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Abstract. This paper focuses on three interconnected
topics: (1) quantitative relationship between surface short-
wave cloud radiative forcing, cloud fraction, and cloud
albedo; (2) surface-based approach for measuring cloud
albedo; (3) multiscale (diurnal, annual and inter-annual) vari-
ations and covariations of surface shortwave cloud radiative
forcing, cloud fraction, and cloud albedo. An analytical ex-
pression is first derived to quantify the relationship between
cloud radiative forcing, cloud fraction, and cloud albedo.
The analytical expression is then used to deduce a new ap-
proach for inferring cloud albedo from concurrent surface-
based measurements of downwelling surface shortwave radi-
ation and cloud fraction. High-resolution decade-long data
on cloud albedos are obtained by use of this surface-based
approach over the US Department of Energy’s Atmospheric
Radiaton Measurement (ARM) Program at the Great South-
ern Plains (SGP) site. The surface-based cloud albedos are
further compared against those derived from the coincident
GOES satellite measurements. The three long-term (1997–
2009) sets of hourly data on shortwave cloud radiative forc-
ing, cloud fraction and cloud albedo collected over the SGP
site are analyzed to explore the multiscale (diurnal, annual
and inter-annual) variations and covariations. The analytical
formulation is useful for diagnosing deficiencies of cloud-
radiation parameterizations in climate models.

1 Introduction

Quantifying the impact of clouds on the Earth’s radiation
budget has been the subject of intensive research for several
decades (Schneider, 1972; Charlock and Ramanathan, 1985;
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Ramanathan, 1987; Laszlo and Pinker, 1993; Ramanathan
et al., 1989a, b; Harrison et al., 1990; Arking, 1991, 1999;
Wielicki et al., 1995; Rossow and Zhang, 1995; Raschke et
al., 2005). One of the quantities that have been increasingly
used to gauge the radiative impact of clouds is cloud radiative
forcing (CRF) defined as the difference between clear-sky
and all-sky net radiation fluxes (e.g., Ellis, 1978; Coakley
and Baldwin, 1984; Charlock and Ramanathan, 1985; Ra-
manathan, 1987; Cess and Potter, 1987). An advantage of
using CRF is that it can be readily obtained from satellite
radiative measurements or calculated in global climate mod-
els (GCMs). Comparison of model-simulated CRF against
satellite observations at the top of atmosphere (TOA) have
proven to be instrumental in evaluation of climate models
and the identification of cloud feedbacks and parameteriza-
tions as the key factors contributing to the large uncertainty
in GCM climate sensitivity (Cess et al., 1997, 2001; Potter
and Cess, 2004; Soden et al., 2004; Stephens, 2005; Bony et
al., 2006).

Despite its great utility, CRF – and its variation with tem-
perature in studies of cloud feedbacks, alone is not enough
for fully understanding cloud-radiation interactions and their
effects on climate. Further progress requires relating CRF
to other cloud properties such as cloud fraction and cloud
albedo. Although it has been long recognized that CRF is re-
lated intimately to cloud fraction and cloud albedo and some
efforts have been devoted to exploring their relationships
(Charlock and Ramanathan, 1985; Harrison et al., 1990), our
understanding has been largely qualitative. The quantitative
relationship between CRF, cloud fraction and cloud albedo
remains elusive.

The roles of cloud fraction and cloud albedo in shaping
the Earth’s climate had actually been investigated before the
introduction of CRF – already in the 1970s (Arakawa, 1975;
Schneider, 1972), and continue to defy satisfactory under-
standing and parameterization (Bony and Dufresne, 2005).
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For example, Bender et al. (2006) compared the results of
global albedo from 22 GCMs and two satellites, and found
that GCM-derived values not only exhibit a large spread
but also consistently higher values than those observed by
the two satellites. These differences between observations
and models are likely due to inadequate GCM parameteriza-
tions related to determination of cloud fraction and/or cloud
albedo.

To fill this gap, here we first introduce the concept of rela-
tive CRF after discussing deficiencies of the traditional CRF.
Then we derive an analytical formulation of the relationship
between the relative CRF, cloud fraction, and cloud albedo.
A new method based on this analytical relationship is pre-
sented to infer cloud albedo from measurements of relative
CRF and cloud fraction. By use of the analytical formulation,
decade-long hourly data on relative CRF cloud albedo are
generated from the concurrent surface-based measurements
of downwelling shortwave radiation flux and cloud fraction
collected by the US Department of Energy’s Atmospheric
Radiation Measurement (ARM) program at the Southern
Great Plain (SGP) site since 1997 (Stokes and Schwartz,
1994; Ackerman and Stokes, 2003). The surface-based
cloud albedo data are evaluated in comparison of the coin-
cident and collocated satellite measurements. The decade-
long data on relative cloud CRF, cloud fraction and cloud
albedo are examined to determine their multiscale variations
and covariations.

2 Relative cloud radiative forcing and its relationship
with cloud fraction and cloud albedo

2.1 Concept of relative cloud radiative forcing

Cloud radiative forcing (CRF) was first introduced to study
radiation budgets measured with satellites at the top of at-
mosphere (TOA) (Ellis, 1978; Coakley and Baldwin, 1984;
Charlock and Ramanathan, 1985; Ramanathan, 1987; Cess
and Potter, 1987).The concept of surface CRF has been later
applied to surface-based radiation measurements (Dong et
al., 2006; Mace et al., 2006; Mace and Benson, 2008). De-
spite its usefulness and popularity, the CRF thus defined suf-
fers from the drawback of being affected by factors other
than clouds (e.g., solar zenith angle, definition of what con-
stitutes a clear-sky reference, and specification of the surface
albedo), and much effort has been devoted to minimizing the
effects of these non-cloud factors on computation of the CRF
(Imre et al., 1996; Li and Trishchenko, 2001; Vavrus, 2006;
Betts and Viterbo, 2005; Betts, 2007; Betts et al., 2009).
Among existing attempts, the non-dimensional metric pro-
posed by Betts and his co-workers is probably the best, and
is detailed below for the surface shortwave CRF.

The surface shortwave CRF (Fcld) is defined in terms of
downwelling flux such that,

Fcld = F dn
all −F dn

clr , (1)

whereF dn
all andF dn

clr denote the all-sky and clear-sky surface
downwelling SW radiation fluxes, respectively, with posi-
tive values being indicative of downward fluxes. Replacing
net flux with downwelling flux reduces the effect of surface
albedo (see Vavrus, 2006 for more discussion). To further
minimize the effects from other non-cloud factors, Betts and
Viterbo (2005) proposed a non-dimensional measure for the
surface CRF defined as (see also Betts, 2007; Betts et al.,
2009),

αSRF
cld = −

Fcld

F dn
clr

= 1−
F dn

all

F dn
clr

. (2)

The minus sign is introduced to reflect that the effect of short-
wave CRF on climate is cooling (Fcld < 0) and a positive
αSRF

cld is more convenient. They namedαSRF
cld as the effective

cloud albedo, as the dependence of the net shortwave radia-
tive flux on αSRF

cld can be described in a mathematical form
similar to surface albedoαsrf

F net
all = F dn

all −F
up
all = (1−αsrf)

(
1−αSRF

cld

)
F dn

clr . (3)

It is noteworthy that as will become evident later, actually
αSRF

cld is approximately a product of cloud fraction and cloud
albedo, and that the variation ofαSRF

cld conforms more closely
to that of cloud fraction than cloud albedo. Similar quanti-
ties were also referred to as cloudiness index (O’Malley and
Duchon, 1996) and all-sky shortwave transmission (Dong et
al., 2006). To avoid the potential confusion and misunder-
standing thatαSRF

cld is more related to either cloud albedo or
cloud fraction,αSRF

cld will be referred to as the relative cloud
radiative forcing in this paper.

2.2 Analytical formulation

Betts and his coworkers (Betts and Viterbo, 2005; Betts,
2007; Betts et al., 2009) examinedαSRF

cld derived from the In-
ternational Satellite Cloud Climatology Project (ISCCP) data
(Rossow and Schiffer, 1991) over several river basins in com-
parison with those from different reanalysis datasets (ERA-
40 and ERA-Interim). Although attempts have been made to
connectαSRF

cld to cloud fraction and cloud albedo empirically,
the quantitative relationship between the three quantities still
remains elusive theoretically, and is a focus of this section.

As a first-order approximation, the atmosphere above the
region of interest is considered to comprise a single homoge-
neous cloud layer with cloud fractionf . For this simplified
atmosphere, the all-sky surface downwelling shortwave radi-
ation flux is given by

F dn
all = f F dn

cld+(1−f )F dn
clr (4a)

This single-layer cloud model, or its equivalent, has been
widely used in studies involving radiation transfer in partly
cloudy environment, e.g., in studies of radiation energy bud-
get and cloud radiative forcing (Ramanathan, 1987; Ra-
manathan et al., 1989a, b) and in satellite retrievals for partly
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cloudy pixels (Coakley et al., 2005). Equation (4a) can be
further reduced to

F dn
all = (1−αr)(1−αa)f F dn

clr +(1−f )F dn
clr , (4b)

whereαr andαa denote the cloud albedo and absorptance,
respectively. Substitution of Eq. (4b) into Eq. (2) yields the
following expression:

αSRF
cld = (αr +αa−αrαa)f. (5a)

Equation (5a) reveals thatαSRF
cld is an increasing function of

f , αr, andαa, which becomes more evident by ignoring the
second-order term,αrαa, i.e.,

αSRF
cld = (αr +αa)f. (5b)

Furthermore, becauseαa is generally much less thanαr (Gau-
tier and Landsfeld, 1997), neglect of shortwave absorption
further simplifies Eq. (5b) to

αSRF
cld = αrf. (5c)

Equation (5c) reveals thatαSRF
cld is essentially a product off

and αr, andαSRF
cld = αr under the overcast sky withf = 1.

Empirical evidence for the latter prediction was documented
in an earlier study (Shi, 1994). Shi also introduced the con-
cept ofαSRF

cld as defined by Eq. (2), but only for the overcast
scenario wheref = 1. In this sense, Eq. (5c) is a generaliza-
tion of Shi’s work.

Note that a single-layer cloud is assumed in the above for-
mulation. When the region of interest is affected by multi-
layer clouds, the formulation is expected to hold, but for an
effective single-layer cloud with effective cloud properties
(Ramanathan, 1987). More discussions on the assumptions
underlying Eq. (5c) including multilayer clouds and effective
cloud properties are deferred to Sect. 3.3.1.

3 Cloud albedo from surface-based observations

3.1 Approach

Relative to cloud fraction and CRF, cloud albedo is much
less measured and known, hindering investigation of cloud-
climate interactions and aerosol indirect effects. Probably
the most direct way to measure cloud albedo is using in-
strumented aircraft (Griggs, 1968; Salomonson and Marlatt,
1968; Hayasaka et al., 1995); but, such aircraft-based in situ
measurements are limited in both time and space. Long-term
global records of albedo have primarily relied on satellite
(Wielicki et al., 2005) and earthshine measurements (Palle
et al., 2003, 2009); however, both actually measure global
albedo that depends not just on cloud albedo, but on cloud
fraction and surface reflective properties as well. Several
additional issues on satellite and earthshine measurements
were discussed in Loeb et al. (2007). Seeking an adequate

satellite-based approach to estimating cloud albedo is still an
area of active research (Bender et al., 2011).

An alternative surface-based approach that permits long-
term measurements of cloud albedo cannot be overempha-
sized. An approach that capitalizes on surface-based remote
sensing techniques as used at the ARM SGP site is even
more desirable in view of the widely demonstrated fidelity of
these remote sensors and high temporal sampling resolution
(Stokes and Schwartz, 1994; Ackerman and Stokes, 2003).
Equation (5c) suggests just such a technique ifαSRF

cld andf

can be measured simultaneously, i.e.,

αr =
αSRF

cld

f
. (6)

ARM has provided continuous measurements of multiple
quantities essential to cloud-radiation interactions by inte-
grating multiple surface-based remote sensors at the SGP
site. Especially useful to this study is the surface shortwave
radiation value-added product (VAP) generated by Long
and his co-workers (Long and Ackerman, 2000; Long et
al., 2006). This VAP is based on measurements collected
by the Solar and Infrared Radiation System (SIRS) since
25 March 1997, and contains all the data necessary for es-
timating αSRF

cld and cloud albedo, including surface all-sky
downwelling shortwave radiation fluxes, surface clear-sky
downwelling shortwave radiation fluxes, and cloud fraction.
The data are quality-controlled and quasi-continuous with
15 min temporal resolution. We first use these data to derive
αSRF

cld by applying the data on surface downwelling all-sky
and clear-sky radiation fluxes to Eq. (2), and then substitute
αSRF

cld andf into Eq. (6) to obtain the data on cloud albedo.
Note that the surface-based cloud fraction reported in the

SIRS VAP actually is the fractional sky cover estimated using
the methodology presented in Long et al. (2006). Briefly, the
method exploits the effect of clouds on diffuse downwelling
SW radiation. It first identifies the clear-sky conditions (sky
cover of zero) and then screens for overcast cases (sky cover
of one). For the rest of the data that survive the screening, the
sky cover is calculated from an equation that expresses the
sky cover as a function of the normalized diffuse cloud effect
defined as the difference between the measured all-sky and
corresponding clear-sky diffuse irradiance normalized by the
clear-sky total downwelling irradiance. This equation is ob-
tained by regressing sky fraction measurements by a whole
sky imager to the corresponding measurements of the nor-
malized diffuse cloud effect. More discussion on the surface-
based cloud fraction is referred to Sect. 3.2

3.2 Comparison with satellite-derived cloud albedo

The NASA Langley cloud and radiation group (Minnis
et al., 2008a) derived broadband shortwave albedo and
cloud fraction from GOES-8/11 narrowband observations
on a 0.5◦ × 0.5◦ grid over the SGP domain by using
narrowband-to-broadband conversion functions (Minnis and
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Fig. 1. Comparison of the surface-based cloud albedo with those derived from the GOES satellite. The red and black lines represent the
linear fit to all the data points and perfect match, respectively.

Smith, 1998). Briefly, an individual 0.5◦ × 0.5◦ grid includes
about 150 pixels of spatial resolution 4 km; a pixel is classi-
fied as clear or cloudy by use of a sequence of criteria based
upon variations from an observed background state includ-
ing the surface albedo characteristics (Minnis et al., 2008b).
Cloud fraction for each grid is obtained as the fractional oc-
currence of cloudy pixels on this grid. To best match with the
sampling scales of the SIRS data collected at the SGP central
facility (36.36◦ N, 97.29◦ W), we choose the single nearest
satellite grid (36.25–36.75◦ N, 97.25–97.75◦ W) in compari-
son with the SIRS cloud albedo.

For the single layer cloud model with cloud fractionf as
described by Eq. (4a), it can be shown that the total scene
albedo is given by

α = f αr +(1−f )αclr, (7a)

whereαclr is the clear-sky albedo. This equation was used
and verified by Cess (1976) in investigation of the meridional
distributions of zonally averaged values of total albedo, cloud
fraction and cloud albedo. Rearranging Eq. (7a) leads to the
expression for deriving cloud albedo:

αr =
α

f
−

1−f

f
αclr. (7b)

To validate the new surface-based approach, we calculate
satellite-based cloud albedo by applying Eq. (7b) to the
GOES-measured hourly total scene albedo, cloud fraction
and clear-sky albedo. A total of 26 601 h are found to have

coincident data from both the surface and satellite measure-
ments withf > 0. Figure 1 compares all the 26 601 hourly
pairs of cloud albedo in terms of the joint occurrence fre-
quency with a 0.01× 0.01 resolution. For reference also
shown are the linear fit from the scatterplot of all the points
(red line) and the diagonal line of perfect agreement (black).
Several points are evident from this figure. First, the two
sets of cloud albedo data are correlated to each other reason-
ably well with a correlation coefficient of 0.69. The favor-
able agreement between the surface-based and satellite-based
cloud albedo is encouraging in view of the uncertainties in
both satellite-and surface-based retrievals and the high tem-
poral resolution of one hour. Second, the relationship is not
diagonally linear as expected from a perfect match. Based
on the best fit, the surface-based cloud albedo is always
higher than the satellite-based cloud albedo, and the discrep-
ancy slightly increases with increasing cloud albedo. An
analysis of the joint frequency reveals some additional fea-
tures. There are two clusters of high occurrence frequency,
one around the satellite-based cloud albedo of∼0.25 and
the other around the satellite-based cloud albedo of∼0.65.
For the low-albedo cluster, some surface-based cloud albe-
dos are relatively smaller than the corresponding satellite-
based cloud albedos, resulting in a different slope from the
rest. The overall slope of the curve describing the data of
peak occurrences appears steeper than the best linear fit as
well. It is interesting to note that there is extra value in
showing joint frequencies together with the commonly used
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Fig. 2. Comparison between the surface-based and satellite-based cloud fractions. The red line denotes the linear fit to all the data points
while the black diagonal line shows the perfect match as a reference.

line of regression. The former emphasizes the points of the
most frequent occurrence whereas the latter emphasizes the
mean. The two only agrees perfectly with each other when
the sampling size is infinitely large and the scatter/noise is
completely random, a condition rarely met in reality.

Because cloud fraction is used as an input in estimating
both surface-based and satellite-based cloud albedo, an er-
ror in cloud fraction will result in a compensating error in
the corresponding retrieval of cloud albedo. To examine the
possibility of any compensating errors, Fig. 2 compares the
cloud fractions derived from coincident surface-based and
satellite measurements. Evidently, the surface-based and
satellite-based cloud fractions exhibit better agreement com-
pared to cloud albedo, with a correlation coefficient of 0.86.
Cloud fraction exhibits two clusters of occurrence similar to
cloud albedo: one around low cloud fraction and the other
around high cloud fraction. Together with Fig. 1, the results
suggest frequent occurrences of scattered shallow clouds and
near-overcast thick clouds. Such U-shaped behaviors have
been reported in other studies (Hogan et al., 2001). It is in-
teresting to note that based on the linear fit, surface-based
cloud fraction is slightly lower than the satellite counterpart
near overcast conditions, implying some degree of compen-
sating errors between the surface-based cloud albedo and
surface-based cloud fraction. However, a further inspection
of the joint occurrence suggests that the compensating errors,
if any, are negligibly small. This conclusion is further sub-
stantiated by Fig. 3, which compares the differences in cloud
albedo and cloud fraction between surface and satellite mea-

surements. The ellipsoid-like contours suggest that the two
differences are virtually independent of each other. The dif-
ference in cloud fraction centers at 0.02 with a standard de-
viation of 0.20; the difference in cloud albedo centers at 0.09
with a standard deviation of 0.18. These values are remark-
able considering the different measurement systems and high
hourly temporal resolutions.

3.3 Further analysis

As stated earlier in Sect. 2, the expression for estimating
cloud albedo from surface-based radiation measurements is
formulated on several assumptions, including a single-layer
cloud, neglect of surface albedo and multiple surface-cloud
reflections, and neglect of absorption by clouds and absorb-
ing gases such as ozone and water vapor. This section serves
to analyze and dissect the possible effects of these factors
on the discrepancy between the surface-based and satellite-
based cloud albedo.

3.3.1 Effect of multilayer clouds

Figure 1 shows all the coincident hourly data points with
both measured cloud fractions>0, without differentiation of
cloud layer structure. To quantify the effect of multilayer
clouds, we partition the data into single-layer and multiple
layer clouds based on another ARM VAP – Active Remote
Sensing of CLouds (ARSCL, Clothiaux et al., 2000). By
integrating measurements of different remote sensors (e.g.,
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Fig. 3. Joint frequency distribution of the differences in cloud albedo and cloud fraction. The acronym STD denotes the standard deviation.

cloud radar, lidar and ceilometers), ARSCL provides height-
time distribution of cloud occurrence with 10 s temporal and
45 m vertical resolutions, as exemplified by Fig. 4. To ob-
tain the best set of single-layer clouds, we apply the strictest
possible criteria to identify the single-layer clouds. Briefly,
at each height (45 m resolution) in the ARSCL profile, the
presence or absence of clouds is determined, and the binary
profile, then, of cloudy and clear levels, is examined to deter-
mine the layer structure. A layer is defined as a continuous,
in the vertical, group of cloudy (or clear) levels. Each pro-
file is then defined as clear, single- or multi-layer clouds. For
each fifteen minute interval (the SIRS data resolution), then,
the percentage of 10 s ARSCL profiles found to be clear, have
single-layer clouds or have multilayer clouds is calculated.
Figure 5 shows an example of this classification for a sin-
gle 45 min time interval with three distinct time periods. The
first period is dominated by single-layer clouds, followed by
multi-layer clouds. The second time interval finds multi-
layered cloud about 60 % of time, with very little single-layer
clouds and some clear sky. The final time interval is domi-
nated by single-layer clouds, with the remaining as clear sky.

To quantify the impact of multilayer clouds on the surface-
based cloud albedo, Fig. 6 compares the cloud albedo calcu-
lated from satellite-based and surface-based measurements
for four different scenarios: all single-layer clouds, 75 %
single-layer clouds, 55 % single-layer clouds, and 25 %
single-layer clouds. Clear-sky intervals are not consid-
ered in calculation of the percentage. Two points are evi-
dent together with Fig. 1. First, both the correlations and
fitting curves do not change much from the scenario of

100 % single-layer clouds to those including all the multi-
layer clouds. This lack of dependence on single-layer cloud
percentage supports the relaxation of the pure single-layer
cloud assumption to an effective single-layer cloud assump-
tion mentioned earlier. The other possibility is that the cloud
layer structure affects surface-based and satellite-based re-
trievals similarly. Regardless of the specific reasons, for
multilayer clouds, retrieved cloud albedo and cloud fraction
represent some “effective” values, and depend likely on the
structure of vertical cloud overlap as well. A brief discus-
sion on this topic is given in the Appendix; more detailed
investigation is beyond the scope of this paper. Second, the
cluster around the satellite-based cloud albedo of∼0.25 dis-
appears gradually with increasing percentage of single-layer
clouds, suggesting that this cluster is likely related to multi-
layer structure. Plausible candidates causing this cluster are
small cumuli and/or cloud edges, as both may be identified
as multilayer clouds by the strict classification method used.
These shallow clouds can enhance downwelling diffuse radi-
ation and thus lead to apparent smaller cloud albedo. More
subtle investigation is needed to confirm this speculation.

3.3.2 Effect of surface albedo and multiple reflections

Another factor that may affect the surface-based cloud
albedo is the surface albedo and multiple reflections between
clouds and surface ignored in the derivation of Eq. (6). To
examine this issue, we use the simple model of multiple
reflection presented by Wisocombe (1973). Based on Wis-
combe (1973) and ignoring cloud absorption, we can obtain
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Fig. 4. An example of a time series of the ARSCL profile on 21 May 2003 at SGP. Note that the “cloud fraction” is actually referred to the
frequency of occurrence, but is used here to avoid potential confusion with “times of occurrence” of Figs. 1–3.

Fig. 5. An illustration of the classification of cloud layer struc-
tures. It is zoom-in snapshot of the period of 15:00–15:45 UTC of
the example shown in Fig. 4.

the following expression

αSRF
cld

f
= (1−αsrf) αr +αsrf α

2
r . (8)

Equation (8) is evidently a generalization of Eq. (6) because
it reduces to Eq. (6) when the surface albedo is zero. For
clarity, we useαr andαr0 to denote the cloud albedo derived
from Eqs. (8) and (6), respectively, wherever there may be
confusion. Solving Eq. (8) forαr leads to

αr =

√(
(1−αsrf)

2
+4 αsrf αr0

)
−(1−αsrf)

2 αsrf
. (9)

A simple manipulation of Eq. (8) yields the expression for
the difference given by

1 = αr −αr0 = αsrf

(
αr −α2

r

)
≥ 0. (10)

Equation (10) reveals that consideration of surface albedo
and associated multiple reflections will increase the esti-
mated cloud albedo. Figure 7 shows the difference as ob-
tained from Eq. (10) for different values of surface albedo.
An extreme value of analysis of Eq. (10) reveals that the max-
imum difference occurs atαr = 0.5 and equals to 0.25αsrf, as
shown in Fig. 7.

Surface albedo has also been measured by the SIRS sys-
tem at SGP and provided in the SIRS VAP. An examination
of these measurements indicates that surface albedo rarely
exceed 0.3 (figure not shown here). Based on the values of
surface albedo and the results shown in Fig. 7, it is unlikely
that neglect of surface albedo and multiple reflections is the
main factor for the discrepancy between the surface-based
and satellite-based cloud albedo. This is further substantiated
by Fig. 8, which compares the surface-based cloud albedo
corrected for the effect of surface albedo and multiple reflec-
tions to the satellite-based cloud albedo.

3.3.3 Effect of absorption associated with clouds

The preceding analysis indicates that although errors in cloud
fraction, cloud-layer structure, surface albedo and multiple
reflections between surface and clouds may somewhat affect
the estimation of surface-based cloud albedo, their effects are
unlikely the main culprits responsible for the discrepancy be-
tween surface-based and satellite-based cloud albedo shown
in Fig. 1. Another factor ignored in estimating cloud albedo
from surface radiation measurements is the absorption by
clouds and absorbing gases such as ozone and water vapor.
Without having quantitative expressions to account for such
individual absorbing effects, we seek to infer a parameter that
lumps all the unknown factors together as follows.
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Fig. 6. Same as Fig. 1, except that each plot represents different percentage of the occurrence of single layer clouds.

Fig. 7. Dependence of the difference1 on cloud albedo for different values of surface albedo.
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Fig. 8. Same as Fig. 1, except that the vertical axis is the surface-based cloud albedo corrected for the effect of surface albedo and multiple
reflections. Note that the total number of points (26 561) is less than 26 601 in Fig. 1 due to some missing data on surface albedo.

It has been known that cloud absorptance is proportional
to cloud albedo (Gautier and Landsfeld, 1997). Following
this, we assume the unknown collective parameter, denoted
by x, satisfies

αSIRS−x αSIRS= αGOES, (11a)

where the subscript SIRS and GOES denote surface-based
and satellite-based albedo, respectively. Therefore, we can
infer x from estimates of surface-based and satellite-based
albedo using

x =
αSIRS−αGOES,

αSIRS
. (11b)

Equation (11b) indicates that aside from being a correction
factor,x represents the relative difference between surface-
based and satellite-based cloud albedos as well.

Figure 9 shows the parameterx as a function of surface-
based cloud albedo. On averagex increases from negative
values to∼0.28 as the surface-based cloud albedo increases
from 0 to∼0.5, and levels off after that. The negative value
of x arises likely from the enhancement of downward dif-
fuse radiation by shallow clouds while the dependence ofx

on cloud albedo after cloud albedo>0.3 seems qualitatively
consistent with cloud-related absorption. Quantitatively, the
value 0.28 is much larger than the value of 0.07 used in Gau-
tier and Landsfeld (1997); but the range of implied absorp-
tance (from 0.05 to 0.3) is within the range of both previous
observations (Hayasaka et al., 1995) and modeling studies

(Chiu et al., 2004). Hayasaka et al. (1995) also reported situ-
ations scattering from cloud edges may lead to apparent neg-
ative cloud absorptance. The issues of enhanced diffuse ra-
diation and absorption associated with clouds are worth fur-
ther investigation but beyond the scope of this paper. One
can use the fitting equation shown in the figure to account
for these effects before a rigorous theoretical formulation is
established.

More information on the parameterx can be obtained by
examining its relationship to cloud fraction (Fig. 10). On
average,x first decreases from∼0.5 to∼ −0.04 when cloud
fraction increases to∼0.2, slightly decreases with cloud frac-
tion between 0.2 and 0.8, and then increases with further in-
creasing cloud fraction. The increase ofx with decreasing
cloud fraction at low cloud fraction may arise from problems
of retrieval accuracy and/or identification of clear-sky condi-
tions while the increase ofx with increasing cloud fraction
at high cloud fraction may be related to cloud absorption dis-
cussed earlier. As expected, the points in Fig. 10 are more
scattered than those in Fig. 9. A comparison inspection of
Figs. 9 and 10 further reveals that the clusters at both ends
correspond with cases having similar cloud fraction but dif-
ferent values of cloud albedo.

3.3.4 Other possible factors

In addition to the factors that are explicitly assumed in the
formulation and examined above, other potential factors may
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Fig. 9. The parameterx as a function of surface-based cloud albedo. The red curve is the fit as described by the equation; the green dot and
vertical lines are the average and corresponding± standard deviation, respectively. The data points withx <−2 are discarded in the analysis
due to their rare and unphysical occurrences.

Fig. 10. Same as Fig. 9, except that it shows the parameterx as a function of surface-based cloud fraction.
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Fig. 11.Diurnal (left), annual (middle) and interannual (right) variations of the relative surface shortwave cloud radiative forcing (red), cloud
fraction (blue) and cloud albedo (green).

affect the results as well. First, separating the atmosphere
into clear and cloudy portions is a basic premise for both
surface-based and satellite-based retrievals. Calculation of
relative CRF also requires estimation of clear-sky down-
welling shortwave radiation. Although the criteria for identi-
fication of clear sky in both surface and satellite observations
have been rigorously tested and validated, they may cause
some uncertainties when cloud fraction/cloud albedo are low
and near the clear-cloudy boundary. The clear-cloudy sepa-
ration is often fuzzy in presence of high aerosol loading and
near cloud edges (Charlson et al., 2007; Koren et al., 2007;
Tackett and Di Girolamo, 2009; Varnai and Marshak, 2011).
The large scatter at low cloud albedo may be related to the
clear-sky identification. In addition, the two sampling plat-
forms have different sampling principles and volumes; these
inherent instrumental differences may also be responsible
for the discrepancy. Finally, satellite and surface measure-
ments may be biased toward high and low clouds, respec-
tively. Note that our analysis of discrepancy is focused on the
surface-based measurements, although one should be aware
that satellite retrievals are fraught with various uncertainties
as well.

4 Multiscale variations

Equation (5c) clearly reveals that the uncertainty in reported
values of CRF simulated by different GCMs may arise from

inadequate treatments of both cloud albedo and cloud frac-
tion. Systematic examination ofαSRF

cld only started very re-
cently by Betts and his coworkers by using indirect satellite
surface radiation measurements. This section reports the re-
sults from the long-term (1997–2009) surface-based, high-
resolution ARM measurements collected at the SGP site.
In our analysis, the 15-min data are further aggregated into
hourly, monthly and yearly averages to examine the diur-
nal (Fig. 11a), annual (Fig. 11b) and interannual variations
(Fig. 10c) ofαSRF

cld , f , andαr. A few points can be drawn
from these figures. First, all the three quantities exhibit diur-
nal and annual variations. Although the diurnal cycle is not
complete due to the need for absent downwelling shortwave
radiation flux measurements at nighttime, the minima around
local noon are obvious, with 0.26, 0.48 and 0.52 forαSRF

cld , f

andαr, respectively. Two maxima appear forαSRF
cld andf .

The first occurs in local morning (0.41, 0.71 and 0.59 for
αSRF

cld , f andαr) and the second in local afternoon (0.32, 0.59
and 0.60 forαSRF

cld , f andαr). On monthly scales, the sum-
mertime minima are evident, withαSRF

cld = 0.19 andf = 0.41
in July, andαr = 0.45 in August. The maxima forαSRF

cld (0.30)
andf (0.56) occur in March while forαr (0.57) in October.
The diurnal pattern of cloud fraction (i.e., morning maximum
and noon minimum) is consistent with the results obtained by
Lazarus et al. (2000) from analyzing 1-yr cloud amount data
from measurements of micro pulse lidars and ceilometers,
10-yr cloud fraction data from Edited Cloud Report, and 8-yr
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Fig. 12. Scatter plots showing correlation between the relative surface shortwave cloud radiative forcing and cloud fraction(a), and cloud
albedo(b). The colors of red, green and blue denote hourly, monthly, and annual averages, respectively.

ISCCP cloud fraction data. This minimum near-noon cloud
fraction characteristic is also similar to results from other re-
searches for other locations (Considine et al., 1997). How-
ever, the diurnal pattern of cloud fraction differs somewhat
from the flat pattern presented in Dong et al. (2006), The dif-
ferent datasets used may be a reason for the diaparity; Dong
et al. (2006) used data derived from cloud-radar and lidar
measurements. More studies are needed to pinpoint the ex-
act reasons. The annual-cycle pattern of cloud fraction (i.e.,
wintertime maximum and summertime minimum) is consis-
tent with those obtained by previous studies (e.g., Lazarus
et al., 2000; Dong et al., 2006; Kollias et al., 2007). The
annual variation ofαSRF

cld is similar to that observed in other
continental areas such as Amazon and Missouri (Betts, 2007,
2009; Betts et al., 2009). Second, the three quantities exhibit
relatively less interannual variation; with the 13 yr averages
of αSRF

cld , f andαr are 0.26, 0.50 and 0.52, respectively. Fi-
nally, although the three quantities tend to vary largely in
phase, the variation ofαSRF

cld is correlated more withf than
with αr. This can be seen more clearly in Fig. 12a, b. The
higher correlation withf suggests that the variation ofαSRF

cld
is driven more by that off than by that ofαr, which, together
with Eq. (5c),.implies thatf varies slightly more compared
to αr. The positively-correlated relationship betweenαSRF

cld
andf was also found in Betts et al. (2009).

5 Concluding remarks

An analytical relationship between the relative surface short-
wave cloud radiative forcing, cloud fraction and cloud albedo
is derived theoretically. The analytical relationship not only
reveals that the relative surface shortwave cloud radiative

forcing is approximately a product of cloud fraction and
cloud albedo, it also suggests a new approach to inferring
cloud albedo from surface-based concurrent measurements
of surface downwelling shortwave radiative fluxes and cloud
fraction. This new surface-based approach is applied to the
long-term measurements collected at the ARM SGP site, and
the surface-based estimates of cloud albedo compare favor-
ably with those obtained from the concurrent GOES satellite
data.

The assumptions underlying the formulation are examined
for their potential effects on the estimate of cloud albedo with
the surface-based method, including single-layer clouds, ne-
glect of surface albedo and multiple reflections between sur-
face and clouds, and absorption associated with clouds. The
results suggest that multilayer clouds, surface albedo, and
multiple reflections are unlikely the main reasons for the
discrepancy between surface-based and satellite-based cloud
albedo. Possible candidates are the enhanced downward dif-
fuse radiation in presence of scattered shallow clouds when
cloud albedo is small (<∼0.3), and cloud-associated absorp-
tion when cloud albedo is larger than∼0.3. More study is
needed to substantiate this finding.

The decade-long high resolution data are examined to dis-
cern their multiscale (diurnal, annual and interannual) varia-
tions and covariations of the relative surface shortwave cloud
radiative forcing, cloud fraction and cloud albedo. The di-
urnal variations of all the three quantities exhibit a strong
minimum around local noon. The annual variations exhibit
a minimum in summertime and a maximum in wintertime.
There exhibits some smaller year-to-year variability in all the
three quantities, but no obvious trend can be discerned. The
variation of relative surface shortwave cloud radiative forcing
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follows cloud fraction more closely than cloud albedo.
This study clearly demonstrates and reinforces the useful-

ness of the relative cloud radiative forcing in isolating the
cloud radiative effect from non-cloud factors, and further re-
lating it to cloud fraction and cloud albedo. Nevertheless, the
study is just a beginning, and much remains to be done. First,
ARM has supported other SGP-like sites in different cli-
matic regimes. Application of the approaches presented here
to these sites will test the applicability of the presented ap-
proaches in different climatic regimes. Furthermore, increas-
ing number of surface sites like the ARM SGP site has been
established to measure surface radiation around the world
such as the Baseline Surface Radiation Network (BSRN,
Ohmura et al., 1998). Further application of the new ap-
proaches to these measurements will provide a much needed
global data set for cloud albedo based on radiation measure-
ments at surface. Second, model evaluation against observa-
tions is essential to identifying model deficiencies, and this
important endeavor demands long-term data of high quality
and resolution. The surface-based data thus obtained will
be valuable and complementary to the widely used satellite
measurements. The analytical formulation should be useful
in diagnosis of parameterization deficiencies as well. Third,
the focus of this paper is on solar radiation at surface, similar
ideas are expected applicable to solar radiation at TOA and
terrestrial infrared radiation measurements. Fourth, to cap-
ture the physical essence with simple analytical expressions,
the theoretical framework is formulated to represent the first
order effect under a few simplifying assumptions. It is desir-
able to confirm the analytical formulation with a more rigor-
ous model. Also, the present methodology estimates cloud
albedo and cloud fraction separately. Although the method
appears to work well here in general, it suffers from the po-
tential problem of compensating errors between retrievals of
cloud fraction and cloud albedo and the need to identify over-
cast conditions separately. A methodology for simultaneous
retrievals of both cloud fraction and cloud albedo is more de-
sirable because cloud fraction and cloud albedo likely affect
total and diffuse radiations together and concurrently. Co-
investigation of cloud albedo and cloud fraction makes more
physical sense as well. Taking into account cloud 3-D effect
and horizontal photon transport may be necessary as well,
especially for multilayer clouds and small cumulus clouds
with low cloud albedo and cloud fraction. Finally, further un-
derstanding and improving the retrieval techniques demand
uncertainty estimates of all the measurements involved. Un-
certainty quantification of cloud fraction and cloud albedo is
needed for model evaluation as well, and is worthy pursuing
in the future.

Appendix A

Effective single-layer model and cloud overlap

When there are clouds ofN layers with each layer charac-
terized by cloud albedoαri and cloud fractionfi (i = 1, . . . .,
N ), the relative CRF can be expressed as

αSRF
cld =

N∑
i=1

αri fi . (A1)

Similar expression has been used to study CRF for multi-
layer clouds (e.g., Ramanathan et al., 1989a). In terms of
the corresponding effective cloud properties, Eq. (A1) can
be rewritten as

αrefe =

N∑
i=1

αri fi, (A2)

or,

αre=

N∑
i=1

αrifi,

fe

, (A3)

where the subscript “e” represents the corresponding effec-
tive property. The effective cloud fractionfe depends on the
vertical cloud overlap, and several overlap models have been
proposed (Hogan and Illingworth, 2000). An additional con-
straint on the effective single-layer cloud is that both effec-
tive cloud fraction and effective cloud albedo are no greater
than one. Equation (A3) indicates that likefe, the effective
cloud albedo also depends on cloud overlap assumptions.
Take the extreme maximum (minimum) overlap as an ex-
ample, multilayer clouds tend to have minimum (maximum)
effective cloud fraction but maximum (minimum) effective
cloud albedo.
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