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particle emissions.

Table S1: Parameters (diameters)(Dstandard deviation cf and number
concentration fractions (Ng¢e {Nior)) used for the size resolved anthropogenic primary

Model Mode2 Mode3 Moded4 Mode5

Dp road (nm) 3.0 20.0° 77.0 - -

¢ road 1.25° 1.9 1.75° - -
Nmode i/ Niot F 0ad 0.02° 0.90° 0.08 - -

Dp ship (nm) 14.0° 90.¢° - - -

o ship 1.48 1.52 - - -
Nmode i/ Niot Ship 0.438 0562 - - -

Dp wood (nm) 7.7 23.8 64.7 150.0 530.0
o wood 1.26 1.49 1.50 1.60 1.30
Nmode i/ Ntot WoOd 0.032 0.241 0.497 0.227 0.003

6  *Value from Kristensson et al. (2004) for LDV at Ki@/h, "Values from Petzold et al. (2008Yalues

7  from Kristensson (2005).
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Table S2. Parameters used to calculate temperdependent aerosol yields for

oxidation products of different organic compounds.

Org. Ox. a1 as Kom.1 Komz  AH; AH, Te1  Treiz

comp. Agent (m¥ug)  (MYug) (kI/mol) (kJI/mol) (K) (K)

a-pinene  OH 0.5 - 0.0Z - 40° - 320 -
O; 0.08 0.42 0.5 0.008 100} 38 31¢ 310
NO; 0.1 - 0.02 - 40 - 31 -

p-pinene  OH 1.0° - 0.02 - 60° - 310 -
O; 0.03 03¢ 05 0.008  10C° 40 31¢ 30C°
NO; 1.0° - 0.0163 - 60° - ~310 -

A3- OH 0.054 0517 0.043  0.0042 100 40° ~31¢ -~310

carene O, 0.128 0.068 0.337 0.0036 100 40 ~31¢ ~310
NO; 0.74% 0.257 0.0088 0.009F 8C 40 ~31¢ ~310

D- OH 0.239 0.363 0.058  0.0053 100 40° ~31¢ -~310

limonene O 0.0 0.3¢ 0.055 0.0053 4C° 100° ~31¢ ~310
NO; 1.0 - 0.055 80° 80° ~31¢ ~310

Isoprene  OH 0.232" 0.0288 0.00862 1.6 - - - -
(0% 0.232 0.028¢8 0.00862 1.6 - - - -
NOs 0.232 0.028¢8 0.00862 1.6 - - - -

Benzene OH+NO 0.07Z 0.886 3.315  0.0096 40° 40 300  300°
OH+HO, 0.37 - -

Toluene OH+NO 0.095 020G 05 0.0085 40 40 300 300
OH+HO, 0.36 - -

Xylene ~ OH+NO 0.044 0.15 05 0.008 60° 60F 300 300
OH+HO, 0.3C¢ - -

POA OH, Q, 028 077 1.0 0.0 130 100° 300  300°
NO;

IVOC OH, O, 045 055 0.00f 0.000f 100 o 300  30CF
NO;

POA and 1.¢ - - - - - - -

IVOC

oxidation

products

a/alues from Svendby et al., 200%/alues from Griffin et al., 1999E stimated values for this work,
Yvalues from Henze and Seinfeld, 200@alues from Ng et al., 2007



Table S3. Emission fractions of existing non-viéaBOA emissions which are used

when the POA is treated as semi-volatile and IV@{ssions are included.

C* at 298 K (1g/nT) 10° 10" 1 10 106 10 100 10 10
Emission fractionsSVPOA 0.03 0.06 0.09 0.14 0.18 0.30 0.20 O 0
Emission fractiorslVOCs 0 0 0 0 0 0 0.20 0.50 0.80

®Mass ratio to existing EMEP POA emissions, valldspéed from Robinson et al. (2007), Shrivastava
et al. (2008) and Tsimpidi et al. (2010).
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Fig. S1. Air mass trajectories from the HYSPLIT rab{Draxler and Rolph, 2011).
The trajectories start over Malmé (A) the®2f June, 2006, at 6 am, 50, 100, 300 and
500 m a.g.l.. Downwind of Malmd the trajectory meveorthward over Sweden and
pass over or near the Vavihill measurement statimut 50 km north from Malmé.
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Fig. S2. Vertical temperature (a) and relative Hhdityi(b) profiles from the Global
Data Assimilation System (GDAS) which were downleddfrom NOAA Air
Resource Laboratory Real-time Environmental Appicca and Display sYstem
(READY) (Rolph, 2011), over Malm6é and 6 and 24 tsodownwind (dw.) of

Malmo.
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Fig. S3. SOA vyields for benzene (B), toluene (TYl aylene (X), at 300 K, at high
NOy and low NQ conditions (Ng et al., 2007) and benzene, toluamexylene SOA
yield at 300 K from the 2D-VBS model used in ADCHEM
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Fig. S4. Modeled ammonia (a), nitric acid (b), stitf acid (c) and NQ(d), from 6
hours upwind of Malmé (00:00) until 24 hours downdiof Malmd, in the vertical
direction (0-2000 m a.g.l.), in the center of tlban plume. The mixing height along
the trajectory is also displayed.
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