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Abstract. A new method is proposed to simplify complex
atmospheric chemistry reaction schemes, while preserving
SOA formation properties, using genetic algorithms. The
method is first applied in this study to the gas-phaseα-
pinene oxidation scheme. The simple unified volatility-based
scheme (SUVS) reflects the multi-generation evolution of
chemical species from a near-explicit master chemical mech-
anism (MCM) and, at the same time, uses the volatility-basis
set speciation for condensable products. The SUVS also uni-
fies reactions between SOA precursors with different oxi-
dants under different atmospheric conditions. A total of 412
unknown parameters (product yields of parameterized prod-
ucts, reaction rates, etc.) from the SUVS are estimated by
using genetic algorithms operating on the detailed mecha-
nism. The number of organic species was reduced from 310
in the detailed mechanism to 31 in the SUVS. Output species
profiles, obtained from the original subset of the MCM re-
action scheme forα-pinene oxidation, are reproduced with
maximum fractional error at 0.10 for scenarios under a wide
range of ambient HC/NOx conditions. Ultimately, the same
SUVS with updated parameters could be used to describe the
SOA formation from different precursors.

1 Introduction

Aerosols play an important role in atmospheric chemistry,
with impacts on local, regional and global air quality and hu-
man health exposure. Sulfate has been known to be a domi-
nant inorganic component, sometimes 50 % or more, in par-
ticles with aerodynamic diameter less than 2.5 µm (PM2.5)

in the eastern United States (Seinfeld, 2004). Recent par-
ticle mass spectrum measurements on both aircrafts and at
ground level monitoring sites (Zhang et al., 2007; Jimenez
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et al., 2009) indicate that organic to sulfate ratio is about
1:1 in tropospheric fine particles (Hallquist et al., 2009).
Organic aerosols are classified as primary organic aerosols
(POA) and secondary organic aerosols (SOA). The POA is
formed directly from primary emissions, such as fossil fuel
combustion, biomass burning, and biogenic materials (Sun
and Ariya, 2006). The SOA is formed via gas/particle trans-
fer (Pankow, 1994) or heterogeneous reactions (Jang et al.,
2002; Tolocka et al., 2004; Kalberer et al., 2004; Liggio
et al., 2005) of the organic products from the atmospheric
oxidation of biogenic and/or anthropogenic volatile organic
compounds (VOCs). According to the gas/particle partition-
ing theory (Pankow, 1994), the products with low volatility
remain in the aerosol phase and they are also called condens-
able products.

There are two major approaches used to model SOA for-
mation which have been summarized in a recent review (Hal-
lquist et al., 2009). The first approach is a two-product
gas/particle partitioning model (Odum et al., 1996), in which
two surrogate species are used to describe hundreds of ox-
idation products from each VOC precursor. In this model,
two parameters for mass-based stoichiometric yields (α1 and
α2) and two for partitioning coefficients (Kp,1 andKp,2) are
obtained by least square fitting of smog chamber measure-
ments. In this empirical model, the two surrogate products
in the gas phase are described by a one-step chemical reac-
tion. This simple model is easy to implement in a chemical
transport model, and it has been widely used to study SOA
formation in regional (Andersson-Skold and Simpson, 2001;
Schell et al., 2001; Pun et al., 2003; Slowik et al., 2010)
and global models (Chung and Seinfeld, 2002; Tsigaridis and
Kanakidou, 2003).

The second approach (Hallquist et al., 2009) is to
use chemical mechanisms, such as the Master Chemical
Mechanism (MCM) (Jenkin et al., 1997; Saunders et al.,
2003; Jenkin et al., 2003) or the self-generating mech-
anism (Aumont et al., 2005), to describe the gas phase
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multi-generational chemical evolutions of condensable or-
ganic products. The total numbers of species and reactions
from the explicit chemical mechanisms are often on the or-
der of thousands. These explicit gas-phase chemical mech-
anisms are coupled with the gas/particle partitioning model
(Pankow, 1994) to describe SOA formation (Stroud et al.,
2004; Jenkin, 2004; Johnson et al., 2006; Camredon et al.,
2007; Capouet et al., 2008; Xia et al., 2008; Kelly et al.,
2010) from the oxidation of a variety of VOCs, such as
toluene,α- and β-pinene, and others. The major differ-
ence between the simple model and explicit model lies in
the number of chemical species and reactions involved. Al-
though some modifications were made for the one-step, two-
product model approach to account for some simple inter-
actions between different products in both gas and aerosol
phases (Tsigaridis and Kanakidou, 2003; Chan et al., 2007),
the explicit mechanism is more precise in describing com-
plex chemistry for the multi-generation products in a SOA
system. Nevertheless, explicit chemical mechanisms have
been used to study SOA formation using zero-dimensional
box models rather than three-dimensional regional models,
due to the computational burden for solving the set of differ-
ential equations for thousands of species and reactions.

Explicit chemical mechanisms also have limitations: the
complexity of the reaction mechanism may be based on esti-
mates, extrapolations and mechanistic analogies, rather than
individually laboratory-verified chemical reaction pathways,
products and reaction rates. The explicit mechanisms do,
however, attempt to approximate the complexity of the am-
bient atmosphere. The explicit mechanisms therefore pro-
vide a good starting point for a mathematical analysis of that
complexity and for the development of methodologies and
parameterizations for its simplification.

The purpose for this work is to develop a methodology
for creating new simple chemical reaction mechanisms suit-
able for studying SOA formation in a 3-dimensional chem-
ical transport model. This simplified chemical mechanism
should also simulate the same evolution of chemical species
as provided by a more explicit chemical mechanism. Two re-
quirements are needed to meet this goal: (1) the new chemi-
cal reaction mechanism must have a small number of species;
and (2) the new chemical mechanism should mimic a detailed
chemical reaction mechanism to describe chemical interac-
tions among different species.

For the first requirement, the volatility-basis set (VBS) ap-
proach (Donahue et al., 2006) provides a good framework
to use a few lumped species to represent a large number of
chemicals in the ambient atmosphere. Donahue et al. (2006)
first extended the simple two-product model into a multi-
ple (up to 9) lumped product model. The effective satura-
tion concentrationsC∗

i for each lumped product is assumed
to be fixed, rather than data-fitted varied values in the two-
product model (Odum et al., 1996). Specifically, the fixed
C∗

i of the multiple lumped products are separated by one or-
der of magnitude each. This means a large number of chem-

ical species from smog chamber experiments could be repre-
sented by multiple lumped products. As an improved method
over the two-product model for organic aerosol formation,
the VBS approach unifies condensable products from differ-
ent oxidation systems under the framework of the same fixed
volatility distribution. For example, the same lumped prod-
ucts could be used to represent the oxidation products be-
tweenα-pinene + O3 system and toluene + OH system (Lane
et al., 2008; Donahue et al., 2009).

However, to address the issue regarding the second re-
quirement to obtain a simple chemical system that mimics
a detailed chemical mechanism, the original chemical reac-
tion scheme (Donahue et al., 2006) via the VBS approach
is not sufficient for such a purpose. This is because the re-
action system in the VBS approach, similar to those from
the two-product approach, is basically a one-step reaction
system, although some simple chemical aging process has
been taken into account (Farina et al., 2010) to improve this
method. In this paper, a new chemical reaction scheme us-
ing the VBS concept is proposed. Essentially, the new sim-
ple unified volatility-based scheme (SUVS) is constructed by
following chemical reaction protocols (Atkinson and Arey,
2003; Saunders et al., 2003; Kroll and Seinfeld, 2008) for
the organic compounds in the ambient atmosphere.

Equally important in developing the new reaction scheme,
we also need to determine chemical parameters, such as
chemical reaction rate coefficients and product yields. First,
for this purpose, the MCM is used as a benchmark to pro-
vide concentration profiles for detailed chemical species un-
der a wide range of conditions. Next, the output concentra-
tions for the detailed MCM chemical species are grouped,
according to their volatility distributions, into a small num-
ber of lumped species in the new chemical reaction scheme.
Finally, the computed profiles for the lumped species are
treated as “experimental data” for data fitting of a large num-
ber of unknown chemical parameters (product yields and re-
action rate constants) in the newly derived simple reaction
scheme. This is accomplished here using genetic algorithms,
rather than using traditional least square fitting methods for
a small number (less than 12) of unknowns in the original
one-step VBS reaction scheme (Stanier et al., 2008).

Our primary focus was to develop a simple scheme for or-
ganic aerosol formation, but not one which is fully coupled
with an existing chemical mechanism. In that respect, our
work is similar the idea of a yield approach, in which yields
of SOA mass are calculated based on the amount of precur-
sor that is oxidized, but there is no attempt to conserve the
gas-phase products formed. We envisage the SUVS as an an-
cillary mechanism in the context of its use in a regional air
pollution model: the gas-phase reaction mechanism of the
regional model being used to provide both precursor oxida-
tion and HOx/NOx/Ox levels that are in turn used to drive the
SUVS solution. So our intention, at this stage, is not to have
the SUVS modify the inorganic chemistry, but rather, to be
driven by both it and a regional model’s organic chemistry.
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This paper is organized as follows. First, we give a brief
introduction on the VBS approach in Sect. 2. In Sect. 3, we
propose a new simple reaction scheme for SOA formation.
In Sect. 4, we run the MCM v3.1 under a wide range of con-
ditions to obtain the “experimental data” for the new reac-
tion scheme. In Sect. 5, we introduce the genetic algorithms
method to derive the fitted chemical parameters for the new
simple reaction scheme. Finally, we present model results
and discussions on this new chemical mechanism framework
for SOA formation.

2 Volatility-based set (VBS) approach for organic
aerosol formation

In this section, we give a brief introduction on the two-
product model for SOA formation, which is followed by
a concise description of the volatility-based set approach.
Next, four issues about the VBS approach will be raised, and
these four issues motivate our work to develop a new chemi-
cal scheme in this paper.

Pankow (1994) proposed a theoretical absorptive model to
study organic aerosols phase partitioning, and this absorptive
model was applied by Odum et al. (1996) to describe SOA
formation using smog chamber experimental data. Accord-
ing to Odum et al. (1996), a chemical oxidation system for
SOA formation can be expressed as:

VOC+Ox
k

−→ α1P1+α2P2+ ...+αnPn (R1)

where VOC represents a volatile organic compound precur-
sor, such asα-pinene, toluene, isoprenen etc. The Ox rep-
resents any of the oxidants, such as O3, OH, NO3, and even
Cl (Cai and Griffin, 2006).P1, P2, . . . , Pn aren number
of condensable products;α1, α2, . . . , αn are mass-based
stoichiometric yields for then products;Kp,1, Kp,2, . . . ,
Kp,n, are the corresponding gas/particle partitoning coeffi-
cients (m3 µg−1) in which

Kp,i =
C

p
i /C

g
i

COA
(1)

whereC
p
i andC

g
i are aerosol phase and gas phase concentra-

tions (µg m−3) for the i-th product,COA is the total aerosol
mass concentration (µg m−3). By using this framework, the
SOA yield(Y ) can be expressed as:

Y =
1MOA

1HC
= COA

n∑
i=1

αiKp,i

1+COAKp,i

=

n∑
i=1

αi

1+C∗

i /COA
(2)

In order to fit smog chamber experiemental data, Odum et
al. (1996) found that two surrogate products are enough to
describe the shape of the SOA yield curve for one oxida-
tion system, and a total of four parameters (α1, α2, Kp,1,
andKp,2) are obtained through a least square fitting method.
This is the so called “two-product model” for SOA forma-
tion. But the two-product model has difficulty describing

the wide range of organic compounds in the ambient at-
mosphere, especially for those highly volatile organic com-
pounds (Donahue et al., 2006).

To address this issue, Donahue et al. (2006) proposed the
use of the VBS approach to study organic aerosol formation
from React. (R1), in which the volatilitiesC∗

i for all n (up
to 9) lumped products are assumed to be fixed, rather than
variables derived through the least square fitting method in
the two-product model. Still, the mass-based stochiomet-
ric yields (α1, α2, . . . ,αn) are obtained by using linear least
square fitting of the smog chamber experimental SOA yield
curves (Stanier et al., 2008).

The VBS approach can cover the wide range of volatilities
for the organic products found in the atmosphere. In addi-
tion, the VBS approach can also be used to map all oxidation
products from different oxidation systems into one frame-
work because volatilities for all organic products are lumped
into a fixed framework. Chemical transformations between
different lumped products, such as aging through OH oxi-
dation, could be described by this scheme (Donahue et al.,
2006). This approach was used to study organic aerosol for-
mation from both primary and secondary sources (Robinson
et al., 2007; Lane et al., 2008).

We suggest here four possible improvements to the ex-
isting VBS approach. First, as mentioned earlier in the in-
troduction, the reaction scheme in Reaction (R1) for the
VBS approach is still a one-step reaction system. The com-
plex chemical reactions for the products, especially for those
multi-generational products, would not be captured well by
using a one-step reaction scheme in a period longer than
the typical duration (a few hours) for a smog chamber ex-
periement for SOA formation. Second, large uncertainties
still exist for the mass-based stoichiometric yields derived via
least square fitting, especially for those yields correspond-
ing to the high volatile products (Presto and Donahue, 2006;
Pathak et al., 2007). The uncertainties are mainly caused by
using total SOA yield as the only one important constraint
for the data fitting process. Third, the set of parameters for
a single reaction system change when the driving conditions
change. For example, five different sets of VBS parameteri-
zations were developed for ozonlysis ofα-pinene (Pathak et
al., 2007) under five different conditions. Fourth, the reac-
tion scheme between a VOC precursor, sayα-pinene, with
different oxidants, such as OH, NO3, or O3, are not coupled
in the fitting process, while the actual precursor VOC may
react with both O3 and OH during the day and NO3 and O3
at night. The original least square fitting tries to isolate pa-
rameters for each reaction separately, but they are instrinctly
coupled and require higher order fitting techniques.

Motivated by the four points mentioned above, we de-
velop a new approach to write and parameterize the reaction
scheme under whichα-pinene oxidation forms condensable
products. This new VBS scheme is a multi-step reaction sys-
tem, which is constructed by following standard organic re-
action protocols. The chemical profiles of the new reaction
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scheme mimic those from a detailed chemical mechanism,
and demonstrate the power of this approach.

3 Development of a simple unified volatility-based
scheme (SUVS)

In this section, we give an overview of the general features
for ambient atmospheric oxidation. Then, based on these
general features, we construct a Simple Unified Volatility-
based Scheme (SUVS) for organic aerosol formation.

Oxidation reactions of ambient organic species alter their
volatility, either to increase it through cleavage of carbon-
carbon bond, or to decrease it through addition of other func-
tional groups. In recent years, exploration of particle-phase
organic chemical reactions, including heterogeneous reaction
and multiphase reactions, has been very active (Jang et al.,
2002; Tolocka et al., 2004; Kalberer et al., 2004; Gao et al.,
2004; Iinuma et al., 2004; Liggio et al., 2005). A review on
current understanding of chemical kinetics and reactions in
the gas and aerosol phases for SOA formation is given by
Kroll and Seinfeld (2008). In this work, as a first step to ex-
plore the new chemical reaction scheme and fitting method,
we focus our study on atmospheric gas phase reactions only.

3.1 Brief review of atmospheric oxidation

Gas phase chemical reaction pathways vary with individ-
ual SOA precursors because of their unique molecular struc-
tures. Only a small fraction of reactions for a few ambient
VOCs have been studied extensively. A number of generic
structure-activity relationships derived from the experimen-
tal studies are used as protocols to infer chemical parame-
ters and subsequent products for those larger VOCs during
construction of an explicit chemical mechanism such as the
MCM (Jenkin et al., 1997; Saunders et al., 2003; Aumont et
al., 2005).

An excellent review on atmospheric oxidation of a wide
range of VOCs can also be found in Atkinson and Arey
(2003). Here, we only give a brief overview of those aspects
of oxidation mechanisms relevant to SOA formation. First,
the initial gas phase chemical reaction of a VOC species with
primary oxidants, such as OH, NO3, and O3, leads to the
formation of alkyl radicals (R) or Criegee intermediates and
then rapidly to form organic peroxy radicals (RO2). Subse-
quent reactions for RO2 radicals and alkoxy radicals (RO)
are very important for SOA formation, since these may lead
to lower volatility products. In the troposphere, RO2 radicals
react with (1) NO, (2) RO2, (3) NO3, (4) HO2, and (5) NO2.

1. RO2 + NO: The RO2 radicals react with NO to form an
RO radical or an organic nitrate (RONO2). In the atmo-
sphere, the branching of RO2 with NO competes with
the reaction of RO2 + HO2 to form ROOH. For most
SOA reaction systems, like those for light aromatics

and monoterpenes (Song et al., 2005), the volatility of
RONO2 is comparitively higher than that of the ROOH.
As a result, forα-pinene, higher SOA mass is expected
to formed under lower NOx condition.

2. RO2 + RO2: Under ambient conditions, the self reac-
tion and cross reactions of RO2 + RO2 form RO and OH
via chain propagation or carbonyl, alcohol, or organic
peroxides (ROOR) via chain-termination. The carbonyl
and alcohol are more volatile than the ROOR (Ziemann,
2002) and those formed ROOH from RO2 + HO2.

3. RO2 + NO3: The reaction of RO2 + NO3 is believed to
be an important loss process at night time (Kirchner
and Stockwell, 1996). Based on available information
(Lightfoot et al., 1992; Biggs et al., 1994, 1995; Daele
et al., 1995), the reaction of RO2 with NO3 is assumed
to produce alkoxy radicals (RO) and NO2 (Saunders et
al., 2003).

4. RO2 + HO2: The RO2 radicals may react with HO2
to form a low-volatility product of organic peroxide
(ROOH). Organic peroxides have been predicted to be
an important fraction of total SOA formed in the MCM
(Bonn et al., 2004; Xia et al., 2008).

5. RO2 + NO2: The reaction of RO2 radicals with NO2
forms peroxynitrates (ROONO2), which are temporary
reservoirs for RO2 and NO2, because of lifetimes on the
order of seconds at 298 K.

Meanwhile, the reaction for the RO radical has two ma-
jor chemical pathways: (1) dissociation through cleavage
of carbon-carbon bond or H-abstraction with both pathways
forming a carbonyl and an alkyl radical (R), which is rapidly
converted to RO2, or HO2, (2) isomerization to form another
alkyl radical (R’) via a 1,5-hydrogen shift.

The reaction pathways described above lead to the forma-
tion of a wide range of oxygenated products, such as car-
bonyl compounds, organic nitrates (RONO2), hydroperox-
ides (ROOH), alcohols (ROH), carboxylic acid (RC(O)OH).
As reviewed in Atkinson and Arey (2003), the degradation
for these newly formed compounds include photolysis and
further reactions with OH and NO3. Specifically, the pho-
tolysis of the oxygenated compounds leads to the formation
of RO, and the reactions of the oxygenated compounds with
OH and NO3 generally result in the formation of RO2.

3.2 A simple unified volatility-based scheme (SUVS)

A wide variety of starting organic compounds and possi-
ble complex chemical reaction pathways outlined in the pre-
ceding subsection lead to a myriad of compounds formed
in the ambient atmosphere. As mentioned earlier, “volatil-
ity” is an important parameter to describe organic aerosol
formation. Volatility moderates a compound’s existence in
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Fig. 1. A simple unified volatility-based scheme (SUVS) for SOA formation.

gas- and aerosol phases. To model evolution of a chemical
system, a lumping method based on volatility is an effeic-
tive way to reduce the number of organic species (Bian and
Bowman, 2005).

In this work, we first lump organic compounds in a
chemical system into 10 volatility-based surrogate condens-
able products termed volatility bins: S01, S02, . . . , S10.
The volatilities for the 10 compounds span from 10−2 to
107 µg m−3 at the reference temperature of 298 K: S01 is in
volatility bin 1 (10−2 to 10−1 µg m−3), S02 is in volatility bin
2 (10−1 to 100 µg m−3), . . . and S10 is in volatility bin 10
(106 to 107 µg m−3). Note that the organic compounds, such
as the formaldehyde, acetaldehyde, with volatility higher
than 107 µg m−3 are excluded for the lumping process. Also
note that the use of “volatility bin” terminology is taken di-
rectly from Donahue et al. (2006), and the nomenclature of
the compounds in this paper is similar to the one used in their
works, in which up to 9 products were assumed.

As mentioned in Sect. 2, a chemical mechanism without
RO2 and RO is insufficient to describe chemical evolution of
a complex chemical system over time lasting longer than the
few hours duration for a typical smog chamber experiement
for SOA formation. Therefore, we assume that a large num-
ber of RO2 in the chemical system are grouped into 10 sur-
rogates: X01O2, X02O2, . . . , X10O2. This same lumping ap-
proach is also applied to the RO for 10 surrogates: X01O,
X02O, . . . , X10O. For convenience, we use XiiO2 to represent
the 10 RO2 surrogates and XiiO for the 10 RO surrogates.

As a result, hundreds and/or thousands of chemical species
in a detailed chemical mechanism are reduced to only 30 or-
ganic compounds in 10 volatility bins in a simple reaction
scheme, except the starting organics. Next, we will describe
the simple unified volatility-based scheme (SUVS), which is
constructed based on the protocols outlined in Sect. 3.1.

In this work, the SUVS is constructed for one single start-
ing organic compound ofα-pinene which undergoes atmo-
spheric oxidation with three oxidants: OH, O3, and NO3.
We assume the oxidation of the starting organic, represented
by XHC, leads to the formation of 10 surrogate products:
X01O2, X02O2, . . . , X10O2. The reaction rate coefficients for
the three initial reactions can be obtained from the literature
or any reliable detailed chemical mechanism. A total of 30
stoichiometric coefficients fromww(01) toww(30) for the 10
surrogates are assigned, as shown in reaction scheme Part 1
in Fig. 1.

Next, each XiiO2 radical can react with NO (as outlined in
the generic reaction mechanism description in Sect. 3.1) to
form an alkoxy (RO) radical or an organic nitrate (RONO2).
As shown in reaction scheme Part 2 in Fig. 1, we assume
the newly formed product of RO belongs to the same volatil-
ity bin of XiiO2, i.e., XiiO2 + NO→ XiiO. When the or-
ganic nitrates are formed from the reaction of XiiO2 + NO,
we assume the volatility for organic nitrate are distributed
into three neighboring volatility bins:(ii − 1)-th, ii-th,
and (ii + 1)-th volatility bins. i.e., XiiO2 + NO→ w(ii ,1)
Sii−1 +w(ii ,2) Sii +w(ii ,3) Sii+1, where w(ii ,1), w(ii ,2),
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andw(ii ,3) are the stochiometric coefficients for the corre-
sponding three products. Note that, information for com-
pounds with different functional groups, such as hydroper-
oxy (ROOH), nitrate (RONO2), peroxynitrates (ROONO2),
alcohols (ROH), and carboxylic acid (RC(O)OH), are re-
placed by volatility indexes. The reaction rate coefficients for
the 10 reactions are expressed ask(01), k(02), . . . ,k(10) in
Fig. 1. Also note that in this work, for simpility, we use only
three neighboring volatility products, rather than the whole
suite of 10 products.

For demonstration purpose, we use compounds in the 5th
volatility bin as reactants in the following description. Sim-
ilarly, X05O2 reacts with RO2. Because the permutation and
cross reactions of the RO2 lead to alkoxy radicals (RO) and
carbonyls and alcohols, the products are then represented by
X05O radical and three condensable species: S04, S05, and
S06. This is expressed by the 15th reaction in the SUVS,
and reaction coefficient for this reaction is shown ask(15)in
Part 3 in Fig. 1. The stochiometric coefficients for the four
products arez(15), w(15, 1),w(15, 2), andw(15, 3). RO2
represents the total organic peroxide radicals in the chemi-
cal system, i.e., RO2 = R01O2 + R02O2 + . . . + R10O2. Mean-
while, the reaction between X05O2 and NO3 leads to the for-
mation of the corresponding alkoxy radical of X05O with the
reaction coefficient ofk(25) listed in Part 3 in Fig. 1.

X05O2 could also react with HO2 and NO2 to generate
ROOH and RO2NO2, respectively. Both products (ROOH
versus RO2NO2) are represented by condensable products of
S04, S05, and S06 with different set of stochiometric coef-
ficients: w(35, 1), w(35, 2), andw(35, 3) for the ROOH;
w(45, 1),w(45, 2), andw(45, 3) for the RO2NO2.

Next, we discuss the chemical reactions of the alkoxy rad-
icals (RO) in Part 4 in Fig. 1. As mentioned in Sect. 3.1,
the degradation of RO leads to the formation of carbonyl and
RO2. In our simple chemical reaction scheme, the products
of the carbonyls are represented by three condensable species
of S04, S05, and S06, and the corresponding stochiometric
coefficients arew(55,1), w(55,2), andw(55,3). When the
RO undergoes dissociation and isomerization to form peroxy
radicals in the 65th reaction, we assume the corresponding
products would be in three volatility bins: X04O2, X05O2,
and X06O2. This treatment is different from the first 30th re-
actions in which RO2 reacts with NO, RO2, and NO3 to form
only one RO. This is because the dissocation and isomeriza-
tion of the RO leads to significant changes of the chemical
structures, which impacts the corresponding volatility bins .

Finally, we discuss the oxidation of the condensable prod-
ucts in the simple chemical reaction scheme. On the one
hand, the condensable species, S05, would undergo thermal
decomposition or photolysis (the 75th reaction in the SUVS),
and the products are the X04O, X05O, and X06O. Note that
the photolysis reaction rate coefficient (k(75)) for the 75th
reaction is constrained by normalized sun intensity of SUN,
which is 0 at night time and 1 at noon. On the other hand,
when the condensable species S05 reacts with OH and NO3,

the products are organic peroxy radicals. In this case, they
are X04O2, X05O2, and X06O2 in the 85th and 95th reaction
in the SUVS. The above SUVS is constructed to describe
the parameterized degradation of gas phase chemical reac-
tions for a starting organic compound via the VBS specia-
tion. In order to apply this simple scheme, equally impor-
tant, we need to determine the values for 312 (=30 (ww) + 30
(z) + 28× 9 (w)) stochiometric coefficients and 100 (k(1) to
k(100)) reaction rate coefficients.

Before we discuss how to determine the 412 unknown pra-
rameters, we briefly explain a simple treatment of inorganic
chemistry and the HOx/NOx/Ox budget issue in the SUVS.
Theoretically, the inorganic gas-phase chemistry could be
coupled with the SUVS; however, our work here investigates
the use of the SUVS as an ancillary mechanism that is af-
fected by, but does not modify, the inorganic gas reactions.
Our primary focus in this work is to develop a simple scheme
for organic aerosol formation, we assume the concentra-
tions profiles of the inorganic species (HOx/NOx/Ox) are
known and obtained either from experimental observations
or prior model simulations with explicit coupled inorganic-
organic mechanisms. This part is explained in detail in the
end of Sect. 4.2. In summary, SUVS does not modify the
HOx/NOx/Ox budget.

Now two challenges face us before we apply this newly
proposed SUVS in a regional air quality model. The first
challenge is how to obtain time series of different volatility-
based species under a wide range of experimental conditions
for use in parameter estimation. Here, the detailed chemical
mechanism of MCM v3.1 is used to generate time series of
individual organic species. When the condensable organic
species in the MCM v3.1 are lumped into 10 volatility-based
compounds, we obtain the concentration profiles for the 10
volatility-based compounds in the SUVS sytem. The result-
ing accuracy of the parameterization is thus limited to that of
the MCM.

The second challenge is on how to determine 412 un-
known chemical parameters. Traditionally, a simple linear
least square fitting method would be applied to determine re-
action rate coefficients and stochiometric coefficients for a
one-step reaction scheme, like that in Stanier et al. (2008).
Part of this challenge requires the construction of a set of test
conditions sufficiently large in order to span the space of all
atmospheric conditions. For such a large number of unknown
parameters in the SUVS, a non-traditional method of genetic
algorithms is utilized in this task (Sect. 5). In Sect. 4, we will
introduce the settings for the MCM v3.1 under a wide range
of conditions.
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4 Master Chemical Mechanisms and volatility
distribution

4.1 Settings for the Master Chemical Mechanism:
creating a set of conditions for testing

The near-explicit Master Chemcial Mechanism (MCM) v3.1
describes the degradation ofα-pinene in a very detailed level,
and includes the entire reaction sequence from the initial ox-
idation step to the final products, CO2 and H2O.

In this first application of the new SUVS for SOA forma-
tion, for simplicity, we focus our study on the oxidation of
one single SOA precuror, the well-studiedα-pinene, rather
than all species in the entire oxidation system. Therfore, a
subset of the MCM v3.1 describingα-pinene oxidation is
used in a box model to study the chemical evolutions of 331
compounds with 976 reactions. Detailed information regard-
ing the introduction and settings of theα-pienne oxidation
system for a zero-dimensional box-model study can also be
found in our previous studies (Xia et al., 2008; Slowik et
al., 2010). In this work, the major input parameters for the
box model include temperature, relative humidity,α-pinene
emission rate, and initial concentrations of NOx. It should be
noted that photolysis rates for the core reactions in the MCM
correspond to clear sky conditions on equinox at a latitude of
45◦ N and the middayJ (NO2) is 0.073 s−1.

In this study, temperature and relative humidity are con-
stant values. The temperature is assumed to be fixed at a
reference temperature of 298 K. The selection of the refer-
ence temperature is consistent with the reference volatilities,
as used by Donahue et al. (2006). The relative humidity is
also set to be at 10 % all the time. This is considered to be a
dry condition (Pathak et al., 2007). The third difference from
our previous study is theα-pinene emission rate. A total of
21 logarithmly evenly spacedα-pinene emission rates are set
from 0.5×107 to 8×107 molecule cm−3 s−1. Finally, a total
of 27 logarithmly evenly spaced initial mixing ratios of NO
are set from 2.5 ppbv to 1000 ppbv. The initial mixing ratios
of NO2 are set to be 1/3 of the NO mixing ratios for each sce-
nario. Thus, a total of 567 (= 21×27) scenarios have been
generated for the study ofα-pinene oxidation. Each scenario
is run for 3 days (72 h) starting from midnight. During the
daytime, some compounds undergo photolysis reactions un-
der natural sunlight. As a result, the concentration profiles
for all 331 compounds can be calculated from the 3-day box
model simulation.

Note that only gas phase chemical reactions are considered
for this simulation, because we focus on the application of
our new SUVS system on the formation of lumped condens-
able species in the gas phase chemistry. The gas/particle par-
titioning process and aerosol heterogenenous reactions are
important but not included in this study. To obtain the con-
centration profiles for the 10 lumped condensable species
from S01 to S10 in the SUVS, we first need to know the
volatility of each stable organic species. Then, all stable

species are lumped into the 10 species according to their in-
dividual volatilities.

4.2 Volatility distribution

In this subsection, we first briefly introduce the concept of ef-
fective saturation concentration and its estimation method via
saturation vapor pressure (SVP). Then, we describe volatility
distributions for 10 lumped species from a typicalα-pinene
oxidation scenario.

Rather than the traditional term of partitioning coefficient,
Donahue et al. (2006) proposed to use an alternative term
C∗

i (µg m−3), effective saturation concentration, to study the
gas/particle partitioning behavior for thei-th product. The
C∗

i can be expressed theoretically via Pankow’s (1994) parti-
tioning theory as:

C∗

i =
1

Kp,i

=
106Miζ

′

i P
o
L,i

760RT
(3)

whereR (8.206×10−5 m3 atm K−1 mol−1) is the gas con-
stant,T (K) is the temperature,Mi (g mol−1) is the molecular
weight for thei-th compound,P o

L,i(torr) is the saturation va-
por pressure (SVP) of thei-th pure compound at temperatuer
T, andζ

′

i is a mole-fraction-scale-based activity coefficient
for thei-th compound in the condensed phase.

In general, the activity coefficients of the compounds in
the organic aerosols are in the range of 0.3 to 3.0 (Sein-
feld and Pankow, 2003). However, as adopted by many re-
searchers (Kamens et al., 1999; Jenkin, 2004; Xia et al.,
2008) as a first approximation, the activity coefficients are
also assumed to be unity in this work for the calculation of
theC∗

i for each stable species. Once the SVP andMi from
Eq. (3) are known at a given tempertureT , we can determine
theC∗

i , an intrinsic property of compoundi for an ideal so-
lution. Next, we will describe the estimation method for the
SVP outlined in Schwarzenbach et al. (2003).

By making an assumption of the linear relationship for
the vaporization enthalpy at different temperatures, integrat-
ing the Clausius-Clapeyron equation fromTb (normal boil-
ing point) toT , and using Trouton’s rule, the SVP can be
expressed as

ln
P o

L

760
= −KF(4.4+ lnTb)[1.8(

Tb

T
−1)−0.8ln(

Tb

T
)] (4)

whereTb (K) denotes the normal boiling point,T (K) desig-
nates the temperature of interest,KF (no unit) is a Fishtine
factor (Fishtine, 1963), and theP o

L (torr) represents the SVP.
The Tb is estimated by using a group contribution method
(Joback and Reid’s (1987) fragmentation method, modified
and extended by Stein and Brown (1994), and theKF factor
is estimated by the method given in Fishtine (1963) or Sage
and Sage (2000). Overall, this SVP estimation method by
using Eq. (4) is comparable to the universal functional ac-
tivity coefficient (UNIFACP o

L) method (Asher et al., 2002)
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in estimation of the SVP against measured data (Xia et al.,
2008). The Eq. (4) was also used to estimate the SVP for
the condensable species from our previous study (Xia et al.,
2008).

Only 180 out of the 331 compounds in the chemical sys-
tem are stable organic species, the remaining compounds are
either inorganic compounds or organic intermediates. As
mentioned early, the volatility for each stable organic com-
pound is estimated by Eq. (3) at the reference temperature of
298 K. In this part, our goal is to group the 180 stable organic
species into 10 lumped ones.

To represent ambient organic aerosol, the volatilities for
the 10 lumped species at the reference temperature of 298 K
are seperated by one order of magnitude, spanning from
10−2 to 107 µg m−3. In this work, we have pre-defined 10
volatility bins. Then-th volatility bin covers the volatil-
ity range from 10(n−3)−0.5

∼ 10(n−3)+0.5 µg m−3, wheren =

2,3,...10. Whenn = 1, the first volatility bin covers the
volatility range no more than 10−1.5 µg m−3. With the given
seting, a linear interpolation within the bin is used to deter-
mine the volatility bin location for each of the 180 species.

By using the linear interpolation lumping method, all 180
condensable species in the subset of MCM forα-pinene ox-
idation are grouped into the 10 lumped species (gas phase).
Figure 2 shows diurnal profiles for the 10 lumped species
from one scenario lasting for 72 h when there is constantα-
pinene emission.

Starting from midnight, the number concentrations of 10
lumped compounds start to accumulate from zero and there
are different patterns for the diurnal changes. For example, in
the daytime starting from sunrise at 30th hour, the concentra-
tions for the 5th, 8th, and 9th lumped species undergo large
increases. But the concentrations for the 6th and 7th lumped
species start to decline until sunset at the 42nd hour. This
kind of diurnal change could be different for different sce-
narios. In Sect. 6, we will examine these distictive diurnal
change patterns mainly due to photolysis changes.

In this section, we have obtained diurnal profiles, termed
“experimental data”, for the 10 lumped species. Addition-
ally, inorganic species are vital for the SUVS, and the hourly
profiles for these species are obtained directly from the MCM
model simulations. A linearly interpolated method is applied
to the hourly profiles of the 10 lumped species and the in-
organic species within each our-hour period. Next, we will
introduce genetic algorithms for estimation of the 412 un-
known parameters in the SUVS system.

5 Genetic algorithms (GAs)

5.1 Brief review of genetic algorithms

The underlying ideas of genetic algorithms (GAs) were in-
spired by the mechanism of natural selection. A complete de-
scription of GAs techniques can be found in Goldberg (1989)

Fig. 2. Diurnal profiles for the 10 lumped species from oneα-
pinene oxidation scenario lasting for 72 h. The shaded areas in-
dicate night time.

and Michalewicz (1999). A simple and practical introduction
on how to incorporate these ideas in a computational setting
can be found in Haupt and Haupt (2004). GAs has been ap-
plied mostly in mathematics and physics. As a new tool, GAs
have also been recently used in the atmospheric sciences with
various applications.

Specifically, GAs were applied to determine aerosol size
distributions (Lienert et al., 2001, 2003) and aerosol refrac-
tive index (Barkey et al., 2007) from polar nephelometer
data. In another study, the GAs were coupled with an at-
mospheric dispersion model to characterize pollutant emis-
sion locations, times, and quantities (Haupt, 2005; Allen et
al., 2007). GAs were applied to optimize a set of physi-
cal and computational parameters in both the 5th-generation
PSU/NCAR Mesoscale Model (MM5) and the Regional At-
mospheric Modeling System (RAMS) for improved agree-
ment between model simulations and observational or syn-
thetic data (Lee et al., 2006; O’Steen and Werth, 2009). This
technique was utilized to calibrate seasonal PM10 emission
inventories in Beijing to improve the Models-3/Community
Multiscale Air Quality (CMAQ) model performance (Li et
al., 2010). Similar to our task in this paper, GAs were em-
ployed in chemical kinetics for determining parameters in
various chemical systems (Carroll, 1996; Polifke et al., 1998;
Harris et al., 2000; Tsuchiya and Ross, 2001; Elliott et al.,
2004).

Fundamentally, GAs are used to solve an optimization
problem by evolving the best solution from an initial set of
completely random guesses. In other word, GAs are an adap-
tive heuristic search method. A typical GAs requires:

1. A fitness functionf to reflect the objective optimiza-
tion problem (minimum or maximum) at hand. A fit-
ness function includes one or several variables that a
system needs to determine. The variables are called
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“parameters” in the GAs. The fitness function is used
to distinguish between “bad” and “good” solutions. We
shall use a simple example to explain concepts and
methodologies used in the GAs field. An example could
involve finding the maximum value off = 200− (x −

5)2
−(y−10)2, and the corresponding two unknown pa-

rameters are (x, y), where 0≤ x,y ≤ 15.

2. An encoding method to represent the solution domain.
There are several different encoding methods, such as
binary encoding, gray encoding, and float-point encod-
ing. Each parameter is encoded as a string (or termed a
gene). For example, (8, 12) could be described by two
tentative 4-digit binary genes as (1000, 1100). In GAs,
one individual represents a set of all unknown parame-
ters, and it is expressed as a chain where bits standing
for all parameters are lined up to form a binary string.
The chain is called genetic sequencing, or chromosome
in GAs. As a result, (8, 12) is encoded as (10001100).

After the fitness function and the encoding method are deter-
mined for a GAs. A 7-step procedure can be used to apply
the GAs for a given task.

1. Initialize possible solutions. Individual possible so-
lutions (termed Individuals) are given from random
guesses to form an initial population. A population is an
array of individuals. The size of the population depends
on the number of unknown parameters in the problem.
In this simple example, the population size is tentatively
set to be four, and four initial randomly generated indi-
viduals are: (1, 2), (2, 13), (12, 4), and (15, 15).

2. Evaluate the fitness value of each individual in this pop-
ulation. The fitness values for the four initial individuals
are:f (1,2) = 120;f (2,13) = 182;f (12,4) = 115; and
f (15,15) = 75.

3. Select best-fit individuals for reproduction of new indi-
viduals. In this example, two individuals (2, 13) and
(1, 2) are singled out as “Parent 1” and “Parent 2” for
mating because of their high fitness values of 182 and
120.

4. Generate new individuals via two genetic operators:
crossover and mutation. The two operations can be per-
formed only when all individuals are encoded as genes.

(a) Crossover: One-point crossover is the simplest
crossover method, in which one same point is se-
lected on both parents and the data beyond that point
are swapped from two parents. In this example, the
fifth point is selected for crossover, which leads to

the generation of two new children (2, 10) and (1, 5).
Parent 1 (2, 13) (00101| 101)

Parent 2 (1, 2) (00010| 010)
⇓

Child 1 (2, 10) (00101| 010)

Child 2 (1, 5) (00010| 101)

(b) Mutation: Mutation is applied to a single parent. Sim-
ilar to the biogenic mutation, an arbitrary bit in the ge-
netic sequencing will be changed from its original state.
For example, the first bit from “Parent 1” undergoes mu-
tation and a new child (offspring) (10, 13) is generated.

Parent 1 (2, 13) (00101101)
⇓

Child 1 (10,13) (10101101)

5. Evaluate the fitness of the new individuals.

6. Replace the least-fit individuals with the new individu-
als to form a new population.

7. Repeat the procedures from step 2 to 6 until termination.

At each iteration, the GAs perform crossover and muta-
tion operations with two different probabilities (Pcrossoverand
Pmutation) to produce a new population. Each successive pop-
ulation is called a new generation. The GAs usually uses
some of the following conditions to determine when to stop:
(1) maximum number of generation; (2) time limit; (3) suffi-
cient fitness achieved.

In GAs, elitism is a commonly used technique where one
or more of highest fitness individuals are copied, unchanged,
from one generation to the next. Elitism could rapidly in-
crease the GAs performance, because it prevents losing the
best found solution to date. Figure 3 shows a schematic rep-
resentation of the procedures outlined above for a basic GAs.
Note that the number of parameters for the example shown
above is only two. It could vary from one to hundreds (412
for our SUVS case), and even to billions (Goldberg et al.,
2007) in actual applications.

As Elliot et al. (2004) summarized that when contrasted
with traditional gradient-based search methods, GAs do not
require knowledge of the gradient of the fitness functions.
This makes GAs particular suitable for problems, such as this
SUVS reaction scheme, where the analytic expression of the
fitness function is not known.

5.2 Settings of the GAs for SUVS

5.2.1 Objective functions of the GAs

Fan et al. (2004) demonstrated that the design of the fitness
function is instrumental in performance improvement for the
GAs. In our case, 10 ambient-like scenarios were selected
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Fig. 3. Schematic representation of procedures used for a simple
GAs application.

for testing the SUVS. Each scenario ran for 72 h starting
from midnight. The profiles for 11 species obtained from
the SUVS were compared with the profiles for the 11 species
from the MCM v3.1. The 11 species included the 10 lumped
species (S01, S02, . . . , and S10) and the total RO2 species. To
avoid comparison of very low (near zero) concentrations of
the species in the first few hours of model runs, the timing
used for the comparison are selected from a tentative starting
time at 10th hour to the end time at 72nd hour. The fitness
function defined for this study is:

f =
1

10−8+
1

NSC

1
NSP

NSC∑
i=1

NSP∑
j=1

√
1

Nh

endhour∑
k=starthour

(xcalc
i,j,k−x

orig
i,j,k)

2

1
Nh

endhour∑
k=starthour

x
orig
i,j,k

(5)

where

– xcalc
i,j,k represents calculated number density of thej -th

lumped species fromi-th scenario atk-th hour by using
the SUVS system;

– x
orig
i,j,k is the corresponding original number density of

the lumpedj -th species fromi-th scenario atk-th hour
by using the full chemical mechanism of the MCM v3.1;

– NSC (=10) represents total number of selected scenar-
ios for testing;NSP (=11) is the total number of species
used for comparison; andNh (= endhour−starthour + 1)
denotes the total hours for this comparison, in which the
starthour is 10 and the endhour is 72.

– The maximum value of the functionf is 108, which
corresponds to a perfect fit. The constant is added into
the term to avoid numerical overflow.

– The term

√
1

Nh

endhour∑
k=starthour

(xcalc
i,j,k−x

orig
i,j,k)

2

1
Nh

endhour∑
k=starthour

x
orig
i,j,k

in the fitness func-

tion (Eq. 5) is conventionally called the coefficient
of variation for the root mean square deviation –
CV(RMSD). For simplicity, we define this term as
ERRORi,j , i.e.,

ERRORi,j =

√
1

Nh

endhour∑
k=starthour

(xcalc
i,j,k −x

orig
i,j,k)

2

1
Nh

endhour∑
k=starthour

x
orig
i,j,k

(6)

Three additional errors can be formed via ERRORi,j as:

gSP,j =
1

NSC

NSC∑
i=1

0ERRORi,j (7)

gSC,i =
1

NSP

NSP∑
j=1

ERRORi,j (8)

g =
1

NSC

1

NSP

NSC∑
i=1

NSP∑
j=1

ERRORi,j =
1

f
−10−8 (9)

wheregSP,j is the mean CV(RMSD) for thej -th species
from all NSC scenarios,gSC,i is the mean CV(RMSD) for
all NSP species in thei-th scenario, andg is the mean
CV(RMSD) for all 10 scenarios and 11 species. The simple
relation between the mean error ofg and the fitness function
f is also indicated in Eq. (9). We will discuss the relationship
betweengSC,i , gSP,j , andg in more details in Sect. 6.
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5.2.2 Parameters for the GAs

As mentioned in Sect. 5.1, the unknown variables could be
encoded with a binary representation or floating point rep-
resentation. In general, the floating point approach is better
than the binary representation in that the floating point ap-
proach is faster and it can cover larger domains at a higher
resolution than the binary approach (Elliott et al., 2004).
In this work, the floating point approach is applied and
each variable is represented by a 6-digit long number from
0.000000 to 0.999999. Among the total of 412 unknown
variables, 312 of them are the stoichiometric coefficients,
which vary from 0.0 to 1.0. It is straightforward to use the
floating point encoding method for them. Note that a sen-
sitivity test showed that the computation cost is far too ex-
pensive if the 312 stoichiometric coefficients are assumed to
be in the wider range from 0.0 to 10.0. In this work, they
are assumed in the range from 0.0 to 1.0. The remaining 100
variables are for reaction rate constants (fromk(1) tok(100)).

In the MCM, organic reaction rate constants differ for dif-
ferent functional groups. Overall, they very from 10−16 to
10−10, except for those in reaction of RO→ RO2. In the
SUVS, for simplicity, 90 out of the 100 reaction rate con-
stants are consistently set in the same range of those from
the MCM. Onlyk(61) ∼ k(70) for the type of RO→ RO2 re-
action have fast reaction rate constants in a range of 105 to
107. To effectively represent reaction rate constant by a 6-
digit long number, the reaction rate constantk(i) has been
converted to bekk(i) as follows,

kk(i) =
1

(−10)−(−16) (log10k(i)−(−16))

=
1
6(16+ log10k(i)) (i = 1,...,60,71,...,100)

(10)

and each convertedkk(i) is in the range between 0.0 to 1.0.
Similar conversion can be performed for the remaining 10
parameters fromk(61)tok(70).

In summary, as demonstrated by Elliott et al. (2003), incor-
poration of realistic physical bounds on the 312 stoichomet-
ric coefficients and 100 reaction rate constant ensures mini-
mization of non-physical solutions using GAs. Note that re-
action rate coefficients in the SUVS might be different from
those in the MCM even for the same reaction type, because
the species from the MCM are lumped into the SUVS. The
reaction rate coefficients ranges, however, are physically rea-
sonable. The genetic operators and the parameters used in
this work were taken to be as follows:

– population sizeNpopulation= 5000

– crossover probabilityPcrossover= 0.80

– mutation probabilityPmutation= 0.004

– elitism, elitism parameternelitism= 2

The population size affects the GAs performance. The min-
imum requirement is that the population size be set at least

the value of the number of variables, so that the individuals
in each population span the space being searched. In gen-
eral, increasing the population size enables the GAs to search
more points and thereby obtain a better result. However, the
larger the population size, the longer the GAs takes to com-
pute each generation. In this work, the number of variables is
412; the population size is 5000, which is more than a factor
of 12 larger than the number of variables.

We would like to mention that the computational cost is
very expensive by setting the population size at 5000, be-
cause within each generation, or called iteration, there are
5000 different sets of 412 parameters, each set of data run-
ning 10 selected scenarios for 72 h. In particular, the compu-
tational cost is especially heavy when some set of 412 param-
eters leads to highly singular ordinary differential equations
(ODEs) for the gas phase chemistry of the SUVS system. We
will discuss more about computational cost in Sect. 6.4.

5.3 Numerical methods

Three numerical methods are involved for this work: (1) the
MCM gas phase chemistry forα-pinene oxidation; (2) the
SUVS in Fig. 1; and (3) the implementation of GAs.

The integration method used for the MCM gas phase
chemistry is a Gear-type solver of ODEs via the FACSIMILE
3.0 integrator. A Rosenbrock ODE solver is used for the inte-
gration of the SUVS via a Kinetic PreProcessor (KPP) pack-
age (Damian et al., 2002; Sandu and Sander, 2006). Finally,
to deal with the huge computational burden for the GAs, a
Message Passing Interface (MPI) enabled the parallel genetic
algorithm package (Charbonneau, 1995; Metcalfe and Char-
bonneau, 2003), named as MPI-PAKAIA, to be selected and
implemented with an IBM power4 supercomputer system for
solving this heavy computational cost problem.

6 Model results and discussions

As outlined in Fig. 5, the GAs give 5000 different set of ran-
domized initial solutions to our problem. The fitness func-
tion for each of 5000 populations is then evaluated. Based
on the performance, “good” candidates with higher fitness
are selected for generating new populations for the next gen-
eration. The populations in the new generation undergo the
same evaluation. This process is repeated until a termina-
tion criterion is met for a stop. In this work, the calculation
is stopped at the 21,549th generation because no further im-
provement was found after a huge computational cost. For
convenience, we call the 21,549th generation as the final gen-
eration in this paper.

6.1 Evolution of the best individual

At each generation, we can find the worst, the median, and
the best individuals. Figure 4a shows the evolutions for the
three individuals until the final 21,549th generation. The best
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Fig. 4. (A) Evolution of the worst, median, and the best individuals from the 1st generation to the final 21,549th generation;(B) The fitness
differences between the best and the worst individuals, and between the best and median individuals;(C) Evolution of the best CV(RMSD)
from 14.514 at the 1st generation to 0.0488 in the final 21,549th generation.

individual increased monotonically from 0.0689 in the first
generation to 20.5099 in the final generation (larger num-
bers mean a more successful fitness for the given generation).
Meanwhile, the fitness for the median individual and the
worst individual increased from 0.0660 and 1.0907× 10−10

(not shown) in the first generation to 20.5099 and 20.3247
in the final generation. Generally, Fig. 4a shows that larger
fitness differences among the three individuals exist in the
first 100 generations. Further, Fig. 4b shows the evolutions
of two fitness differences: the fitness difference between the
best individual and the worst individual; and the fitness dif-
ference between the best individual and the median individ-
ual. As expected, the fitness difference between the best and
the worst individuals is always higher than the fitness differ-

ence between the best and the median individuals. Overall,
these differences are small and less than 1.0, and all individ-
uals within each generation converge. Note that the fitness
function is defined in Eq. (5) and it is related but still differ-
ent from the CV(RMSD) in Eq. (9).

Intuitively, it is meaningful to check the errors, rather than
the fitness function. Figure 4c shows the evolution for the
mean error ofg, which is shown in Eq. (9) as the mean
CV(RMSD) for all 11 species over 10 scenarios, for the best
individual from 14.519 (fraction) in the first generation to
0.0488 (fraction) in the final generation. This means the av-
erage error for the species from all scenarios is less than 5 %
by using the best set of data from the final generation.
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6.2 Comparison of concentration profiles of
individual species

Next, we are going to compare individual species num-
ber concentration profiles between the full mechanism (the
MCM v3.1) and the SUVS. The profiles from the later one
are obtained by using the GAs generated best set of data
from the final generation. For a full list of the final SUVS
reactions, including the GAs-derived 412 parameters and
mean molecular weights of the 10 lumped species (S01–S10),
please refer to Supplement.

Due to the settings outlined in Sect. 4.1 for different con-
stantα-pinene emissions and different initial concentrations
of the NOx, the diurnal changes for the 11 lumped species
from the full mechanism, as shown in Fig. 5, can be grouped
into four types:

1. Concentrations are always increasing with little fluctu-
ation. These are the low volatility species from S01 to
S04. Black solid lines in Fig. 5a show this pattern for a
representative species of S02 over 10 different scenarios.

2. Strong diurnal fluctuations for species with intermediate
volatility. Overall, species concentrations are increasing
on the daily basis. This corresponds to the species from
S05 to S08. Solid lines in Fig. 5b unfold this kind of
diurnal changes for a representative species of S07. For
example, in scenario 5 and 6, peak concentrations of S07
on the second day are comparable with those peaks on
the third day. Note that diurnal variations in this work
are driven mainly by the photolysis changes.

3. Concentrations are always increasing, but the increment
is more intense at daytime than that at night time. S09
and S10 are the two species following this pattern. Fig-
ure 5c shows the profiles for S09.

4. Strong diurnal changes with high concentrations at day-
time and very low concentrations at nighttime. This pat-
tern is slightly different from type 2, in which species
concentrations are increasing on the daily basis. This
pattern, as shown in Fig. 5d, is only for the total RO2,
and the concentrations are extremely low (near zero) at
night time.

Figure 5a–d also shows the comparison of the diurnal pro-
files for the four types of representative species between
the full mechanism and the final generation SUVS. In or-
der to qualitatively describe the differences between the two
mechanisms, the CV(RMSD), i.e. thegSP,j in Eq. (7), for
the j -th species are calculated over 10 scenarios. For ex-
ample, thegSP,2, a measure of the fractional error for the
S02, is 0.017. This suggested that the SUVS is able to accu-
rately describe the diurnal changes and concentration pro-
files for the S02 over 10 different scenarios with an aver-
age error of 1.7 %. Figure 5a displays the S02 hourly pro-
files from the two mechanisms, full mechanism versus the

SUVS, over the 10 scenarios. There is very good agreement
with each other because of a low error at 1.7 %. Further-
more, the SUVS is also capable of capturing the strong di-
urnal changes for the second type of representative species
of the S07. The calculated error ofgSP,7 is 0.046. Al-
though Fig. 5b shows that the calculated small error at 4.6 %
stems mainly from the peaks and troughs of the diurnal cy-
cles for a few scenarios, the timings of the turning points
for the diurnal changes are very accurate. Likewise, the er-
ror of gSP,9 for the S09 is 0.049. Figure 5c illustrates that
the SUVS is able to describe big increases at daytime for the
S09, and the timings for the small errors are coming from
night time. Finally, the total RO2 from 10 different scenarios
are compared. In the SUVS, we have a relationship of total
RO2 = X01O2 + X02O2 + . . . + X09O2 + X10O2. Each XiiO2
corresponds to a summation of several individual organic
peroxy radicals from the full chemical mechanism of the
MCM v3.1. One straightforward method is to compare the
individual XiiO2 between the full mechanism and the SUVS.
But in this work by using GAs, we simply compare the to-
tal RO2 only, rather than 10 individual XiiO2, (ii = 1,...,10),
from the two mechanisms. The GAs is able to find a good
solution for the SUVS to describe the strong diurnal changes
of the total RO2 shown in Fig. 5d.

The errors for each of 11 species from 10 scenarios are
summarized in Table 1. Because the fitness function in
Eq. (5) includes the errors contributed from all 11 species
and 10 scenarios, to achieve an overall good performance at
the error of 0.0488, the errors for some species are higher
than the average values. For example, the maximum error
of 0.092 is for the S08. An examination of the model per-
formance for this species (not shown here) indicates that im-
provement for the GAs is still needed, although the SUVS
is able to capture diurnal changes and peak values for S08
among the 10 different scenarios. On the whole, the frac-
tional errors for the 6 out of the 11 species are less than 0.05,
in particular, the errors for the three species (S02, S06, and
S10) are less than 0.03.

Overall, the new SUVS with the best set of 412 pa-
rameters from the final generation of GAs is able to de-
scribe the evolution of the 10 lumped species and the to-
tal RO2. Figure 6a presents the distribution of a total of
7920 (= 72 h× 11 species× 10 scenarios) point-to-point er-
rors (xcalc

i,j,k − x
orig
i,j,k)/x

orig
i,j,k from all 11 species over the 10

scenarios. Thex-axis in Fig. 6a is the normalized num-
ber density, which is calculated via normalization of one
species concentration against the maximum concentration
for the same species from the same scenario within the 72-
hour period. Figure 6a shows that the point-to-point errors
are higher at lower normalized number density. Most of
the point-to-point errors lie within the±0.10 (fraction) lines.
The pattern for the point-to-point errors against the normal-
ized number density looks like an overall shape (F). Larger
errors occur for low concentrations and smaller errors for
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Fig. 5. Comparison of number density profiles for four representative species (S02, S07, S09, and RO2) between the full mechanism of the
MCM v3.1 and the simplified chemical mechanism (SUVS), which is obtained by using the genetic algorithms generated best set of data
from the 21,549th generation. The calculated CV(RMSD) for the four species are 0.017, 0.046, 0.049, and 0.049.

Table 1. The CV(RMSD) (gSP,j (j = 1,...,11)) for the 11 species from 10 different scenarios.

Species S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 RO2

gSP,j 0.066 0.017 0.063 0.056 0.059 0.022 0.046 0.092 0.049 0.029 0.049

higher concentrations. This is consistent with the use of the
CV(RMSD) in the fitness function, because CM(RMSD) is
computed through normalization of RMSD against the mean
concentration of the same species from one entire scenario.

In order to qualitatively describe the point-to-point distri-
butions, we first sum the number of points located within
each grid cell in Fig. 6a. Here, the grid cells are defined with
0.1× 0.1 grid configuration. Next, when the number for the

points in each grid cell is normalized by the total number of
points (7920), a point density is obtained. Figure 6b exhibits
the distributions of the point density for the point-to-point
errors in each grid cell. For example, it shows that 80.4 %
of the errors are bounded within the±0.10 (fraction). Fur-
thermore, it demonstrates that the majority of the normalized
number densities lie in the range between 0.2 and 0.3.

Atmos. Chem. Phys., 11, 6185–6205, 2011 www.atmos-chem-phys.net/11/6185/2011/



A. G. Xia et al.: Development of a simple unified volatility-based scheme (SUVS) 6199

Fig. 6. (A) The distribution of the 7920 point-to-point errors between the SUVS (Pi) and the full mechanism (Oi) against the normalized
number density for the 11 species over 10 scenarios. The dashed lines correspond to the fractional errors at 0.00 (black),±0.10 (red).(B) The
point density of the error distribution in each grid cell. The point density is defined as a ratio between the number of points located in each
grid cell and the total number of points.

A sensitivity test demonstrated that when a point-to-point
error(xcalc

i,j,k −x
orig
i,j,k)/x

orig
i,j,k, rather than the CV(RMSD), is di-

rectly included in the design of fitness function, the perfor-
mance for the derived SUVS cannot be comparable with the
CV(RMSD). During the test, a large computational cost is
associated with the excessive time the GAs require in fine-
tuning the parameters, in order for the point-to-point error
to be reduced even when the number density is already very
low. The point-to-point error design method thus treats low
concentrations and high concentrations equally. In this work,

however, we focus heavily on accurate prediction of higher
concentrations, rather than low concentrations. Our objec-
tive in this work favors the selection of CV(RMSD) over the
point-to-point error. This reinforces the importance of a good
design of the fitness function, which sometimes is considered
more of “an art than a science”.
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6.3 Performance of the SUVS for additional
tested scenarios

It is a common practice to check the validity of the new sys-
tem or mechanism against a wider range of conditions. For
example, Asher et al. (2002) first exercised 10 % of observa-
tional data to determine parameters in their new formula to
calculate vapor pressure of organic compounds. Later on, the
dataset from the remaining 90 % were evaluated against this
new formula. Similarly, Xia et al. (2009) derived a reduced
chemical mechanism forα-pinene oxidation system via five
traditional mechanism reduction techniques with data from
108 selected scenarios. This reduced mechanism was later
evaluated against an additional 135 scenarios from a wider
range of conditions.

Likewise, the SUVS is evaluated against an additional 557
scenarios. In the previous section, we focused our analy-
sis on the individual species viagSP,j from Eq. (7). In this
part, another metric,gSC,i from Eq. (8), is employed to eval-
uate model performance for each individual scenario. Fig. 7a
shows the performance ofgSC,i from a total of 567 scenar-
ios. Although a maximum of one is set for the color scale in
Fig. 7a, the maximum and minimum fractional errors among
all 567 scenarios are 4.5951 and 0.0399, respectively. The
large errors are caused when the SUVS is run under atmo-
spherically unrealistic conditions. For example, the maxi-
mum error of 4.5951 corresponds to an extremely high NOx
condition, in which the average NOx concentration is as high
as 1,322.7 ppbv. Meanwhile, the calculated error ofgSC,i

would be larger than 1.00 when the averageα-pinene con-
centrations are at least 200 ppbv and the average NOx is less
than 0.7 ppbv. These large errors contrast to smaller errors
for 10 selected scenarios highlighted with larger black cir-
cles. In general, fractional errors decrease gradually towards
small values with more blue colors around 0.10 when the cor-
responding average concentrations of theα-pinene and NOx
come to close to those of the 10 selected scenarios.

In order to identify SUVS’s range of influence, Fig. 7b
shows the additional 165 scenarios with fractional errors at
most 0.10. Although the 10 selected scenarios represent
only limited range of conditions, Figure 7b indicates that the
SUVS is still valid over a wider range of ambient conditions.
For example, when the averageα-pinene is 10 ppbv and the
average NOx is 20 ppbv, the calculated fractional error for
this scenario is 0.084. Overall, the colors for the errors in
Fig. 7b change gradually when the errors increase from the
smallest 0.0399 to 0.10.

In summary, 10 randomly selected ambient-like scenarios
are used for the GAs analysis so that the SUVS could repro-
duce the full mechanism of MCM v3.1. By using the best
parameters obtained from the GAs, the fractional errors for
not only the original 10 selected scenarios, but also an addi-
tional 165 scenarios are at most 0.10. Here, a threshold of
0.10 is tentatively used as a criterion for judging whether the
error is acceptable. If a different set of 10 scenarios are se-

Fig. 7. (A) Errors for each of 567 scenarios under a wide range of
conditions. The 10 randomly selected ambient scenarios are used in
the GAs to derive a best set of parameters for the SUVS;(B) a total
of 175 scenarios are identified with the fractional error at most 0.10.
Note that color scales for the fractional errors differ between the two
panels, and the smaller numbers (more blue colors) correspond to
more accurate simulations.

lected for the GAs, the pattern for the error map shown in
Fig. 7a might be different. This suggests that the SUVS’s
range of influence depends strongly on the scenarios chosen
for the GAs.

6.4 Computational cost

Finally, we will discuss the computational cost for imple-
menting the GAs for this work. The computational cost is
expensive due to three reasons.
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1. First, the chemical mechanism (SUVS) is run over
3 days for 10 different scenarios. The method is not a
simple computation, rather we need to solve the ODEs
when a chemical system is integrated over three days
for 10 scenarios. It is equivalent to integrate a chemical
system for 30 days when only one set of parameters are
used. Sometimes, when a set of parameters is unrealis-
tic, the ODEs for the SUVS become singular and that
tremendously increases the computational burden.

2. The second factor is due to as large as 412 unknown
variables for determination. When the number of vari-
ables is large, a high value of population size is required
for the GAs. The rule of thumb is that the population
size should be at least 10 times of the number of vari-
ables. In our case, we choose 5000, and we used an
IBM power4 supercomputer to perform the calculation.

3. The third reason is related to the second one in that the
GAs would not be able to find a convergent solution
with a good fit within 1,000 generations because of the
412 unknown variables. In our case, the GAs was ter-
minated at the 21,549th generation when little improve-
ment was found with additional computational cost.

As mentioned in Sect. 5.2, the total computation for this work
is equivalent to an integration of 7.7576× 1010 h (=21,549
generations×5000 sets×10 scenarios×72 ) for a chemical
system. This is equivalent to simulating 30 years gas phase
chemistry for a typical air quality model with a grid config-
uration of 100 (grids in x-axis)×100 (grids in y-axis)×30
(vertical layers).

Due to the facts outlined above, we performed this task
via MPI parallel computation in an IBM power4 supercom-
puter with the use of 64 nodes. For comparison purpose,
the computational cost is converted to equivalent time if the
calculation is performed by using one node only. Two con-
clusions can be drawn from the analysis of the computation
cost. First, the tracking of computational cost indicates that it
would take 369 days to obtain the results demonstrated above
if one single node from the same IBM supercomputer ma-
chine (with a clock speed of 1.9 GHz) is used. Second, av-
erage computational cost for each generation is equivalent
to 5.6 h in the first 18 generations, and the computational
cost drops to an average 0.403 hour per generation. The high
cost in the first 18 generation is caused by singular chemical
ODEs from some randomized unrealistic initial populations
and their offspring.

7 Summary and conclusions

Based on protocols for a detailed chemical mechanism, a
simple unified volatility-based scheme (SUVS) is proposed
for describing the gas phase chemistry of secondary organic
aerosol formation. This SUVS has three distinctive features.

First, this new SUVS is able to unify chemical reactions
for the SOA precursors with different oxidants. This coupled
feature is an improvement over previous commonly used
methods, in which different sets of parameters are used when
oxidation conditions are changed.

Second, the SUVS is able to describe multi-generation re-
actions. This is also an improvement over the simple one-
step reaction scheme, because the multi-generation method
would be able to describe chemical evolutions which last
longer than a smog chamber experiments that typically last
no more than five hours.

Third, aside from the initial organic species, the species
in the SUVS is volatility based and the number of organic
species in the chemical system is only 30, which is a factor of
10 smaller than a detailed chemical mechanism. Moreover,
the SUVS is suitable for describing oxidation of a general
organic species. In this work, the SUVS was used for de-
scribingα-pinene oxidation, and it has been compared with
a detailed chemical mechanism of MCM v3.1 forα-pinene
oxidation. In order to derive the 412 unknown parameters
in the SUVS, we resolved two issues: experimental data and
fitting method.

To get experimental data, the MCM v3.1 was run with 10
selected scenarios. Then, the hourly profiles from a total of
180 condensable organic species in the MCM v3.1 were then
grouped into 10 lumped species. The resulting profiles for
11 species (the 10 lumped species and a species for the total
RO2) are used as “experimental data” for the SUVS.

A genetic algorithms method was used to determine the
412 unknown parameters from the SUVS. A CV(RMSD)
was included in the design of a fitness function for the GAs.
This is an essential part in the application of GAs. Mean-
while, a MPI-version parallel genetic algorithm package,
named as MPI-PIKAIA, was used to speed up the calcula-
tion. The GAs method used a 6-digit-long floating point en-
coding method with a population size of 5000. The size of
the population was thus more than 12 times larger than the
number of unknown variables. Most importantly, physical
bounds on the 312 stoichiometric coefficients and the 100
reaction rate constants ensure minimization of non-physical
solutions. In the GAs, the fitness value for the best solu-
tion of the SUVS is always monotonically increasing and the
corresponding CV(RMSD) is decreasing to 0.0488 (fraction)
in the final 21,549th generation. The best solution from the
21,549th generation was used to evaluate the SUVS.

The SUVS combined with the best set of parameters is
evaluated by using profiles of the “experimental data” for 11
species from 10 different scenarios. We evaluated the errors
based on species and scenario, respectively.

In term of species, the patterns of the diurnal changes for
the 11 species can be grouped into four types, and the SUVS
is able to capture the diurnal changes for each type. The
errors for some species are as low as 0.017, but large er-
ror at 0.092 for a species still exists. This highlights the
importance for further model improvement by using various
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GAs techniques. For example, multi-objective genetic algo-
rithms could be applied to avoid early convergence to a local
maximum, rather than global maximum. In addition, the is-
land model or the cellular genetic algorithms (Alba and Dor-
ronsoro, 2008) could be used to explore the solutions from a
global prospective.

Because all unknown parameters in the SUVS are bounded
to certain realistic constraints, they should give physical in-
terpretations, but not a unique solution. This is because GAs,
similar to the neural network method, sometimes produce
many different sets of parameters with similarly good fits.
One possible way to get an identical “best” solution is to use
a hybrid optimization technique (Renders and Flasse, 1996;
Rodriguez-Fernandez et al., 2006). This means other opti-
mization methods are applied to post-process candidate so-
lutions when no further improvement was found using the
GAs. The use of suitable optimization methods to postpro-
cess a large multi-dimensional system, such as the SUVS,
merit further investigation.

Finally, we evaluated the performance of the SUVS over
a wide range of conditions. The evaluation indicates that the
SUVS is able to reproduce the full mechanism with fractional
error at most 0.10 for not only the 10 selected scenarios, but
also the additional 165 scenarios under a wider range of con-
ditions.

Overall, compared with traditional mechanism reduction
method (Xia et al. 2009; Utembe et al., 2009) for SOA for-
mation, the SUVS is able to reduce the number of species
and reactions by a factor of 10 and reproduce the species
profiles from a detailed chemical mechanism. An examina-
tion of the final SUVS reactions, given in the Supplement,
indicates that some species could be removed from product
list when corresponding stoichiometric coefficients in certain
reactions are close to zero. However, systematic mechanism
reduction techniques, such as those tradionally applied in Xia
et al. (2009), could be employed to further reduce the SUVS.

Essentially, the validity of SUVS does depend strongly on
the accuracy of the “experimental data” used by the GAs for
optimization. In this work, the “experimental data” were ob-
tained through simulating the chemistry in the MCM v3.1.
Thus, the uncertainties for the SUVS stem from structure ac-
tivity relationship, which was used to construct the MCM. If
the benchmarch mechanism of the MCM v3.1 or other sim-
ilar explicit chemical mechanisms (Aumont et al, 2005), is
revised, the 412 parameters in the SUVS should be updated
to reflect new changes.

In addition, the lumping method and estimation methods
for boiling point and saturation vapor pressure also play an
important role for the SUVS. Morever, the inclusion of ac-
tivity coefficents could potentially have a significant impact,
relative to our initial work in which unity is used. A value
of unity for the activity coefficients was assumed in order to
simplify the calculation and avoid the need for group method
estimation of activities. However, it should be noted that un-
der conditions of high relative humidity non-unity activity

coefficients may significantly affect the result. Our method-
ology would be applicable for cases in which activity coef-
ficients are explicitly calculated, and the underlying method-
ology would remain unchanged in such a case. This should
be examined in future research.

We would like to point out that the “experimental data”
used for optimzation of the SUVS are not limited only to the
explicit chemical mechanisms, such as the MCM. We could
also use real smog chamber experimental data. In the later
case, the unity and/or non-unity activity coefficients for all
compounds are embeded into the term of “effective statura-
tion coefficients” (Donahue et al., 2006). The accuracy of
the resulting SUVS, coupled with a gas/particle partition-
ing model, would depend on the accuracies of instruments
to measure concentrations and volatilities and the represen-
tativeness of the laboratory-generated particle composition to
ambient particle composition.

Moreover, a single SUVS could be used to describe vari-
ous mixtures of primary species. For example, to develop a
revised SUVS for theα- andβ-pinene mixed system, 30 ad-
ditional unknown parameters forβ-pinene initial oxidation
with three oxidants (OH, O3, and NO3) would be integrated
into the SUVS system. These 30 new unknown parameters
are assigned similar to those forα-pinene system in Part 1
in Fig. 1. In other words, similar to the original VBS pro-
posed by Donahue et al. (2006), the framework of this sim-
ple chemical mechanism is sustainable to describe different
SOA precursor oxidation systems.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/11/6185/2011/
acp-11-6185-2011-supplement.pdf.
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