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Abstract. Size-resolved chemical compositions of non-
refractory submicron aerosol were measured using an Aero-
dyne quadrupole aerosol mass spectrometer (Q-AMS) at
the rural site Back Garden (BG), located∼50 km north-
west of Guangzhou in July 2006. This paper characterized
the submicron aerosol particles of regional air pollution in
Pearl River Delta (PRD) in the southern China. Organics
and sulfate dominated the submicron aerosol compositions,
with average mass concentrations of 11.8± 8.4 µg m−3 and
13.5± 8.7 µg m−3, respectively. Unlike other air masses,
the air masses originated from Southeast-South and pass-
ing through the PRD urban areas exhibited distinct bimodal
size distribution characteristics for both organics and sul-
fate: the first mode peaked at vacuum aerodynamic diame-
ters (Dva) ∼200 nm and the second mode occurred atDva
from 300–700 nm. With the information from AMS, it
was found from this study that the first mode of organics
in PRD regional air masses was contributed by both sec-
ondary organic aerosol formation and combustion-related
emissions, which is different from most findings in other ur-
ban areas (first mode of organics primarily from combustion-
related emissions). The analysis of AMS mass spectra
data by positive matrix factorization (PMF) model identi-
fied three sources of submicron organic aerosol including
hydrocarbon-like organic aerosol (HOA), low volatility oxy-
genated organic aerosol (LV-OOA) and semi-volatile oxy-
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genated organic aerosol (SV-OOA). The strong correlation
between HOA and EC indicated primary combustion emis-
sions as the major source of HOA while a close correlation
between SV-OOA and semi-volatile secondary species ni-
trate as well as between LV-OOA and nonvolatile secondary
species sulfate suggested secondary aerosol formation as the
major source of SV-OOA and LV-OOA at the BG site. How-
ever, LV-OOA was more aged than SV-OOA as its spectra
was highly correlated with the reference spectra of fulvic
acid, an indicator of aged and oxygenated aerosol. The origin
of HOA and OOA (the sum of LV-OOA and SV-OOA) has
been further confirmed by the statistics that primary organic
carbon (POC) and secondary organic carbon (SOC), esti-
mated by the EC tracer method, were closely correlated with
HOA and OOA, respectively. The results of the EC tracer
method and of the PMF model revealed that primary organic
aerosol (POA) constituted∼34–47 % of OA mass and sec-
ondary organic aerosol (SOA) constituted∼53–66 % of re-
gional organic aerosol in PRD during summer season. The
presence of abundant SOA was consistent with water solu-
ble organic carbon (WSOC) results (accounting for∼60 %
of OC on average) by Miyazaki et al. (2009) for the same
campaign. OOA correlated well with WSOC at the BG site,
indicating that most OOA were water soluble. More specifi-
cally, approximately 86 % of LV-OOA and 61 % of SV-OOA
were estimated as water soluble species on the basis of car-
bon content comparison.

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://creativecommons.org/licenses/by/3.0/


6912 R. Xiao et al.: Characterization and source apportionment of submicron aerosol

1 Introduction

Atmospheric aerosol plays very important roles in climate
change and air quality on regional and global scales (Seinfeld
and Pankow, 2003). The study of aerosol particle mass con-
centrations, size distributions, and chemical compositions is
required in order to better understand these impacts of at-
mospheric aerosol (McMurry, 2000). Traditionally, the in-
formation of size-resolved chemical compositions of aerosol
particles was obtained through sampling particles using cas-
cade impactors. This technique usually requires many hours
of sampling and extensive analysis in the laboratory. In addi-
tion, its results are often associated with uncertainties due to
artifacts from sampling and filter storage processes. There-
fore, several instruments that are capable of performing con-
tinuous size-resolved measurements of aerosol composition
have been developed in the past decade (Jayne et al., 2000;
Jimenez et al., 2003; Middlebrook et al., 2003). Online tech-
niques are faster, less labor intensive, and less vulnerable to
artifacts introduced during sample collection and processing
(Zhang et al., 2005a). One of these instruments is Aerodyne
aerosol mass spectrometer (AMS) that can determine the
size distribution and chemical composition of non-refractory
submicron aerosol particles with time resolution of minutes
(Jayne et al., 2000; Jimenez et al., 2003). Simultaneous mea-
surements of size and chemical composition with high time
resolution are particular important for the study of health im-
pacts of submicron particles and sources of fine particulate
matter in the southern China.

AMS has been deployed in a lot of field campaigns con-
ducted in various locations and seasons including ground
sites from urban areas, downwind of urban emissions, and
rural/remote areas in order to characterize submicron parti-
cle properties and identify their possible sources (Zhang et
al., 2005a, b, c, 2007). Sulfate and organics are commonly
found as two major components in submicron aerosols in
these campaigns. Previous studies have shown that organics
often show bimodal size distributions at urban sites (Alfarra
et al., 2004, 2007; Allan et al., 2003a, b, 2004; Jimenez et
al., 2003; Kondo et al., 2007; Salcedo et al., 2006; Sun et
al., 2010; Zhang et al., 2005c) with the first mode peaking
around 200 nm (Dva) due to combustion-related emissions
(e.g. traffic) and the second mode occurring around 300–
700 nm as a result of photochemical processing (Alfarra et
al., 2004, 2007). Submicron sulfate also exhibited two modes
in some cities such as Los Angeles (Hering and Friedlander,
1982; Hering et al., 1997) with the first condensation mode
formed by homogeneous gas-phase reactions of SO2, and the
second droplet mode attributed to in-cloud processing.

AMS organic mass spectra data are also frequently used
for source apportionment of submicron organic aerosol
(Zhang et al., 2005a, b; Lanz et al., 2007, 2008; Ulbrich
et al., 2009, Sun et al., 2010). Lanz et al. (2007, 2008)
is the first to apply positive matrix factorization (PMF)
model (Paatero and Tapper, 1994; Paatero, 1997) on AMS

data for source apportionment of submicron organic aerosol
in Zurich, Switzerland. In their study, two subtypes of
OOA that accounted for 60–69 % of the measured organic
aerosol mass were identified: a highly-oxygenated OA (LV-
OOA) that was strongly correlated with nonvolatile sec-
ondary species such as sulfate and a semi-volatile OA (SV-
OOA) that has a higher correlation with semi-volatile sec-
ondary species such as nitrate. The organic aerosol AMS
dataset from Pittsburgh, USA was also analyzed with PMF
by Ulbrich et al. (2009). In addition, several groups have
tried to use methods other than PMF to deconvolve AMS
organic mass spectral matrix, e.g. a custom principal compo-
nent analysis technique by Zhang et al. (2005a, b) and a CO
tracer method by Takegawa et al. (2006) that is conceptually
similar to the EC tracer method.

Pearl River Delta (PRD) is one of the three areas in China
which have experienced extremely fast economic develop-
ment. Rapid urbanization and industrialization in the last
few decades have introduced more complexity to air pollu-
tion issues in this area, of which high levels of ozone (O3)

and fine particulate matter (PM2.5) are of particular concern
(Zhang et al., 2008). Some research projects have been per-
formed in PRD to investigate the chemistry of particulate
pollution (Zhang et al., 2004, 2008). However, there are only
very limited studies of size-resolved measurement of aerosol
composition in this region (Liu, S. et al., 2008; Zhuang et
al., 1999; Zheng et al., 2008). In addition, they are all filter
based measurements. To our best knowledge, by far there is
no study of size-resolved organic and inorganic aerosol with
a time resolution of minutes in PRD. Past source apportion-
ments of organic aerosol in this region usually rely on or-
ganic carbon (OC) to elemental carbon (EC) ratio method
from offline filter measurements (Cao et al., 2003, 2004)
or chemical mass balance modeling with molecular mark-
ers with 24-h filter samples (Zheng et al., 2011). Despite
the lack of high time resolution, these methods could contain
uncertainties since they are unable to take into account sea-
sonal and diurnal variations in emission sources of carbona-
ceous aerosol (Turpin and Lim, 2001). In this study, a Q-
AMS was deployed at the Back Garden supersite, a rural site
near Guangzhou to study aerosol characteristics of regional
air mass in PRD and its major sources. These objectives
are achieved by studying chemical and physical properties of
major components in submicron aerosol in Back Garden and
conducting source apportionment of primary and secondary
organic aerosol sources by applying PMF and the EC tracer
method on AMS data and analyzing continuous EC/OC data,
respectively.
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2 Methods

2.1 Sampling site description

The Program of Regional Integrated Experiments of Air
Quality over Pearl River Delta 2006 (PRIDE-PRD 2006)
campaign was conducted in the southern China in July 2006.
The main objective of the campaign was to provide the re-
gional mitigation strategies to ensure the level of air pollu-
tants within sustainable limits through in-depth investigation
of physical, chemical, and radiative properties of air pollu-
tants. Two supersites were included in this campaign includ-
ing the Guangzhou urban site (23.13◦ N, 113.25◦ E) and the
Back Garden rural site (BG, 23.49◦ N, 113.03◦ E). Air pol-
lution problem in Guangzhou is quite complex due to the
contributions of various sources especially coal burning and
vehicular emissions. Back Garden is a much less populated
area at the outskirts of the densely populated center of the
PRD, thus it serves as a regional background site (Hua et
al., 2008). As part of PRIDE-PRD 2006, this study focused
on the BG rural site that is located∼50 km northwest of
the Guangzhou urban center in order to better understand
aerosol characteristics of regional air masses and if urban
emissions influence regional air quality. Industrial activity in
the vicinity of the BG site was relatively low, and the nearest
Guang-Qing highway is∼7 km east of the BG site. However
some occasional biomass burning activities in the afternoon
and cable burning events in the evening could be potential
sources of local emissions (Li et al., 2010; Lu et al., 2010).
Specific measurements at the BG site included the study of
chemical composition and size distribution (Yue et al., 2010),
hygroscopic properties (Rose et al., 2010) and optical prop-
erties of aerosol (Garland et al., 2008), various gaseous pol-
lutants (Li et al., 2010; Shao et al., 2011), and oxidants
(e.g. hydroxyl radicals, hydrogen peroxide) (Hofzumahaus
et al., 2009; Hua et al., 2008; Lou et al., 2010).

2.2 AMS measurement

The AMS and other instruments were placed in an air-
conditioned room on the top floor of a three-story building.
Ambient air was introduced from the rooftop to each instru-
ment through a 6-m-long stainless steel tube with an inner
diameter of 10 mm. The sample flowrate of the Q-AMS was
around 84 cc min−1. A PM2.5 cyclone (URG Corp., USA)
was equipped to remove particles larger than 2.5 µm in diam-
eter.

The size-resolved chemical compositions of non-
refractory submicron aerosol (i.e., sulfate, ammonium, ni-
trate, chloride and organics) were measured using a Q-AMS
with a time resolution of 10 min during 12–30 July 2006.
Details about the instrumentation and performance of Q-
AMS at the BG site can be found in Takegawa et al. (2009)
and Xiao et al. (2009). A brief description is provided here.
In this study, the inlet temperature, which affects the particle

collection efficiency (CE), was controlled at∼40◦C (about
11◦C higher than the ambient temperature) to dry the sample
air. A CE of 0.5 was assumed under the dry conditions for
inorganic and organic compounds (Takegawa et al., 2009).
The limit of detection (LOD) for the Q-AMS system is
defined as three times the standard deviation of the mass
concentration, measured while placing a filter for removing
particle in the sample line (Xiao et al., 2009). In this study,
the LODs for the Q-AMS were estimated to be 0.10, 0.60,
0.04, 0.03 and 0.40 µg m−3 for sulfate, ammonium, nitrate,
chloride and organics, respectively (Xiao et al., 2009). The
Q-AMS measured the submicron particulate matter (PM1)

and was not designed to detect refractory components such
as mineral dust and EC under typical operating conditions
(Takegawa et al., 2005).

2.3 On-line continuous measurements of WSOC,
OC and EC

Along with the Q-AMS measurements, the concentrations of
water soluble organic carbon (WSOC) were measured using
a collocated particle-into-liquid-sampler coupled with a to-
tal organic carbon analyzer (PILS-TOC) system with a time
resolution of 6 min from 6 to 31 July 2006. The detail of
WSOC analysis was described elsewhere (Miyazaki et al.,
2009). In brief, to isolate the WSOC into a hydrophilic
WSOC (WSOChpi) and a hydrophobic WSOC (WSOChpo)

component, a macroporous nonionic resin (DAX-8) was used
with TOC detection. WSOChpo was defined as the difference
between WSOC and WSOChpi. The LOD of the WSOC
measurement was estimated as 0.1 µgC m−3and the uncer-
tainties in the WSOC and WSOChpi measurements were de-
termined as 9 % and 12 %, respectively (Miyazaki et al.,
2009). The mass concentrations of EC and OC were mea-
sured using a Sunset EC/OC analyzer with a time resolution
of 1 h from 3 to 31 July 2006 (Takegawa et al., 2009a). To
estimate artifacts of volatile organic compounds (VOCs) on
the quartz filter due to adsorption, a Teflon filter was placed
in the sample line to remove particles. The reported OC
concentrations were corrected by subtracting the VOCs ar-
tifact (2.0 µgC m−3) from the measured OC concentrations
(Takegawa et al., 2009a). A PM2.5 cyclone was used before
17 July for the measurements of WSOC, OC and EC, but it
was changed to a PM1 cyclone after 17 July to be consistent
with the Q-AMS measurements.

In addition, the surface meteorological data were ob-
tained with a time resolution similar to other measurements
(10 min) using a portable meteorological station (Vaisala,
WXT520) (Xiao et al., 2009).

2.4 Meteorology

Meteorological conditions over PRD in July 2006 were char-
acterized by high temperature and much precipitation (Fan
et al., 2011). Two high temperature periods occurred from

www.atmos-chem-phys.net/11/6911/2011/ Atmos. Chem. Phys., 11, 6911–6929, 2011



6914 R. Xiao et al.: Characterization and source apportionment of submicron aerosol

 1 

2 Figure 1, the 72-h back trajectories of each air mass category calculated using HYSPLIT 
(http://www.arl.noaa.gov/ready/hysplit4.html). 3 

4  

 5 

6 

7 

Figure 2, Time series of the mass concentrations of sulfate, ammonium, nitrate, chloride, organics and 

total (the sum of these five components). 

 23

Fig. 1. The 72-h back trajectories of each air mass category calculated using HYSPLIT (http://www.arl.noaa.gov/ready/hysplit4.html).

12–14 July and 20–25 July, respectively. During the cam-
paign, typhoons BILIS and KAEMI landed in the southern
China on 14 and 25 July, respectively, leading to heavy rain
after the landing of typhoons (Xiao et al., 2009). The air
masses can be classified into Southeast-South, Southwest,
North and East categories, which account for 41 %, 13 %,
17 % and 14 % of total dataset, according to the observed
wind speed (WS) and wind direction (WD). The WS and WD
were key meteorological parameters that influence the con-
centrations of pollutants in the PRD region, especially for the
downwind areas (Cheng et al., 2006; Hagler et al., 2006; Lee
et al., 2007). Statistical information of the surface meteo-
rological parameters of each category was listed in Table 1.
The average 72-h back trajectories were also calculated for
each category using the HYSPLIT 4 model (see Fig. 1).

3 Result and discussion

3.1 Characteristics of regional submicron aerosol

3.1.1 General characteristics and dynamics

Figure 2 showed temporal variations of the mass concen-
trations of sulfate, ammonium, nitrate, chloride, organics
and total submicron mass (the sum of these five compo-
nents) at the BG site. The mass concentrations of sulfate
and organics ranged from 1.0 to 52.9 µg m−3 and from 1.2
to 152.4 µg m−3, respectively. During the sampling period,
organics concentrations were normally below 50 µg m−3, ex-
cept for the periods with strong influence by local emission
sources (e.g. biomass burning reported by Rose et al., 2010)
during 24–25 July. In addition, low concentrations of par-
ticulate matter were found between 15 and 17 July and on
27 July due to heavy rains as a result of typhoons. Since

this paper mainly focused on the regional air pollution other
than local emissions (constituting∼5 % of all data points)
or rain events (constituting∼10 % of all data points), these
data were excluded in the present analysis. Therefore, the
data used in this analysis could represent the general charac-
teristics of air mass in the PRD region. On average, sulfate
and organics accounted for 38 % and 44 % of the total sub-
micron mass, corresponding to an average mass concentra-
tion of 11.8 and 13.5 µg m−3, respectively. Therefore, sulfate
and organics dominated submicron aerosol mass, followed
by ammonium, nitrate, and chloride, as shown in Table 2.
The total mass concentration in this study was higher than
the levels reported by most other field campaigns conducted
at various ground sites in urban areas, regions downwind of
urban areas, and rural/remote locations in mid-latitude of the
Northern Hemisphere (Zhang et al., 2007), indicating that
PRD faces serious and challenging particulate air pollution
problem (Zhang et al., 2008).

Atmospheric aerosol size distributions are often described
as the sum ofn lognormal distributions (Seinfeld and Pandis,
2006). The mass size distributions of aerosol species can be
fitted to log-normal modes (Salcedo et al., 2006):

dM

d logDva
=

∑
i

Mi
√

2π logσi

exp[−
(logDva− logDva,i)

2

2log2σi

] (1)

Where Mi , Dva,i , and σ i are the mass concentration
(µg m−3), mean diameter (nm), and geometric standard devi-
ation of theith lognormal mode, respectively, and log is the
base 10 logarithm.

As can be seen in Fig. 3, two lognormal modes can repro-
duce the observed mass size distributions for both organics
and sulfate including the first mode peaking atDva around
200 nm and the second mode in the range of 300–700 nm.
On average, organics accounted for 56 % of the total mass
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Table 1. Average values of the surface meteorological parameters of each air mass categorya.

Type Pressure (hPa) Temperature (◦C) RH (%) WS (m s−1) UVA (W m−2)

Southeast-South 1001.1 (±1.9) 30.1 (±2.5) 73.3 (±13.5) 1.6 (±0.9) 22.0 (±16.7)
Southwest 991.3 (±3.2) 29.4 (±2.9) 74.5 (±10.3) 2.2 (±1.1) 13.7 (±14.1)
North 994.6 (±2.6) 30.9 (±3.3) 70.4 (±14.5) 0.9 (±0.6) 19.7 (±14.9)
East 999.0 (±2.3) 26.4 (±1.5) 81.9 (±7.1) 2.3 (±0.9) 21.5 (±16.6)

a Numbers in parentheses are one standard deviations.
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Fig. 2. Time series of the mass concentrations of sulfate, ammonium, nitrate, chloride, organics and total (the sum of these five components).

of submicron particles in the first mode, but its percentage
decreased to 39 % in the second mode. On the contrary, the
percentage of sulfate increased from 31 % in the first mode
to 35 % in the second mode.

The PRD region is located in pollution control zones of
acid rain and sulfur dioxide, which were designated by the
Ministry of Environmental Protection of the People’s Re-
public of China. Therefore, the study of apparent acidity
in this region is very important. Based on the AMS mea-
surements, apparent acidity was assessed by comparing mea-
sured NH+

4 (=NH+

4 /18 µeq m−3) to the amount needed to
fully neutralize the measured anions SO2−

4 , NO−

3 and Cl−

(i.e. predicted NH+4 = 2* SO2−

4 /96 + NO−

3 /62 + Cl−/35.5 µeq
m−3), as shown in Fig. 4. The slope of measured versus
predicted NH+4 was 0.81 (r2

= 0.95). In addition, apparent
acidity was also estimated based on the comparison of mea-
sured cation to the predicted cation with the data from fil-
ter measurements (i.e. measured cation = NH+

4 /18 + Na+/23
+ K+/39 + 2 Mg2+/24 + Ca2+/40,µeq m−3 and predicted
cation = 2 SO2−

4 /96 + NO−

3 /62 + Cl−/35.5 + F−/19 µeq m−3).
The slope of measured versus predicted cation was 0.77
(r2

= 0.98). Both analyses revealed that particles in the PRD
regional air mass are acidic. The comparison between acid-
ity estimate by AMS and filter-based data suggested that

AMS inorganic species can be effectively used to assess
the acidity of submicron particles because these finer par-
ticles generally contain very low concentrations of Na+, K+,
Mg2+, Ca2+ and F− ions, which is consistent with the re-
sults by Liu X. G. et al. (2008). As a result of fuel sup-
ply shortage, large amounts of high-sulfur coal and high-
sulfur fuel oil are still in use by many companies in PRD
(http://www.gzepb.gov.cn), which are mainly responsible for
acidity of aerosol in this region.

Diurnal patterns of sulfate, ammonium, nitrate, chloride
and organics are presented in Fig. 5. The mass concentrations
of sulfate showed a pronounced diurnal variation, which al-
most doubled from 10:00 to 17:00 local time (LT, Beijing
time) with an average increasing rate of∼1.0 µg m−3 h−1.
The increase appeared to be driven by the enhanced pho-
tochemical reactions during the day. The average concen-
trations of ammonium also increased during the day, prob-
ably as a result of neutralization of the sulfate. However,
the daytime increase was not obvious for organics, but it
quickly reached a maximum concentration of as high as
∼20 µg m−3 between 17:00–20:00 LT. The observed varia-
tions of organics might be attributed to combined effects of
enhanced vehicular emissions during traffic hours and lower
mixing layer height that traps the PRD urban primary emis-
sions and some photochemically formed secondary products.

www.atmos-chem-phys.net/11/6911/2011/ Atmos. Chem. Phys., 11, 6911–6929, 2011
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Table 2. Average concentrations (unit: µg m−3) of submicron aerosol species of each air mass categorya.

Type ammonium nitrate sulfate chloride organics Totalb

Southeast-South 4.1 (±2.7) 1.3 (±1.4) 13.4 (±8.6) 0.5 (±0.6) 12.8 (±7.8) 32.0 (±19.1)
Southwest 3.3 (±1.5) 1.0 (±0.5) 10.1 (±3.8) 0.2 (±0.2) 15.7 (±6.3) 30.3 (±10.9)
North 5.2 (±3.9) 1.8 (±2.0) 14.8 (±9.6) 0.5 (±1.0) 18.7 (±10.9) 40.9 (±25.8)
East 2.0 (±1.8) 1.4 (±1.8) 4.7 (±3.7) 0.3 (±0.5) 7.3 (±5.3) 15.9 (±12.6)

a Numbers in parentheses are one standard deviations.b Total (the sum of these five components).
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Fig. 4. Scatter plot of measured NH+4 (= NH+

4 /18 µeq m−3) versus

predicted NH+4 (= 2 SO2−

4 /96 + NO−

3 /62 + Cl−/35.5 µeq m−3).

The mass concentrations of nitrate and chloride also showed
a pronounced diurnal profile that peaks in the early morning
or during nighttime, but stay low between 10:00–17:00 LT.
This profile was likely due to the gas-to-particle partitioning
of ammonium nitrate and ammonium chloride precursors,
which favor particulate phase at lower temperature and high
relative humidity conditions (Seinfeld and Pandis, 2006).

3.1.2 Aerosol characteristics associated with different
air masses

As shown in Fig. 1, four categories of air masses reaching
the BG site during the study period were identified. Statistics
of the mass concentrations of AMS species in each air mass
category were listed in Table 2.

For each air mass category, the average size distribution
for organics, sulfate, nitrate, ammonium, and chloride was
shown in Fig. 6 and the ion balances of different air masses
in Fig. 7. For the Southeast-South air mass category, the
submicron aerosol particles displayed distinct bimodal size
distributions and were acidic (slope of measured NH+

4 ver-
sus predicted NH+4 = 0.68;r2

= 0.99). A slope of 0.75 sug-
gested that roughly 50 % of sulfate (SO2−

4 ) molecules in the

Atmos. Chem. Phys., 11, 6911–6929, 2011 www.atmos-chem-phys.net/11/6911/2011/
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Fig. 5. Diurnal variation box plots of Panel(a): organics, Panel(b): sulfate, Panel(c): ammonium, Panel(d): nitrate and Panel(e): chloride.
The box plots are read as follows: the upper and lower boundaries of the box indicate the 75th and the 25th percentiles, the line within the
box marks the median, and the whiskers above and below the box indicate the 95th and 5th percentiles. Cross symbols represent the means.

aerosol particles are in the form of bisulfate (HSO−

4 ) (Zhang
et al., 2005c). These air masses passed PRD urban areas be-
fore reaching the rural BG site. In contrast, for the North
and Southwest categories, the size distributions for organics
and sulfate generally showed unimodal characteristics and
the mean peak diameter moved to larger size range, indicat-
ing more aged particles. These aerosol particles were bulk

neutralized (slope = 0.93–0.95, close to 1;r2
= 0.93–0.98).

For the air masses from the Eastern areas, organics showed
bimodal size distributions though it was not that obvious for
inorganic species and particles were bulk neutralized in this
category (slope = 0.91, close to 1;r2

= 0.99).

To further understand chemical compositions of organic
aerosol in each mode, the AMS spectral data were examined.
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Fig. 6. Average size distributions of submicron aerosol species of each air mass category.

The size distributions of organic mass fragmentm/z 44
(CO+

2 ) andm/z57 (C4H+

9 ) for the Southeast-South category
were illustrated in Figure 8. Fragmentm/z44 was a repre-
sentative tracer of oxygenated organic aerosol, while frag-
ment m/z 57 was typically associated with combustion ex-
haust (Alfarra et al., 2004). Them/z 44 mass size distri-
butions often exhibited pronounced unimodal characteristics
at rural and urban sites, with itsDva ranging from 300 to
700 nm, suggesting oxygenated organic aerosol dominated
the second mode (Kondo et al., 2007). However, at the BG
site, it was found that the size distribution ofm/z44 was bi-
modal, indicating significant contribution from oxygenated
organic aerosol to total OA in the first mode (Fig. 6). It
is not surprising to find that the size distribution ofm/z57
was dominated by the first mode since it is primarily from
combustion-related emissions. The present ofm/z57 in the
large mode may indicate that the air mass we sampled was
relatively aged comparing to the fresh emissions, since the
contributions ofm/z57 in the small-mode particles tend to
decrease in aged air (Alfarra et al., 2004). Previous studies
have shown that organics often exhibited bimodal size distri-
butions at urban sites (Alfarra et al., 2004, 2007; Allan et al.,
2003a, b, 2004; Jimenez et al., 2003; Kondo et al., 2007; Sal-
cedo et al., 2006; Sun et al., 2010; Zhang et al., 2005c) with
the first organic mode attributed to combustion-related emis-
sions (e.g. traffic) and the second organic mode contributed

by photochemical processing (Alfarra et al., 2004, 2007).
However, them/z44 andm/z57 size distributions from AMS
data revealed that the first mode of organics in the Southeast-
South air mass category was contributed by both primary
emissions and secondary organic aerosol formations. The
first mode ofm/z44 represents species from secondary for-
mation, namely the gas-phase oxidation of volatile organic
compound precursors (Xiao et al., 2009).

At the BG site, the mass concentrations of sulfate showed
bimodal size distributions for the Southeast-South category.
Nevertheless, the bimodal size distributions of sulfate have
not been found in most urban areas such as Tokyo (Miyakawa
et al., 2008) and New York (Weimer et al., 2006), as well as
rural/remote sites such as Fukue Island in Japan and Jeju Is-
land in Korea (Takami et al., 2005; Topping et al., 2004).
In this study, the first mode of sulfate was attributed to ho-
mogeneous gas-phase reactions of SO2 initiated by the re-
action with the OH radical, and the average sulfate pro-
duction rate was∼1.04 µg m−3 h−1 (∼0.26 ppbv h−1) in a
typical air mass transported from the southeast PRD areas.
This rate was comparable to the average increasing rate of
∼1.00 µg m−3 h−1 during the day (see Sect. 3.1.1). This im-
plied that the gas-phase oxidation of SO2, due to the high
concentrations of SO2 and OH (Hofzumahaus et al., 2009),
was important to the increase of sulfate during the day in
the PRD region. The second mode usually was attributed to
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Fig. 8. Fitting two log-normal modes to the average size distributions ofm/z44 andm/z57 of Southeast-South category. The black (grey)
line indicates the measured (fitted) concentrations.
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Figure 9, Mass spectra of three organic components of organics identified by PMF. 
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Figure 10, Time series of HOA and primary aerosol species EC, of LV-OOA+SV-OOA and secondary 
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Fig. 10. Time series of HOA and primary aerosol species EC, of LV-OOA+SV-OOA and secondary aerosol species Sulfate+Nitrate.

in-cloud processing (Meng and Seinfeld, 1994; Yao et al.,
2002, 2003a, b).

3.2 Sources of organic aerosol

3.2.1 Source apportionment by PMF

PMF (Paatero and Tapper, 1994; Paatero, 1997) is the most
widely used method to deconvolve AMS organic data. The
principle and application of PMF method to AMS data have

been described in detail elsewhere (Lanz et al., 2007; Ul-
brich et al., 2009). A reference mass spectral database has
been established by Ulbrich et al. (2007). Sources are iden-
tified based on the similarities to reference mass spectra of
known sources and correlations between PMF components
and commonly used tracers such as EC for primary combus-
tion sources (Lanz et al., 2007; Ulbrich et al., 2009).

Three factors or components of organic aerosol were iden-
tified by the PMF model at the BG site (see Fig. 9). Spectral
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Figure 11, Diurnal variation box plots of HOA, SV-OOA and LV-OOA. The box plots are read as 

follows: the upper and lower boundaries of the box indicate the 75th and the 25th percentiles, the line 

within the box marks the median, and the whiskers above and below the box indicate the 95th and 5th 

percentiles. Cross symbols represent the means. The grey lines indicate the diurnal variations of EC, 

nitrate and sulfate, respectively. 
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 29

Fig. 11. Diurnal variation box plots of HOA, SV-OOA and LV-OOA. The box plots are read as follows: the upper and lower boundaries
of the box indicate the 75th and the 25th percentiles, the line within the box marks the median, and the whiskers above and below the box
indicate the 95th and 5th percentiles. Cross symbols represent the means. The grey lines indicate the diurnal variations of EC, Nitrate and
Sulfate, respectively.

1 

2 

 

 

 3 

4 

5 

6 

7 

8 

Figure 11, Diurnal variation box plots of HOA, SV-OOA and LV-OOA. The box plots are read as 

follows: the upper and lower boundaries of the box indicate the 75th and the 25th percentiles, the line 

within the box marks the median, and the whiskers above and below the box indicate the 95th and 5th 

percentiles. Cross symbols represent the means. The grey lines indicate the diurnal variations of EC, 

nitrate and sulfate, respectively. 

 9 

10 

11 

Figure 12, Scatter plots of HOA vs. POC and OOA vs. SOC. 

 

 29

Fig. 12. Scatter plots of HOA vs. POC and OOA vs. SOC.

similarity, which is determined by ther2 of two organic mass
spectra, is commonly used to provide insight into the organic
sources in previous publications (Lanz et al., 2007, 2008;
Sun et al., 2010; Zhang et al., 2005a, b). In this study, the
mass spectra of the three organic components in Fig. 9 were

correlated with the reference mass spectra of the database.
The mass spectrum of HOA was strongly correlated with
those of primary organic aerosol particles from Pittsburgh
(Zhang et al., 2005a, b; Ulbrich et al., 2009), Vancouver
(Alfarra et al., 2004), Zurich (Lanz et al., 2007; 2008) and
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Table 3. Correlation matrix of HOA, SV-OOA, LV-OOA, and primary and secondary aerosol tracersa.

LV-OOA SV-OOA HOA Sulfate Nitrate EC Sulfate+Nitrate OOAb WSOC

LV-OOA 1 0.28 0.09 0.75 0.46 0.26 0.77 0.92 0.82
SV-OOA 1 0.21 0.45 0.67 0.41 0.65 0.64 0.67
HOA 1 0.26 0.49 0.86 0.33 0.16 0.47
Sulfate 1 0.52 0.40 0.99 0.79 0.64
Nitrate 1 0.48 0.64 0.68 0.73
EC 1 0.39 0.27 0.45
Sulfate+Nitrate 1 0.80 0.70
OOA 1 0.84
WSOC 1

a Correlation is significant at the 0.01 level.b OOA = LV-OOA + SV-OOA.
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Fig. 13. Relative contributions of HOA and OOA during different hours of the day.

Manchester (Allan et al., 2003a, b, 2004) (r2 in the range of
0.91–0.96), as well as reference spectra of diesel and gaso-
line engine exhaust (r2 ranging from 0.91 to 0.95). The mass
spectrum of HOA was dominated by organic fragments for
saturated hydrocarbons CnH+

2n+1 (m/z 29, 43, 57, 71) and
unsaturated hydrocarbons CnH+

2n−1 (m/z27, 41, 55, 69, 83).
The mass spectrum of low volatility OOA (LV-OOA) was
most comparable with those of secondary organic aerosol
particles from Pittsburgh (Zhang et al., 2005a, b; Ulbrich
et al., 2009), Zurich (Lanz et al., 2007, 2008) and Langley
(Alfarra et al., 2004) (r2 from 0.93–0.99), but also highly
correlated with reference spectra of fulvic acid (represent-
ing aged and oxygenated aerosol,r2 as 0.93). The LV-OOA
demonstrated a quite different fragmentation pattern from
HOA and exhibited characteristic fragments of oxidized or-
ganic aerosol such asm/z 44 andm/z 18. The mass spec-
trum of semi-volatile OOA (SV-OOA) had the highest cor-
relation with the semi-volatile OOA (r2

= 0.88) reported in
Pittsburgh (Ulbrich et al., 2009). SV-OOA differed from LV-
OOA in that it contained fragments from both hydrocarbon
compounds and oxygenated species. Atmospheric SV-OOA
represents fresh secondary organic aerosol that eventually
evolves into LV-OOA with continued photochemical pro-
cessing (Jimenez et al., 2009). Thus, the highest abundance
of m/z44 was found in LV-OOA (13.5 % in totalm/z44 sig-
nal), followed by SV-OOA (8.5 %) and HOA (2.3 %), which

suggests that SV-OOA is less oxygenated than LV-OOA but
more oxygenated than HOA.

The time series of HOA and OOA (LV-OOA plus SV-
OOA) together with primary and secondary aerosol tracers
was presented in Fig. 10. The mass concentration of HOA
correlated well with that of EC, a typical tracer of combustion
emissions (r2 as 0.75). HOA exhibited a clear diurnal varia-
tion that peaked at traffic hours (early morning and late after-
noon) and stayed at low levels during the day (see Fig. 11).
The emission ratio of HOA versus EC is calculated from the
slopeb of linear regression model: HOA =a+b EC (Lanz et
al., 2007). In this study, the emission ratio of HOA to EC
was 1.2 µg µgC−1, similar to values reported in Pittsburgh
(1.41 µg µgC−1) by Zhang et al. (2005a, b) and in Zurich
(1.1 µg µgC−1) by Lanz et al. (2007), as well as 1.2 µg µgC−1

estimated from emission inventory by Cabada et al. (2002).
These results suggested that the sampling site was signifi-
cantly influenced by upwind combustion emissions of city
plume. Tight correlation of OOA with the sum of sulfate
and nitrate was also found (r2 as 0.65), and the slope of
0.57 was similar to that reported in Beijing (0.42) by Sun
et al. (2010). A strong correlation between LV-OOA and
nonvolatile sulfate and between SV-OOA and semi-volatile
nitrate was shown in Fig. 11 and Table 3, which is consistent
with findings from previous studies (Jimenez et al., 2009;
Lanz et al., 2007). LV-OOA is more aged OA while SV-OOA
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Fig. 15. Scatter plots of OOA vs. WSOC during different hours of
the day. The pie charts indicate the relative contributions of the two
subtypes of OOA (i.e. LV-OOA & SV-OOA) to OOA.

is likely less-photochemically aged OA, but the relative con-
tributions of the two OOA subtypes depend on both ambi-
ent temperature and the extent of photochemical transforma-
tion (Jimenez et al., 2009). The mass concentration of LV-
OOA showed a pronounced diurnal variation that increased
from 4.0 µg m−3 at 10:00 LT to 7.1 µg m−3 at 16:00 LT, with
an average increasing rate of 0.5 µg m−3 h−1. LV-OOA is
closely linked to photochemistry. The mass concentration of
SV-OOA reached the highest level between 20:00–24:00 LT,
probably due to a shift in the gas-particle equilibrium of
semi-volatile secondary organic aerosol after sunset.

In summary, total OOA constituted about 66 % of submi-
cron OA mass during the total sampling period, in which
LV-OOA and SV-OOA accounted for 38 % and 28 % of OA
mass, respectively.

3.2.2 Comparison between results from PMF and the
EC tracer method

The EC tracer method is frequently used to estimate the
amount of secondary organic carbon based on the assump-
tion that EC can be used as a tracer for primary combustion-
generated OC, thus excess OC is from secondary organic
aerosol formation process (Cabada et al., 2004; Dechapanya
et al., 2004; Turpin and Huntzicker, 1995). In this study, the
mass concentrations of primary organic carbon (POC) and
secondary organic carbon (SOC) were estimated with the
following equations: POC = 1.1× EC and SOC = OC–POC.
The estimated POC/EC ratio was similar to the values of 1.1–
1.3 for PM2.5 in the PRD region in previous studies (Cao et
al., 2003, 2004).

Positive correlations between HOA and POC (r2
=

0.75) and between OOA and SOC (r2
= 0.81) were

found (Fig. 12). The slope of HOA versus POC was
1.11 µg µgC−1, similar to the HOA/HOC (hydrocarbon-like
organic carbon equals to total carbon of HOA) ratios in
Tokyo (1.2 µg µgC−1, Kondo et al., 2007) and in Pittsburgh
(1.2 µg µgC−1, Zhang et al., 2005a, b). All these values
were within the range of organic mass to organic carbon
(OA/OC) ratios of 1.1–1.5 µg µgC−1 for less water-soluble
organics (Turpin and Lim, 2001). The linear regression fit to
OOA versus SOC gave a slope of 1.95 µg µgC−1 and an inter-
cept of 4.68 µg m−3. This slope was slightly lower than the
OOA/OOC (oxygenated organic carbon as the total carbon of
OOA) ratios in Tokyo (2.3–2.4 µg µgC−1, Kondo et al., 2007)
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Fig. 16. Scatter plots of predicted versus measured WSOC. The
dashed lines represent 1.75:1 and 1:1.75 reference lines.

and in Pittsburgh (2.2 µg µgC−1, Zhang et al., 2005a, b).
However, all these values were within the range of OA/OC
ratios of 1.5–3.1 µg µgC−1 for more water-soluble organics
(Turpin and Lim, 2001). The intercept was probably partly
due to the presence of oxygenated species in primary emis-
sions.

The relative contributions of HOA and OOA be-
tween 00:00–24:00, 00:00–08:00, 09:00–18:00, and 19:00–
24:00 LT, were illustrated in Fig. 13. It was clear that the rela-
tive abundance of HOA and OOA varied significantly during
different hours of the day, e.g. OOA up to∼80 % of OA mass
at fifteen o’clock in the afternoon and HOA up to 55 % of OA
mass at four o’clock at night. The average of organic mass
spectrum at fifteen o’clock was very similar to that of LV-
OOA (r2 as 0.97), indicating that OA mass was dominated by
secondary organic aerosol at this time of the day; while the
average organic mass spectrum at four o’clock was relatively
poorly correlated with that of LV-OOA (r2 as 0.78) or HOA
(r2 as 0.50), suggesting the presence of both primary and sec-
ondary organic aerosol at night. In addition, a new particle
formation and growth event (Yue et al., 2010) was observed
at the BG site on 21 July, during which OOA accounted for
as high as∼93 % of OA mass. Zhang et al. (2004) sug-
gested that extensive condensation of gaseous precursors of
OA onto preexisting aerosol particles increases the secondary
organic aerosol mass in the nucleation event.

Based on the EC tracer method, secondary organic aerosol
(estimated by 1.95× SOC) and primary organic aerosol
(equivalent to 1.11× POC) accounted for 53 % and 47 % of
OA mass, respectively. Combining the results from PMF
analysis with that from the EC tracer method, it was esti-
mated that primary organic aerosol constituted∼34–47 % of
OA mass and secondary organic aerosol constituted∼53–
66 % at the BG site during summer reason. The estimates

of SOA in this study corresponded well with the results of
WSOC (accounting for∼60 % of OC on average) from the
same campaign by Miyazaki et al. (2009).

3.2.3 Comparison between PMF results and WSOC
measurements

A major source of WSOC is secondary organic aerosol
(SOA), formed by the oxidation of VOCs followed by con-
densation on existing particles and/or nucleation (Saxena et
al., 1995) when biomass burning contribution is negligible,
which is true in this study sincem/z60, a typical fragment in
AMS spectra of biomass burning aerosol, was at trace levels
throughout the study period. The WSOC mass concentra-
tions were highly correlated with OOA (r2 in the range of
0.86–0.93) in both summer and winter seasons, indicating
that they are very similar in chemical characteristics (Kondo
et al., 2007). The slopes of OOA versus WSOC are 3.16–
3.31 for these seasons in Tokyo (Kondo et al., 2007). In
the current study, two subtypes of WSOC (i.e. WSOChpi and
WSOChpo) and of OOA (i.e. LV-OOA & and SV-OOA) were
obtained, thus the data analysis of these subtypes using dif-
ferent techniques can provide more insights into the chemical
nature of secondary organic aerosol in the PRD region.

Time series of the mass concentrations of OOA and
WSOC were shown in Fig. 14. WSOC correlated well with
OOA (r2

= 0.71), better than its correlation with individual
OOA components (r2 as 0.68 for LV-OOA and 0.45 for SV-
OOA). The correlation between HOA and WSOC was quite
weak (r2 as 0.22), as shown in Table 3, indicating that the
contribution of HOA to WSOC was quite insignificant in the
PRD region.

The degrees of oxidation and water solubility of OOA var-
ied significantly during different hours of the day (Fig. 15).
The slope of OOA versus WSOC (i.e. 1.74) reached the
highest level between 09:00–18:00 LT, indicating that sec-
ondary organic aerosol particles are more photochemically
processed/aged thus more water soluble during the day. This
was supported by higher abundance of LV-OOA (68 %) rela-
tive to SV-OOA (32 %), since LV-OOA has a higher OA/OC
ratio than SV-OOA (Jimenez et al., 2009). Nevertheless, all
these slopes (1.27–1.74) were significantly lower than those
reported in Tokyo (Kondo et al., 2007), suggesting that sub-
micron organic aerosol in Tokyo were more aged and oxi-
dized than OA in the PRD regional air mass.

WSOC concentrations can be predicted by a multi-
variate linear regression model with LV-OOA and SV-
OOA as independent variables (predicted WSOC = 0.42 LV-
OOA + 0.38 SV-OOA + 0.29) and the predicted values were
correlated with the measured WSOC (r2

= 0.79, see Fig. 16).
The regression coefficients were determined as the water sol-
uble organic carbon contents of LV-OOA and SV-OOA, re-
spectively. Jimenez et al. (2009) suggested that the empir-
ical formulas of LV-OOA and SV-OOA were∼C8O5.5H10
and∼C8O3H11, thus the organic carbon contents of LV-OOA
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Fig. 17. Scatter plots of WSOChpi, WSOChpo versus LV-OOA, SV-OOA.

and SV-OOA were calculated as 0.49 and 0.62, respectively.
Therefore, approximately 86 % of LV-OOA was estimated as
water soluble on the basis of carbon content comparison, and
this percentage was close to 88 % in Tokyo (Kondo et al.,
2007). On average, approximately 61 % of SV-OOA was es-
timated as water soluble, which is less than the fraction of
LV-OOA.

WSOChpi is highly oxygenated and tends to be highly sol-
uble in water while WSOChpo tends to be less hygroscopic
(Miyazaki et al., 2009). Figure 17 showed the scatter plots
of WSOChpi, WSOChpo versus LV-OOA, SV-OOA. It can be
seen that LV-OOA correlates with both WSOChpi (r2 as 0.71)
and WSOChpo (r2 as 0.49). However, it is apparent that SV-
OOA is not associated with both (WSOChpi and WSOChpo).

4 Conclusions

As part of the PRIDE-PRD 2006 campaign, physical and
chemical properties of submicron particles in regional air
mass of PRD were investigated in this study by online mea-
surements of size-resolved organics and inorganics (sulfate,
nitrate, ammonium, and chloride) by high-time resolution
AMS (10 min), WSOC (6 min), EC and OC (1 h) at the rural
BG site during July 2006. Samples apparently impacted by
strong local emissions or heavy rainfall after typhoons were
removed from this analysis.

Approximately 82 % of regional submicron particles in
PRD were composed of organics and sulfate with the aver-
age mass concentration as 11.8 µg m−3 and 13.5 µg m−3, re-
spectively. These levels were significantly higher than those
reported in other locations, indicating the severe air pollu-
tion of submicron particles in PRD. During the one-month
study period, four categories of air masses at the BG site
were identified, and submicron aerosol characteristics var-

ied greatly with air mass category. It is interesting to find in
this study that in the air mass from Southeast-South, when
the BG site was downwind of PRD urban areas and im-
pacted by the urban plume, both organics and sulfate ex-
hibited clear bimodal size distributions with the first mode
peaking atDva around 200 nm and the second mode occur-
ring around 300–700 nm. With the mass spectra informa-
tion from AMS measurements, the first mode organics was
found to be contributed by both secondary organic formation
and combustion-related primary emissions, which is differ-
ent from previous finding that the first mode was mainly at-
tributed by combustion sources. The submicron particles in
the Southeast-South air mass category, under the apparent in-
fluence of upwind PRD urban emissions, were different from
particles in other air mass categories, not only reflected by
the bimodal size distributions but also by the acidity of these
particles.

With the PMF model, organics from AMS spectral data
were characterized into three components including HOA,
SV-OOA and LV-OOA. HOA was primarily from primary
combustion-related emissions according to its AMS mass
spectra and exhibited significant positive correlations with
EC as well as POC estimated by the EC tracer method. The
presence of abundantm/z44 in SV-OOA and LV-OOA indi-
cated the dominance of oxygenated species in these two com-
ponents. Strong correlations between SV-OOA and nitrate
and between LV-OOA and sulfate as well as their distinct
diurnal variation patterns suggested that SV-OOA and LV-
OOA were of secondary in origin but LV-OOA was less
volatile. In addition, OOA (SV-OOA plus LV-OOA) was
highly correlated with secondary organic carbon, which is
the difference between OC and POC from the EC tracer
method.
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This study revealed that secondary organic aerosol domi-
nated submicron particles at the BG site, ranging from 53–
66 % of OC mass, based on the estimates from two indepen-
dent methods (PMF and the EC tracer method). This esti-
mate agreed quite well with WSOC results, which accounted
for about 60 % of OC during the study period. On the basis
of carbon content, about 86 % of LV-OOA was found water
soluble compared to 61 % for SV-OOA, indicating that the
characteristics of LV-OOA were more aged and oxygenated,
relatively enriched during the day, less volatile, and more wa-
ter soluble than SV-OOA in the PRD regional air mass.
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