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Abstract. Biogenic NO emissions from soils (SNOx) play
important direct and indirect roles in tropospheric chemistry.
The most widely applied algorithm to calculate SNOx in
global models was published 15 years ago byYienger and
Levy (1995), and was based on very few measurements.
Since then, numerous new measurements have been pub-
lished, which we used to build up a compilation of world
wide field measurements covering the period from 1978 to
2010. Recently, several satellite-based top-down approaches,
which recalculated the different sources of NOx (fossil fuel,
biomass burning, soil and lightning), have shown an under-
estimation of SNOx by the algorithm of Yienger and Levy
(1995). Nevertheless, to our knowledge no general improve-
ments of this algorithm, besides suggested scalings of the
total source magnitude, have yet been published. Here we
present major improvements to the algorithm, which should
help to optimize the representation of SNOx in atmospheric-
chemistry global climate models, without modifying the un-
derlying principals or mathematical equations. The changes
include: (1) using a new landcover map, with twice the num-
ber of landcover classes, and using annually varying fertil-
izer application rates; (2) adopting a fraction of 1.0 % for
the applied fertilizer lost as NO, based on our compilation
of measurements; (3) using the volumetric soil moisture to
distinguish between the wet and dry states; and (4) adjust-
ing the emission factors to reproduce the measured emis-
sions in our compilation (based on either their geometric
or arithmetic mean values). These steps lead to increased
global annual SNOx, and our total above canopy SNOx
source of 8.6 Tg yr−1 (using the geometric mean) ends up be-
ing close to one of the satellite-based top-down approaches
(8.9 Tg yr−1). The above canopy SNOx source using the
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arithmetic mean is 27.6 Tg yr−1, which is higher than all
previous estimates, but compares better with a regional top-
down study in eastern China. This suggests that both top-
down and bottom-up approaches will be needed in future at-
tempts to provide a better calculation of SNOx.

1 Introduction

Nitrogen oxides (NOx = NO + NO2) play an important role
in the chemical processes of the atmosphere, especially in
the production and destruction of ozone (Chameides et al.,
1992). On a global scale, NOx emissions are dominated
by anthropogenic combustion processes, which contribute
20 – 24 Tg(N) yr−1 (Denman et al., 2007). The biogenic NO
emission flux from soils (hereafter SNOx) contributes 5.5
to 21 Tg(N) yr−1 (Yienger and Levy, 1995; Davidson and
Kingerlee, 1997) and is in the same range as NO produced
by lightning and biomass burning. However, in a previous
study we showed that due to the geographical distribution of
modeled SNOx, its influence on the reaction chain from NOx
through O3 and OH to the oxidizing efficiency is stronger
than for the other surface sources (Steinkamp et al., 2009).

In recent years, measurements of the NO2 column from
satellites have been used in “top-down” approaches to opti-
mize emissions from various sources, including SNOx (Mar-
tin et al., 2003; Bertram et al., 2005; Jaegĺe et al., 2005;
Müller and Stavrakou, 2005; Martin et al., 2006). Coming
from the other direction, “bottom-up” approaches have used
various algorithms for estimating SNOx based on soil and cli-
matological parameters. The most widely used algorithm to
calculate SNOx was developed 15 years ago byYienger and
Levy (1995) (hereafter YL95) and has been applied in nu-
merous global atmospheric chemistry models (e.g.Lawrence
et al., 1999; Ganzeveld et al., 2002; Horowitz et al., 2003;
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Martin et al., 2003; Hauglustaine et al., 2004; Jaegĺe et al.,
2005; Müller and Stavrakou, 2005; Jöckel et al., 2006; De-
lon et al., 2008; van der A et al., 2008). In comparison to
most of the top-down studies, SNOx seems to be generally
underestimated by the algorithm ofYienger and Levy(1995).
Since the publication of YL95, many more measurements
have been carried out and published than were available at
the time of YL95, which could potentially reduce the dis-
crepancy.

Here we present major improvements to the algorithm by
YL95 and derive updated emission factors, which could eas-
ily be used in other models as well. These new emission
factors are calibrated in a bottom-up approach with a global
compilation of measurements of SNOx. We then compare
our simulated emissions to the a posteriori top-down emis-
sions ofJaegĺe et al.(2005), and discuss them in the context
of other top-down studies byMüller and Stavrakou(2005),
Wang et al.(2007), Stavrakou et al.(2008), andZhao and
Wang(2009).

2 Model framework and measurement compilation

For this study we applied the ECHAM5/MESSy At-
mospheric Chemistry (EMAC) model (ECHAM5 version
5.3.01, MESSy version 1.6), which is a numerical chem-
istry and climate simulation system that includes sub-models
describing tropospheric and middle atmospheric processes
and their interaction with oceans, land and human influences
(Jöckel et al., 2006). It uses the first version of the Modular
Earth Submodel System (MESSy1) to link multi-institutional
computer codes. The core atmospheric model is the 5th gen-
eration European Centre Hamburg general circulation model
ECHAM5 (Roeckner et al., 2006). The MESSy submodels
switched on here simulated cloud microphysics and strati-
form precipitation (CLOUD), deep convection dynamics and
precipitation (CONVECT,Tost et al., 2006), online emis-
sions (ONLEM,Kerkweg et al., 2006) and the global solar
and terrestrial radiative energy budgets (RAD4ALL).

We performed a simulation covering the period from 1990
to 2000, during which most of the measurements in our com-
pilation were performed. We nudged our simulation by the
ECMWF ERA40 data (Uppala et al., 2005), with a spheri-
cal truncation of T106 (approx. 1.1 by 1.1◦) and 31 pressure
levels. Although it would be possible to compute the SNOx
source directly using the ERA40 data, which provides the rel-
evant parameters (soil moisture and temperature) at a higher
resolution, we instead apply the EMAC model at a coarser
spatial resolution, since the results of our study are intended
for use in similarly coarse atmospheric chemistry models
(and the calculation of soil moisture differs between ERA40
and EMACDrusch et al., 2009; Roeckner et al., 2003).

SNOx is calculated in the submodel ONLEM accord-
ing to the algorithm byYienger and Levy(1995) imple-
mented byGanzeveld et al.(2002, 2006) (hereafter called

YL95EMAC). We then use the soil temperature, soil wet-
ness and precipitation from this simulation as input for of-
fline calculations of SNOx, with improvements applied in 4
steps (each building on the previous step):

1. Introduction of a new landcover map, using yearly
varying fertilizer data for fertilizer induced emissions
(FIE) and applying a modified pulsing routine (“LC”,
Sects.3.1and3.2).

2. Reduction of NO emission from fertilizer application
(“LC + FIE”, Sect.3.4).

3. Use of volumetric soil moisture instead of soil water
column (“LC + FIE + VSM”, Sect.3.5).

4. Recalibration of emission factors with measurements
(“YL95/SL11”1, Sect.3.6.).

2.1 State of the art model

The parametrization by YL95 distinguishes between two soil
moisture states. YL95 uses the precipitation rates of the pre-
vious 14 days, whereas in YL95EMAC the water content in
the soil is used to distinguish between dry and wet soil condi-
tions. SNOx flux (Fsoil in ng m−2 s−1) is calculated based on
a statistically derived dry (Ad) and wet (Aw) emission factor
(both in ng m−2 s−1) for 12 different ecosystems and a tem-
perature dependence according to the Eqs. (1a) and (1b) with
T in ◦C.

Fsoil(T ,Aw) =


0.28·T ·Aw 0◦C< T ≤ 10◦C

e0.103·T
·Aw 10◦C< T ≤ 30◦C

21.97·Aw T > 30◦C

(1a)

Fsoil(T ,Ad) =

{
T
30 ·Ad 0◦C< T ≤ 30◦C

Ad T > 30◦C
(1b)

For rainforests, constant emissions were assumed for the dry
and wet seasons. Agricultural areas are calculated like wet
grassland, plus a fraction of the applied fertilizer (see be-
low). In the YL95EMAC simulation the twelve ecosystems
(Table 1, 4th column) defined by YL95 are based on the
72 ecosystems ofOlson(1992). The emission reduction in
“rice-producing areas” of eastern Asia and eastern India as
described in YL95 are not implemented in the YL95EMAC
algorithm.

The calculated flux is then multiplied by a pulsing fac-
tor, which emulates the physical sudden pulse of NO that is
known to occur when precipitation falls after a dry period.
If the accumulated precipitation was less then 10 mm in a
gridcell during the last 14 days, and the precipitation then ex-
ceeds 1 mm (“sprinkle”), 5 mm (“shower”) or 15 mm (“heavy
rain”) during one day, an increase of the emission rate by the

1SL11 refers to this study
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Table 1. World surface areas of the YL95EMAC ecosystems and new YL95/SL11 landcover classes in the EMAC model. For YL95-
EMAC the first number is as adopted fromOlson(1992) and the number in brackets gives the area reduced by (1 – cultivation index) for
non-agricultural areas and the cultivated area for agriculture with the cultivation index afterBouwman et al.(2002).

MODIS Köppen YL95EMAC Area [106 km2]
ID landcover main climate∗ ecosystem YL95/SL11 YL95EMAC

0 Water – Water 364.18 367.15 (364.3)
1 Permanent wetland – 0.30
2 Snow and ice – Ice 16.12 15.44 (15.44)
3 Barren D, E 2.28
4 Unclassified – 0.07
5 Barren A, B, C Desert 17.68 17.23 (16.71)
6 Closed shrubland – Shrubland 0.75 0 (0)
7 Open shrubland A, B, C 14.85
8 Open shrubland D, E Tundra 11.85 11.61 (11.36)
9 Grassland D, E 0.46
10 Savannah D, E 4.66
11 Savannah A, B, C Grassland 9.76 33.10 (27.12)
12 Grassland A, B, C 8.80
13 Woody savannah – Woodland 10.94 14.16 (7.98)
14 Mixed forest – Dec. forest 6.87 5.07 (3.41)
15 Evergr. broadl. forest C, D, E 1.97
16 Dec. broadl. forest C, D, E 1.66
17 Dec. needlel. forest – 0.93
18 Evergr. needlel. forest – Conif. forest 5.78 15.81 (14.45)
19 Dec. broadl. forest A, B Dry dec. forest 0.62 4.70 (3.68)
20 Evergr. broadl. forest A, B Rainforest 12.76 10.40 (9.12)
21 Cropland – Agriculture 13.13 15.48 (30.01)
22 Urban and build-up lands – 0.73
23 Cropland/nat. veg. mosaic – 3.01

∗ A: equatorial, B: arid, C: warm temperate, D: snow, E: polar.

factor in Eq. (2) at timet = 1 (in days) is assumed, lasting for
3, 7 or 14 days, respectively (the values on the far right in the
equations are the 24-hour rain rate which induces the pulse).

pulse=


11.19·e−0.805·t 1< t < 3; 1−5mm

day

14.68·e−0.384·t 1< t < 7; 5−15mm
day

18.46·e−0.208·t 1< t < 14; > 15mm
day

(2)

If the pulsing criterion is not fulfilled, then pulse is set to 1.
Thus the direct SNOx from the soil into the vegetation layer
(lowest atmospheric layer containing vegetation of various
types, e.g. grass, trees or shrubs) is calculated as the product
of Eq. (1a, b) and2:

SNOx = pulse·Fsoil(T ,Aw/d, [fertilizer]) (3)

Finally, SNOx is partly removed via dry deposition in the
vegetation before it is released into the free troposphere,
which is represented by a canopy reduction factor (CRF),
calculated based onJacob and Bakwin(1991) as:

CRF=
e−ks·SAI

+e−kc·LAI

2
(4)

with ks = 8.75 m m−2 and kc = 0.24 m m−2 representing
stomata and cuticle absorptivity constants. SAI is the stom-
atal area index (ratio of stomatal area to leaf surface area)
and LAI is the leaf area index (ratio of leaf surface to the
geographical surface area). The calculation of CRF is orig-
inally based on ecosystem and season specific stomatal area
indices as well as a monthly leaf area index map. SNOx

∗

effectively released to the atmosphere is thus calculated by
multiplying Eq. (5) with Eq. (4):

SNO∗
x = CRF·SNOx (5)

The SNOx in the YL95EMAC simulation prior to applying
the CRF is depicted in Fig.1.

2.2 Compilation of measurements

Yienger and Levy(1995) had far fewer measurements avail-
able when they developed their algorithm 15 years ago than
there are today. They used data at 12 different sites in
3 ecosystems taken from 4 publications with 12 to 144 sin-
gle events per site to calculate the exponential factor for the
wet emissions between 10 and 30◦C (see Eq.1a), and mea-
surements from 24 sites in 6 of their ecosystems taken from
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Fig. 1. SNOx flux in the YL95EMAC simulation (in ngm−2s−1),
along with the locations of measurements (dots) and the regions
referred to in Sect.3.6.1.

15 publications (plus two additional unpublished sites) were
used to calculate the other emission factors under wet condi-
tions. For the dry emission factors they used 9 sites in one
ecosystem (grassland) taken from 7 publications (including
two unpublished sites). For one ecosystem (dry deciduous
forest), they did not indicate where the data comes from and
for the others the dry emission factor is calculated as one
third of the wet emission flux which is applied above 30◦C
(see Eq.1a), which givesAd =

21.97
3 Aw ≈ 7.3 ·Aw. Based

on one measurement in rice paddies (Galbally et al., 1987),
YL95 assumed reduced agricultural emissions by a factor of
30 in the whole agricultural area of eastern Asia and half the
agricultural area of east and central India. This reduction is
highly debatable, and the sensitivity of the results to this re-
duction is discussed in Sect. 5.

We have compiled, building onStehfest and Bouwman
(2006), a dataset consisting of 112 articles with 583 field
measurements of SNOx covering the period from 1976 to
2010, with 367 measurements during the simulation period.
There are clear spatial gaps in the measurements, e.g. over
Russia and the Middle East, which can be seen by the distri-
bution of the measurement locations in Fig.1.

We employ a more recent landcover system, based on
the MODIS satellite data (Friedl et al., 2006) and combine
this for some landcover classes with the Koeppen main cli-
mate classes (Kottek et al., 2006) listed in Table1, which
doubles the number of landcover classes used in our study
compared to YL95 and YL95EMAC. In order to compare to
YL95EMAC, we associated the most similar ecosystem used
in YL95 with the landcover class afterFriedl et al.(2006) for
each individual measurement based on the given description.
In the following text, we refer to landcovers in the A and B
(and some of the C) climates as “warm”, and landcovers in
the rest of the C and in the D and E climates as “cold”. We
also give the landcover ID used in Table in brackets, when-
ever specific landcovers are referred to below. The compi-
lation and additional information like soil properties and the
literature references are made available in the electronic sup-
plement.

All Landcovers
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Fig. 2. Logarithmic histogram and probability density function
(solid line) of all measured SNOx in the compilation with stan-
dard distribution, calculated mean and standard deviation. Black
lines: all measurements, green lines: under natural conditions only,
blue lines: anthropogenically altered only. The dashed lines are the
calculated standard distributions. Number of measurements are in
brackets.

The range of measured SNOx spans from−6.89 to
547 ng m−2 s−1 in the whole compilation with a nearly log-
normal distribution (Fig.2), which is quite common for nat-
ural processes. There are 23 measured fluxes less than 0, and
8 measured fluxes equal to 0. The deviation introduced by
ignoring these values is very small (see Sect.3.6). We write
the log-normal means and standard deviations for example
as 3.67+7.35

−2.45, rather than in the exponential forme1.3±1.1.
By classifying the compiled measurements using the MODIS
landcover combined with the Koeppen main climate classes,
there are measurements in 13 of the 24 new landcover classes
(Table1). As can be seen in Fig.3 the log-normal distribution
again matches the distribution of the measurements in indi-
vidual ecosystems, when we ignore all fluxes that are equal
to or less than zero. In cold open shrubland (8) there was
only one measurement, therefore no histogram can be shown
for it.

Due to the large variations in the measured SNOx fluxes
and the coarse spatial model resolution in AC-GCMs, we
will use the full compilation of measurements for optimiz-
ing the calculation of SNOx fluxes, rather than only the
measured fluxes that were carried out during our simula-
tion period (underlying this is an assumption of a relatively
stable climate with annually varying weather and soil con-
ditions during the measurement period). The compilation
contains 219 measurements in agricultural lands, 226 mea-
surements under more or less “undisturbed” or “natural”
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Fig. 3. Logarithmic histogram and probability density function per MODIS landcover and Koeppen main climate class (in brackets) of
measured SNOx in the compilation. Color and line type as in Fig.2.

conditions and 138 measurements for anthropogenically al-
tered conditions in the non-agricultural landcovers. Anthro-
pogenic alterations include fertilizer application, irrigation,
liming, clearcutting and other perturbations. The measure-
ments under non-agricultural land with anthropogenic influ-
ence(4.29+16.08

−3.38 ) are, according to the Kolmogorov-Smirnov

test with p<10−3, significantly higher than under unper-
turbed natural conditions(1.68+9.52

−1.43). Therefore wherever
enough measurements were available, we use only the un-
perturbed measurements to calibrate our new emission fac-
tors, whereas we used all the measurements whenever too
few were available.
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Fig. 4. Scatterplot of simulated SNOx in YL95EMAC for each corresponding period of the year versus each measurement along with the
mean values and standard deviations.

3 Emission model updates

In Fig. 4 we compare the simulated flux of YL95EMAC
with the measured fluxes in our compilation of measurements
for each ecosystem, and Table2 gives the mean values for
each ecosystem. From this it is obvious that the flux from
each ecosystems (except tundra and rainforest) as well as the
global simulated flux is underestimated by the algorithm, and
an improvement is necessary. All of the fluxes in this section
are without considering the CRF, since this would introduce
another uncertainty. Furthermore, almost all measurements

in our compilation were chamber measurements, for which
the canopy interaction does not play a significant role.

In the following sections we introduce the improvements
which we implemented in the calculation of the SNOx flux
in our model and discuss the changes which were caused by
these improvements. We discuss the change in the pulsing
routine first, since this affects all our new simulations beyond
YL95EMAC. The change in the underlying landcover map
and the change in how fertilizer application is dealt with can-
not readily be treated separately and are discussed in one step
(LC). The LC case is also used for considering the effects of
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Table 2. Measured and simulated SNOx for the YL95EMAC
ecosystems (in ng m−2s−1). Measurements are taken from our
compilation (numbers per ecosystem in brackets) and the simulated
SNOx values are for the corresponding period of each simulated
year.

Ecosystem N measured YL95EMAC

Tundra 11(1) 0.03+0
−0 0.22+0

−0.03
Grassland 1695(156) 3.85+20.48

−3.24 2.27+12.05
−1.1

Woodland 55(5) 6.77+72.29
−6.19 2.63+28.06

−0.52
Deciduous forest 227(22) 1.11+3.29

−0.83 0.08+0.24
−0.05

Coniferous forest 759(71) 6.3+26.11
−5.07 0.08+0.35

−0.06
Drought deciduous forest 117(11) 5.37+13.01

−3.8 0.36+0.88
−0.12

Rainforest 552(51) 1.51+5.75
−1.2 5.36+20.39

−1.59
Agriculture 2111(196) 4.97+27.81

−4.22 3.49+19.54
−2.13

All ecosystems 5527(513) 3.48+18.2
−2.92 1.38+7.23

−1.16

resolution, before going on to the other individual develop-
ments.

3.1 Pulsing

In the YL95EMAC algorithm as implemented previously in
EMAC the amount of precipitation to initiate the pulsing was
queried every model timestep; therefore the pulsing hardly
ever reached its maximum range of values, and contributes
only 3 % to the total SNOx in the YL95EMAC simulation.
From the LC simulation onwards, we check the precipitation
of the last 24 h only once a day at 00:00 UTC. As a result,
the fraction attributed to pulsing increases to 17 % (Table3).
Our new result is in the range of the 10–22 % proposed by
Davidson(1992) and, compared to the previous YL95EMAC
setup, it is much closer to the 24 % originally simulated by
YL95.

Nevertheless, we note that this is a very crude implementa-
tion. In the literature some measurements show small pulses
(Garcia-Montiel et al., 2003), while others show much larger
pulses (Davidson et al., 1991). Too much rain could also re-
duce the diffusity of the soil (Rond́on et al., 1993), which
would reduce the strength of the pulse with strong precip-
itation events. Finally other events which can also generate
pulses, like fire or plowing (Sanhueza, 1997), are not yet con-
sidered in our model.

3.2 Ecosystem/landcover (LC)

Instead of using the twelve ecosystems originally introduced
by YL95, we use the 18 MODIS landcover classes (Friedl
et al., 2006) for the year 2000 and combine them with the
main climates of the Koeppen climate classification (Kottek
et al., 2006) to yield a new total of 24 landcover types (Ta-
ble1) with the emission factors listed in Table3.

Table 3. The original (YL95) emission factors and the soil biogenic
NO emissions calculated with the old ecosystems (YL95EMAC)
and with the new landcover (LC). When not shown, standard devi-
ations are less than or equal to 0.001.

Emission factors Emission
[

Tg(N)
year

]
ID wet dry YL95EMAC∗ LC∗

0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0.05 0.37 0.02 (3 %) 0.03± 0.002 (17 %)
9 0.05 0.37 0.002 (18 %)

10 0.05 0.37 0.03 (20 %)
11 0.36 2.65 3.0± 0.05 (2 %) 1.65± 0.03 (16 %)
12 0.36 2.65 1.17± 0.02 (19 %)
13 0.17 1.44 0.45± 0.01 (3 %) 0.61± 0.01 (15 %)
14 0.03 0.22 0.02 (2 %) 0.03 (16 %)
15 0.03 0.22 0.02 (16 %)
16 0.03 0.22 0.01 (17 %)
17 0.03 0.22 0.002 (17 %)
18 0.03 0.22 0.03 (3 %) 0.02 (18 %)
19 0.06 0.4 0.09 (3 %) 0.02 (15 %)
20 2.6 8.6 1.6± 0.1 (3 %) 2.33± 0.05 (12 %)
21 0.36 – 4.03± 0.04 (3 %) 3.84± 0.40 (20 %)
22 0.36 – 0.25± 0.01 (17 %)
23 0.36 – 0.95± 0.06 (18 %)

sum 9.24± 0.16 (3 %) 10.95± 0.48 (17 %)

∗ pulsing fraction in brackets.

SNOx increases from 9.24± 0.16 Tg(N) yr−1 to
10.95± 0.48 Tg(N) yr−1 due to the new landcover map. We
simulate a small increase in “natural” ecosystems (ID 0–20 in
Table1), changing from 5.21 Tg(N) yr−1 to 5.91 Tg(N) yr−1

and a larger increase in “anthropogenic” ecosystems (ID 21–
23) from 4.03 to 5.04 Tg(N) yr−1. The geographical distri-
bution of anually simulated SNOx also changes, in particular
with:

– Increased emissions over Europe, central USA, Eastern
Asia and India (Fig.5), especially due to the treatment
of fertilizer (see Sect.3.4); and

– Lower emissions over large parts of Australia, the
southern Arabian peninsula and Somalia, which was
prescribed as grassland in YL95EMAC, while these re-
gions are now dominated by shrublands.

If we were to apply the reduced emissions in the “rice-
producing areas”, this would introduce unrealistic straight
borders at 35◦ N and 60◦ E with emissions reduced by
1.24 Tg(N) yr−1 (see Sects.4 and5 for discussion).
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Fig. 5. Averaged SNOx flux in the whole simulation period (in
ng m−2 s−1) for the LC simulation (upper panel) and the change
compared to the YL95EMAC simulation (lower panel).

3.3 Influence of model resolution

The simulations considered here are at a relatively high reso-
lution, without the computationally expensive chemical pro-
cesses in the atmosphere. When they are included, the
model is usually run at a lower horizontal resolution. To in-
vestigate the influence of the resolution on SNOx we per-
formed three additional simulations at T21 (∼5.6× 5.6◦),
T42 (∼2.8× 2.8◦) and T63 (∼1.9× 1.9◦). The effect of the
resolution is depicted in Fig.6.

The fraction of SNOx from rain induced pulses increases
with a finer model resolution. Since in a coaser horizon-
tal model resolution the convective precipitation is dispersed
over a larger area, this leads to weaker pulses and less likeli-
hood of reaching the pulsing threshold.

The general increase of the emission rate at a finer reso-
lution is due to the exponential dependence on the tempera-
ture in the calculation of the wet emission flux. Although the
temperature of one gridbox in the lower resolution simulation
will roughly equal the mean temperature of the correspond-
ing set of gridboxes in the high resolution simulation, the
peak temperatures will be greater at higher resolution, so that
due to the exponential function, SNOx will also be higher in
the finer resolution simulation. One possibility to reduce the
underestimation in the coarser resolution simulations would
be to scale either all the emission factors or the emission flux
by the ratio of the annual emission flux in the T106 simula-
tion to the coarse resolution simulations (Table4).
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Fig. 6. Change of soil biogenic NO emission with pulsing (green
boxes), without pulsing (blue circles), and the pulsing fraction (tri-
angles) for the LC simulation at four different horizontal resolu-
tions.

Table 4. Relative annual underestimation of SNOx in the coarser
simulations compared to the T106 resolution of the YL95EMAC
and LC simulation. And the remaining deviation after scaling
the emission factors by the initial underestimation. The last
column lists the global area defined as wet in 106km2 (T106:
111.8× 106 km2).

YL95EMAC LC
initial remaining initial remaining wet area

underestimation underestimation [106km2
]

T21 11.8 % 4.6% 13.1 % 5.6 % 108.6
T42 4.3 % 2.1% 7.2 % 3.3 % 110.0
T63 2.1 % 1.8% 2.3 % 2.0 % 111.1

Scaling the emission factors results in a notable improve-
ment (Table4) but still results in an underestimation, since
the area of soils defined as wet increases slightly with in-
creasing resolution and other unresolved non-linearities in-
fluence the simulation.

3.4 Fertilizer induced NO emission (LC + FIE)

In YL95EMAC the ecosystem map was overlaid with the cul-
tivation index byBouwman et al.(2002) and used the same
amount of applied fertilizer for each year, from which a cer-
tain fraction (0.7 %) was emitted as FIE during the grow-
ing season. However, since agriculture is already defined in
the ecosystem map based onOlson(1992), but was not con-
sidered as a separate ecosystem in YL95EMAC, effectively
some fraction of the emitting gridbox is neglected (otherwise
some fraction would have been double-counted). Therefore
SNOx from model gridboxes with a fraction of agriculture in
the ecosystem map was underestimated in YL95EMAC. This
can also be seen if one sums up the ecosystem areas used
for the calculation of the emission flux (values in brackets of
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column “YL95EMAC” in Table1), which gives a total world
surface area of 504× 106 km2, less than the actual surface
area of 510×106 km2.

The amount of globally consumed fertilizer increased
within the period of our simulation by 18 %, based on an
analysis by the United Nations Environment Programme
(UNEP, http://geodata.grid.unep.ch). Therefore we use
yearly varying fertilizer application based on the coun-
try based FAO fertilizer consumption rate provided by
UNEP, and assume that the fertilizer is applied on the
area of the last three landcover classes in Table1 dur-
ing the growing season as described in YL95. Since us-
ing this method results in unrealistic amounts of fertil-
izer usage for the Lesser Antilles and the islands east of
Madagascar (up to 34,790 kg(N) ha−1 yr−1), we assumed
an upper limit of 500 kg(N) ha−1 yr−1, which is high but
should be viable, given that fertilizer applications up to 378–
524 kg(N) ha−1 yr−1 have been reported (Richter and Roel-
cke, 2000). This approach is still not very accurate, since for
example fertilizer is not spatially and temporally distributed
evenly over large countries like China (Ju et al., 2004), and
different crop types receive different amounts of fertilizer.
However, the information needed to distribute the fertilizer
by crop type is presently not available, thus we can only make
modest improvements, such as the annually varying fertilizer
application rates.

Yienger and Levy(1995) originally assumed a fraction of
2.5 % of the applied fertilizer to be lost as NO. Based on our
compilation of measurements our best estimate (arithmetic
mean) of FIE is 1±2.1 %, therefore we set the FIE to 1 %
in our optimized simulation, which gives a global emission
of 1.27 Tg(N) yr−1 induced by fertilizer application, instead
of 3.17 with an FIE of 2.5 %. Thus we have reduced the
global NO emissions by 1.9 Tg(N) yr−1 by reducing the FIE
in our simulation from 2.5 % to 1 %. The reduction is mainly
located over the central USA, Europe, northeast Asia and In-
dia.

Our estimated fertilizer fraction emitted as SNOx is higher
than the value of 0.55 % calculated byStehfest and Bouw-
man (2006) and the previous value byBouwman et al.
(2002) of 0.7 %, which contributed 0.7 Tg(N) yr−1 to the to-
tal flux in YL95EMAC (Ganzeveld et al., 2006). The to-
tal annual SNOx from agriculture in the LC + FIE simula-
tion of 3.13 Tg(N) is higher than the estimate byBouw-
man et al.(2002) andStehfest and Bouwman(2006) of 1.8
and 1.6 Tg(N), respectively, but our value is within the large
range of uncertainty given byStehfest and Bouwman(2006)
(−80 % and +406 % for the 95 % confidence interval).

Finally the reduction of SNOx in the “rice-producing
areas” is debatable (see Sect.5). If we would reduce
the emissions there, we would decrease the emissions by
0.81 Tg(N) yr−1.
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Fig. 7. Percentage of wet soil conditions during the whole simula-
tion period.

3.5 Soil moisture state (LC + FIE + VSM)

Yienger and Levy(1995) used the precipitation history to
distinguish between the dry and wet soil conditions. In
YL95EMAC the water column in the soil as described by
Roeckner et al.(2003) was used instead. Since the simula-
tion of soil moisture has improved substantially over the last
decade, we can now make use of the volumetric soil mois-
ture content, which can be calculated with the help of the
root depth (S. Hagemann, personal communication, 2009).
We set the threshold for dry vs. wet conditions to 15 % vol-
umetric soil moisture content, which is for an average soil
between the field capacity (amount of water that can be held
by the soil against the gravitational force) and the permanent
wilting point (below which plants can not take up the water
anymore). However, for pure sand, 15 % is more than can
be held against the gravitational force, whereas in pure clay
15 % is even less moisture then the permanent wilting point
(Scheffer and Schachtschabel, 2002). Figure7 shows how
often the soil was defined as wet during the simulation pe-
riod.

This modification has a major impact on the classes warm
savannah (11), warm grassland (12) and woody savannah
(13), with a decrease of annual SNOx flux by 0.41, 0.42, and
0.11 Tg(N), respectively. Since these landcover classes are
mostly present in the Sahel region, eastern Africa and south-
ern USA/northern Mexico, the emissions from those regions
are affected most. In the other landcover classes the emis-
sions are reduced by less than 0.01 Tg(N) yr−1. This includes
the cropland classes, which do not include an explicit depen-
dence on the soil moisture, since it is assumed that due to ir-
rigation the soil moisture is relatively constant and normally
in the wet regime, although this assumption could possibly
be improved in future studies. As a result of these changes,
the global annual flux in the LC + FIE + VSM simulation is
8.08 Tg(N) yr−1.

As far as we are aware, the soil moisture of GCMs has
generally not yet been carefully evaluated; this represents an
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important uncertainty that may degrade the quality of our re-
sults. Note that there may be considerable differences in the
formulation of the soil moisture in other GCMs, and the dis-
tinction into wet and dry conditions would be an interesting
facet of the algorithm to examine and possibly improve in a
future multi-GCM intercomparison.

3.6 Emission factors (YL95/SL11)

For each individual measurement in our compilation we cal-
culated the emission factor for the appropriate period of the
whole simulation (individually for each year of the simula-
tion, then determining the mean emission factor from these)
as described below. In order to reduce the statistical error we
used monthly averages instead of averages only over those
days for which measurements were available.

Since we have only the total SNOx for each measurement
and do not have time series of the measurements, accom-
panied with time series of temperature and soil moisture it
is impossible to calculate the emission factors analytically.
Note that the wet and dry emission factors cannot be esti-
mated separately due to the lack of time series data of the
measured SNOx flux. We therefore keep the ratio between
the dry and wet factor constant at 7.3 (rainforest: 3.3), as in
the algorithm by YL95. This allows us to use a simple linear
fit for the emission factor, which we compute as the ratio of
the measured flux to the flux calculated with the old emis-
sion factors. For the geometric mean we calculated the new
emission factors for each landcover class (Aw/d) according
to Eq. (6). We weight each calculated emission factor by the
duration of the experimental period ind days.

Aw/d = e

∑N
i=1(log(Aw/d,i )·di )∑N

i=1di (6)

with Aw/d,i being the wet and dry emission factors for each
measurementi, andN is the number of measurements per
landcover. The calculation of the arithmetic mean was also
weighted by the duration of the measurement.

For landcover classes with both anthropogenically altered
and unperturbed measurements, we calculate the emission
factors from unperturbed measurements only. In woody
savannah using all measurements decreased the emissions
by 0.44 Tg(N) compared to unperturbed measurements only.
This decrease is nearly compensated by slightly increased
emissions from warm savannah (11), evergreen needleleaved
forest (18) and warm evergreen broadleaved forest (20). The
wet emission factors for unperturbed and altered conditions
are depicted in Fig.8.

To give a potential upper limit for SNOx, we also calcu-
lated the emissions based on arithmetically averaged emis-
son factors (Table6), including also the negative and zero
fluxes. The total global SNOx based on the arithmetic mean
is 33.1± 0.6 Tg(N) yr−1 if we use unperturbed measure-
ments only to calibrate the emission factors. This is insignif-
icantly larger than the value 32.9± 0.6 Tg(N) yr−1 which
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Fig. 8. Distribution of calculated emissions factors for anthro-
pogenically altered (orange, above center line) and unperturbed
(blue, below center line) measurements. The number of calculated
emission factors and number of measurements per crop are given
on the right side, respectively.

we compute when we also include anthropogenically altered
measurements. The influence of omitting negative or zero
fluxes increases the global total SNOx by only 1.18 Tg(N)
to 34.3± 0.7 Tg(N) yr−1 for the arithmetic mean. Given the
large range of uncertainties for the emission factors, this indi-
cates that omitting measurements less than or equal to zero in
the calculation of the geometric mean only has a small effect.
A much larger effect would result from reducing emission in
the “rice-producing areas”, which would decrease the emis-
sion by 4.8 Tg(N) yr−1 in in the arithmetic mean calculation.

3.6.1 Emission factors calculated by region

As depicted in Fig.1 we defined 5 regions with clusters of
measurements. We abbreviate the regions as follows: EUR
– Europe, NAM – North America, SAM – Central/South
America + Hawaii, ASA – Asia and Australia and AFR –
Africa. Here we recompute the geometric mean of the
emission factors separately for each region, using both the
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Table 5. The adopted (YL95/SL11) emission factors (geomet-
ric mean) and associated soil biogenic NO emissions. When not
shown, standard deviations are less than or equal to 0.001.

Emission factors Emission

ID N wet dry
[

Tg(N)
year

]
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 31(3) 0.06+

−
0.02
0.02 0.43+

−
0.15
0.11 0.2± 0.005

6 220(20) 0.09+
−

0.31
0.07 0.65+

−
2.24
0.50 0.02

7 – 0.09 0.65 0.33± 0.01
8 11(1) 0.01+

−
0.00
0.00 0.05+

−
0.01
0.01 0.005

9 – 0.84 6.18 0.03± 0.002
10 242(22) 0.84+

−
1.42
0.53 6.18+

−
10.43
3.88 0.35± 0.01

11 308(28) 0.24+
−

1.71
0.21 1.76+

−
12.56
1.54 0.65± 0.01

12 1069(99) 0.42+
−

2.01
0.35 3.07+

−
14.83
2.55 0.9± 0.02

13 99(9) 0.62+
−

0.57
0.30 5.28+

−
4.82
2.52 2.29± 0.03

14 44(4) 0.03+
−

0.23
0.03 0.25+

−
1.68
0.22 0.06± 0.002

15 – 0.36 2.39 0.16± 0.003
16 227(22) 0.36+

−
1.12
0.27 2.39+

−
7.44
1.81 0.11± 0.003

17 – 0.35 2.35 0.02± 0.002
18 756(70) 1.66+

−
7.49
1.36 12.18+

−
54.86
9.97 0.75± 0.03

19 77(7) 0.08+
−

0.14
0.05 0.62+

−
1.03
0.39 0.02

20 581(54) 0.44+
−

2.27
0.37 2.47+

−
11.17
2.02 0.38± 0.009

21 2242(208) 0.57+
−

2.56
0.46 – 3.25± 0.17

22 – 0.57 – 0.18± 0.006
23 – 0.57 – 0.79± 0.03

sum 10.51± 0.24

unperturbed and anthropogenically influenced measurements
in natural ecosystems. We discuss several of the key differ-
ences between the regions for selected landcovers (for which
there are measurements in multiple landcovers), along with
reasons for differences, e.g. different measured fluxes, sim-
ulated soil temperature and moisture as well as other unac-
counted factors. The unaccounted factors include primarily
the amount of available nitrogen and the organic material and
its quality, since SNOx is mainly produced in the uppermost
centimeters of the soil, including the organic layer (Jambert
et al., 1994; Papke and Papen, 1998; Bargsten et al., 2010).

Cold savannah (10)

For EUR compared to NAM we calculate an emission factor
that is more than twice as high, although the emission fluxes
are very similar with 4.40+5.38

−2.42 and 3.62+7.14
−2.40 ng m−2 s−1, re-

spectively. The calculations for EUR were taken from 2 pub-
lications (10 sites) and for NAM from 3 publications (15
sites). The difference is due to the simulated soil tempera-

ture, which is around 15◦C for nearly all measurements in
EUR and NAM, except for 3 measurements in EUR with
measured values of 2.06, 1.67 and 6.82 ng m−2 s−1 at 1◦C
and for one with a flux of 1.9 ng m−2 s−1 at 6◦C. Thus, sim-
ilar fluxes were measured in the two regions, but the sim-
ulated soil temperature differs. To yield the same emission
factor for the EUR sites with the measured SNOx flux data,
we would have to increase the temperature in EUR by 10 K
in our model, which is unlikely; therefore other unaccounted
factors must exist, which cause these differences.

Warm savannah (11)

Although the measured flux in SAM is higher than in AFR,
we calculate higher emission factors for AFR than for SAM.
This can be explained by both the soil moisture and the tem-
perature. In AFR we have more days with a volumetric
soil moisture content below 15 %, whereas in SAM the wet
flux dominates. The mean temperatures in SAM are 27.0–
29.4◦C, just slightly below 30◦C, while in AFR they are well
below 30◦C for most of the 17 measurements (2 at 9.9◦C,
3 at 13–14.9◦C and 6 at 22.3–24.3◦C). Therefore a higher
emission factor is necessary in AFR than in SAM, which
represents other controlling factors that are not yet explicitly
considered in the algorithm.

Warm grassland (12)

The emission factors calculated for EUR and especially ASA
are much higher than for the other three regions. In EUR
the mean soil temperatures are all below 20◦C and in ASA
below 15◦C. In AFR, which also has a relatively high flux,
the wet soil regime is dominant, resulting in a lower emission
factor. The measured flux in NAM is low compared to the
other regions, yielding a lower emission factor. Due to these
reasons higher emission factors are needed in EUR and ASA.

Woody savannah (13)

The emission factors are calculated to be higher in SAM than
in AFR; since soil temperature and moisture do not differ
very much, this is simply due to higher emission fluxes mea-
sured in SAM than in AFR.

Deciduous broadleaved forest (16)

The calculated emission factors are higher in NAM than in
EUR, mainly because the measured fluxes in NAM are higher
than in EUR, and in EUR there are more wet emission peri-
ods than in NAM.

www.atmos-chem-phys.net/11/6063/2011/ Atmos. Chem. Phys., 11, 6063–6082, 2011
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Evergreen broadleaved forest (20)

Most of the measurements were performed in SAM, for
which the calculated emission factor is nearly the same as
in AFR, while a lower emission factor is calculated for ASA
due to lower measured fluxes than in SAM and AFR.

Agriculture (21)

The emission factor is only calculated for wet soil condi-
tions as proposed by YL95. NAM has a similar mean mea-
sured emission flux to ASA, but the temperature is on aver-
age higher, resulting in a higher emission factor for ASA. In
AFR we also calculate a high emission factor, but only two
measurements were performed in agricultural areas in Africa
with a high emission flux.

3.6.2 Global results

The final stage of the direct surface emissions (prior to imple-
menting the canopy reduction factor) is YL95/SL11. For the
new emission factors in this simulation, we used the values
listed in Tables5 and6. When there were no measurements
in a landcover class (IDs: 7, 9, 15, 17, 22, 23), we used the
emission factor of the most similar class (see Table1). For
example, for deciduous needleleaved forest (17), we choose
the same emission factor as for deciduous broadleaved forest
in cold climate (16), since they are more similar than com-
pared to evergreen needleleaved forests (Vogt et al., 1986).

In the step from LC + FIE + VSM to YL95/SL11 we find
an increase of all emission factors in all landcover classes
except for cold open shrubland (8), warm savannah (11)
and evergreen broadleaved forest in warm climates (20),
where the emissions decrease by 0.02 Tg(N) yr−1 (81 %),
0.58 Tg(N) yr−1 (47 %) and 1.94 Tg(N) yr−1 (83 %), respec-
tively. On a global scale the decrease is only visible in the
tropical regions (Fig.9), where the latter two landcovers are
mainly located.

The strongest increases (greater than 0.5 Tg(N) yr−1) in
the annual global flux were simulated for woody savan-
nah (13), evergreen needleleaved forest (18) and cropland
(21) with 1.78 (352 %), 0.73 (4796 %) and 0.85 Tg(N) yr−1

(35 %) increases, respectively. Globally this leads to
an increase of 2.43 Tg(N) yr−1 (24 %) compared to the
LC + FIE + VSM simulation.

Since we increase the emissions from agricultural land
cover classes (21–23) from 3.13 Tg(N) yr−1 in the LC + FIE
simulation to 4.22 Tg(N), we further depart from the val-
ues ofStehfest and Bouwman(2006) and Bouwman et al.
(2002) (1.8 and 1.6 Tg(N) yr−1, respectively), but are still
within their 95 % confidence interval. We also calculated
the emission factors per crop type separately (Fig.10). Al-
though there are not enough observations at present to imple-
ment such a distinction reliably into the algorithm, this may
be interesting to pursue in future research, and we lay the

Table 6. The adopted (YL95/SL11) emission factors (arithmetic
mean) and associated soil biogenic NO emissions.

Emission factors Emission

ID N wet dry
[

Tg(N)
year

]
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 31(3) 0.06± 0.01 0.45± 0.10 0.21± 0.005
6 220(20) 0.21± 0.24 1.55± 1.75 0.04
7 – 0.21 1.55 0.78± 0.03
8 11(1) 0.01± 0.00 0.05± 0.01 0.005
9 – 1.05 7.75 0.04± 0.002

10 275(25) 1.05± 1.37 7.75± 10.12 0.40± 0.02
11 308(28) 0.97± 1.75 7.15± 12.86 2.20± 0.04
12 1135(105) 1.78± 4.34 13.11± 31.98 5.0± 0.1
13 99(9) 0.74± 0.50 6.26± 4.24 2.44± 0.04
14 44(4) 0.14± 0.24 1.01± 1.80 0.06± 0.002
15 10(1)∗ 0.95 6.33 0.44± 0.01
16 227(22) 0.95± 1.48 6.33± 9.84 0.31± 0.01
17 – 0.95 6.33 0.006
18 800(74) 4.60± 4.34 33.70± 31.84 2.46± 0.09
19 77(7) 0.13± 0.14 0.99± 1.06 0.03
20 612(57) 1.14± 2.31 5.33± 9.63 1.15± 0.02
21 2361(219) 3.13± 7.84 – 13.58± 0.32
22 – 3.13 – 0.69± 0.01
23 – 3.13 – 3.22± 0.1

sum 33.12± 0.64

∗ One flux measurement was 0, therefore emission factorsf landcover 16 were as-
sumed.

groundwork for that here. These emission factors calculated
per crop type span over more than an order of magnitude,
with the lowest one in rice fields; here in particular we see
the need for additional measurements, since there were only
two measurements conducted in rice fields.

The new total SNOx flux is now 10.51 Tg(N) yr−1

without the reduction in the “rice-producing areas”, and
9.4 Tg(N) yr−1 when the reduction is included.

3.7 Canopy reduction factor (CRF)

We also use an updated map of the monthly mean leaf area
index (LAI), published byDeng et al.(2006), to calculate
the canopy reduction factor (CRF), which is relevant for the
comparision with satellite-based estimates in the next sec-
tion. The data ofDeng et al.(2006) is available starting in
1998, so that we could not use the appropriate annual cycle of
LAI for the full simulation period. Instead, we used the aver-
age of each month for the years 1999, 2002, 2003 and 2005;
these were chosen because other years had unrealistically
high values in the Sahel region or atificial straight lines in the
data. On an annual average the CRF does not change much
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Fig. 9. Averaged SNOx flux in the whole simulation period (in
ng m−2 s−1) for the YL95/SL11 simulation (upper panel) and the
change compared to the YL95EMAC simulation (lower panel).

from YL95EMAC (CRF = 0.74) through LC (CRF = 0.77),
LC +F IE (0.76) and LC + FIE + VSM (CRF = 0.75). How-
ever, since in the YL95/SL11 simulation the emissions in
tropical evergreen forests decrease and the emissions from
deserts increase, the global averaged CRF increases to 0.82,
yielding in an even greater net flux to the atmosphere.

4 Comparison to satellite-derived emission estimates

Since we used all available measurements to provide the
best statistics for adjusting our emission factors, there are
no independent in situ measurements left to evaluate our
new implementation of the SNOx algorithm byYienger and
Levy (1995). Therefore we compare our YL95/SL11 above
canopy flux with the a posteriori SNOx fluxes ofJaegĺe et al.
(2005) for the year 2000, which are partly constrained by in-
dependent satellite-based measurements.Jaegĺe et al.(2005)
also use the algorithm byYienger and Levy(1995) in their
a priori simulations, but implemented in another global cli-
mate model.Jaegĺe et al.(2005) use the NO2 column derived
from the GOME satellite instrument (Burrows et al., 1999) in
an inverse modelling framework based on a global chemistr-
transport model, the GEOS-Chem model (Bey et al., 2001).
NOx emissions from fossil fuel combustion are distinguished
from other sources in a first step. In a second step they
further partition the remaining sources in biomass burning
events and soils, by using the firecounts of other satellite in-
struments (Langaans, 1993; Eva and Lambin, 1998; Giglio
et al., 2003).

agricultural emission factor

bare
(184/17)

unknown
(85/8)

vegetable
(712/66)

cotton
(54/5)

soybean
(65/6)

sugar cane
(99/9)

tobacco
(22/2)

rice
(22/2)

cereals
(354/34)

corn
(547/50)

grass
(66/6)

cocoa
(22/2)

0.001 0.01 0.1 1 10 100

Fig. 10. Distribution of calculated wet emissions factors for dif-
ferent crop types in the landcover “agriculture” with the number of
calculated emission factors and number of measurements per crop
class in brackets.

The annual global SNOx of YL95/SL11 (8.61 Tg(N) yr−1)
differs by 3 % from their annual SNOx of 8.84 Tg(N) yr−1

and is much closer toJaegĺe et al. (2005) than the
6.88 Tg(N) yr−1 above canopy flux in YL95EMAC and
5.5 Tg(N) yr−1 in YL95. By comparing Fig.11a with Fig.9a
we see that many of the features of our simulated bottom-up
distribution are similar to their top-down study (e.g. tropical
rainforest), though there are notable differences (e.g. forested
areas at mid- and high latitudes or arid regions), which are
highlighted in Fig.11b. There are several reasons for the
differences, as discussed below.
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Fig. 11. Averaged SNOx flux for the year 2000 of theJaegĺe et al.
(2005) (J05) inverse modeling study (in ng m−2 s−1) (upper panel)
and the difference between the YL95/SL11 year 2000 simulation
and the J05 results (YL95/SL11 – J05) (lower panel).

We calculate higher emissions in large areas of Europe ex-
cept Spain, whereJaegĺe et al.(2005) compute much higher
emissions. Our simulated flux is also higher in other regions,
as can be seen in Fig.11. However, there are also regions
where our simulated flux is lower. Over the tropical rainfor-
est, where SNOx has the strongest impact on chemical pro-
cesses in the atmosphere (Steinkamp et al., 2009) the emis-
sions in YL95/SL11 are similar toJaegĺe et al.(2005). It
is worth noting that this reduction in the tropical emissions
compared to YL95EMAC (see Fig.12 for the difference be-
tweenJaegĺe et al.(2005) and YL95EMAC) will reduce the
influence of SNOx on global ozone chemistry, while on the
other hand the general increase in SNOx will in turn increase
the influence.

The reduced flux over arid regions of the Middle East to
Pakistan, the Sahel region and Australia may be explained by
unrealistic landcover classes in our classification, the simu-
lated soil moisture state (see Sect.3.5) or due to the con-
straints provided by the satellite NO2 columns. For exam-
ple along the northern African Mediterranean coast, agricul-
tural areas in our landcover map seem to be much smaller
compared toPongratz et al.(2008). This alone may not be
enough to explain the higher fluxes from semi-arid regions,
including the southwestern USA, Mexico and the Sahel re-
gion, suggesting that our model still underestimates fluxes in
(semi-)arid regions compared toJaegĺe et al.(2005).

In the mountainous regions along the American west coast
we also get lower emissions and we contend that it seems
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Fig. 12. Difference between YL95EMAC andJaegĺe et al.(2005)
(YL95EMAC – J05) (in ng m−2 s−1) for the year 2000.

more sensible to have lower emissions from such regions
of high altitudes. Furthermore, the higher emissions in our
simulation from agriculture in the central and eastern parts
of North America are reasonable compared to independent
land usage distributions (Pongratz et al., 2008; Sterling and
Ducharne, 2008). In the tropical region of South Amer-
ica our results agree well and are a clear improvement over
YL95EMAC. But over tropical Africa our simulated SNOx
is still lower than the results byJaegĺe et al.(2005).

There have also been a few regional applications of the
top-down approach to eastern China using the GOME (Wang
et al., 2007) and OMI satellite instruments (Zhao and Wang,
2009). These two studies find an increase by 260 % and
240 % for SNOx compared to their a priori SNOx, respec-
tively. Their a priori estimate is comparable to our SNOx
in the geometric mean calculation YL95/SL11 with reduced
emissions in “rice-producing regions” (Table7). The clos-
est value to their a posteriori annual global SNOx is our
emission using the arithmetic mean calculation without re-
duced in “rice-producing regions”, but this is even higher
than their estimate. Other authors do not find such a strong
relative increase in eastern China (Müller and Stavrakou,
2005; Stavrakou et al., 2008), however this is partly because
Stavrakou et al.(2008) already scaled their global a priori
emissions to a global value of 8 Tg(N) yr−1. The a posteriori
estimate ofMüller and Stavrakou(2005) andStavrakou et al.
(2008) is 10–12.1 Tg(N) yr−1, which is slightly larger than
our best estimate using the arithmetic mean calculation.

5 Discussion

As expected, the mean value of the mesurements are in good
agreement with the ones simulated with the adjusted SNOx
fluxes in YL95/SL11 (Fig.13). Small deviations occur, be-
cause we used exactly the corresponding start and end day
of the measurements. We still have a “cloudy” distribution
around the 1:1 line (Fig.13), which can be expected for
this kind of statistical model, since there are several unac-
counted parameters which affect each landcover class, like
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Fig. 13. Scatterplots of SNOx measurements versus model results for the YL95/SL11 simulations.
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Fig. 14. Density function plot of SNOx measurements (orange, right of center line) versus model output (blue, left of center line) for the
YL95/SL11 simulation using the program byKampstra(2008).

Table 7. Comparison of new SNOx to a top-down study in eastern
China.

DJF MAM JJA SON year

Wang et al.(2007)

a priori 0.016 0.06 0.12 0.04 0.236
a posteriori 0.04 0.21 0.36 0.24 0.85

This stuy

geom. meana 0.01 0.05 0.08 0.03 0.18
geom. meanb 0.03 0.08 0.14 0.06 0.31
arithm. meana 0.02 0.12 0.22 0.10 0.47
arithm. meanb 0.07 0.26 0.42 0.22 0.97

a reduced emissions in “rice-growing regions”.
b without reduced emissions in “rice-growing regions”.

the heterogenity in soil parameters or the adaptation of NO
producing microorganisms to different habitats. This is re-
flected in the logarithmic density distribution functions of the
measurements (Fig.14), which have much larger tails com-
pared to the simulated fluxes.

An analysis similar to the one performed in Sect.3.6.1
can be performed by classifying the data by the duration
of the experimental period. In particular, there were a few
landcover classes (5, 11, 14, 19) with short term measure-
ments (less than 3 months). One might expect that short term
measurements will often have been performed specifically to

measure special events, like rain induced pulsing or fertilizer
induced emission, so that the limitation to long term mea-
surements in our analyses could cause the calculated emis-
sion factor to decrease. However, we do not find this to be
the case when we leave out these classes. In general, no con-
nection is evident between the length of the measurement and
the calculated new emission factors.

The reduction of SNOx in “rice-producing areas” that was
implemented byYienger and Levy(1995) is highly uncer-
tain, and there are several pieces of evidence for and against
it. Their original implementation was based on only one pub-
lication. Some more recent publications also support this
conclusion, for instance,Zheng et al.(2003) report that pe-
riodic flooding during rice production decreases the SNOx
even during non-flooded periods, and in a field campaign
Fang and Mu(2009) found that the flux from rice fields is
lower compared to other vegetable fields. The emission fac-
tor from rice-producing regions is also found to be lower
in our analyses, but this is based on only two measure-
ments in our dataset, and thus we agree with the earlier con-
clusion of theFAO and IFA (2001) that there are still not
enough measurements available to draw any solid conclu-
sions on this effect. Although we doubled the number of
landcover classes there is still a large variability within indi-
vidual classes, which is evident from the comparison of the
continental/regional differences within one landcover class.
Furthermore, in the probability density distributions depicted
in Fig. 14, the measured fluxes show a much broader distri-
bution and much stronger bi- to multimodal characteristics
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compared to our simulated values within each landcover
class. Other important limitations of our improved algorithm
are:

– The gridbox size of more than 100×100 km is too large
to accurately reproduce the measured fluxes; this is a
persistent problem in global models, and even if we
were to decrease the cell size by a few orders of magni-
tude, it would not be sufficent to capture the heterogen-
ity in real soils.

– Instead of having only two soil moisture regimes, in re-
ality one would expect a continous mathematical rela-
tionship, such as that proposed and confirmed in labo-
ratory measurements byMeixner and Yang(2006).

– Even if the algorithm itself were to be perfect, the use of
simulated soil moisture and soil temperature will lead to
errors, since these are also not perfectly representative
of reality.

Ideally the optimization we performed here would need to
be repeated for each resolution at which the model is run-
ning, otherwise SNOx will be underestimated at coarser res-
olutions and overestimated at finer resolutions (Fig.6). One
possibility to improve the total annual flux at lower resolu-
tions would be to simply increase the emissions rate by a
factor equal to the relative difference in the resolutions. How-
ever, this would still not be perfect, due to non-linearities in
the simulations; for example, the areal fraction of soils de-
fined as wet increases slightly at finer resolution, which in
turn causes SNOx to increase at higher temperatures.

6 Conclusions

We have made significant improvements to the soil NO emis-
sion algorithm developed byYienger and Levy(1995) using
a much larger set of in situ measurements, along with sev-
eral other recent advances such as more detailed land cover
classifications. The total global above-canopy flux increases
by 1.73 Tg yr−1 and we obtain a significant difference in the
geographical distribution of SNOx. Despite this overall in-
crease in SNOx, there is a reduction of SNOx in tropical re-
gions compared to the previous implementation in EMAC,
which will in turn reduce the relative influence on atmo-
spheric chemistry (in particular O3 and OH, and the tropo-
spheric oxidizing efficiency), as discussed inSteinkamp et al.
(2009).

As long as there is no mechanistically based algorithm to
calculate SNOx, which will be difficult to develop for global
models due to the heterogeneity of soils, vegetation and mi-
croorganisms, a valuable approach will be to continue ad-
justing the calculation of SNOx as we have done with new
measurements and other advances in the field. Since the al-
gorithm byYienger and Levy(1995) is the most-widely ap-
plied method to calculate SNOx in AC-GCMs, the method

we presented here can also be easily applied in other models,
either directly applying our new fitted parameters, or attain-
ing greater internal model consistency by applying the same
fitting technique with the observations. Finally, with a grow-
ing amount of measurements of SNOx accompanied with the
measurement of other relevant factors, it should eventually
be possible to incorporate other factors in the parameteriza-
tion, resulting in an improved agreement, in particular reduc-
ing the scatter in the comparison of modeled and observed
SNOx.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/11/6063/2011/
acp-11-6063-2011-supplement.pdf.
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