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Abstract. New methodologies are required to probe the
sensitivity of parameters describing cloud droplet activation.
This paper presents an inverse modeling-based method for
exploring cloud-aerosol interactions via response surfaces.
The objective function, containing the difference between
the measured and model predicted cloud droplet size distri-
bution is studied in a two-dimensional framework, and pre-
sented for pseudo-adiabatic cloud parcel model parameters
that are pair-wise selected. From this response surface anal-
ysis it is shown that the susceptibility of cloud droplet size
distribution to variations in different aerosol physiochemical
parameters is highly dependent on the aerosol environment
and meteorological conditions. In general the cloud droplet
size distribution is most susceptible to changes in the up-
draft velocity. A shift towards an increase in the importance
of chemistry for the cloud nucleating ability of particles is
shown to exist somewhere between marine average and rural
continental aerosol regimes.

We also use these response surfaces to explore the feasi-
bility of inverse modeling to determine cloud-aerosol interac-
tions. It is shown that the “cloud-aerosol” inverse problem is
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particularly difficult to solve due to significant parameter in-
teraction, presence of multiple regions of attraction, numer-
ous local optima, and considerable parameter insensitivity.

The identifiability of the model parameters will be depen-
dent on the choice of the objective function. Sensitivity anal-
ysis is performed to investigate the location of the informa-
tion content within the calibration data to confirm that our
choice of objective function maximizes information retrieval
from the cloud droplet size distribution.

Cloud parcel models that employ a moving-centre based
calculation of the cloud droplet size distribution pose addi-
tional difficulties when applying automatic search algorithms
for studying cloud-aerosol interactions. To aid future stud-
ies, an increased resolution of the region of the size spectrum
associated with droplet activation within cloud parcel mod-
els, or further development of fixed-sectional cloud mod-
els would be beneficial. Despite these improvements, it is
demonstrated that powerful search algorithms remain neces-
sary to efficiently explore the parameter space and success-
fully solve the cloud-aerosol inverse problem.
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1 Introduction

A challenge currently facing the cloud-aerosol research com-
munity is quantifying the relative importance of aerosol size
and composition for the activation of particles into cloud
droplets (McFiggans et al., 2006). The difficulties in ac-
curately representing the development of a cloud droplet
number concentration (CDNC) distribution using numerical
approaches can be partly attributed to the current state of
knowledge regarding which of the parameters describing the
properties of an aerosol distribution are most important for
the cloud nucleating ability of aerosol particles (Dusek et al.,
2006). This capability is a function of the size of the particle,
its composition and mixing state, and the supersaturation in
the cloud (Fitzgerald, 1974; Hegg and Larson, 1990; Laakso-
nen et al., 1998; Feingold, 2003; Conant et al., 2004; Kanaki-
dou et al., 2005; Andreae and Rosenfeld, 2008; Quinn et al.,
2008).

The aerosol indirect effect (Lohmann and Feichter, 2005)
remains the largest single source of uncertainty in current
estimates of the total anthropogenic radiative forcing in cli-
mate models (IPCC, 2007). The indirect effect can be de-
scribed as the change in the microphysical and macrophys-
ical properties of clouds in response to a change in input
aerosol properties. To constrain the uncertainty of the indi-
rect effect it is necessary to better understand cloud-aerosol
interactions; hence it is crucial to improve the understanding
of both the physiochemical properties of the aerosol, and the
meteorological parameters relevant for the formation and de-
velopment of clouds. One approach to address this question
is to use model sensitivity studies (e.g. Nenes et al., 2001;
Feingold, 2003; Rissman et al., 2004; Anttila and Kermi-
nen, 2007; Reutter et al., 2009). However, most sensitivity
studies to date have been local, i.e. investigating parameter
sensitivity in the vicinity of their actual values. Global sen-
sitivity analysis considers parameter changes over the entire
multi-dimensional parameter domain (e.g. Pérez et al., 2006;
Anttila and Kerminen, 2007). This generally leads to differ-
ent, but more reliable results because parameter sensitivities
in nonlinear models typically vary considerably over the fea-
sible space of solutions.

One route by which cloud-aerosol relationships can be
probed in detail is to embrace inverse modeling techniques,
to scrutinize and evaluate model parameter interactions over
a wide range of input and output conditions. In inverse anal-
ysis, a given model is calibrated by iteratively changing in-
put values (calibration parameters herein) until the simulated
output values match the measured data (termed calibration
data herein) as closely and consistently as possible.

Inverse modeling has many practical advantages, but a
key advantage is that, when properly implemented, it al-
lows the conditioning of parameter sensitivity and correla-
tion on real world measurements. Parameter estimation by
inverse modeling also provides a useful approach to diag-
nose structural inaccuracies in a model, which will appear

as a mismatch between optimised parameter values and their
directly-observed values. In essence, improved interpreta-
tion of parameter uncertainty can yield valuable information
to enable a better judgement of the limits of our theoretical
understanding of droplet activation. When applying an in-
verse approach to a new problem or model, it is prudent to
first investigate the posedness and identifiability of the model
parameters (Pollacco and Angulo-Jaramilo, 2009; Cressie et
al., 2009). One method to achieve this is via response surface
analysis (Toorman et al., 1992;Šimůnek et al., 1998; Vrugt
et al., 2001).

In addition to exploring the posedness of an inverse prob-
lem, response surfaces can also be used to provide a qualita-
tive graphical illustration of the outcome of global sensitivity
analysis. For example, the susceptibility of cloud albedo and
precipitation to aerosol perturbations (Platnick and Twomey,
1994; Noone et al., 2000; Sorooshian et al., 2009) could be
investigated by using response surfaces to provide detailed
insight to the structural response of certain calibration data
to any calibration parameters of interest in two dimensions.

1.1 An introduction to inverse modeling

Parameter estimation or model calibration is a common prob-
lem in many areas of process modeling, both in on-line appli-
cations, such as real time optimization, and in off-line appli-
cations, such as the modeling of reaction kinetics and phase
equilibrium. The goal is to determine values of model pa-
rameters that provide the best fit to measured data, generally
based on some type of least squares or maximum likelihood
criterion (Vrugt et al., 2006). Usually, this requires the solu-
tion of a nonlinear and frequently non-convex optimization
problem.

During the last two decades a great deal of research has
been devoted to the application of inverse modeling for
model calibration in many different areas of scientific re-
search (Vrugt et al., 2004, 2008; Voutilainen and Kaipo,
2005; San Martini et al., 2006; Tomassini et al., 2007; Laine
and Tamminen, 2008; Wraith et al., 2009; Bikowski et al.,
2010; J̈arvinen et al., 2010; Loridan et al., 2010). Crump
and Seinfeld (1982) and Twomey (1975) were among the
first to apply inverse modeling for calibration of aerosol size
distribution properties from instruments (Kandlikar and Ra-
machandran, 1999). Inverse modeling is particularly useful
for finding model parameters whose values cannot be mea-
sured directly at the (application) scale of interest.

To illustrate the inverse modeling approach consider
Fig. 1, which presents a schematic representation of the
model calibration problem. Using a priori values of the cali-
bration parameters, the predictions of the calibration data by
the model (indicated with solid-red line) are behaviourally
consistent with the observations (dotted line), but demon-
strate a significant bias in the smaller part of the size dis-
tribution. The common approach is to ascribe this mismatch
between model and observations to parameter uncertainty.
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Fig. 1. A schematic representation of inverse modeling. The rectangular box in the bottom panel8 represents the cloud parcel model that
is being used to predict the observed particle size distribution from given input data (also called forcing or boundary conditions), and some
a-priori values of the model parameters. The model parameters are iteratively adjusted so that the predictions of the model,8 (represented by
the green and red solid lines) approximate as closely and consistently as possible the observed response (measured particle size distribution).

Mathematically, the model calibration problem depicted
in Fig. 1 can be formulated as follows. LetỸ = 8(X,θ) de-
note predictions of, for instance the cloud droplet size dis-
tribution, Ỹ = {ỹ1,...,ỹn} of the cloud parcel model8 with
observed input variablesX and model parametersθ . Let
Y = {y1,...,yn} represent the observed cloud droplet size dis-
tribution (wheren corresponds to the resolution). After run-
ning the cloud parcel model with a set of parameters and in-
put variables we are left with a predicted size distribution
Ỹ that we need to compare against the observations,Y. The
difference between the model-predicted and measured cloud
droplet size distribution can be represented by the residual
vectorE as:

E(θ)=G(Ỹ )−G(Y ) = {G(ỹ1)−G(y1),...,G(ỹn)−G(yn)}

= {e1(θ),...,en(θ)} (1)

whereG(.) allows for various monotonic (such as logarith-
mic) transformations of the model outputs. In practice how-
ever, it is particularly difficult to work with ann-element vec-
tor of residuals,E(θ ), and find the best parameter values. It
has therefore become common practice to aggregate the vec-
tor of residuals (Eq. 1),E(θ = {e1(θ),...,en(θ)} into a single
measure of distance between the model predictions and ob-
servations. This measure is commonly calledthe objective
function(herein denoted as “OF”).

The inverse modeling approach now relies on the estima-
tion of the set of parametersθ such that the OF is in some
sense forced to be as close to zero as possible. To minimize
the OF, the calibration parameters needed to perform the nu-
merical simulation are optimised using an inverse analysis
algorithm. If the model fit is not “optimal” the procedure is
repeated until the model is optimized.

1.2 Goals

The ultimate goal is to apply an automatic parameter esti-
mation algorithm to a pseudo-adiabatic cloud parcel model.
This will be described in detail in the second paper in this
series (Partridge et al., 2011). However, the first critical step
described here, is to study the behaviour of the chosen form
of the OF in the multi-dimensional parameter space of the
model used (cf. Sect. 3.1). This will be achieved by studying
response surfaces, a form of analysis which has previously
been used in many fields (Sorooshian and Arfi, 1982; Toor-
man et al., 1992;̌Simůnek et al., 1998; Vrugt et al., 2001).
These response surfaces will also be used to provide 2-D sen-
sitivity information to complement Partridge et al. (2011) in
which the sensitivity resulting from changing more than two
parameters simultaneously is presented.

The main goals of this paper are split into two distinctive
applications:

1. Explore the feasibility of inverse modeling for the cal-
ibration of a pseudo-adiabatic cloud parcel model us-
ing artificial measurements generated from this model
(Sects. 3.1–3.3).

2. Investigate cloud-aerosol interactions with respect to
the susceptibility of the cloud droplet size distribution
to aerosol physiochemical and meteorological parame-
ters (Sect. 3.4).

To achieve these goals, response surfaces will be gener-
ated for a range of aerosol environments (marine arctic, ma-
rine average, rural continental and polluted continental). The
response surfaces are calculated by solving the OF for many
possible combinations of selected pairs of parameters from
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Table 1. Model parameter values used to generate synthetic data for marine Arctic and marine average aerosol environments (bold), as well
as lower and upper parameter bounds used to generate the grid over which the response surfaces were calculated.

Environment Marine Arctic Marine Average

Parameter Lower Limit True Value Upper Limit Lower Limit True Value Upper Limit

1 Mass Accom Coefficient 0.01 1.00 1.00 0.01 1.00 1.00
2 Surface Tension (m N m−1) 20.00 70.00 75.00 20.00 70.00 75.00
3 Updraft (m s−1) 0.05 0.30 2.00 0.05 0.30 2.00
4 N1 (cm−3) 33.00 80.00 185.00 150.00 265.00 600.00
5 R1 (nm) 13.50 17.40 21.50 15.50 21.00 23.50
6 GSD1 1.30 1.43 1.60 1.40 1.45 1.60
7 N2 (cm−3) 36.50 74.50 150.00 60.00 165.00 250.00
8 R2 (nm) 35.00 48.00 65.00 70.00 82.50 100.00
9 GSD2 1.50 1.68 1.85 1.40 1.50 1.60
10 Soluble Mass Fraction 0.05 0.60 1.00 0.05 0.90 1.00

Tables 1 and 2 on a rectangular grid. A response surface
is then obtained by changing these two selected parameters
around their true values, whilst keeping other parameters
constant at their true values.

The paper is organized as follows: firstly the pseudo-
adiabatic cloud parcel model and the method used to gen-
erate synthetic measurements will be described. The use of
response surface analysis to aid the selection of an appropri-
ate OF will then be discussed in terms of the identifiability
of model calibration parameters and information content of
the calibration data. Implications of the standard output of
particle size distributions from cloud parcel models will then
be highlighted. Secondly, by representing the deviation from
base case droplet size distributions by the OF, the applica-
bility of response surface analysis to determine droplet size
distribution susceptibility regimes for different (aerosol) en-
vironments will be presented.

Finally an example of the need for robust search algo-
rithms will be presented by overlaying the results of a sim-
ulation from a deterministic optimisation algorithm versus a
standard Latin Hypercube Monte Carlo simulation onto re-
sponse surfaces.

2 Materials and methods

2.1 Pseudo-adiabatic cloud parcel model

In the present study, we use a pseudo-adiabatic cloud parcel
model to generate the synthetic calibration data sets and the
inversion analysis performed in this study. Such a model of-
fers the possibility of studying the relationship between key
input parameters with respect to different output variables
in a computationally efficient way. Adiabatic cloud parcel
models have been evaluated against in-situ observations to
estimate the impact of aerosol size/composition for liquid
clouds (Ayers and Larson, 1990; Nenes et al., 2002; Hsieh

et al., 2009). We posit that a pseudo-adiabatic cloud parcel
model is a sensible trade-off between processes accounted
for, and computational speed necessary to perform the thou-
sands of simulations required for the Markov Chain Monte
Carlo simulation (MCMC) of a single cloud case.

For more information on the pseudo-adiabatic cloud
model and references the reader is referred to Roelofs and
Jongen (2004). The model simulates the pseudo-adiabatic as-
cent of an air parcel, condensation and evaporation of water
vapor on aerosols, particle activation, condensational growth,
collision and coalescence between droplets, and aqueous
phase sulfur chemistry. It can be initialized with aerosol
populations consisting of one or more internal and/or exter-
nal mixtures of (NH4)mH2−mSO4 (m = 0, 1 or 2), organic
carbon (OC), black carbon (BC), mineral dust and sea salt.
The model is currently configured so that the aerosol is rep-
resented as an internal mixture of compounds. This should
be a reasonable assumption for aged aerosol in the marine
environment but may be less realistic for rural/polluted con-
tinental conditions. Nevertheless we keep the mixing state
consistent to allow a more straight-forward analysis. The
size distribution of the aerosol size distribution is described
by two lognormal modes, which are defined by the geometric
standard deviation of the mode, total particle concentration,
and mean radius. These lognormal parameters are used to
generate an aerosol number size distribution over 300 size
bins covering a size range of 4–2000 nm. Each aerosol bin
is characterized by a dry and a wet particle radius, the latter
of which employs a moving centre approach so that the wet
radii are continuously modified by condensation or evapora-
tion of water.

The ascending parcel equations are from Pruppacher
and Klett (1997). Aerosol activation and condensation/
evaporation of water are calculated according to the Köhler
equation (K̈ohler, 1936) and parameterized according to
Hänel (1987). The K̈ohler equation was reformulated in
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Table 2. Model parameter values used to generate synthetic data for rural continental and polluted continental aerosol environments (bold),
as well as lower and upper parameter bounds used to generate the grid over which the response surfaces were calculated.

Environment Rural Continental Polluted Continental

Parameter Lower Limit True Value Upper Limit Lower Limit True Value Upper Limit

1 Mass Accom Coefficient 0.01 1.00 1.00 0.01 1.00 1.00
2 Surface Tension (m N m−1) 20.00 70.00 75.00 20.00 70.00 75.00
3 Updraft (m s−1) 0.05 0.30 2.00 0.05 0.30 2.00
4 N1 (cm−3) 450.00 1010.00 1600.00 2900.00 4900.00 9100.00
5 R1 (nm) 16.00 23.70 32.00 24.00 33.00 40.00
6 GSD1 1.55 1.71 1.90 1.47 1.55 1.66
7 N2 (cm−3) 215.00 451.00 690.00 730.00 1200.00 1600.00
8 R2 (nm) 75.00 89.80 105.00 75.00 93.50 105.00
9 GSD2 1.40 1.58 1.75 1.50 1.55 1.62
10 Soluble Mass Fraction 0.05 0.70 1.00 0.05 0.60 1.00

terms of the solute concentrations (Roelofs, 1992) to allow
for modifications of the Raoult term by chemical processes,
e.g., dissolution of gaseous HNO3 or partial dissolution of
aerosol organic matter.

For this study the model is run with the processes of
collision-coalescence and entrainment turned off, and the up-
draft velocity kept constant. This maintains computational
speed and is deemed reasonable for this study, in which
the focus is on cloud condensation nuclei (CCN) activation
and condensational growth above the cloud base. In reality
clouds are more complex in nature, including processes such
as mixing, variable updrafts and entrainment. The approach
of this study will therefore only probe an idealised sys-
tem; nevertheless, it addresses the most critical cloud/droplet
forming mechanisms.

2.2 Artificial measurements

To benchmark our inverse modeling approach, it is useful
to start our analysis with numerically generated calibration
data sets in the form of droplet size distributions simulated
by the cloud parcel model (cf. Sect. 2.1). This “synthetic”
calibration data set serves as the “truth”, and was created
using input parameter values from the literature. Since the
exact values of the aerosol/chemistry/meteorological calibra-
tion parameters are known precisely a-priori (Toorman et al.,
1992;Šimůnek et al., 1998), this enables us to analyze possi-
ble discrepancies between the estimated and true parameters
and thus test our methodology. Using real-world data, pa-
rameters will diverge from their true values because of model
and measurement error. It is important that first the optimal
solutions of the calibration parameters can be accurately and
efficiently found using synthetic calibration data with an au-
tomatic search algorithm, or else solutions found when cali-
brated against real world measurements could be misleading.

2.2.1 Calibration input parameters

To test a wide range of input aerosol size distributions and
encompass the large variety of conditions observed in the
aerosol/climatic system, data from four distinctively differ-
ent aerosol environments were used:

1. Marine Arctic: summertime measurements performed
at Ny-Ålesund, Svalbard (P. Tunved, personal commu-
nication, 2011)

2. Marine average: global measurements (Heintzenberg et
al., 2000).

3. Rural continental: measurements from the well-
established SMEAR II station at Hyytiälä (Tunved et
al., 2005).

4. Polluted continental: summer continental air mass mea-
surements from Melpitz station (Birmili et al., 2001).

The base values used to generate the calibration data are pre-
sented in Tables 1 and 2 for the parameters describing the
lognormal aerosol size distribution for both the Aitken (mode
1) and accumulation (mode 2) (parameters 4–9). For each
environment the upper and lower parameter bounds for these
parameters were selected using the statistics from P. Tunved,
personal communication, 2011; Heintzenberg et al., 2000;
Tunved et al., 2005; and Birmili et al., 2001 respectively as
a guide. The aerosol size distributions for each environment
are shown in Fig. 2. For the updraft velocity, the base value
was chosen to be 0.3 m s−1, with a lower limit of 0.05 m s−1

and upper limit of 2 m s−1, which represents a wide range of
meteorological conditions. For the mass accommodation co-
efficient, the base value was chosen to be 1, with a lower limit
of 0.01 and upper limit of 1. For the surface tension, the base
value was chosen to be 70 m N m−1, with a lower limit of
20 m N m−1 and upper limit of 75 m N m−1. The base value
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Figure 2: A -The initial aerosol size distributions for marine Arctic (cyan) and marine average (blue) used 1109 
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Fig. 2. (A) The initial aerosol size distributions for marine Arctic
(cyan) and marine average (blue) used to calculate the respective
calibration data sets.(B) The initial aerosol size distributions for
rural continental (green) and polluted continental (red) used to cal-
culate the respective calibration data sets.

and upper/lower limits for the updraft, mass accommodation
coefficient and surface tension were kept fixed for all envi-
ronments to allow easier comparison of the behaviour of the
calibration parameters describing the aerosol’s physiochem-
ical properties.

Ideally the chemistry would be represented by the mass
fractions of multiple aerosol components. This however, is
not conducive for two-dimensional parameter analysis, since
in order to vary parameter values independently from one an-
other it is not possible to include mass fractions for multiple
components, whilst simultaneously keeping all other compo-
nents fixed and achieving unity for the sum of all mass frac-
tions (MF). Thus, in this study the chemistry was defined as
a two-component scheme consisting of either a soluble com-
ponent, ammonium bisulphate (NH4HSO4), or an insoluble
component, black carbon (BC). In the calculation of the re-
sponse surfaces (cf. Sect. 3 onwards) we only allow one of
the chemistry components to vary. The soluble mass fraction
(MF) is allowed to vary between 0.05 and 1, and the MF of
the insoluble component is calculated directly from the equa-
tion, MFINSOLUBLE = 1− MFSOLUBLE. It is important that
the base MFSOLUBLE used to generate our calibration data
changes with different aerosol environments as for instance
a marine aerosol environment would be expected to have a
higher MFSOLUBLE than a rural continental aerosol environ-
ment (Lance et al., 2004). Accordingly we use literature val-
ues as a guideline when defining the base soluble mass frac-
tion (Zhou et al., 2001; O’Dowd et al., 2004; Neusüß et al.,
2002).

In the pseudo-adiabatic cloud parcel model it is necessary
to define an ambient temperature profile. In the absence of
detailed prior information, we define two summer tempera-

ture profiles for the four aerosol environments using standard
atmospheric lapse rates generated from surface temperatures.
For marine arctic conditions we assume a surface tempera-
ture of 273.15 K. For the remaining three environments we
assume a mid-latitude surface temperature of 288.15 K.

A log-transformation was applied to the number of aerosol
particles in the Aitken and Accumulation mode (calibration
parameters 4, 7; see Tables 1 and 2), as the ranges of these
vary by several orders of magnitude. Such transformation
generally improves parameter search efficiency. Hence, these
calibration parameters are sampled in the transformed space
and then back-transformed before running the cloud parcel
model.

2.2.2 Synthetic calibration data

Within an inverse modeling framework the choice of calibra-
tion data is an important factor, as this information is directly
translated into the calibration parameter values. To exam-
ine aerosol-cloud interactions, in particular the influence of
aerosols on the cloud microphysical properties, the change
in cloud model output properties that are of most interest are
the liquid water content (LWC), cloud droplet effective ra-
dius (Re), droplet size distribution, cloud fraction, and cloud
phase. In this first paper, we are focusing on liquid-phase
clouds using a pseudo-adiabatic cloud parcel model; hence
we are limited to investigating microphysical properties from
the model output in the form of droplet number distributions
or bulk parameters describing this distribution. In this inves-
tigation we define the calibration dataY = {y1,...,yn} by cal-
culating base case cloud droplet size distributions in the form
dN/d logDp for our four aerosol environments (depicted in
Fig. 3), using the base input parameter values reported in
Tables 1 and 2. In all the calculations reported herein, the
droplet size distribution model output is taken at 100 m above
the cloud base. This is deemed a reasonable height within the
cloud to account for droplet activation, and ensures computa-
tional tractability as each model simulation can be performed
within a reasonable time frame. The following analysis will
focus on the activated part of these droplet size distributions
only.

2.3 Objective Function (OF)

The development of an appropriate OF (cf. Sect. 1.1) is typi-
cally based on assumptions regarding the distributions of the
measurement errors presented in the data. Arguably, the most
common OF is the simple least squares (SLS) or maximum
likelihood estimator, appropriate when the measurement er-
rors are believed to be homoscedastic and uncorrelated. We
follow this assumption and use the following definition of
the OF:

Atmos. Chem. Phys., 11, 7269–7287, 2011 www.atmos-chem-phys.net/11/7269/2011/
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OF=

n∑
i=1

wi[yi −8(Xi,θ)]2 =

n∑
i=1

wiei(θ)2 (2)

with the assumption of similar weights for each observation.
This function is similar to the sum of squared errors (SSE)
function used in many other fields of study to minimise the
quadratic simulation error during model calibration. Note
that the minimum value of the OF for a numerically gener-
ated data set with no error is zero. Theθ vector consists
of the calibration parameters, for instance those describing
the input lognormal aerosol size distribution over different
modes, updraft, and mass fractions of chemical compounds,
whilst thewi denotes the weights associated with a particular
measurement point. In the absence of compelling prior infor-
mation about the measurement error it is common practice
to weight the observations by their respective measurement
variance (̌Simůnek et al., 1998). If the errors are believed to
be heteroscedastic the weights should be adjusted to reflect
this deviation from a single fixed measurement error vari-
ance. In this paper we are using synthetically generated ob-
servations, and the weights of the individual data points are
assumed to be equal to one.

The projection of ann-dimensional observation space onto
a single dimension OF, results in a major loss of informa-
tion from the original data (Vrugt et al., 2003; Gupta et al.,
2008), thus the definition of the OF (Eq. 2) exerts a strong
influence on the identifiability of the different cloud-parcel
model parameters. It is important to construct an OF that
contains independent (orthogonal) information about each of
the individual calibration parameters. Such an OF is sensitive
to each individual parameter and therefore should contain a
well-defined global optimum within the parameter space. If
we cannot find a single OF deemed appropriate for each of
the parameters then it is worthwhile to consider multi-criteria
optimization methods that simultaneously minimize differ-
ent objective functions that each measure different compo-
nents of model performance (Gupta et al., 1998; Vrugt et al.,
2003).

When defining a suitable OF from a cloud parcel model
a primary difficulty arises. Adiabatic cloud parcel models
typically employ a moving centre approach for the numeri-
cal representation of the particle size distribution (Jacobson,
1997; Korhonen et al., 2005) as a moving centre based struc-
ture most accurately reproduces the qualitative features of
the size distribution (Zhang et al., 1999). However, from an
inverse modeling perspective a moving centre approach has
distinct disadvantages. As bothx (radius) andy (number of
droplets) are simultaneously changing in each run, it is not
trivial to compare measured and modelled size distributions.
In order for the difference between measured and simulated
y values to prove an accurate diagnostic for the distance be-
tween the model predicted droplet size distribution and ob-
servational data, the model should outputy-values at values
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Fig. 3. ThedN /d logDp particle size distribution generated for ma-
rine Arctic (cyan), marine average (blue), rural continental (green)
and polluted continental (red) aerosol environments. Black dotted
line represents location of 1 µm radius.

of x where we have measurements. In this study our cal-
ibration dataY = {y1,...,yn} is the droplet size distribution
(cf. Sect. 2.2.2), thus the corresponding model predictions
of the pseudo-adiabatic model,Ỹ = {ỹ1,...,ỹn} would need
to be either re-binned or interpolated onto the size grid of
Y = {y1,...,yn} to ensure consistent parameter estimates that
accurately represent the measured droplet-size distribution.

A standard re-binning of the size distribution onto a fixed
grid has the potential to introduce problems, as the shape of
the output size distribution will change significantly due to
a loss of resolution. The loss of resolution will lead to a
very “spiky” droplet size distribution, with the majority of
the information content stored within the peak over a limited
number of bins. This has the potential to create an ill-posed
or “non-unique” inverse problem, the extent to which will be
dependent on the original shape of the droplet size distribu-
tion. Therefore, prior to calculating the OF in this study, we
apply a standard interpolation of the droplet size distribution
to obtain model predictions that correspond exactly with the
calibration wet particle radii.

3 Results and discussion

3.1 Response surface analysis as a graphical tool:
inverse problems

Response surfaces convey important information about the
posedness of an inverse problem. It is stressed that the be-
haviour of the OF in these parameter planes can only suggest
how the OF might behave in our possible 10-dimensional
continuum. For example, local minima of the OF could exist
and not show up in the cross-sectional planes (Šimůnek et
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al., 1998; Vrugt et al., 2001). However, the response sur-
faces provide a useful approximate view of the behaviour of
the OF in the entire parameter space. If the response sur-
faces do not display a well-defined global minimum in the
two-dimensional parameter planes, the conventional inverse
parameter estimation technique may certainly be expected to
be unsuccessful in a multidimensional plane.

Response surfaces that are smooth (deterministic) and
contain a single well-defined minimum are preferred, as the
gradient points to the same minimum anywhere in the search
space, irrespective of the location in the feasible parameter
domain. Such surfaces indicate the presence of sensitive cal-
ibration parameters that could be efficiently solved using any
type of search algorithm (Luo et al., 2009). An example of a
response surface containing a relatively small basin of attrac-
tion is shown in Fig. 4d. For this parameter combination the
OF values smoothly decrease in a generally convex manner
towards the location of the optimal solution denoted by the
blue cross.

Response surfaces that are flat (OF is insensitive to
changes in parameter values) are more difficult to traverse
as the direction of improvement is difficult to find, indicating
the presence of parameter(s) that are non-identifiable, which
in turn can lead to non-uniqueness. Non-uniqueness indi-
cates the presence of more than one set of calibration param-
eters, each yielding minimum values for the OF (Sorooshian
and Gupta, 1985; Duan et al., 1992), i.e. the posterior distri-
bution of parameter values from an optimisation would ex-
hibit virtually identical OF values. Thereby, the information
content available does not allow a single or unambiguous
mathematical solution to the identification problem (Vrugt
et al., 2001, 2005; Beven, 2006). Non-uniqueness not only
makes it difficult to find the appropriate parameter values, but
often also translates into considerable parameter uncertainty.

Examples of non-identifiable calibration parameter com-
binations are illustrated for marine average aerosol environ-
ments in Fig. 4b. For this cleaner environment, changes in
the accumulation mode radius result in insignificant changes
in the OF, as seen in the x-plane of the response surface.
For polluted continental aerosol conditions, these same two
parameters exhibit a well defined optimum. Therefore,
for certain parameter combinations, the existence of non-
identifiability depends on the pre-existing aerosol and me-
teorological conditions. Parameters were also located that
were non-identifiable for all aerosol environments. This was
found to be the case for the lognormal aerosol parameters de-
scribing the Aitken mode (cf. Sect. 3.3), as well as the mass
accomodation coefficient (figures not shown). The synthetic
measurements simply do not contain the appropriate and re-
quired information to warrant their estimation. It is unlikely
that such parameters can be estimated using current available
observations.
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Fig. 4. (A–D) 2-D response surface planes for a selection of two
parameter combinations. The blue cross denotes the true parame-
ter values used to generate the synthetic measurements. Greyscale
shows the change in gradient of the OF:(A) marine Arctic;(B) ma-
rine average;(C) rural continental;(D) polluted continental.

Response surfaces for certain calibration parameters were
found to exhibit partially non-identifiable characteristics. An
example of these poorly constrained parameters can be seen
for rural continental aerosol conditions in Fig. 4c. The OF
is relatively insensitive to changes in the accumulation mode
radius up to a certain point in the parameter space.

Non-identifiable calibration parameter combinations
aside, there are also other factors which can impede inverse
modeling. Response surfaces that exhibit an erratic (chaotic)
pattern, and/or contain multiple basins of attraction, are also
particularly difficult to solve as the parameter space may
contain numerous (possibly uncountable) local “minima”
which may occur both close to and at various distances
from the best solution (Duan et al., 1993). If several major
regions of attraction exist into which an algorithm may
converge (i.e. it is non-convex), and if the parameters exhibit
varying degrees of sensitivity and a great deal of highly
non-linear interaction it can make it difficult for an automatic
search algorithm to find which of the local minima is the
global minimum, and hence the true solution to the inverse
problem.

A multi-modal response surface with minima both near
and far from the position of the true solution was found for
numerous response surfaces. This is shown for marine aver-
age conditions by the updraft versus surface tension (Fig. 5).
The OF for this response surface is represented now in theZ

co-ordinate, so the difficulty of a search algorithm becoming
trapped within a local minima can be more easily visualised.
We posit that the presence of these local minima can be par-
tially attributed to the interpolation (cf. Sect. 2.3), resulting
in a loss of information at the split between unactivated in-
terstitial aerosol and activated droplets (Fig. 3) for certain pa-
rameter combinations. A similar problem with local minima
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has been experienced in the inversion of bi-modal aerosol
measurements (Helsper et al., 1982).

The strong non-linear interaction between the updraft and
surface tension would also make inference of the single true
calibration values very difficult. Nevertheless, the general
shape of this response surface is logical based on our knowl-
edge of the interactions of the parameters in question. The
updraft is expected to compensate changes in the surface ten-
sion so that for higher updrafts, a higher surface tension is
required to activate the same number of particles.

A response surface in which the gradient varies in a
chaotic manner over the parameter space is presented in
Figure 4a for marine Arctic conditions. It is observed that
the chaotic and multi-modal nature of response surfaces de-
creases the more polluted the aerosol environment becomes
(Fig. 4). The meteorological conditions remain the same be-
tween both simulations, and so it is the nature of the aerosol
size distribution that results in these observed characteristics.
This can be attributed to fact that the location of information
content within the calibration data is stored over a smaller
size range for cleaner aerosol environments which have nar-
rower droplet size distributions (Fig. 3). For droplet size dis-
tributions with steeper gradients, small changes in the input
parameters can lead to bigger “jumps” in the residual vector
from one bin to the next, hence the OF varies in a more dis-
continuous manner. This potentially has a strong impact on
the synthetically generated calibration data in which we give
equal weighting to every bin.

Calibration parameter combinations which result in the
calibration data set having a very narrow functional shape
will further hamper a successful inversion by the necessary
interpolation to a fixed size grid due to the moving cen-
tre model framework. This can be visualised from the re-
sponse surfaces for marine Arctic conditions (Fig. 4a). A
large region of the response surface contains very similar
values of the OF. This is caused by the interpolation falling
out of bounds of the narrow droplet distribution. This effect
was also found for conditions in which the base updraft was
very low (0.1 m s−1, figures not shown). In essence, param-
eter identifiability can deteriorate due to the interpolation, as
widely varying parameter values result in very similar val-
ues of the OF. These findings are similar to those of Antilla
and Kerminen (2007) who found the largest errors in their
polynomial approximation in the presence of low updraft ve-
locities that resulted in the droplet number changing sharply
for changes in their input parameters.

This artefact of the interpolation will in turn make it more
difficult for a search algorithm to find the appropriate param-
eter values. Therefore, our results suggest that a simple inter-
polation of the size distribution is not an ideal approach for
applying inverse modeling to investigate cloud parcel models
that employ a moving centre framework for clean clouds. To
investigate this further we calculate the same response sur-
face as in Fig. 5 of updraft versus the surface tension, al-
though this time post-processing the droplet size distribution
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Figure 5: Response surface of input updraft versus surface tension; colour of surface shows the change 1146 

in gradient of the OF: Marine average Aerosol environment.  1147 
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Fig. 5. Response surface of input updraft versus surface tension;
colour of surface shows the change in gradient of the OF: marine
average aerosol environment.

onto a fixed size grid using a simple re-binning procedure in-
stead of interpolating (figure not shown). This was found to
remove the local minima, providing a single broad minimum
with a smooth gradient, since when the droplet distribution
radius falls outside of the calibration data no information is
lost. However, a re-binning approach reduces the amount of
information in the calibration data set (the peak droplet num-
ber is concentrated over a few bins), meaning that the change
in gradient of the OF near the optimal solution is vastly re-
duced compared to an interpolation approach. Thus, whilst a
re-binning may slightly improve the convergence speed of an
automatic search algorithm for clean aerosol environments it
will impede convergence for polluted conditions for which
the interpolation will be superior.

In summary:

– The identifiability of parameters controlling droplet ac-
tivation for a pseudo-adiabatic cloud parcel model will
be highly dependent on the prevailing aerosol environ-
ment.

– A significant number of parameters were found to be
non-identifiable, or poorly constrained for all aerosol
environments. These were the lognormal parameters
describing the Aitken mode, and the mass accomoda-
tion coefficient.

– Many of the calibration parameters exhibit highly non-
linear parameter interactions. These correlations are ex-
pected to make the inference of single calibration pa-
rameter values very difficult.

– If certain parameters are held fixed, we are confident
that the calibration of single optimal values for the key
parameters of interest (soluble mass fraction and log-
normal parameters describing the accumulation mode)
using an automatic search algorithm can be successful
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without changing the current model structure or formu-
lation of the OF.

– This inverse problem is made considerably more diffi-
cult by the moving centre output which does not lend
itself to inverse modeling.

– It has been shown that the “smoothness” of the response
surfaces is dependent on the initial updraft velocity and
input aerosol size distribution.

3.2 Objective Function: importance of location of infor-
mation content-clean clouds versus polluted clouds

It is useful to know how individual measurements constrain
model parameters, and to determine the information content
of the various observations. For the present study, the sim-
plest way to identify the variation of the location of the infor-
mation content of the calibration data (droplet size distribu-
tion) is to perform a sensitivity analysis on thedN /d logDp
size distribution function over the entire particle size range
available.

This serves two purposes; firstly it allows us to better un-
derstand the results from our response surface analysis, in
turn allowing for a possible improvement to the OF defini-
tion. Secondly it shows the potential of inverse modeling for
cloud parcel models when linking the model to actual mea-
surements instead of using synthetic data. Combining re-
sponse surface analysis with simple sensitivity analysis will
allow us to determine over what size ranges it is most impor-
tant to measure the cloud particle/droplet distribution with re-
spect to aerosol physiochemical/meteorological parameters.

There are numerous ways to compare the sensitivities of
the calibration data to different calibration parameters. The
same approach ašSimůnek et al. (1998) is chosen, i.e. an
increase of the calibration parameter values by a fixed per-
centage.

The sensitivity is calculated for each bin as:

SdN/d logdp,i
(P +1P)−dN/d logdp,i(P ) (3)

1P = 0.05P (4)

whereSdN/d logdp in Eq. (3) is the change in the wet droplet
size distribution corresponding to a 5 % change in parame-
ter P by 1P . We used a one-sided approach, in which pa-
rameter sensitivities are determined by perturbing the refer-
ence set by +5 %. A centred sensitivity analysis approach,
in which the outcome of a positive and negative parameter
perturbation are averaged, yielded very similar results.

In the calculation of the OF, the vector of residuals is cal-
culated between data points corresponding to bin numbers
for thedN /d logDp size distribution function. Therefore, in
the following plots, to allow a consistent analysis of the infor-
mation content at each bin point (each having equal weight-
ing), the sensitivity figures are plotted against bin number

instead of radius. To retain information on the change in sen-
sitivity with respect to size we also overlay the particle radius
versus bin number.

So far we have presented response surface analysis for
when the OF only includes activated droplets, thus the fo-
cus of this section will be on the advantages of including the
interstitial aerosol in the calibration data set. From the ten
possible calibration parameters, a sensitivity analysis will be
provided for a selection of five calibration parameters to ad-
dress the issues raised in the previous section. These param-
eters are the aerosol number concentration in the Aitken and
accumulation modes, the aerosol radius in the accumulation
mode, the updraft and the soluble mass fraction. The results
for two of the four aerosol environments, marine average and
rural continental conditions are presented in Fig. 6.

Firstly it can be seen that the interstitial aerosol is most
sensitive to a perturbation of the Aitken mode aerosol con-
centration. This is expected as these smaller Aitken mode
particles are less easily activated into cloud droplets. For
the rural continental environment (Fig. 6b) the sensitivity is
larger than the marine average case (Fig. 6a) as there are
more particles in the interstitial aerosol within the calibra-
tion data (it is already CCN saturated). From this it can be
deduced that the improvement in identifiability of the lognor-
mal parameters describing Aitken mode aerosol depends on
the CCN saturation of the aerosol environment.

A perturbation of the mean radius of the particles in the
accumulation mode results in a shift in the size distribu-
tion towards larger sizes as well as an increase in concentra-
tion of largest droplets/decrease in concentration of smaller
droplets. This is due to the larger particles growing on the
expense of the smaller particles, leaving them unactivated.

The interstitial aerosol is not sensitive to an increase in ei-
ther the accumulation mode radius or concentration. There-
fore, for these two parameters little information will be added
to the OF by including the interstitial aerosol in the calibra-
tion data.

When the updraft is perturbed by 5 % the impact for the
marine average environment (Fig. 6a) is most visible in the
droplet size range larger than 1 µm radius. This is under-
standable since the physical structure of pseudo-adiabatic
cloud parcel model running with constant updraft velocity
is such that in the absence of entrainment/mixing processes,
a decrease in the required critical supersaturation (S∗) by in-
creasing the updraft velocity (v) will monotonically increase
the total number of droplets (Nd) until all of the particles be-
come activated;Nd = f (S∗) = f (v,dNa/d logdp).

The change in soluble mass fraction results in an increase
in the number of smaller activated droplets and reduction in
the number of larger droplets. For the rural continental case
the shape of the sensitivity of the droplet size distribution to
updraft and soluble mass fraction (Fig. 6b) is the same as for
marine average conditions. However, as the base case con-
tains a greater number of larger particles, increasing the up-
draft and soluble mass fraction has less impact compared to
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Fig. 6. (A–B) Pertubations in particle number caused by a 5 % increase in input parameters: red dotted line – Aitken mode number con-
centration, blue dotted line – accumulation mode number concentration, green dotted line – accumulation mode radius, cyan dotted line –
updraft velocity, black dotted line – soluble mass fraction. Grey dashed vertical line represents the break between interstital and activated
droplets: magenta line – represents particle diameter.(A) marine average aerosol environment,(B) rural continental aerosol environment.

the cleaner marine average environment as it is already CCN
saturated. This will be examined in more detail in our sus-
ceptibility analysis (cf. Sect. 3.4). For the more polluted rural
continental aerosol environment the difference in sensitivity
between the soluble mass fraction and accumulation mode
number is reduced, highlighting an increased relative impor-
tance of the chemistry. For rural continental conditions, a
higher sensitivity of the interstitial aerosol to a change in sol-
uble mass fraction compared to the marine environment is
evident.

3.2.1 Implications for measurements

Including the interstitial aerosol in the calibration data set
will only be advantageous if we wish to explore the lognor-
mal parameters describing the Aitken mode or the soluble
mass fraction for CCN saturated aerosol environments. This
illustrates the importance of better measurements of the in-
terstitial aerosol concentrations for polluted environments,
as higher quality observations will more closely constrain
the respective pseudo-adiabatic cloud parcel model param-
eter values considered herein. For aerosol environments that
are polluted, the droplet size distribution is observed to be
more susceptible to the changes in the chemistry (represented
by the soluble mass fraction) than parameters describing the
lognormal aerosol size distribution. This highlights the im-

portance of the composition of the dry aerosol size distribu-
tion. For the current updraft, the five parameters investigated
in Sect. 3.2 for marine average conditions are generally more
excitable compared to rural continental environments. This
indicates that cleaner conditions will be easier to constrain
using inverse modeling methods. However, the size range
over which the droplet distribution is sensitive is much nar-
rower, indicating the need for higher resolution of droplet
size distribution measurements than are currently available
from standard forward scattering spectrometer probe (FSSP)
probes (cf. Sect. 3.2.2).

3.2.2 Implications for models

The narrowness of the parameter sensitivity with respect
to droplet size for marine average conditions explains our
chaotic response surfaces (cf. Sect. 3.1) as the gradient of the
calibration data set changes very sharply between different
simulations. The smoothness of the transition from intersti-
tial aerosol to activated droplets, thus also the smoothness
of our response surfaces could be improved by developing
the approach to determine the fraction of activated particles
(Takeda and Kuba, 1982; Korhonen et al., 2005) or by em-
ploying an adaptive spectrum refinement procedure such as
the one developed by Arabas and Pawlowska (2011). Al-
ternatively, developing fixed sectional cloud parcel models
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which avoid the drawbacks of numerical diffusion (Lehtinen
and Kulmala, 2003) has the potential to avoid some of the
issues discussed in Sect. 3.1. One further potential improve-
ment would be to weigh the model output in an appropriate
manner. This was shown to have a large impact on wave-
length experiments by Cochran and Horne (1977). There are
numerous possible weighting methods, and a weighting tech-
nique has been used successfully in the determination of nar-
row aerosol size distribution measurements (Voutilainen et
al., 2000). Unfortunately this is no simple task when using
synthetic calibration data to study parameter sensitivity for
a simple pseudo-adiabatic parcel model, as there is no vari-
ation in time with which to apply the weighting, and if an
arbitrary weighting is applied to obtain a smoothing it be-
comes very easy to bias the results. Also such a weighting
may not be successful for all aerosol environments. An al-
ternative would be to utilize a wavelet representation of the
functional data, as this has been found to be a useful approach
for problems in which the data is very “spiky” (Bayarri et al.,
2006).

3.3 Improving the information content of the OF

Research into the data requirements for successful applica-
tion of inverse methods reveals that the information content
of the data used for calibration is far more important than the
quantity (resolution) of the data (Kuczera, 1982; Sorooshian
et al., 1983; Sorooshian and Gupta, 1985; Yapo et al., 1996;
Gupta et al., 1998; Vrugt et al., 2001). In light of this we now
recalculate a response surface for the Aitken mode number
concentration versus the updraft velocity and soluble mass
fraction (Fig. 7a, c) for rural continental aerosol environment.
We then repeat the calculations and include the entire size
distribution function in the calibration data to confirm that
the identifiability of the aerosol concentration in the Aitken
mode could be improved by including the interstitial aerosol
(cf. Sect. 3.2). It is clear that for both environments, if inter-
stitial particles are included the solution becomes more iden-
tifiable (Fig. 7b, d).

Another possible method of adding more information
would be to add extra cloud height levels to the calibration
data. The use of data from multiple heights will potentially
improve our model parameterization, yet will pose difficul-
ties during calibration. The increased dimensionality of the
parameter space will likely increase parameter uncertainty
and correlation. Tests were performed for marine condi-
tions by adding the output at 20 m, 50 m and 200 m above
cloud base (figures not shown). Our results demonstrate that
the model parameter values became better identified, but the
improvement was somewhat modest. This is not surprising
since for this model set up, the processes of entrainment and
collision-coalescence were deactivated; therefore, the num-
ber of activated droplets initially changes as a step function
with height above cloud base, but then remain constant. The
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Fig. 7. (A–D) 2-D response surf ace planes for a selection of two
parameter combinations. The blue cross denotes the true parame-
ter values used to generate the synthetic measurements. Greyscale
shows the change in gradient of the OF:(A, C) rural continental
aerosol environment (only activated particles),(B, D) rural conti-
nental aerosol environment (including interstitial aerosol).

only additional information will be that of the size of the
particles.

An alternative definition of the OF explored for cloud
parcel models that employ a moving centre description of
droplet activation that avoids the problems associated with
interpolating or re-binning (cf. Sect. 3.1) is to explicitly in-
clude both the number and associated radius components of
the size distribution in the calibration data. This method-
ology involves including vectors of both the x- and y-
components of the droplet size distribution in one OF. Thus,
our vector of model predictions,Y = {y1,...,yn;x1,...,xn}

consists of a joint vector of log(dN /d logDp) and log(Dp) val-
ues. By explicitly including the radius values we negate the
need to interpolate the model output to a fix grid, thus bypass-
ing any loss of information. This OF was found to provide
smooth and generally well defined response surfaces. Tests
show this will facilitate the efficient solution of a higher di-
mensional inverse problem; however, more work is required
to derive a weighting for the individual x- and y-components
as they each have different units.

3.4 Response surface analysis: droplet size distribution
susceptibility analysis

Here we use the term droplet size distribution susceptibil-
ity to illustrate how sensitive the modelled cloud droplet size
distribution is to different calibration parameters. The white
regions of response surfaces highlight parameter combina-
tions for which the difference between the calibration data
(generated from the values indicated by the blue cross), and
a droplet size distribution generated with a different param-
eter combination are very small, i.e. OF values are low. The
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Figure 8 A-D: 2D response surface planes for a selection of two parameter combinations. The blue cross 1189 

denotes the true parameter values used to generate the synthetic measurements. Greyscale shows the 1190 

change in gradient of the OF which provides a measure of droplet size distribution susceptibility: A- 1191 

Marine Arctic; B- marine average; C- rural continental; D- polluted continental. 1192 
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 1196 Fig. 8. (A–D) 2-D response surface planes for a selection of two
parameter combinations. The blue cross denotes the true parame-
ter values used to generate the synthetic measurements. Greyscale
shows the change in gradient of the OF which provides a measure
of droplet size distribution susceptibility:(A) marine Arctic;
(B) marine average;(C) rural continental;(D) polluted continental.

reason for this can be attributed either to the fact the droplet
size distribution is not sensitive to changes in a particular
parameter or there are compensating effects between differ-
ent processes in the cloud parcel model. It is worth noting
that these results only represent susceptibility of droplet size
distribution, and could be repeated for any number of ob-
servations. For instance it is likely that a calibration dataset
containing the third moment of the droplet size distribution
(proportional to LWC) will result in a different response sur-
face, and susceptibility. Base selections of three response
surfaces have been chosen to represent the key parameters of
interest with respect to droplet size distribution susceptibility
for different aerosol environments.

3.4.1 Marine Arctic aerosol environment

The susceptibility of the droplet size distribution to both the
updraft velocity and the concentration of accumulation mode
particles for a clean marine Arctic aerosol environment are
presented in Fig. 8a. It is clear that the droplet size distribu-
tion is far more sensitive to changes in the updraft velocity
than particle concentration in the accumulation mode. It is
also evident from this response surface that the relationship
between the updraft and concentration is non-linear, such that
lower particle concentrations are compensated by increas-
ing the updraft velocity. The narrowness of the white region
shows that there is very little freedom before entering a new
regime of cloud properties (shown by the regions of the re-
sponse surface with higher OF values). The response surface
of the updraft velocity versus the chemistry (soluble mass
fraction) (Fig. 9a) for marine Arctic conditions illustrates a
very similar pattern. The relationship between the soluble
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Figure 9 A-D: 2D response surface planes for a selection of two parameter combinations. The blue cross 1202 

denotes the true parameter values used to generate the synthetic measurements. Greyscale shows the 1203 

change in gradient of the OF which provides a measure of droplet size distribution susceptibility: A- 1204 

Marine Arctic; B- marine average; C- rural continental; D- polluted continental. 1205 
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Fig. 9. (A–D) 2-D response surface planes for a selection of two
parameter combinations. The blue cross denotes the true parame-
ter values used to generate the synthetic measurements. Greyscale
shows the change in gradient of the OF which provides a measure
of droplet size distribution susceptibility:(A) marine Arctic;
(B) marine average;(C) rural continental;(D) polluted continental.

mass fraction and updraft velocity is highly non-linear. Re-
ductions in the soluble mass fraction are permitted if they are
compensated by a simultaneous increase in the updraft ve-
locity. The only difference in replacing the particle concen-
tration with the soluble mass fraction is that the relationship
with respect to the updraft has a stronger gradient i.e. a larger
increase in updraft is required to compensate the same frac-
tional reduction in soluble mass fraction compared to particle
concentration (Fig. 8a). Similarly, with yet a stronger gradi-
ent, it is possible to compensate a reduction in the soluble
mass fraction by an increase in the concentration of accu-
mulation mode particles (Fig. 10a). In reality, however, one
should keep in mind that a soluble mass fraction of 0.2 is
highly unlikely in the marine environment. By looking only
at the range 0.5–1.0 it is clear that the droplet size distribu-
tion is more susceptible to changes in the concentration of
accumulation mode particles in this CCN limited environ-
ment than changes in the chemistry.

3.4.2 Marine average aerosol environment

The susceptibility of the droplet size distribution to the up-
draft velocity versus the concentration of the accumulation
mode particles for a marine average aerosol environment is
presented in Fig. 8b. The concentration of accumulation
mode particles used to generate the droplet size distribution
is approximately twice that of the very clean marine Arctic
environment (Fig. 8a).

As for marine Arctic conditions, the droplet size distri-
bution is more sensitive to changes in the updraft velocity
than particle concentration in the accumulation mode and
the relationship between the updraft and concentration is also
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non-linear. However, the regime is less sensitive to changes
in the updraft compared to marine Arctic conditions shown
by the reduced gradient of the change in OF from the true
value in the y-plane of the response surface. It is also pos-
sible to produce very similar OF values of the droplet size
distribution for a larger range of updrafts at a given particle
concentration. The lower limit of particle concentration at
which a very similar droplet size distribution can be gener-
ated is also higher than for marine Arctic conditions. This
means that regardless of the increase in updraft, it is no pos-
sible to very closely match the calibration data when the par-
ticle concentration is reduced below 100 cm−3. This region
is thus limited by the number of particles, while on the oppo-
site end of the spectrum, when the number is above 200 cm−3

the air is so CCN saturated it cannot be compensated by a de-
crease in the updraft velocity. The strong slope in-between
these extremes indicate a regime between CCN-limited and
CCN-saturated conditions, where compensating effects may
produce almost identical droplet distributions as in the base
case.

The response surface of the updraft velocity versus the
chemistry (soluble mass fraction) (Fig. 9b) for marine av-
erage conditions illustrates a very similar pattern to marine
Arctic conditions (Fig. 9a), and the differences between the
two are similar to those observed for accumulation mode
number concentration. The droplet size distribution is less
sensitive to updraft changes, and the ability for the updraft
to compensate a decrease in the soluble mass fraction to
achieve the same droplet size distribution is reduced. Nev-
ertheless, particle number is still more important than the
chemistry, and updraft is more important than both of these
for accurately reproducing the observed droplet size distri-
bution. This conclusion is supported by Fig. 10b in which
we see that, as for marine Arctic conditions accumulation
mode particle concentration can compensate a reduction in
soluble mass fraction. Compared to marine Arctic condi-
tions the gradient change in OF over the y-plane is reduced
and the bounds representing susceptibility to concentration
are increased (a wider white region in the y-plane showing a
reduction in susceptibility).

3.4.3 Rural continental aerosol environment

Moving to a more polluted environment, a significant regime
shift in the number of available CCN compared to the previ-
ous marine Arctic and marine average conditions results in
a distinct difference in the shape of the response surfaces.
Even with a significant reduction of accumulation mode par-
ticle concentration (Fig. 8c) the existing reservoir of particles
available in the interstitial aerosol are sufficient to result in
the same droplet size distribution with only minor variations
in the updraft velocity. This is indicated by yet a further re-
duction of the rate of decrease in the OF across the y-plane
from the true parameter value compared to the cleaner envi-
ronments previously presented. A greater change in meteo-
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Fig. 10. (A–D)2-D response surface planes for a selection of two
parameter combinations. The blue cross denotes the true parame-
ter values used to generate the synthetic measurements. Greyscale
shows the change in gradient of the OF which provides a measure
of droplet size distribution susceptibility:(A) marine Arctic;
(B) marine average;(C) rural continental;(D) polluted continental.

rological conditions is necessary to evoke a change in cloud
properties, indicating this environment exhibits lower sus-
ceptibility to changes in updraft. The response surface of
the updraft velocity versus the chemistry (Fig. 9c) for rural
continental conditions also has a reduced gradient.

The same can be said for when the updraft is replaced by
the concentration of accumulation mode particles (Fig. 10c).
As the environment is already CCN saturated regardless of
how much the accumulation mode number concentration is
increased it cannot compensate values of the soluble mass
fraction below 0.3

The distinctly different parameter relationships and
droplet size distribution susceptibility for this more polluted
case indicates that there is a tipping point in the sensitivity
and dominant processes for droplet activation somewhere be-
tween marine average and rural continental conditions.

3.4.4 Polluted continental aerosol environment

Sensitivity to particle concentration and soluble mass frac-
tion with respect to the updraft velocity reduces even further
for polluted continental environments as shown in Figs. 8d
and 9d. In this highly CCN saturated environment the sen-
sitivity to the concentration of accumulation mode particles
does not dominate the chemistry (Fig. 10d).

3.4.5 Summary

Distinct changes in parameter sensitivity with changes in
the number of available CCN provides information regard-
ing how droplet size distribution susceptibility to different
parameters will vary for different locations. As shown in
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Figs. 8–10 that there is a tipping point between marine av-
erage and rural continental aerosol conditions for parameters
most important for controlling droplet activation. For all en-
vironments the most important parameter is the updraft ve-
locity and the droplet size distribution is most susceptible
to changes in parameter values for the cleanest marine Arc-
tic aerosol environment. The non-linearity of the parameter
interaction is stronger for the two cleaner aerosol environ-
ments. It is clear for every aerosol environment that clouds
are mulit-dimensional problems that may have a plethora
of possible solutions based on an inverse analysis. The
strong interaction between different calibration parameters
involved in cloud droplet activation highlights the need to
apply MCMC methods to treat the interaction between all
parameters simultaneously.

4 Monte Carlo (MC) parameter sampling and
automatic model calibration

As it has been is shown that the “cloud-aerosol” inverse
problem will be difficult to solve (cf. Sect. 3.1) in this sec-
tion we will demonstrate the advantages of embracing auto-
matic search algorithms with the aid of response surfaces. To
demonstrate this, results of a standard Latin hypercube sam-
pling (LHS) MC simulation will be compared with a deter-
ministic optimisation algorithm: the Shuffled Complex Evo-
lution global optimisation algorithm (SCE-UA) (Duan et al.,
1992).

A simple MC based approach can only give an estimate
of the global optimum solution, whereas a search algorithm
such as SCE-UA is designed to find the minimum value of
the OF in a minimum number of function evaluations. The
success of these two different search methods can be visually
demonstrated by marking onto the response surfaces which
solutions have been visited by each individual method.

The determination of the global minimum of the OF will
become increasingly difficult with increasing dimensional-
ity of the parameter space. It is inevitable that with such
a limited data set, some of our calibration parameters will
require fixing prior to optimisation (cf. Sect. 3.1). Based
on the knowledge gained from our response surfaces anal-
ysis, we fixed the values of the surface tension, and updraft,
both known to be highly multi-modal, to their known (true)
values. We also fixed the lognormal parameters describ-
ing the Aitken mode, as they were deemed non-identifiable
(Sect. 3.1). Altogether, this leaves us with four “unknown”
parameters for optimization.

The various solutions that have been created from a stan-
dard LH sampling simulation are overlaid onto the response
surface of accumulation mode concentration versus soluble
mass fraction for marine average and rural continental con-
ditions respectively (Fig. 11a–b). The green dots represent
the lowest 10 % of the OF values from 5000 different MC
realizations. Each dot corresponds to a different parameter

combination. A brute force MC approach is not only ineffi-
cient, but potentially also misleading. If we draw inferences
based on this set of 5000 different solutions, then our ensem-
ble of best solutions is still significantly different from the
actual optimum solution (blue cross). The solutions exhibit
significant scatter, and even after 5000 trials not a single pa-
rameter set can be found that finds the optimum perfectly. In
comparison the superior efficiency of the automatic search
algorithm is indicated by the best 10 % of the SCE-UA sim-
ulations, as shown by the red dots being located densely over
the true optimal solution for each response surface. Fortu-
nately, the pseudo-adiabatic cloud model used herein is com-
putationally efficient. Nevertheless, our findings illustrate the
need for a sophisticated search algorithm that, within a small
number of function evaluations can efficiently and effectively
explore the parameter space.

When the simulations were repeated with five parame-
ters by including the updraft velocity the level of success
of the SCE-UA algorithm deteriorated. This is attributed to
the presence of strong non-linear parameter interaction and
numerous local optima within the response surfaces (solu-
tions within the parameter space which have virtually iden-
tical objective function values), both characteristic of our re-
sponse surfaces (cf. Sects. 3.1–3.4). This highlights the need
for powerful global optimization methods, such as SCE-UA
or AMALGAM-SO (Vrugt et al., 2009b) that use a popula-
tion of points (parameter values) and seek iterative improve-
ment using the information contained in this sample. Single
chain MCMC methods which are known to struggle when
confronted with multiple regions of attraction and prone to
premature convergence in a local basin of attraction en route
to the global optimum may be inadequate for studying the
cloud-aerosol inverse problem.

5 Conclusions

In this paper, by using a response surface analysis to gain a
visual understanding of the behaviour of the OF in the pa-
rameter space we have explored the susceptibility of cloud
droplet size distributions to changes in aerosol physiochem-
ical/meteorological parameters, as well as the feasibility of
inverse modeling for estimating the parameters of adiabatic
cloud parcel models. This analysis reveals important infor-
mation about droplet size distribution susceptibility and iden-
tifiability of the pseudo-adiabatic cloud parcel model param-
eters with respect to the information content of the calibra-
tion data, and how this varies depending on four distinctly
different aerosol environments.

From our droplet size distribution susceptibility analysis
it was found that clean marine Arctic environments are far
more sensitive to perturbations in both aerosol and meteo-
rological parameters than polluted continental environments
that are already CCN saturated. A reduction in particle emis-
sions will have a smaller effect on the cloud microphysical
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Fig. 11. (A–B)10 % lowest solutions from 5000 LHS Monte Carlo
simulations (green dots) overlaid on a 2-D response surface for one
selected parameter pair. Red dot shows the 10 % lowest solutions
from the SCE-UA optimisation algorithm. The blue cross denotes
the true parameter values used to generate the synthetic measure-
ments. Greyscale shows the change in gradient of the OF:(A) ma-
rine average aerosol conditions,(B) rural continental aerosol condi-
tions.

properties for polluted regions, while clean regions such as
marine average and marine Arctic environments are much
more responsive to changes in aerosol physiochemical prop-
erties and abundance. This highlights the need to focus future
measurement campaigns in very clean aerosol environments.

Response surfaces show that the non-identifiable nature
of the lognormal parameters describing the Aitken aerosol
mode means that these parameters will need fixing to their
true values for the determination of the global minimum of
the OF by an optimisation algorithm, unless the interstitial
aerosol is included in the calibration data. It was also shown
with the aid of a simple sensitivity analysis that to constrain
the solution to the cloud- aerosol inverse problem for pol-
luted environments it is advantageous to perform measure-
ments of the interstitial aerosol, as very similar droplet dis-
tributions can be achieved for a range of parameter values.

When using synthetically generated data to study param-
eter sensitivity the required interpolation of the raw model
output for very narrow droplet size distributions can deteri-
orate parameter identifiability as widely varying parameter
values result in very similar values of the OF. This creates
difficulties for any optimisation algorithm, and this impact is
stronger for cleaner clouds than for polluted clouds.

Cloud models are highly parameterized, becoming in-
creasingly complex, and containing more and more input pa-
rameters. They are also highly non-linear due to the evolving
nature of an aerosol size distribution into a cloud droplet size
distribution. From our analysis it has been shown that whilst
these qualities mean that the cloud-aerosol inverse problem
will be particularly difficult to solve. Global sensitivity meth-

ods that can treat interaction between all parameters simul-
taneously are important if we wish to fully understand the
complex nature of cloud-aerosol interactions for different
aerosol-meteorological environments.

The scope of our future research will be to apply MCMC
methods for inference of the posterior probability density
function of the parameters. This method belongs to the class
of MCMC methods (Bayesian statistics) that not only pro-
vide an estimate of the best parameter values, but also a
sample set of the underlying (posterior) uncertainty. This
distribution contains all the desired information about pa-
rameter sensitivity, interaction and correlation, and can be
used to produce confidence intervals on the model predic-
tions. In particular, in a subsequent paper (Part 2) we will
use use the recently developed DiffeRential Evolution Adap-
tive Metropolis (DREAM) MCMC algorithm (Vrugt et al.,
2009a) with synthetic data to benchmark its performance,
and test the parameter estimates of the pseudo-adiabatic
cloud model and their nonlinear uncertainty and correlation.
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