2001; Wilcox, 2003). Noting that cloud merging and clump-
ing are also common for deep convective clouds (Tao and
Simpson, 1984; Mapes and Houze, 1993; Wilcox, 2003), we
suggest that the macroscopic organization of seemingly com-
pletely different forms of convection, shallow versus deep,
can be understood with the same organizing principles in a
complex network model. Furthermore, precipitation orga-
nization shows similar power law behavior (Lovejoy, 1982)
and can be considered a direct result of deep convective cloud
organization. The moisture organization in the atmosphere
may also be understood with the complex network model ap-
proach (Kahn and Teixeira, 2009). Robust statistical relation-
ships captured from this approach can also find applications
in calculating radiative effect of clouds (Cahalan et al., 1994;
Marshak et al., 1994; Barker et al., 1996).

For all potential applications and further development of
the complex network models, observations and physical un-
derstanding of key processes that determine the final struc-
ture of a system are required. For example, merging rates
and clumping rates (growth rate for different cloud sizes) of
clouds may be observed from satellite data (Wilcox, 2003) or
physical cloud resolving models (Jiang et al., 2009). These
observations can be used to constrain the network model pa-
rameters and validate network model outputs. Furthermore,
different mechanisms of cloud merging (e.g., cold pool, dy-
namical waves) may be represented in a more advanced net-
work model, and dynamic interactions among and relative
importance of these mechanisms may be investigated.

All observed power law exponents for cloud size distribu-
tions in this study are close to 2, which is somewhat larger
than that of Kolmogorov exponent of 5/3 in a homogeneous
and steady turbulence regime. Assuming that observations
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Fig. 4. (A) A visible MODIS image showing a stratocumulus deck breaking up. Open cell convections dominate the scene. It is over the
Southern Pacific.(B) Clear sky size distributions for September 2008 over the South Pacific open cell region (Wood and Hartmann, 2006).
Both Aqua and Terra data are shown.(C) same as(B) but for open cell clouds over North Pacific (Wood and Hartmann, 2006).

here and those reported in previous studies are representative
of the true value, this implies that the effect of phase change
and inhomogeneity in thermodynamic properties of the real
atmosphere has a significant impact on the distribution of en-
ergy across the spectrum of turbulent eddy sizes. The larger
than 5/3 exponent implies the suppression of larger eddy for-
mations compared to homogeneous turbulence regime. This
suppression effect could be a result of a few factors such as
entrainment of free troposphere air mass, latent heat of phase
transition, radiative cooling/heating, and air-surface energy
exchange. The geographic variation of the exponent reported
in this study and in the literature should therefore be a result
of the thermodynamic differences in air masses under con-
trasting climate regimes. Nevertheless, the conceptual un-
derstanding of the scaling behavior is similar to the organi-
zation of Kolmogorov vortices: bigger vortices (or clouds)
are made from smaller ones, and the way it is made is the
same throughout the range of scales observed here and in
previous studies. This conceptual view fits quite nicely with
the organization principles of the complex network model
proposed here since these principles are not sensitive to indi-
vidual cloud (or vortex) size at all.

It is important to note that the cloud statistical mechanics
approach and deterministic cloud models are fully comple-
mentary to each other. On one hand, observations on the be-
havior of cloud macroscopic properties can provide insights
for deterministic models to determine microscopic processes
that are responsible. For example, while our stochastic model

can effectively produce the regional variation ofγ , the actual
clumping and merging rates (or other factors that contribute
to different cloud organization) should come from observa-
tions or deterministic model simulations with detailed micro-
physical processes (Siebesma and Jonker, 2000; Neggers et
al., 2003). On the other hand, insights on microscopic pro-
cesses can in turn improve the construct of stochastic mod-
els. An example is the issue of aerosol-cloud interactions.
Recent simulations suggest increased aerosol concentration
leads to stronger evaporation at cloud sides, which results in
more but smaller clouds (all are smaller than 1 km) (Jiang
et al., 2009). This microscopic influence of aerosols would
be expected to change cloud macroscopic organization since
it can modify cloud merging and clumping rates. The in-
terplay between these two approaches has a great potential
to pinpoint processes that are most critical for cloud macro-
scopic properties and to faithfully model these properties us-
ing computationally cheap stochastic models. The statistical
mechanics approach thus provides a framework that trans-
lates knowledge from micro-scale (cloud or convective cell)
processes to cloud macro-scale properties, which provides a
viable venue to meet the need of climate models to represent
statistical cloud macro-scale properties.

In summary, we show a self-organization of warm cumu-
lus clouds at spatial scales ranging across four orders of mag-
nitude in horizontal scale under a relatively homogeneous
environment. A novel stochastic model constructed on a
graph can effectively capture the essential cloud organization
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behavior and its regional variations. We demonstrate that
clear sky organization in a broken stratocumulus field has
the same behavior because, we argue, similar underlying or-
ganizing principles exist. Studying cloud statistical mechan-
ics on complex networks in tandem with deterministic cloud
models could potentially provide a powerful framework for
advancing our understanding of clouds.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/11/7483/2011/
acp-11-7483-2011-supplement.pdf.
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