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Abstract. Aqueous phase chemical processes of organic
compounds in the atmosphere have received increasing at-
tention, partly due to their potential contribution to the for-
mation of secondary organic aerosol (SOA). Here, we an-
alyzed the aqueous OH-initiated oxidation of isoprene and
its reaction products including carbonyl compounds and or-
ganic acids, regarding the acidity and temperature as in-
cloudy conditions. We also performed a laboratory sim-
ulation to improve our understanding of the kinetics and
mechanisms for the products of aqueous isoprene oxida-
tion that are significant precursors of SOA; these included
methacrolein (MACR), methyl vinyl ketone (MVK), methyl
glyoxal (MG), and glyoxal (GL). We used a novel chem-
ical titration method to monitor the concentration of iso-
prene in the aqueous phase. We used a box model to in-
terpret the mechanistic differences between aqueous and gas
phase OH radical-initiated isoprene oxidations. Our re-
sults were the first demonstration of the rate constant for
the reaction between isoprene and OH radical in water, 1.2
(±0.4)× 1010 M−1 s−1 at 283 K. Molar yields were deter-
mined based on consumed isoprene. Of note, the ratio of the
yields of MVK (24.1±0.8 %) to MACR (10.9±1.1 %) in the
aqueous phase isoprene oxidation was approximately dou-
ble that observed for the corresponding gas phase reaction.
We hypothesized that this might be explained by a water-
induced enhancement in the self-reaction of a hydroxy iso-
prene peroxyl radical (HOCH2C(CH3)(O2)CH = CH2) pro-
duced in the aqueous reaction. The observed yields for
MG and GL were 11.4± 0.3 % and 3.8± 0.1 %, respectively.
Model simulations indicated that several potential pathways
may contribute to the formation of MG and GL. Finally,
oxalic acid increased steadily throughout the course of the
study, even after isoprene was consumed completely. The
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observed yield of oxalic acid was 26.2± 0.8 % at 6 h. The
observed carbon balance accounted for∼50 % of the con-
sumed isoprene. The presence of high-molecular-weight
compounds may have accounted for a large portion of the
missing carbons, but they were not quantified in this study.
In summary, our work has provided experimental evidence
that the availably abundant water could affect the distribution
of oxygenated organic compounds produced in the oxidation
of volatile organic compounds.

1 Introduction

Since the 1980s, scientific attention has focused on chem-
ical processes of organic compounds found in the atmo-
spheric aqueous phase, including clouds, fog, rain, and wet
aerosols. A considerable number of field and laboratory stud-
ies have investigated these processes (e.g., Chameides and
Davis, 1982; Gill et al., 1983; Jacob, 1986; Crahan et al.,
2004; Yu et al., 2005; Carlton et al., 2006; Legrand and
Puxbaum, 2007; Altieri et al., 2008; Liu et al., 2009; Enami
et al., 2009, 2010; Zhang et al., 2010). Several specific
aqueous phase chemical models (e.g., Jacob, 1986; Lelieveld
and Crutzen, 1991; Walcek et al., 1997) and aqueous phase
mechanisms (Ervens et al., 2003; Herrmann et al., 2005)
were established to understand the aqueous phase chemical
processes and to explore the impact of these processes on
atmospheric chemistry. Over the past decade, the aqueous
phase processes of some organic compounds have been rec-
ognized as potentially significant sources of secondary or-
ganic aerosol (SOA) (Hallquist et al., 2009). However, pre-
vious studies mainly focused on highly-soluble oxygenated
volatile organic compounds (OVOCs), including methanol,
pyruvic acid (PA), glyoxal (GL), methyl glyoxal (MG), and
glycolaldehyde, and their contribution to SOA (e.g., Monod
et al., 2000; Carlton et al., 2006, 2007; Altieri et al., 2008;
Perri et al., 2009). Based on the assumption that the reactants
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must enter into aqueous solution before the reactions occur,
Henry’s law constant has been considered a key parameter
in the control of aqueous phase chemical processes for or-
ganic compounds. In recent years, however, several studies
have investigated aqueous ozonolysis (Chen et al., 2008) and
OH-initiated oxidation (El Haddad et al., 2009; Liu et al.,
2009; Michaud et al., 2009; Zhang et al., 2010) of several
moderately-soluble OVOCs (i.e., methacrolein [MACR] and
methyl vinyl ketone [MVK]). Those studies suggested that
these reactions could potentially contribute to SOA forma-
tion in clouds. Quite recently, several other works investi-
gated the aqueous chemistry of poorly-soluble volatile or-
ganic compounds (VOCs), like terpenes, which account for
a significant fraction of biogenic VOCs (Zhang et al., 2009;
Enami et al., 2010). Those studies aimed to find a new path-
way for the transformation of VOCs into SOA.

One can say that the Henry’s law constants of the poorly-
soluble VOCs are so small that their aqueous processes are
not of atmospheric relevance. However, the aqueous phase
reactions can occur both in bulk water and on the surface
of droplets. Considering the large global abundance of re-
active poorly-soluble VOCs and the large collective surface
of liquid droplets in the atmosphere, it may be important
to study the chemical processes of VOCs on the surface of
droplets. On one hand, a reactive sink in the aqueous solution
for VOCs may active for the phase transfer. Finlayson-Pitts
and Pitts described in their book (Finlayson-Pitts and Pitts,
2000) that “Henry’s Law can be applied to predict solution
concentrations only if certain conditions are met. Thus it as-
sumes that there are no irreversible chemical reactions that
are so fast that the equilibrium cannot be established.” In
other words, if the kinetic rate is fast enough, the thermal
dynamic gas-liquid equilibrium would not be achieved, re-
sulting in a much larger amount of the reactant into the aque-
ous phase from the gas phase. Seinfeld and Pandis (2006)
pointed out that “Remarkably few gases fall into the very sol-
uble category. This does not imply, however, that only very
soluble gases are important in atmospheric aqueous-phase
chemistry.” In a very recent work, Enami et al. (2010) re-
ported the fast reaction of terpene with ozone on aqueous sur-
faces and observed carboxylic acids in<10 µs once the gas
phase ozone collisions with the surface of aqueous terpene
solutions happened, indicating a potential SOA contribution
pathway for the aqueous oxidation of poorly-soluble organic
compounds. Moreover, Yu et al. (2008) reported that the av-
erage residence time ofα-pinene adsorbing onto the aqueous
interface was more than 0.1 ns in their study of nitrate ion
photochemistry oxidation ofα-pinene at the aqueous inter-
face, and within 1 nsα-pinene resided near the interface, thus
the time was enough for the reaction ofα-pinene and the OH
radical produced by the nitrate photolysis. On the other hand,
some research groups studied the aqueous surface/interface
adsorption of poorly-soluble gases and found a much higher
interface concentration compared to the gas phase concen-
tration. For example, V́acha et al. (2004) calculated the free

energy profiles associated with moving atmospheric gases or
radicals (N2, O2, O3, OH, H2O, HO2, and H2O2) across the
air/water interface, and then they estimated the concentra-
tions of these species in the gas phase, aqueous interface, and
aqueous bulk. Their result showed that the average aqueous
interface concentration (Caqi) was much higher than the cor-
responding gas phase concentration (Cg) and aqueous bulk
concentration (Caqb). For example, the ratios ofCaqi/Cg are
3.62 for O3, 8800 for OH radical, and 2.6× 107 for H2O2,
the ratios ofCaqi/Caqb are 11 for O3, 8 for OH radical, and
1.5 for H2O2. Interestingly, the ratio ofCaqi/Caqb(11) for the
poorly-soluble O3 is much higher than that (1.5) of the solu-
ble H2O2. It is likely that the aqueous interface concentration
of hydrophobic gas would be much higher than the calculated
concentrations based on the Henry’s law constant. So, we ex-
pect that poorly-soluble VOCs would undergo a similar fate
as O3 does, namely, the interface concentration of VOCs may
be much higher than its gas phase and aqueous bulk concen-
trations. If combining the interface concentrations of reactive
sink such as OH radical and VOCs, it is expected that the in-
terface reaction of poorly-soluble VOCs with OH would be
of importance based on the assumption that the interface rate
constant for the reaction of VOCs and OH is comparative or
even higher than that in the gas phase. In summary, all the
studies mentioned above indicate that the relative importance
of aqueous reaction of a compound is not determined com-
pletely by its Henry’s law constant. In an overview, Kolb
et al. (2010) indicated that the surface activity, concentra-
tion, and impact of adsorbed compounds by aqueous parti-
cles need further studies. Consequently, we suggest that the
aqueous oxidation might be a potential sink of poorly-soluble
VOCs in cloud/fog/wet aerosol, or inversely, the aqueous
VOCs oxidation would modify (age) the aerosols, although
currently we have not quantified this sink or modification yet.
Obviously, the cloud/fog/wet aerosol environment provides a
huge amount of water molecules in forms of droplet, cluster
and adsorbate, and these water molecules will significantly
affect the product yields and distribution of VOC oxidation.

In fact, a number of studies investigated the ozonolysis of
alkenes and isoprene under high relative humidity conditions
(e.g., Neeb et al., 1997; Sauer et al., 1999) and in water (Gäb
et al., 1995); those studies revealed that the production of
peroxides and carbonyls significantly increased in the pres-
ence of water. In addition, it has been suggested that the ef-
fects of water on SOA formation would be reversed with the
ozonolysis of different substances (Na et al., 2006; Warren
et al., 2009). Also, the photochemical reactions of several
VOCs, including isoprene (B̈oge et al., 2006) and aromatics
(Kroll et al., 2007; Ng et al., 2007), in the presence of wet
seed particles in the chamber were investigated for SOA for-
mation. However, those works did not distinguish the aque-
ous phase chemical processes from those of the gas phase;
nevertheless, they observed that the wet aerosols facilitated
the degradation of the poorly-soluble VOCs.
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Currently, little information is available on the aqueous
phase chemical processes of poorly-soluble VOCs. The rate
constants and mechanism for the aqueous oxidation of VOCs
are so limited that one cannot evaluate the relative impor-
tance of those aqueous processes. More studies are needed
to increase our understanding of the roles of these processes
in atmospheric chemistry. In the present work, we would like
to study the aqueous phase OH radical initiated oxidation of
isoprene, determine the rate constant and the product distri-
bution and yield, investigate the reaction mechanism in the
aqueous phase, and examine how water affects the OH ox-
idation of isoprene compared with corresponding gas phase
reaction. As mentioned above, the aqueous phase reactions
can occur both in bulk and on the surface of water droplets.
For isoprene, it would be better to study its surface oxidation
on water droplets. However, there is a great challenge for in-
vestigating this surface reaction. This challenge arises from
the interference of the gas phase reaction. It is a difficult task
for one to exclude the gas phase reaction during performing
the surface reaction of isoprene because of its high volatility
and reactivity and to prevent the gas phase products entering
into the aqueous phase, resulting in large uncertainties in de-
termination of the product yield and distribution. In addition,
there are great uncertainties for the evaluation of the surface
area of droplets, and it is now difficult for us to simultane-
ously get the size distribution of droplets and to collect the
droplets for quantitative analysis. These problems may sig-
nificantly affect the estimation of the availably abundant wa-
ter effect on the oxidation of isoprene. Therefore, in the first
place, we intend to investigate the aqueous bulk oxidation of
isoprene to identify the availably abundant water effect on
the product distribution and yields of the isoprene oxidation,
and to quantitively tell the difference between the gas phase
and aqueous phase reactions.

In the present study, OH radical was used to initiate iso-
prene oxidation within the bulk water solution. The result-
ing small products, including carbonyls and organic acids,
were characterized. This provided evidence for the forma-
tion of high-molecular-weight compounds (HMWs). In ad-
dition, a box model was used to simulate the isoprene-OH
radical reaction in the aqueous phase. We intensively in-
vestigated the rate constant of the aqueous isoprene-OH re-
action and the mechanisms for the production of MACR,
MVK, MG, and GL, because they are the major first- and/or
second-generation products of isoprene, and they are sig-
nificant precursors of SOA. Finally, using the determined
aqueous rate constant, we evaluate the relative importance
of aqueous surface OH oxidation of isoprene compared with
the corresponding gas phase reaction.

2 Experimental

2.1 Reagents and materials

The solutions were prepared with isoprene (Fluka, 99.5 %);
H2O2 (Acros, 35 wt. %); and H2SO4 (Beijing Chemical
Plant, 98 %) diluted in ultrapure water (Milli-pore). The ini-
tial concentrations of isoprene and H2O2 in the reactor were
20 µM and 2 mM, respectively. This highly-concentrated so-
lution was used to facilitate the characterization of reaction
products.

2.2 Apparatus and procedures

The aqueous phase photochemical reaction of isoprene and
hydrogen peroxide were carried out in a 2.1 L quartz re-
actor; details of the apparatus were described previously
(Zhang et al., 2010). Briefly, temperature control equip-
ment was placed outside the reactor, and a Xenon arc lamp
(300◦ W, wavelength: 250 nm–380 nm, Perkin Elmer) was
placed above the reactor. The arc lamp was the light source
for the photolysis of hydrogen peroxide. We sequentially
introduced 1400 ml water, 100 ml stock hydrogen peroxide
solution, and 500 ml stock isoprene solution into the reactor,
for a total volume of 2.0 L. A 0.1 L gas space was maintained
over the liquid level for mixing. A magneton stirred the solu-
tion during the entire experiment. The upper limit for the loss
of aqueous isoprene was estimated to be 7 %, based on the
Henry’s law constant (0.03 M atm−1) (Sander, 1999). There-
fore, gas phase reaction interference was mostly eliminated.
Every experiment lasted 6 h. The temperature of the solution
in the reactor was maintained at 10± 0.1◦C, and the initial
pH of the solution was either 7.0 or 4.0.

The gas space was maintained as small as possible, be-
cause we found that the gas-liquid exchange affected the
variation of the products. In a reaction between isoprene
and H2O2, we compared two different gas spaces with the
same initial concentrations. With a gas space of 1.5 L, the
amount of products increased steadily during the photolysis
process (Fig. S1 in Supplement); with a gas space of 0.1 L,
a fluctuating curve was observed, which showed the tempo-
ral evolution of the products. This suggested that the gas
space should be maintained as small as possible to minimize
the disturbance of gas phase reactions on the aqueous chemi-
cal process, particularly for species with a small Henry’s law
constant.

2.3 Measurement of aqueous phase isoprene

The aqueous phase isoprene measurement was based on the
results from a concurrent study on the aqueous ozonolysis of
isoprene (Wang et al., 2011). It was found that aqueous phase
isoprene could react with ozone in solution within 5 min and
could produce a series of products, including MACR and
MVK. When the ozone was in excess, the MACR and MVK
could be further oxidized by ozone, generating MG, PA,
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formaldehyde, and hydroxymethyl hydroperoxide (HMHP),
as described previously (Chen et al., 2008). The stoichio-
metric equation of the final excess ozone reaction revealed a
ratio of 1:0.86 of consumed isoprene to formed MG.

With the ozone chemical titration method, based on the
ratio of consumed isoprene : formed MG, we measured the
concentrations of isoprene solution in the reactor before and
during irradiation. The procedure for determining the iso-
prene concentration was as follows: (1) The∼15 µM ozone
solution was prepared before the reaction began (Chen et
al., 2008); (3) 5 ml isoprene solution was removed from the
reactor before and during the irradiation and was rapidly
mixed with 45 ml ozone solution in a volumetric flask to
ensure a molar ratio of∼5:1 of O3 to isoprene; (4) 5 min
later, a 5 ml mixture solution was removed and mixed with
10−3M 2,4-dinitrophenylhydrazine (DNPH) solution; (4) af-
ter 24 h of derivation, the mixture was subjected to high-
performance liquid chromatography (HPLC) to quantify the
carbonyl compounds. For the concentration of isoprene be-
fore irradiation, the MG data were used directly to estimate
the isoprene concentration, according to the ratio of con-
sumed isoprene to formed MG (1:0.86). However, the sam-
ple removed during the irradiation contained residual iso-
prene in addition to MACR, MVK, and MG formed dur-
ing the OH-initiated isoprene oxidation. Therefore, the total
MG (MGTOT) produced from ozone chemical titration of the
sample comprised the MG (MGISO) formed by the ozonoly-
sis of residual isoprene, the MG formed by the ozonolysis of
MACR and MVK (MGMACR and MGMVK , respectively), and
the direct MG (MGDIR). As suggested by Chen et al. (2008),
one mole of MACR or MVK was oxidized by ozone into 0.99
or 0.75 mole of MG, respectively. Based on the MG yields
mentioned above, we estimated the amount of MGISO with
the following equation:

MGISO=MGTOT−MGMACR−MGMVK −MGDIR (1)

Then, we could obtain the residual isoprene concentration
by combining the MGISO and the ratio (1:0.86) of consumed
isoprene to produced MGISO.

With the ozone chemical titration method, the average
initial concentration of isoprene was estimated to be 21.4
( ± 1.7) µM. This value was similar to the actual value of
20.0 µM, which was calculated by subtracting the amount of
isoprene in the 500 ml stock solution from that distributed in
the gas space above the reactor, on the basis of Henry’s law
at 283 K. This suggested that the ozone titration method pro-
vided a reliable tool for determining isoprene concentrations
in water solutions.

2.4 Control experiments

Several control experiments were conducted to dis-
criminate the different effects of various experimen-
tal conditions: isoprene + UV, isoprene + H2O2, iso-
prene + H2O2 + H2SO4 + UV, mixed standard+ H2O2, and

mixed standard+ UV. The mixed standard is composed of
the known products containing formaldehyde, GL, MG,
formic acid, acetic acid, oxalic acid, and pyruvic acid.
The results are as follows: (1) the isoprene decay due to
the photolysis is far slower than that by OH-oxidation;
(3) H2O2 cannot obviously result in the transformation of
isoprene and carbonyl compounds even at pH = 4 in dark;
(4) H2O2 can lead to the transformation of pyruvic acid
into acetic acid. However, these subjects are beyond the
scope of this study. Our previous work has confirmed that
H2O2 has no significant effect on the transformation of
MACR and MVK under the adopted experimental condition
(Zhang et al., 2010). We also explored the impact of the
aqueous ozone on the derivatization reaction of carbonyls by
mixing the reaction products with DNPH instead of ozone
under our experimental conditions. The results showed that
the influence of ozone on the carbonyl determination was
minor (<8 %).

2.5 Kinetics experiments

A competition kinetics method was used to determine
the rate constants of OH oxidation of isoprene, MACR,
and MVK. The competitive kinetic experiments were per-
formed in the presence of equal concentrations of iso-
prene/MACR/MVK and salicylic acid (SA). The concentra-
tions of target compound (TC), i.e., isoprene/MACR/MVK
and the reference compound SA were simultaneously mon-
itored during the photolysis and ln (C0/Ct ) for the TC and
SA were calculated. Assuming a pseudo first order kinetic
for both TC and SA reactions with OH radical, the slope of
ln ([TC]0/[TC]t ) versus ln ([SA]0/[SA]t ) equals to the ratio
of kTC−OH/kSA−OH.

2.6 Product analysis

The experimental system used to monitor the products has
been described in detail elsewhere (Zhang et al., 2010).
Briefly, carbonyl compounds were analyzed by HPLC (Agi-
lent 1100, USA) (Wang et al., 2009), organic acids were ana-
lyzed by an ion chromatography (DIONEX 2650, USA) with
an ED50 conductivity detector, and high-molecular-weight
compounds were analyzed by the HP 1100 LC-MS Trap SL
System which included an ion trap mass spectrometer (MS)
and an electro-spray interface (ESI).

2.7 Box model for isoprene-OH reaction in
aqueous phase

We used a box model for simulating the aqueous OH-
initiated isoprene oxidation. This model was mainly based
on the aqueous phase mechanism reported by Herrmann et
al. (2005). The specific mechanism implemented in the
model for the aqueous MACR/MVK reaction was described
previously (Zhang et al., 2010). However, the previous aque-
ous mechanism did not include the step that enabled isoprene
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to generate MACR and MVK. The gas phase OH-initiated
isoprene oxidation production of MACR and MVK in the ab-
sence of NOx was described by Jenkin et al. (1998) in a series
of detailed radical reactions. The main reactions included six
hydroxy isoprene peroxyl radicals (RhipO2) that arose from
the addition of OH radical to isoprene (see Scheme 1), their
self- and cross-reactions, and subsequent isomerization and
decomposition. We included these reactions into the aque-
ous mechanism of our model. Note that the rate constants
of theseRhipO2 reactions required re-estimation, because we
used water as the medium.

We determined the integral rate constant (kISO−OH,aq) of
the aqueous isoprene-OH reaction (see Sect. 3.2), and then
assigned thekISO−OH,aq value to six channels, according
to the method described by Jenkin and Hayman (1995).
Based on the structure-activity relationship, Jenkin and Hay-
man suggested that the integral products of the gas phase
isoprene-OH reaction were formed by the branching of
six hydroxy isoprene peroxyl radicals with specific ratios
(Scheme 1), including 15 % for R1O2, 45 % for R2O2, 5 %
for R3O2, 5 % for R4O2, 8 % for R5O2, and 22 % for R6O2.
Considering the suggestion that the solvent effect was vir-
tually identical for both reactants and products (Gligorovski
and Herrmann, 2004; Monod et al., 2005), we assumed that
these six ratios would not change in the aqueous phase.

For the subsequentRhipO2 reactions, there were no experi-
mental values for the aqueous rate constants. However, Neta
et al. (1990) reported the rate constants for a series of per-
oxyl radicals in aqueous solution. Thus, we selected a num-
ber of those peroxyl radicals that had structures similar to
the hydroxy isoprene peroxyl radicals. The rate constants for
the selected radicals were in the range of 107–108 M−1 s−1in
water; this was nearly four orders of magnitude lower than
the gas phase parameters (in units of cm3 mol−1 s−1) related
to the RhipO2 radicals (Jenkin et al., 1998). Several stud-
ies have attempted to determine a correlation between ki-
netic data in gas and aqueous phase reactions in order to
predict unknown aqueous kinetics with the known gas phase
kinetics (Gligorovski and Herrmann, 2004; Monod et al.,
2005). Monod et al. (2005) demonstrated that the aqueous
phase rate constants of oxygenated compounds were in lin-
ear proportion to the gas phase rate constants on a double-
logarithmic scale. We referred to this relationship between
reactions conducted in gas and aqueous phases for our calcu-
lated ratio of gas/aqueous phase rate constants of MVK and
MACR (Sect. 3.2.1). We also compared our calculations to
the rate constants presented in works by Neta et al. (1990)
and Jenkin et al. (1998). Based on those analyses, we esti-
mated that the rate constants (in units of M−1 s−1) of aque-
ous phase oxygenated radical reactions were four orders of
magnitude lower than those (in units of cm3 mol−1 s−1) in
the corresponding gas phase reactions. Likewise, the aque-
ous mechanism used in the present study also included the
branching ratios for propagating and terminating channels of
the RhipO2 self- and cross-reactions that were presented in

Scheme 1.Mechanisms for the formation of six hydroxy isoprene
peroxyl radicals (R1O2 through R6O2) and their distributions (%)
from the OH-initiated oxidation of isoprene (top molecule) in the
absence of NOx (adapted from Jenkin et al., 1998).

the gas phase reactions described by Jenkin et al. (1998).
Furthermore, we added two more pathways in the aque-
ous mechanism for producing MG and GL, which are re-
ferred to in two other gas phase models; i.e., the Mainz Iso-
prene Mechanism 2 (MIM2) (Taraborrelli et al., 2009) and
the isoprene photooxidation mechanism described in the Re-
gional Acid Deposition Model 2 (RADM2) (Zimmermann
and Poppe, 1996). The rate constants of the peroxyl radi-
cal reactions were derived from the aqueous data of Neta et
al. (1990) and Jenkin et al. (1998). The detailed mechanism
of aqueous OH-initiated isoprene oxidation in the model is
shown in Table S1 (Supplement). Here, we mainly focused
on the chemical processes of isoprene, MACR, MVK, MG,
and GL in the aqueous phase.

3 Results and discussion

3.1 Product analysis

3.1.1 Carbonyl compounds

A series of small molecular weight products were detected
in the aqueous OH-initiated oxidation of isoprene. Among
these products, we focused on the multifunctional carbonyl
compounds, because they were considered to be the pre-
cursors of SOA. Figure 1a shows the temporal profiles of
MACR, MVK, formaldehyde, acetaldehyde, GL, and MG.
The isoprene concentration decreased gradually and was
completely consumed within 100 min; in contrast, MACR
and MVK, the two first-generation products, increased ini-
tially, reached maximum at 20–30 min, and then decreased
gradually. Figure 2 shows the linear relation between the
MACR/MVK formed and the isoprene consumed; the slopes
indicated that the molar yields of MACR and MVK were
17.4± 0.8 % and 7.7± 1.1 %, respectively. Here, the mo-
lar yield was defined as the ratio of the molar amount of
product to the molar amount of consumed isoprene. How-
ever, these two yields did not include the MACR/MVK loss

www.atmos-chem-phys.net/11/7399/2011/ Atmos. Chem. Phys., 11, 7399–7415, 2011



7404 D. Huang et al.: Aqueous phase isoprene reaction

due to subsequent reactions. We estimated this loss with
the method suggested by Ruppert and Becker (2000); this
suggested that the actual molar yields were 10.9± 1.1 % for
MACR and 24.1± 0.8 % for MVK (Fig. 2). Notably, these
two yields significantly differed from the corresponding val-
ues for the gas phase OH-initiated isoprene oxidation (13 %–
38 % for MVK and 15 %–35 % for MACR under NOx-free
conditions) (Miyoshi et al., 1994; Jenkin et al., 1998; Benkel-
berg et al., 2000; Ruppert and Becker, 2000; Lee et al., 2005).
For comparison, the aqueous phase OH-initiated oxidation
of isoprene produced a ratio of∼2:1 for MVK to MACR,
or double the ratio (∼1:1) observed in the corresponding gas
phase reaction. This result indicated that the mechanism ap-
peared to change in the aqueous oxidation of isoprene com-
pared to the corresponding gas phase reaction. This sug-
gested that availably abundant water may play an important
role in the aqueous reaction. The detailed mechanism will be
discussed in Sect. 3.2.2.

We observed that MG and GL reached a maximum con-
centration after 80 min of irradiation; then, MG remained at
a plateau until 180 min, and GL decreased slowly (Fig. 1a).
The apparent yields of MG and GL from isoprene within 80
min were estimated to be 11.4± 0.3 % and 3.8± 0.1 %. In-
terestingly, the production of MG was found to correlate well
with that of GL within the first 80 min, with a linear correla-
tion coefficient (r) of 0.997. Thus, the ratio of MG to GL was
2.5 (Fig. 3). This implied that MG and GL may have come
from the same source. The possible production mechanism
of these two carbonyl compounds was investigated with a
box model (Sect. 3.3.2).

3.1.2 Organic acids

We also detected organic acids, including formic acid, acetic
acid, propionic acid, pyruvic acid, malonic acid, and ox-
alic acid (Fig. 1b). Formic acid reached a maximum con-
centration at 80 min and then decreased gradually; acetic
acid increased gradually and then leveled off. The fates for
these two organic acids were assumed to be as described
in the aqueous phase reaction system reported by Zhang et
al. (2010). Oxalic acid, propionic acid, pyruvic acid, and
malonic acid increased gradually with time. The observed
oxalic acid yield was 26.2± 0.8 % after 6 h of irradiation;
the observed yields of the C3 acids were<1 %. Here, we fo-
cused on the source of oxalic acid in the reaction, because it
was considered to be an important component of SOA.

It is notable that isoprene, MVK, and MACR decreased
gradually to a low level (<10 % maximum) within 80 min,
and the aldehyde products, MG, GL, and acetaldehyde
reached maximum concentrations at 80 min. In contrast,
oxalic acid increased steadily, with yields of 0.2± 0.5 % at
10 min, 1.1± 0.3 % at 60 min, 7.7± 0.2 % at 150 min, and
26.2± 0.8 % at 360 min. Although the conversion of MG
and GL can contribute to the formation of oxalic acid (Carl-
ton et al., 2007; Tan et al., 2010), this conversion would

Fig. 1. The major products from the aqueous OH radical-initiated
isoprene oxidation.(a) The time course of the oxidation of isoprene
and the concomitant production of carbonyls.(b) The time course
for the production of organic acids.

Fig. 2. The amounts of methacrolein (MACR) and methyl vinyl
ketone (MVK), formed compared to the isoprene consumed in an
aqueous isoprene oxidation. Samples were measured at 10, 15, and
20 min from the beginning of the reaction. Open symbols are the
observed concentrations; solid symbols and fits are the concentra-
tions after correcting for loss due to a reaction with OH, based on
the rate constants determined in this work.
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Fig. 3. The relationship between methyl glyoxal (MG) and glyoxal
(GL) produced in the aqueous oxidation of isoprene. Samples were
measured every 10 min in the first 80 min of the reaction.

Fig. 4. Detection of the variations in abundance of the ionic
molecules produced during the aqueous oxidation of isoprene.
m/z, the mass to charge ratio detected by high-performance liquid
chromatography-electrospray ionization-mass spectrometry.

only account for∼50 % of the observed oxalic acid (esti-
mated from the temporal profiles in Fig. 1). The residual por-
tion of oxalic acid might be assigned to the oxidation of un-
detected aldehydes, including glycolaldehyde and glyoxylic
acid (Warneck, 2003), and/or the decomposition of HMWs
(Carlton et al., 2007; Zhang et al., 2010).

3.1.3 High-molecular-weight compounds

Many studies have shown that low-molecular-weight
molecules that contain unsaturated carbon-oxygen double
bonds, like MG, GL, glycolaldehyde, MACR, and MVK
could react with OH radical in water to produce high-
molecular-weight compounds (HMWs) (Altier et al., 2008;
Tan et al., 2009; Perri et al., 2009; Zhang et al., 2010).
We found a regular pattern of mass differences (12, 14, and
16 amu) among the ions; in related studies, this has been
taken as a sign of the formation of oligomers. In the present

work, MACR, MVK, GL, MG, and some organic acids were
identified as the products of the aqueous isoprene-OH re-
action. Thus, the formation of HMWs was expected. In
aldehyde-OH studies, HMWs were found to form by ester-
ification of a parent organic acid with several units of multi-
functional carbonyls (Tan et al., 2009; Perri et al., 2009). In
this study, the negative mode of HPLC-ESI-MS detected two
series of ions with mass differences of 12, 14, and 16 amu in
them/zrange of 30–300. The abundance of several detected
product ions varied with the reaction time (Fig. 4). Ions were
also detected in the positive mode of HPLC-ESI-MS, but the
ion abundance was lower than the products detected in the
negative mode. The acids and aldehydes could be detected
as [M-H] −and [M + H]+, respectively.

We also noticed three low-molecular-weight products
that may have been the parent molecules; these products,
m/z−73.0,m/z−85.2, andm/z+60.8, were deduced to be gly-
oxylic acid, methacrylic acid, and glycolaldehyde, respec-
tively. The m/z−73.0 product was identified as glyoxylic
acid based on previous studies that showed that a series of
products were produced from additions of several C3H4O2
(molecular weight = 72.0) to glyoxylic acid (Altieri et al.,
2006; Tan et al., 2009; Perri et al., 2009). Them/z−85.2
was assumed to be them/z 87 isomeric compound previ-
ously detected by proton-transfer reaction mass spectrom-
etry (PTR-MS; Zhao et al., 2004). They identified the
m/z 87 compound as C4-hydroxycarbonyl. With HPLC-
ESI-MS analysis, we deduced that them/z−85.2 signal de-
tected under negative mode was methacrylic acid (C4H6O2,
molecule weight = 86), according to the molecular weight
and the assumption that it contained a carboxyl group. Ed-
ney et al. (2005) reported the formation of 2-methylglyceric
acid in isoprene oxidation products. We suggest that 2-
methylglyceric acid could transform into methacrylic acid
by removing a H2O2; thus, methacrylic acid produced from
the oxidation of MACR could be further oxidized by an OH
radical to generate 2-methylglyceric acid. A similar mech-
anism was also suggested in isoprene ozonolysis (Sauer et
al., 1999). Although the ion abundance of the products de-
tected under the positive mode of ESI-MS was one order of
magnitude lower compared with the signal intensity of the
products detected under negative mode, we were able to ob-
serve a series of products with mass differences of 12, 14,
and 16 amu. The smallest ion observed in positive mode
was m/z+60.8. It was deduced to be glycolaldehyde be-
cause it contained a highly electronegative oxygen atom that
could attract hydrogen ion; thus, the [M+H]+ could be de-
tected under positive mode. Generally, the ion abundance of
the lager molecules (m/z>−250) was higher than those of
smaller molecules (m/z< −150). The ion abundance of the
larger molecules reached maximum between about 100 min
and 150 min, and the ion abundance of the smaller molecules
continued to grow throughout the experiment. The larger
molecule profiles tended to be similar to aldehyde profiles,
except the peak time was delayed. The sustained growing
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abundance of smaller products may be attributed to the de-
composition of the larger HMWs. Unfortunately, we were
unable to identify and quantify the HMWs, because the stan-
dards are unavailable.

3.1.4 pH effects on products

The effect of acidity on the reaction was also investigated by
comparing the reaction in solutions with two different initial
pH values of 7.0 or 4.0. The results showed no obvious dif-
ferences between pH 4.0 and pH 7.0 in the yields of organic
acids and carbonyls formed in the aqueous OH-initiated iso-
prene oxidation. This suggested that acidity had a negligible
effect on the formation of the identified products. However,
it has been shown that high acidity (pH 4.0) could affect the
HPLC-ESI-MS determination of HMWs, because the ioniza-
tion of HMWs appears to be restricted in an acidic solution.
This would result in a low sensitivity of HPLC-ESI-MS for
the detection of HMWs under the negative mode.

3.1.5 Carbon balance

On the basis of the observed products, we estimated the car-
bon balance (ratio of observed carbon versus consumed car-
bon) of the investigated reaction system as a function of time
(Fig. 5). The observed carbon balance was expected to ac-
count for∼50 % of the consumed isoprene. The missing car-
bons most likely included carbon dioxide, organic peroxides,
hydroxyl-containing compounds, and HMWs. HMWs may
account for a large portion of the missing carbons. Unfor-
tunately, we have not quantified the HMWs, because there
are no standards available. However, our analysis of the ob-
served products could characterize, to some extent, the aque-
ous OH-initiated isoprene oxidation.

3.2 Mechanism and modeling

3.2.1 The kinetics of isoprene, MACR, and MVK

The ratios of kISO−OH/kSA−OH, kMACR−OH/kSA−OH, and
kMVK −OH/kSA−OH are 0.75 (±0.25), 0.78 (±0.12), and 0.76
(±0.06) respectively (Fig. S2 in the Supplement). Buxton
et al. (1988) suggested a rate constant of SA react with
OH radical, that iskSA−OH = 2.2× 1010 M−1 s−1 at room
temperature (∼298 K). The activation energy (Ea) of SA-
OH radical reaction is unavailable; thus, we estimated its
value with ∼15 kJ mol−1 by combining theEa values of
the OH radical reaction with unsaturated oxygenated com-
pounds and ones of the NO3 radical reaction with aro-
matic compounds (Herrmann et al., 2010). Based on this
Ea value, we estimatedkSA−OH = 1.6× 1010 M−1 s−1 at
283 K. Consequently, we estimated the aqueous phase OH-
oxidation rate constants were 1.2 (±0.4) ×1010 M−1 s−1

for isoprene, 1.3 (±0.2)×1010 M−1 s−1 for MACR, and
1.2 (±0.1)×1010 M−1 s−1 for MVK. Our determined
kMACR−OH agree well with that recently reported by Glig-

Fig. 5. The observed carbon balance (ratio of observed carbon ver-
sus consumed carbon) as a function of time during the aqueous ox-
idation of isoprene. Total experimental time was 6 h.

orovski et al. (2009), that is, 9.2× 109 M−1 s−1. To our
knowledge, this was the first experimentally derived rate con-
stant for aqueous OH-oxidation of isoprene. These three de-
termined rate constants were used in our newly established
model. Considering that the corresponding gas phase rate
constant (kISO−OH,gas) is 6.4× 1013 cm3 mol−1 s−1 at 283 K
(Atkinson et al., 2006), we estimate that the rate constant ra-
tio (Rk,ISO) of kISO−OH,aq to kISO−OH,gas is about 2× 10−4.
For the gas phase rate constants for MACR (kMACR−OH,gas)

and MVK (kMVK −OH,gas) are 1.8× 1013 cm3 mol−1 s−1 and
1.3× 1013 cm3 mol−1 s−1, respectively, at 283 K (Atkinson
et al., 2006). Thus, the aqueous to gas rate constant ratios
at 283 K are estimated to beRk,MACR = 7× 10−4 for MACR
andRk,MVK = 9× 10−4 for MVK.

3.2.2 Mechanism and model simulation

A plausible mechanism for the aqueous OH-initiated iso-
prene oxidation was simulated with a box model to facili-
tate our understanding of the aqueous phase processes. Con-
versely, by comparing the model results to our experimen-
tal data, we could find deficiencies in the newly conceived
mechanism described in Sect. 2.7, and then we could modify
the mechanism based on reasonable explanations.

Explaining the ratio of MVK to MACR

First, we ran the model with the initial kinetic parameters de-
scribed in Sect. 2.7 and Table S1 (Supplement). We found
that the model reproduced the experimentally observed pro-
file of isoprene in the reaction, but poorly predicted the ob-
served profiles of MACR and MVK production (Fig. 6a).
The predicted yield of MVK (10.1 %) was much lower than
the observed yield (17 %), and the predicted yield of MACR
(13.0 %) was much higher than the observed yield (6.5 %).
The predicted yield ratio (∼1) of MVK to MACR was
half that observed (∼2) in the aqueous phase OH-initiated
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Fig. 6.Model-measurement comparison for isoprene, methyl vinyl ketone (MVK), and methacrolein (MACR) abundances during the aqueous
oxidation of isoprene.(a) The model simulation was performed with the initial kinetic parameters (m1).(b) The model simulation was
performed with the adjusted kinetic parameters (m2). obs, observed profiles.

isoprene oxidation, but close to that observed (∼1) in the
corresponding gas phase reaction (Jenkin et al., 1998). This
implied that the channel ratio for forming MVK and MACR
might be significantly modified by water. This modification
may arise from a change in the rate constants forRhipO2 re-
actions.

In the initial kinetic parameters of the present model, note
that the rate constants for all six of theRhipO2 radical self
reactions were assumed to be proportional to those of the
corresponding gas phase reactions; but, the value for the
R2O2 radical was two orders of magnitude lower than those
of the other five radicals. Jenkin and Hayman (1995) sug-
gested that the R2O2 is a tertiary radical and not as active
as the other fiveRhipO2 radicals in the gas phase. However,
it is unknown whether this remains to be true in the aque-
ous phase. Several studies have demonstrated that, in the
presence of water, the peroxyl radicals (HO2 and RO2) can
bind with water to form HO2 · H2O (Aloisio and Francisco,
1998; Reichert et al., 2003; Suma et al., 2006) or RO2 · H2O
(English et al., 2008). The HO2 · H2O complex has been ob-
served in the laboratory (Suma et al., 2006). Furthermore,
the kinetics and product branching distributions could be af-
fected by complex formation; this effect has been found in
the HO2−H2O (Reichert et al., 2003) and HO2−NO-H2O
reaction systems (Butkovskaya et al., 2005). Although the
RO2 · H2O complexes have not been observed directly, there
is computational evidence for their existence (Clark et al.,
2008). Because the present reaction system used water as the
medium, the formation of the RO2 · H2O complex might be
expected. Recently, Clark et al. (2010) showed a computa-
tional result for the formation probability of fresh isoprene
RhipO2 · H2O complexes in the gas phase at 100 % relative
humidity, as follows: 7 % for R1O2, 0.9 % for R2O2, 1.4 %

for R3O2, 0.8 % for R4O2, 16.2 % for R5O2, and 2.5 % for
R6O2. These ratios are expected to increase significantly in
condensed water. Among the sixRhipO2 radicals, the R2O2
radical was the most hydrophobic, because its peroxyl group
is surrounded by three alkyl groups. This causes difficul-
ties in forming hydrogen bonds with water molecules. This
property may cause the R2O2 radical to aggregate in water
like the insoluble organics (Breslow, 1992). Thus, the R2O2
radical may have a higher probability of self-collision com-
pared to otherRhipO2 radicals, which can readily combine
with water. Therefore, the rate constant of the self-reaction
between R2O2 radicals may increase in water. This increased
self-reaction rate would produce more MVK than expected,
because the R2O2 radical is the main precursor for MVK.
Conversely, this change would lead to a decrease in MACR
production. MACR is produced by the decomposition of the
R6O radical, which is derived from an R6O2 self-reaction
and its cross-reaction with otherRhipO2 radicals, particu-
larly R2O2 (45 % of the allRhipO2 radicals; see Scheme 1).
Clearly, the increase in the R2O2 self-reaction would de-
crease the cross-reaction between R2O2 and R6O2, which
would indirectly result in the observed decrease in MACR.

Based on the above analysis and the initial kinetic pa-
rameters, we adjusted the aqueous phase rate constants for
theRhipO2 self- and cross-reactions, based on the observed
MVK and MACR. The rate constant for the R2O2 self reac-
tion was enhanced to the same order of magnitude as the rate
constants for the otherRhipO2 self-reactions (Table S1). The
output of this R2O2-adjusted model is shown in Fig. 6b. The
predicted isoprene, MVK, and MACR concentrations agree
reasonably well with the observed concentrations. To further
validate the hypothesis that the R2O2 self-reaction would be
enhanced by water, we carried out a sensitivity analysis by
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adjusting the rate constants of self- and cross-reactions (ks
andkc) for the sixRhipO2 radicals. The model responses,
represented by MVK and MACR concentrations as a func-
tion of time, were: (i) When all theks andkc values were
simultaneously raised or lowered by two orders of magni-
tude, the predicted concentrations for MVK and MACR were
almost the same as those predicted by the corresponding ini-
tial or R2O2-adjusted model (Fig. 7a and b). Thus, simulta-
neously changing the rate constants for the self- and cross-
reactions of the sixRhipO2 radicals did not change the prod-
uct branching distributions. (ii) When theks andkc for the
R6O2 radical in the initial model were lowered by two orders
of magnitude (because the high ratio of MVK/MACR may
also be caused by the inhibition of MACR production), the
maximum MVK concentration increased by 10.6 %, and the
maximum MACR concentration decreased by 15.7 % com-
pared to the initial model result (Fig. 7c). However, there
was a large discrepancy between the predicted and observed
concentrations for MVK and MACR. This result implied that
the inhibition of R6O2 reaction was not the dominant factor
leading to the high ratio of MVK/MACR, although the in-
hibition may exist. In summary, we suggest that the R2O2
radical was the most sensitive of the six radicals for the pro-
duction of MVK and MACR; in addition, water may increase
its self-reaction probability, which would result in a higher
MVK/MACR ratio in the OH-initiated isoprene oxidation
compared to the corresponding gas phase reaction. Clearly,
further study is needed to determine the actual rate constants
for the reactions ofRhipO2 radicals in the aqueous phase.

Explaining the mechanism of MG and GL formation

In the gas phase, MG and GL are considered to be produced
by the oxidation of VOCs like isoprene (Fu et al., 2008).
Both MG and GL are highly soluble in water. When they en-
ter into the aqueous phase through gas/aqueous transfer, their
oxidation and oligomerization are considered to be important
contributors to SOA formation (Volkamer et al., 2007; Tan et
al., 2010). Very recently, Schwier et al. (2010) have found
that the cross-reactions of glyoxal and methylglyoxal pro-
duce a series of aldol and hemiacetal species and will con-
tribute to SOA mass. These two dicarbonyl compounds are
considered to be second-generation products of isoprene ox-
idation, because they are primarily produced from the oxi-
dation of MVK, MACR, and other first-generation carbonyls
(Fu et al., 2008). In the present study, we provided exper-
imental evidence that aqueous isoprene oxidation led to the
formation of MG and GL. We estimated that, through the
intermediate MACR/MVK pathway (P1a), the yield of MG
from isoprene was 3.7 %. This was derived by consider-
ing the yields of MVK/MACR from isoprene (18.9 % and
9.0 % respectively) and the yields of MG from MVK/MACR
(15.0 % and 10.0 %, respectively; Zhang et al., 2010) in
the OH-initiated oxidation. Similarly, we estimated that,
through the intermediate MVK pathway (P1b), the yield of

GL from isoprene was 0.6 %. However, these estimated
yields based on P1 were much lower than the observed values
(11.4± 0.3 % for MG and 3.8± 0.1 % for GL); this implied
that a large proportion of the MG and GL production may be
derived from other pathways. However, information about
the other pathways for the gas phase reaction also remains
uncertain; e.g., the mechanism for explaining MG produc-
tion in MIM2 (P2; Taraborrelli et al., 2009) is different from
that used in RADM2 (P3; Zimmermann and Poppe, 1996).
The three pathways are as follows:

MACR → MACRAO2 → MG (P1a)

MVK → MVKAO 2 → 0.6×MG (P1a)

MVK → MVKBO2 → 2×MVKBA → MG (P1a)

MVK → MVKAO 2 → 1.4×GLC→ GL (P1b)

MIM2:

R1O2 → C5H8O2 → 0.52×C5H9O5 → 0.5×MG

+0.5×GL (P2a)

R5O2 → C5H8O2 → 0.52×C5H9O5 → 0.5×MG

+0.5×GL (P2b)

RADM2:

MACRO2+RhipO2 → 0.3×MACR+0.3×MVK

+0.6×MG+HCHO+1.2×HO2+P (P3a)

MVKO2+RhipO2 → 0.3×MACR+0.3×MVK

+0.6×MG+HCHO+1.2×HO2+P (P3b)

In the P1 pathway, the MACRAO2 represent the addi-
tion product of MACR react with OH radical and O2,
that is CH2(OH)C(OO× )(CH3)CHO; likewise the fate of
MVKAO 2 and MVKBO2, they represent CH2(OH)C(OO ·

)HC(O)CH3 and
q
OOCH2CH(OH)C(O)CH3 respectively;

MVKBA arises from the self collision of MVKBO2 and rep-
resents CH3C(O)C · H(OH), which could decompose into
MG; GLC represents glycolaldehyde. In the P2 reactions,
the decomposition of R1O2/R5O2 leads to the production of
the C5H8O2 radical, which is carbonyl with internal double
bond. Then, the OH and O2 addition product of C5H8O2
radical, that is C5H9O5 peroxy radical, is degraded into
MG and GL through two channels. In the P3 reactions,
MACRO2/MVKO2 radicals were the products of the addi-
tion of OH and O2 to MACR/MVK, each represented two
isomers;RhipO2 represents all the hydroxy isoprene peroxyl
radicals; the products, P, represent alcohols, peroxides, and
other potential products. Note: the specific reactions are
listed in Table S1 (Supplement).
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Fig. 7.Comparison of model simulations of the concentration changes in methyl vinyl ketone (MVK) and methacrolein (MACR) during the
aqueous oxidation of isoprene.(a) The model rate constants for the self- and cross-reactions (No. 11–51 reactions in Table S1) of sixRhipO2
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Fig. 6b). m2, adjusted; m5, lowered; m6, raised.(c) The model rate constants for R6O2 self- and cross-reactions were lowered by two orders
of magnitude, based on the initial model parameters. m1, initial; m7, lowered.

We tentatively added the P2 and P3 pathways to our aque-
ous reaction model to improve the prediction for the forma-
tion of MG and GL. The aqueous phase rate constants for
MG and GL were estimated by proportioning the correspond-
ing gas phase rate constants with the method described in
Sect. 2.6; the data is shown in Table S1. The results from
the model simulation indicated that (i) when neither of P2 or
P3 was added to the aqueous model, the predicted amounts
of MG and GL were mainly derived from the oxidation of
MVK and MACR, and the amounts were much less than
the observed values, as mentioned previously; (ii) when P3
was added to the model, the predicted MG and GL increased
slightly; (iii) when both P3 and P2 were added to the model,
the predicted MG and GL both increased significantly, but
the predicted maximum GL concentration was 49 % higher
than the observed concentration and the predicted MG was
18 % lower than the observed concentration (Fig. 8). As
mentioned in Sect. 3.1.1, the amounts of MG and GL pro-
duced were well correlated, suggesting they may have come
from the same source. The P2 pathway supported this hy-
pothesis and appeared to be a suitable candidate. As men-
tioned previously, the production ratio (0.5:0.5) of MG to GL
assumed in the P2 pathway did not predict the observed result
of 0.73:0.27 obtained in our experiment. We applied this ob-
served ratio to the model and found that the modified model
could predict the MG and GL concentrations in the first stage
of the reaction, when the MG and GL increased gradually,
but failed to predict the second stage (an MG plateau) and the

third stage (MG and GL declines; Fig. 1). The fact that the
model could not reproduce the decay of the isoprene oxida-
tion products is a common problem among box models (Lee
et al., 2005; Zhang et al., 2010). This implied that a complex
secondary production mechanism might be involved in the
production of MG and GL.

The HMWs may also contribute to MG and GL produc-
tion. Figure 5 shows that most HMWs began to decrease
after 100 min, implying the possibility that further degrada-
tion of HMWs could contribute to MG and GL formation.
Altieri et al. (2008) observed an increase in the abundance of
m/z89 and a decrease in HMWs after 380 min in the reaction
of MG with OH radicals. This result may provide a clue for
a process in which MG and GL could be produced by HMW
degradation, becausem/z89 could possibly represent the hy-
drated forms of MG and GL. Unfortunately, the information
on HMWs presented in the present work was insufficient to
quantitatively evaluate their contribution to MG and GL.

4 Conclusions and implications

We investigated the OH-initiated oxidation of isoprene in
the aqueous phase. This study was the first to deter-
mine aqueous phase OH-oxidation rate constant for iso-
prene, that is 1.2 (±0.4)× 1010 M−1 s−1 at 283 K; mean-
while, the rate constants for MACR and MVK were de-
termined as 1.3 (±0.2)× 1010 M−1 s−1 for MACR, and 1.2
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(±0.1)× 1010 M−1 s−1 for MVK at 283 K. A series of prod-
ucts, including carbonyl compounds and organic acids were
well characterized. We estimated the molar yields (Yi , based
on the consumed isoprene) of MVK, MACR, MG, GL, and
oxalic acid (OA), which are considered to be important con-
tributors to SOA. We found that the YMVK (18.9± 0.8 %)
and YMACR (9.0± 1.1 %) observed in the aqueous phase
isoprene-OH reaction were significantly different from those
observed in the corresponding gas phase reaction. The YMG,
YGL, and YOA varied with the reaction time. A box model
was employed to simulate the reaction, focusing on the for-
mation of multifunctional carbonyl compounds. Based on
the experimental and model results, we suggested that the
unexpected high YMVK /YMACR ratio (∼2) observed in the
aqueous phase relative to that (∼1) observed in the gas phase
may arise from the water-induced acceleration of the peroxy
radical HOCH2C(CH3)(O2)CH = CH2 self-reaction. More-
over, MG and GL may form through several pathways, in-
cluding the oxidation of MACR/MVK (P1), the decomposi-
tion of subsequent products of R1O2 and R5O2 peroxy rad-
icals (P2), and the reaction between the hydroxy isoprene
peroxyl radicals and the hydroxy MACR/MVK peroxyl rad-
icals (P3). The P2 pathway may dominate in the production
of MG and GL. In addition, HMW oxidation may also con-
tribute to the production of MG and GL.

Using the aqueous rate constant determined in this work,
we would like to evaluate the relative importance of aqueous
surface OH oxidation of isoprene compared with the corre-
sponding gas phase reaction. We assume that the gas phase
isoprene molecules can collide with a droplet and react with
the OH radicals on the aqueous phase surface. Herrmann et
al. (2005) have estimated that the aqueous OH radicals come
from the Fenton reaction between Fe2+ and H2O2 (account-

ing for 33 %), the photolysis of H2O2 (25.5 %), the uptake of
gas phase OH radical (21.6 %), and the other sources (20 %).
If the total surface aqueous phase reaction rate for all water
droplets in unit volume of air and the gas phase reaction rate
of isoprene-OH reaction are known, one can compare these
two values to evaluate the relative importance of aqueous sur-
face oxidation process in the atmosphere.

The surface aqueous phase reaction rate of two reactants
depends on their aqueous-phase reaction rate constant and
their surface concentrations on droplets. Up to date, there are
no field measurement data about the aqueous surface concen-
trations of isoprene and OH radical. Since the amount of iso-
prene in the aqueous phase calculated from its Henry’s law
constant does not represent that on the surface of droplets
based on the literatures mentioned in the introduction, this
amount should be re-estimated with other parameters. Here,
we try to provide reasonable values based on the available
theory and literatures. The surface concentration of isoprene
depends on its uptake rate by the surface of droplets. The sur-
face uptake rate,rs (mol s−1 m−3 air), of isoprene by droplets
can be given in Eq. (1) (Chen et al., 2008):

rs = αsZ =
1

4
αs

√
8RT

πMx
As[ISO]g (1)

WhereZ is the rate of isoprene collisions between the iso-
prene molecules and droplet surface,αs is the surface mass
accommodation coefficient of isoprene, As is the total effec-
tive surface area of droplets per unit volume of air,R is the
gas constant,T is the temperature andMx is the molecu-
lar weight of isoprene, [ISO]g indicates the gas phase con-
centration of isoprene. One will expect the water content
and the droplet size to play crucial roles in the droplet sur-
face uptake rate in 1 m3 air. Here, we consider a cloud with
liquid water content 1 g per m3 which form 0.2 µm (possi-
bly sub-micrometer-sized aqueous droplets) or 2 µm droplets
(cloud/fog) averagely, considering the major contribution of
small droplets to the total droplet surface area in the cloud.
Taking molecular dynamics simulation forα-pinene uptake
by aqueous water surface as a reference (Yu et al., 2008),
we deduce that the residence timet of isoprene on the sur-
face is at least 10−9 s without desorption. Within this resi-
dence time, the surface mass accommodation coefficient of
isoprene is assumed to be 1. Additionally, up to now, there
are no measured values of surface accommodation coeffi-
cients (αs), although bulk accommodation coefficients (αb)

are available (Ervens et al., 2003).αs is the maximum value
for αb (Pöschl et al., 2007), and the values ofαs are likely to
be very close to 1 for many atmospheric relevant conditions
(M. Ammann at PSI, private communication, 2008). In this
case, the Eq. (2) can be used to estimate the surface concen-
tration {ISO}s of isoprene on droplets disregarding the des-
orption process, assuming that the surface concentration of
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Table 1. Several scenarios about the oxidation rates of isoprene by OH radical on the surface of droplets in 1 m3 air and a comparison with
the corresponding gas phase reaction.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Lw (g m−3 air) 1.0 1.0 1.0 1.0 1.0
D (m) 2.0× 10−7 2.0× 10−7 2.0× 10−6 2.0× 10−6 2.0× 10−6

As (m2 m−3 air) 30 30 3 3 3
αs 1 1 1 1 1
rs (mol s−1 m−3 air) 9.1× 10−5 9.1× 10−5 9.1× 10−6 9.1× 10−6 9.1× 10−6

l (m) 1.0× 10−9 1.0× 10−9 1.0× 10−9 1.0× 10−9 1.0× 10−9

t (s) 1.0× 10−8 1.0× 10−9 1.0× 10−9 1.0× 10−9 1.0× 10−9

[ISO]g (ppb) 1.0 1.0 1.0 1.0 1.0
{ISO}v (mol L−1) 3.0× 10−8 3.0× 10−9 3.0× 10−9 3.0× 10−9 2.9× 10−11

[OH]g (ppt) 0.3 0.3 0.3 0.3 0.3
{OH}v (mol L−1) 5.1× 10−10 5.1× 10−10 5.1× 10−10 5.1× 10−11 5.1× 10−11

kgas(m3 mol−1 s−1) 6.4× 107 6.4× 107 6.4× 107 6.4× 107 6.4× 107

kaq (L mol−1 s−1 ) 1.2× 1010 1.2× 1010 1.2× 1010 1.2× 1010 1.2× 1010

Rgas(mol s−1 m−3 air) 3.3× 10−11 3.3× 10−11 3.3× 10−11 3.3× 10−11 3.3× 10−11

Rsur (mol s−1 m−3 air) 5.5× 10−12 5.5× 10−13 5.5× 10−14 5.5× 10−15 1.3× 10−17

Rsur/Rgas( %) 16 1.6 0.16 0.016 1.54× 10−4

whereLw is the liquid water content in air;D is the diameter of the droplet, 0.2 µm and 2 µm are considered here;As is the total surface area of droplets in 1 m3 air; αs is the surface

mass accommodation coefficient of isoprene, it is presumed to be 1;rs is the surface uptake rate of isoprene by the surface of droplets in 1 m3 air; l is the thickness of the surface of

droplets (P̈oschl et al., 2007);t is the residence time of isoprene on the surface of droplets, 1ns and 10 ns are considered (Yu et al., 2008); [ISO]g is the gas phase concentration of

isoprene;{ISO}v is the aqueous surface concentration of isoprene; [OH]g is the gas phase concentration of OH radical;{OH}v is the aqueous surface concentration of OH radical,

5.1× 10−10 M and 5.1× 10−11 M are considered, see the text;kgas is the reaction rate constant of isoprene with OH radical in the gas phase (Atkinson et al., 2006);kaq is the

reaction rate constant of isoprene with OH radical in the aqueous phase (this work);Rgas is the reaction rate of isoprene with oxidants in the gas phase;Rsur is the reaction rate of

isoprene with oxidants on the surface of droplets.

the reactant is initially zero:

{ISO}s=
rst

As
(2)

If both the surface concentrations of reactants and the sur-
face reaction rate constants are available, then the aqueous
phase reaction rates on the surface of droplets can be esti-
mated. However, to the best of our knowledge, the surface
reaction rate constants are not available. In order to use the
available volume (bulk) aqueous phase reaction rate constant
of isoprene-OH reaction, we should know the surface vol-
ume concentrations,{ISO}v, of isoprene in the surface layer
of droplets. Ifl is the thickness of the surface layer, then we
can obtain:

{ISO}v=
{ISO}s

l
(3)

The thickness of the surface layer of droplets is assumed to
be 1 nm (P̈oschl et al., 2007). The concentration of surface
OH radicals ({OH}v) is another parameter that we need to
know. For the gas phase mixing ratio ([OH]g) of OH radicals
with 0.3 pptv, the corresponding equilibrium concentration
in the aqueous phase is 1.27× 10−11 M (using a Henry’s law
constant of 39 M atm−1 at 283 K, Sander, 1999). Accord-
ing to the ratio (∼20 %) of gas uptake to total aqueous OH
radical (Herrmann et al., 2005), the aqueous bulk concentra-
tion is calculated as 6.4× 10−11 M. Vácha et al. (2004) have

computationally simulated that the surface concentration of
OH radicals is 8 times that in the bulk. Thus, we evaluate
the surface concentration of OH radicals as 5.1× 10−10 M
when there is no other reaction loss, and estimate the surface
steady state concentration as 5.1× 10−11 M. The reaction
rate constant of isoprene with OH radical in the gas phase
is 6.4× 107 m3 mol−1 s−1 (Atkinson et al., 2006). Because
there is no report about the rate constant on the aqueous sur-
face for isoprene-OH reaction, here we use the rate constant
determined in this work.

Then, the aqueous phase surface reaction rateRsur = ksur
{ISO}v {OH}v As in 1 m3 air, and the gas phase reaction rate
Rgas = kgas [ISO]g [OH]g can be calculated. Thus, the ratio
of Rsur/Rgas can reflect the relative importance of aqueous
surface process compared to the gas phase process. Here, we
calculated the ratio ofRsur/Rgas for several scenarios under
different conditions, as shown in Table 1.

Five scenarios are provided in Table 1. There are three
adjustable parameters, droplet diameter (D), residence time
(t), and the concentration of OH radical on the aqueous
surface ({OH}v), the proposed values have been mentioned
above. Scenario 1–4 considered the surface uptake of
isoprene and the surface accommodation and the multiple
sources of OH radical; Scenario 5 is the case that the sur-
face concentrations of isoprene is equal to the bulk concen-
tration (2.9× 10−11 M) calculated based on its Henry’s law
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constant. We can see that Scenario 1 gives an upper limit for
Rsur/Rgasunder our proposed conditions, that is,D = 0.2 µm,
t = 10−8 s, and{OH}v = 5.1× 10−10 M; scenario 4 gives a
lower limit for Rsur/Rgas when D = 2 µm, t = 10−9 s, and
{OH}v = 5.1× 10−11 M; scenario 2 and 3 describe the cases
under the middle condition. However, there are still great un-
certainties for the relative importance of aqueous surface OH
oxidation for isoprene considering that there are no measured
data for the actual OH concentration on the aqueous particles
to verify the present predicted values, and the aqueous sur-
face rate constant of isoprene-OH reaction is unknown. No-
ticeably, this work has provided experimental evidence for
the effect of availably abundant water on the oxidation mech-
anism of atmospheric volatile organic compounds (VOCs).
This reaction resulted in a different distribution of the oxy-
genated organic compounds compared to the corresponding
gas phase reaction. We think the chemical pathways pro-
posed in this study are possibly applicable to the surface
reaction of the droplets or wet aerosols, and this may con-
tribute to the aging of aerosols. We expect that our present
study could add to the increasing body of literatures that
cloud/fog/wet aerosol processing contributes to the SOA for-
mation in the atmosphere. In addition, our present study is
also related to the ocean isoprene SOA in the sea salt aerosol.
Increasing evidence has indicated that the ocean emission is
a source of isoprene in the ocean boundary layer (Milne et
al., 1995; Shaw et al., 2003; Broadgate et al., 2004; Sinha
et al., 2007), and field measurement has revealed the SOA
existing in the sea aerosol (Cai and Griffin, 2003; Gantt et
al., 2010; Miyazaki et al., 2010). The isoprene produced by
the phytoplankton could react with OH radical in the sea wa-
ter before entering into the atmosphere across the water-air
interface, and this process would contribute to the sea salt
aerosol components. It is well known that the sea salt aerosol
arises from the spray of the sea surface water and its evapo-
ration. One hand, this sea salt aerosol possibly contains iso-
prene SOA components produced in the sea water interface
and bulk OH-initiated oxidation of isoprene. Another hand,
this aqueous phase reaction would result in an underestima-
tion of isoprene emission by ocean.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/11/7399/2011/
acp-11-7399-2011-supplement.pdf.
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and Burrows, J. P.: Investigation of the effect of water complexes
in the determination of peroxy radical ambient concentrations:
Implications for the atmosphere, J. Geophys. Res. Atmos., 108,
4017,doi:10.1029/2002JD002152, 2003.

Ruppert, L. and Becker, K. H.: A product study of the OH radi-

calinitiated oxidation of isoprene: formation of C5-unsaturated
diols, Atmos. Environ., 34, 1529–1542, 2000.

Sander, R.: Compilation of Henry’s law constants for inorganic
and organic species of potential importance in environmental
chemistry, Version 3,http://www.mpch-mainz.mpg.de/Bsander/
res/henry.html, 1999.

Sauer, F., Schafer, C., Neeb, P., Horie, O., and Moortgat, G. K.:
Formation of hydrogen peroxide in the ozonolysis of isoprene
and simple alkenes under humid conditions, Atmos. Environ.,
33, 229–241, 1999.

Schwier, A. N., Sareen, N., Mitroo, D., Shapiro, E. L., and McNeill,
V. F.: Glyoxal-methylglyoxal cross-reactions in secondary or-
ganic aerosol formation, Environ. Sci. Technol., 44, 6174–6182,
2010.

Seinfeld, J. H. and Pandis, S. N.: From Air Pollution to Climate
Change, Atmospheric Chemistry and Physics, second edition,
Wiley, New York, p. 290, 2006.

Shaw, S. L., Chisholm, S. W., and Prinn, R. G.: Isoprene production
by Prochlorococcus, a marine cyanobacterium, and other phyto-
plankton, Mar. Chem., 80, 227–245, 2003.

Sinha, V., Williams, J., Meyerhfer, M., Riebesell, U., Paulino, A.
I., and Larsen, A.: Air-sea fluxes of methanol, acetone, acetalde-
hyde, isoprene and DMS from a Norwegian fjord following a
phytoplankton bloom in a mesocosm experiment, Atmos. Chem.
Phys., 7, 739–755,doi:10.5194/acp-7-739-2007, 2007.

Suma, K., Sumiyoshi, Y., and Endo, Y.: The rotational spectrum
of the water-hydroperoxy radical (H2O·HO2) complex, Science,
311, 1278–1281,doi:10.1126/science.1124022, 2006.

Tan, Y., Perri, M. J., Seitzinger, S. P., and Tuipin, B. J.: Effects of
precursor concentration and acidic sulfate in aqueous glyoxal-
OH radical oxidation and implications for secondary organic
aerosol, Environ. Sci. Technol., 43, 8105–8112, 2009.

Tan, Y., Carlton, A. G., Seitzingera, S. P., and Turpin, B. J.: SOA
from methylglyoxal in clouds and wet aerosols: measurement
and prediction of key products, Atmos. Environ., 44, 5218–5226,
2010.

Taraborrelli, D., Lawrence, M. G., Butler, T. M., Sander, R., and
Lelieveld, J.: Mainz Isoprene Mechanism 2 (MIM2): an isoprene
oxidation mechanism for regional and global atmospheric mod-
elling, Atmos. Chem. Phys., 9, 2751–2777,doi:10.5194/acp-9-
2751-2009, 2009.
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