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Abstract. Organic acids attract increasing attention as con-
tributors to atmospheric acidity, secondary organic aerosol
mass and aerosol hygroscopicity. Oxalic acid is globally the
most abundant dicarboxylic acid, formed via chemical oxida-
tion of gas-phase precursors in the aqueous phase of aerosols
and droplets. Its lifecycle and atmospheric global distribu-
tion remain highly uncertain and are the focus of this study.
The first global spatial and temporal distribution of oxalate,
simulated using a state-of-the-art aqueous-phase chemical
scheme embedded within the global 3-dimensional chem-
istry/transport model TM4-ECPL, is here presented. The
model accounts for comprehensive gas-phase chemistry and
its coupling with major aerosol constituents (including sec-
ondary organic aerosol). Model results are consistent with
ambient observations of oxalate at rural and remote loca-
tions (slope = 1.16± 0.14, r2 = 0.36, N =114) and suggest
that aqueous-phase chemistry contributes significantly to the
global atmospheric burden of secondary organic aerosol. In
TM4-ECPL most oxalate is formed in-cloud and less than
5 % is produced in aerosol water. About 62 % of the ox-
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alate is removed via wet deposition, 30 % by in-cloud reac-
tion with hydroxyl radical, 4 % by in-cloud reaction with ni-
trate radical and 4 % by dry deposition. The in-cloud global
oxalate net chemical production is calculated to be about
21–37 Tg yr−1 with almost 79 % originating from biogenic
hydrocarbons, mainly isoprene. This condensed phase net
source of oxalate in conjunction with a global mean turnover
time against deposition of about 5 days, maintain oxalate’s
global tropospheric burden of 0.2–0.3 Tg, i.e. 0.05–0.1 Tg-
C that is about 5–9 % of model-calculated water soluble or-
ganic carbon burden.

1 Introduction

Atmospheric aerosols are composed of water, inorganic salts,
crustal material, carbonaceous compounds and trace metals.
Organic aerosols (OA) account for a significant fraction of
the fine particulate mass in the atmosphere (e.g. Kanakidou
et al., 2005; Zhang et al., 2007). However, many uncertain-
ties exist regarding their sources, composition, properties and
transformation mechanisms, impending the evaluation of OA
impacts on atmospheric composition, climate, human health
and ecosystems (Kanakidou et al., 2005). OA can also affect
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the hygroscopicity of cloud nucleation by modifying cloud
condensation nuclei (CCN) number and efficiency (Yu, 2000;
Sun and Ariya, 2006).

OA components can be directly emitted in the atmosphere
in the particulate phase (primary organic aerosols; hereafter
POA) or chemically formed in the atmosphere (secondary
organic aerosols; hereafter SOA). A large fraction of “tra-
ditional” POA is also semi-volatile, being a dynamic mix-
ture of compounds with vapor pressures that span several or-
ders of magnitude (Robinson et al., 2007). SOA is formed
from the gas/particle partitioning of volatile organic com-
pound (VOCs) oxidized by e.g. ozone (O3), hydroxyl (OH)
and nitrate (NO3) radicals (e.g. Kanakidou et al., 2005; Hal-
lquist et al., 2009).

Aerosol Mass Spectrometer (AMS) observations (Zhang
et al., 2007; Jimenez et al., 2009) indicate that a large frac-
tion of the ambient OA in the fine mode is chemically pro-
cessed (oxygenated). The gas-to-particle conversion mecha-
nism is included in many state-of-the-art global atmospheric
models (e.g. Tsigaridis and Kanakidou, 2003, 2007; Heald
et al., 2005, 2006; Hoyle et al., 2009; Pye and Seinfeld,
2010). In the earlier modeling studies, the OA burden
was significantly underestimated (5–100 times in the up-
per troposphere) compared to observations (de Gouw et al.,
2008; Heald et al., 2005; Volkamer et al., 2006). Recent
model improvements like consideration of marine OA com-
ponents (e.g. Myriokefalitakis et al., 2010; Vignati et al.,
2010), of the oxidation of intermediate VOC and the semi-
volatile character of primary OA (Pye and Seinfeld, 2010;
Jathar et al., 2011), reduced the discrepancies with observa-
tions. Although underestimating OA, most models are actu-
ally able to simulate the order of magnitude of OA observa-
tions in the troposphere.

Aqueous-phase chemistry provides a complementary
pathway for SOA formation to non-aqueous gas-particle
partitioning (“traditional” description of SOA) and has the
potential to enhance OA concentrations in the atmosphere
and particularly in the free troposphere (Blando and Turpin,
2000; Gelencser and Varga, 2005; Sorooshian et al., 2007;
Ervens et al., 2008). During SOA formation in the gas-phase,
the precursors are mostly high molecular weight (MW)
molecules (>C7) able to produce semi-volatile compounds.
In the case of aqueous-phase SOA formation, the precursors
need to be water soluble and therefore can be smaller and
oxidized molecules (Volkamer et al., 2007). Their oxida-
tion products have higher O:C atomic ratios than their pre-
cursor molecules (Jimenez et al., 2009). During gas-phase
oxidation, C-C bonds can often be cleaved, yielding smaller
and therefore more volatile compounds. On the contrary,
in the aqueous phase C-C bonds are preserved, since oxi-
dation of organic compounds by OH radicals forms multi-
functional compounds (Carlton et al., 2007). In addition,
condensed-phase OH and NO3 reactions are shown to en-
hance O:C ratio in the products (Lim et al., 2010; Herrmann
et al., 2005) more than the gas-phase reactions (Jimenez et

al., 2009), because the oxidation occurs on low-MW precur-
sors. Such processes can explain the high O:C ratio (close to
1 or even higher) observed in aged ambient aerosols (Aiken
et al., 2008; Altieri et al., 2009) and thus bring models closer
to observations (Ervens and Volkamer, 2010; Jimenez et al.,
2009). One of the most important aqueous-phase products
is oxalic acid, (COOH)2, which has high O:C atomic ratio
of 2. Oxalic acid has been reported as an important organic
ligand affecting the availability of nutrients, like iron, to the
ecosystems (Kaermer, 2003; Reichard et al., 2005). There-
fore, understanding its occurrence and fate in the troposphere
is of interest for atmospheric chemistry, climate and the bio-
sphere.

Formation of low-volatility organic compounds by multi-
phase processes has been suggested based on observations
during both field (Kawamura et al., 1996; Matsunaga et
al., 2003; Liggio and McLaren, 2003; Garcia-Alonso et
al., 2006; Volkamer et al., 2007; Hecobian et al., 2010)
and laboratory studies (Volkamer et al., 2009; Lim et al.,
2010) of glyoxal (CHOCHO; hereafter GLY). GLY is pro-
duced via the oxidation of Cn≥2-hydrocarbons, with a global
chemical production estimated to be 45-100 Tg yr−1 (Fu et
al., 2008; Myriokefalitakis et al., 2008; Stavrakou et al.,
2009). Stavrakou et al. (2009) showed through inverse mod-
eling that only half of the over land observed GLY columns
can be understood in terms of identified sources (primary
and secondary). GLY is highly reactive in the aqueous
phase (Buxton et al., 1997) and has been suggested to par-
ticipate in heterogeneous reactions producing SOA (Ervens
and Volkamer, 2010; Lim et al., 2010). By applying an
irreversible uptake (γ ) of GLY on aqueous particles and
cloud drops (γ =2.9×10−3; Liggio et al., 2005a), Fu et
al. (2008) and Stavrakou et al. (2009) calculated that about
90 % of GLY is subject to dissolution in atmospheric wa-
ter (clouds and wet aerosols) contributing to SOA formation
by 6.4 to 13 Tg yr−1. However, observations of GLY at-
mospheric columns from the SCIAMACHY satellite sensor
are generally underestimated by chemistry transport mod-
els (Wittrock et al., 2006; Myriokefalitakis et al., 2008), in
particular over the oceans. Myriokefalitakis et al. (2008)
suggested the existence of a source of GLY (∼20 Tg yr−1)

over the oceans to support GLY columns observed over
the tropical oceans. High GLY columns have been also
recorded by recent surface-based measurements of GLY over
the oceans (Sinreich et al., 2010; Volkamer et al., 2010).
Their significance on the GLY budget and involvement in
SOA formation remains to be determined.

The main atmospheric reservoirs of liquid water are cloud
droplets and wet aerosols; their main difference lies in the
amount of liquid water per particle (often well described
by the liquid water content, LWC) (Fig. 1). Clouds are
formed from condensation of water vapor onto CCN, cover
∼60 % of the Earth’s surface and occupy about 7 % of the
tropospheric total volume (Lelieveld et al., 1989; Pruppacher
and Jaenicke, 1995). Clouds provide medium for chemical
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Fig. 1. Annual mean cloud LWC in g m−3 (a) for surface and(b) zonal mean concentrations for the year 2005, and calculated aerosol LWC
in g m−3 (c) for surface and(d) zonal mean concentrations for the same period.

transformations that are either not taking place, or proceed
very slowly in the gas-phase (e.g. non-sea-salt sulfate (nss-
SO2−

4 ) production; Fuzzi et al., 2001). Aerosol water can be
about five orders of magnitude less than cloud LWC (0.1–1
vs. 10−6

−10−4 g m−3, respectively; Ervens and Volkamer,
2010; Hennigan et al., 2008) therefore the concentration of
dissolved substances can vary orders of magnitude between
the two systems. In the condensed medium of wet aerosols,
organics can react with themselves or with other aerosol
components such as sulfate, ammonium, amides, to form sul-
fur and nitrogen containing organic compounds (Perri et al.,
2009; Noziere et al., 2008; Ervens and Volkamer, 2010; Lim
et al., 2010).

Water-soluble organic compounds can be transferred and
react into atmospheric liquid water, forming lower volatility
compounds such as organic acids (Warneck, 2003; Ervens
et al., 2004; Lim et al., 2005; Carlton et al., 2006; Perri et
al., 2009), oligomers (Tan et al., 2009; Altieri et al., 2006,
2008; Perri et al., 2009) and organosulfates (Liggio et al.,
2005b; Galloway et al., 2009). The low volatility organic
products remain (at least partly) in the particulate phase after
droplet evaporation, contributing to OA mass (Sorooshian et
al., 2007, 2010). Hennigan et al. (2009) showed that a sub-
stantial amount of gas-phase organic species partition onto

aerosol during late morning in the South East US; the or-
ganic mass is semi-volatile (but does not evaporate together
with the aerosol water) and can contribute substantially, up
to 50 % of the total SOA mass, in this region of the globe.

Lim et al. (2005) suggested that carbonyls like glyco-
laldehyde (HOCH2CHO; hereafter GLYAL) and methylgly-
oxal (CH3COCHO; hereafter MGLY) could contribute sim-
ilarly to GLY to the global SOA formation. GLY, GLYAL
and MGLY are gas-phase high solubility oxidation products
of biogenic and anthropogenic VOCs. In the presence of liq-
uid water, these aldehydes dissolve in the aqueous phase fol-
lowing Henry’s law. Hydrated aldehydes are oxidized by OH
and NO3 radicals producing oxalate (hereafter OXL), mostly
via glyoxylic acid oxidation (CHOCOOH; hereafter GLX).
OXL is a low volatility product that upon cloud evaporation
tends to remain in the particulate phase (especially if it is
neutralized by e.g. ammonium or sodium).

Lim et al. (2005) and Carlton et al. (2007) presented a
chemical scheme of GLY, GLYAL and MGLY in the aque-
ous phase producing oxalic acid that remains mainly in the
particulate phase as OXL. Isoprene is the biogenic hydrocar-
bon with the highest emissions of about 500 Tg yr−1 (Guen-
ther et al., 1995), followed by terpenes (about 140 Tg yr−1;
Guenther et al., 1995), which are the main precursors of
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light aldehydes in the atmosphere like GLY, GLYAL and
MGLY (Myriokefalitakis et al., 2008). Box model calcula-
tions by Lim et al. (2005) suggested that cloud processing
of isoprene contributes to at least 1.6 Tg yr−1 on the global
biogenic SOA production.

OXL is globally the most abundant dicarboxylic acid with
concentrations ranging from tens of ng m−3 in remote loca-
tions (Sciare et al., 2009) to hundreds of ng m−3 in urban
regions (Kawamura and Ikushima, 1993; Sorooshian et al.,
2007; Legrand et al., 2007) and up to more than 1 µg m−3

in highly forested areas like the Amazon basin (Falkovich
et al., 2005) and Central Africa (Ruellan et al., 1999). Low
molecular weight dicarboxylic acids are recognized as ubiq-
uitous aerosol constituents (Kawamura and Kaplan, 1987;
Kawamura and Ikushima, 1993; Sempéŕe and Kawamura,
1994; Kawamura et al., 1995a,b; Kawamura and Sakaguchi,
2009), contributing to a few percent on the water soluble
mass (Sorooshian et al., 2007, 2010). The observed correla-
tion between nss-SO2−

4 and OXL at various locations denotes
a common formation pathway (Yu et al., 2005; Sorooshian
et al., 2006), most probably associated with aqueous-phase
chemistry. Modeling studies also support the in-cloud oxalic
acid formation (Warneck, 2003; Ervens et al., 2003, 2004;
Lim et al., 2005, 2010) from GLY (Carlton et al., 2007) and
other “GLY-like” gas-phase precursors like GLYAL (Perri et
al., 2009) and MGLY via pyruvic acid (CH3COCOOH; here-
after PRV) oxidation (Altieri et al., 2008).

Primary sources, albeit weak, have also been identified for
oxalic acid. Kundu et al. (2010a,b) reported high concentra-
tions of oxalic acid (0.7–2.1 µg m−3) in Amazonian aerosols
during biomass burning season. Biomass burning can be
an important process for the emission of oxalic acid and its
precursors to the atmosphere, in addition to the secondary
production by photochemical oxidation of biogenic VOC.
Moreover, Yamasoe et al. (2000) showed that OXL accounts
for about 0.1 % of the total aerosol mass emitted during the
burning processes. Schmidl et al. (2008) found that the av-
erage concentration of OXL in smoke from the burning of
wood ranges between 0.1–0.3 % of the total emitted mass and
was about 400 times lower compared to OC emitted masss.
Incomplete combustion of aromatic hydrocarbons (benzene,
toluene, naphthalenes, and others) in gasoline engines could
be also a potential primary source of atmospheric diacids,
with oxalic acid concentrations accounting for almost 25–
50 % of the total dicarboxylic acid emitted mass (Kawamura
and Kaplan, 1987). Nevertheless, vehicle exhaust is not ex-
pected to be a significant primary source of oxalic acid in the
atmosphere (Huang and Yu, 2007).

In the current study we present the first 3-dimensional
chemistry-transport modeling (CTM) study of occurrence
and fate of oxalate in the global troposphere. The tempo-
ral and spatial OXL distributions are simulated using the 3-
dimensional global CTM, TM4-ECPL, coupled with a mul-
tiphase chemistry module. Section 2 describes the model-
ing tool and the simulations that have been performed for

this study. The OXL global budget calculations are pre-
sented in Sect. 3 where the contributions of biogenic and
anthropogenic sources to OXL chemical production are dis-
tinguished and the impact of the OXL removal processes
taken into account by the model is discussed. In Sect. 4 the
computed OXL distributions are presented and compared, in
Sect. 5, with observations of OXL available in literature to
evaluate model uncertainties. The implications of the find-
ings for the OA global budget are discussed in Sect. 6.

2 Model description

The chemistry-transport global model TM4 is used for the
present study (van Noije et al., 2004). The model version ap-
plied here (TM4-ECPL) contains a comprehensive gas-phase
chemistry mechanism (Myriokefalitakis et al., 2008) and or-
ganic aerosol parameterizations from Tsigaridis et al. (2006),
Tsigaridis and Kanakidou (2007) and Myriokefalitakis et
al. (2010). Gas-particle partitioning of inorganic components
is solved using the ISORROPIA II aerosol thermodynamics
model that also calculates aerosol water content (Nenes et
al., 1998; Fountoukis and Nenes, 2007). The resolution of
TM4-ECPL is 34 vertical hybrid layers from the surface to
0.1 hPa and 4◦×6◦ horizontal resolution in latitude and lon-
gitude, using a time-step of 1 hour. In this study, the mete-
orological fields come from ECMWF (European Center for
Medium-Range Weather Forecasts) operational data for year
2005 and are updated every 6 h using short range forecasts
over 6 or 12 h.

2.1 Emissions

TM4-ECPL uses the monthly average 1◦
×1◦ gridded VOC,

nitrogen oxides (NOx), carbon monoxide (CO) and biomass
burning trace gas (biogenic and anthropogenic) emissions
from the POET database (Granier et al., 2005) for the year
2000. Biomass burning emissions of carbonaceous aerosols
for the respective year are adopted from the Global Fire
Emissions Database version 2 (GFED v2; Van der Werf
et al., 2006). Marine emissions of POA, hydrocarbons
and sea-salt particles, are calculated online as presented in
Myriokefalitakis et al. (2010). Dust emissions from AERO-
COM (Aerosol Comparison between Observations and Mod-
els; Dentener et al., 2006) updated to year 2005 (E. Vignatti,
personal communication, 2008) are also used.

2.2 Organic aerosol formation pathways

With the exception of the SOA formation from multiphase
chemistry that is presented here, all other OA parameteri-
zations have been published in detail previously. The most
detailed references are Tsigaridis et al. (2006) and Myrioke-
falitakis et al. (2010). Briefly, TM4-ECPL accounts for sol-
uble and insoluble forms of anthropogenic and marine pri-
mary OA that is ageing chemically by reaction with O3
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as described in Tsigaridis and Kanakidou (2003). SOA is
chemically formed by gas phase oxidation of terpenes and
other reactive volatile organics (represented by a- and b-
pinenes), isoprene and aromatics (represented by toluene
and xylene) and dimethylsulfide. For the SOA formation
from gas phase oxidation of volatile organics the two-product
model has been adopted accounting for the NOx dependent
SOA formation (Tsigaridis et al., 2006). SOA is also al-
lowed to age chemically by reaction with OH radical as in
Tsigaridis and Kanakidou (2003). Accounting also for the
primary OC and its aged forms, TM4-ECPL uses a total of
19 tracers to simulate organic aerosol components that are
grouped in 8 major categories: SOA from anthropogenic
volatile organics (SOA a), SOA from biogenic volatile organ-
ics (SOA b), marine SOA (SOA ocean that includes methane-
sulfonic acid (MSA), Marine Amines Salts and SOA from
marine isoprene and terpenes), Oxalate (OXL), aged SOA,
primary anthropogenic OC, primary marine OC. All input
parameters adopted for the primary and secondary organic
carbon (OC) parameterizations are presented in Myriokefal-
itakis et al. (2010).

2.3 Aqueous-phase chemistry scheme

The aqueous phase chemical mechanism in TM4-ECPL is
based on recently published box modeling studies (Ervens
et al., 2004; Lim et al., 2005; Herrmann et al., 2005; Sor-
roshian et al., 2006; Carlton et al., 2007; Ervens and Volka-
mer, 2010). Chemical production of OXL occurs only in
the aqueous phase, as there are no known gas-phase chem-
ical reactions that produce the compound. In the presence
of cloud droplets, formaldehyde (CH2O), GLYAL, GLY,
MGLY, HCOOH, CH3COOH and PRV are transferred from
the gas to the aqueous phase, where GLYAL, GLY, MGLY
and PRV are oxidized by OH and NO3 radicals to produce
OXL via GLX oxidation. In the presence of clouds, GLX and
OXL are considered to be dissolved in the aqueous phases
whereas in the absence of clouds or after cloud evaporation
they reside entirely in the particulate phase. This approxi-
mation might result in an overestimate of OXL for realistic
conditions since low levels of OXL have been also observed
in the gas phase (Baboukas et al., 2000).

The aqueous-phase reactions taken into account in the
model are listed in Table 1, together with the adopted re-
action rates. The pH-dependence of aqueous-phase chem-
istry is considered via the equilibrium reactions given in Ta-
ble S1 (Supplement). In TM4-ECPL, in-cloud [H+] concen-
tration is calculated from the strong acids and bases as

[H+
] = 2[SO2−

4 ]+[MS−
]+[HNO3]+[NO−

3 ]−[NH+

4 ]

(HNO3 is nitric acid, NO−

3 is nitrate ion and NH+4 is am-
monium ion). For pH> 4.3 the dissolution and subsequent
dissociation of CO2, SO2, and NH3 are also taken into ac-
count (Jeuken et al., 2001). For the present study OXL is
also considered.

The inorganic composition, phase state (solid/liquid
phase) speciation, aerosol water, and pH are obtained
from the ISORROPIA II aerosol thermodynamic equilibrium
model (Fountoukis and Nenes, 2007). ISORROPIA in TM4-
ECPL does not include water uptake by organics, and the
organic phase is assumed not to contribute to aerosol water.
Neglecting the contribution of organics to the hygroscopic-
ity parameter,κ, leads to an underestimation of the aerosol
κ by 20–30 % for an aerosol with organic mass fraction of
80 %, however drops to 10 % or lower for mass fraction of
60 % or lower. Based on the OA levels and contributions
to the total aerosol mass calculated by TM4-ECPL, this ap-
proximation is expected to produce some underestimation in
aerosol water and hence underestimation in OXL formation,
only in the heart of the Amazon boundary layer. Outside the
boundary layer, the contribution of WSOC to total aerosol
mass is small, hence its associated water uptake is at most a
few percent. Such organic water uptake is within the uncer-
tainty of ZSR (Zdanovskii-Stokes-Robinson approach, with
the basic assumption that the quantities of water associated
with each solute are additive) for most of the atmosphere.
ZSR that is used to predict water uptake in ISORROPIA-II
has an estimated error of∼10 %.

The partitioning between the gas and aqueous phases
of O3, OH, NO3 and HO2 radicals, HNO3, SO2, SO2−

4 ,
hydrogen peroxide (H2O2), CH2O, GLY, GLYAL, MGLY,
HCOOH, CH3COOH, PRV, GLX and OXL is parameter-
ized based on the effective Henry’s law for pure water (Ta-
ble S2; Supplement). For most species, the transfer between
the gas and aqueous phases is parameterized using the phase
ratio (8). 8 expresses the amount of gas in a given vol-
ume of air that resides in the aqueous phase relative to the
amount in the interstitial gas phase (Lelieveld and Crutzen,
1991). Using the phase ratios for each species the parti-
tioning between the gas and aqueous phases is calculated.
However, mass transfer limitations are taken into account for
species with high reactivity in the aqueous phase (Schwartz,
1986). In the present study, the transfer of OH, NO3 and
HO2 radicals between gas and aqueous phases follows mass
diffusion processes (see details in Supplement A1). Further-
more, an effective cloud droplet radius of 5 µm over land
and of 10 µm over oceans is here adopted since the cloud
droplet radius has been reported to vary between∼3.6 and
>16.5 µm for remote clouds, 1 and 15 µm for continental
and∼1–25 µm for polluted clouds (Herrmann, 2003). Use of
an effective cloud droplet radius of 5 µm both over land and
over oceans results in small changes (∼2 % enhancement in
computed OXL formation) in TM4-ECPL calculations, in-
dicating low sensitivity of our computed OXL levels to the
changes in droplet sizes, in agreement with Lelieveld and
Crutzen (1991) who also pointed out that gas-transfer pro-
cesses are generally much faster than the chemical processes
involved.
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Table 1. The aqueous phase chemical mechanism and corresponding rate constants used in TM4-ECPL. Units for the photolysis frequencies
are s−1, and for the second order aqueous reactions are expressed in l mol−1 s−1. Reaction rates are taken from Lim et al. (2005), unless

referred differently. Reactions rates are calculated as follows:k = k298exp
[
−

E
R

(
1
T

−
1

298

)]
Aqueous Phase Reactions K298 E/R

1 O3+ hv (+ H2O) → H2O2 + O2
a

2 H2O2 + hv → 2OH a

3 NO−

3 + hv (+ H+) → NO2+OH a

4 HO2 + HO2 → H2O2 + O2 9.7× 105 2500
5 HO2 + O−

2 (+ H+) → H2O2 + O2 1.0× 108 900
6 O3 + O−

2 (+ H+) → OH + 2O2 1.5× 109

7 O3 + OH → HO2 + O2 1.1× 108

8 HO2 + OH → O2 + H2O 7.1× 109

9 OH + OH → H2O2 5.5× 109

10 H2O2 + OH → HO2 + H2O 2.7× 107

11 NO3 + HO−
→ NO−

3 + OH 9.4× 107 2700

12 S(IV) + H2O2 → SO2−

4
b

13 S(IV) + O3 → SO2−

4
c

14 CH2(OH)2 + OH (+ O2) → HCOOH + HO2 + H2O 1.1× 109 1020
15 CH2(OH)2 + NO3 (+ O2) → HCOOH + HO2 + NO−

3 + H+ 1.0× 106 4400
16 GLYAL + OH (+ O2) → GLY + HO2 1.0× 109 1564d

17 GLYAL + 2 OH (+ 2 O2) → GLX + 2 HO2 + 2 H2O 5.0× 108 1564d

18 GLYAL + NO3 (+ O2) → GLX + HO2+ NO−

3 + H+ 1.1× 107e

19 GLYAL + 2 NO3 (+ O2) → GLY + 2 NO−

3 + 2 H+ + H2O 5.5× 106g

20 GLY + OH (+ O2) → GLX + HO2+ H2O 1.1× 109 1564g

21 GLY + OH → 0.03GLX + 0.97 OXL + H2O 3.1× 109h

22 GLY + NO3 (+ O2) → GLX + HO2 + NO−

3 + H+ 6.3× 107f

23 GLY +hv/OH (only in aerosol water) → 0.2OXL + 0.8OLIGOMERIC-SOA i

24 GLY + NH+

4 (only in aerosol water) → OLIGOMERIC-SOA 1.3× 10−7 (pH = 2) j

2.4× 10−4 (pH = 5)j

0.43 (pH = 7)j

25 MGLY + OH (+ O2) → 0.92PRV + 0.08GLX + HO2 + H2O 1.1× 109k 1600
26 MGLY + NO3 (+ O2) → 0.92PRV + 0.08 GLX + HO2+ NO−

3 + H+ 6.3× 107e

27 HCOOH + OH (+ O2) → CO2 + HO2 + H2O 1.2× 108 990
28 HCOO− + OH (+ O2) → CO2 + H2O (+ O−

2 ) 3.1× 109 1240
29 HCOOH + NO3 (+ O2) → CO2 + NO−

3 + 2H+ (+ O−

2 ) 3.8× 105 3400
30 HCOO− + NO3 (+ O2) → CO2 + NO−

3 + H+ (+ O−

2 ) 5.1× 107 2200
31 CH3COOH + OH (+ O2) → 0.85GLX + 0.15 CH2(OH)2 1.5× 107 1330
32 CH3COO− + OH (+ O2) → 0.85GLX− + 0.15CH2(OH)2 1.9× 109 1800
33 CH3COOH + NO3 (+ O2) → 0.85GLX + 0.15CH2(OH)2+ NO−

3 + H+ 1.4× 104e 3800
34 CH3COO− + NO3 (+ O2) → 0.85GLX− + 0.15CH2(OH)2 + NO−

3 + H+ 2.9× 106e 3800
35 PRV + OH (+ O2) → CH3COOH + HO2 + CO2 1.2× 108 2766
36 PRV− + OH → CH3COO− + HO2 + CO2 7.0× 108 2285
37 PRV + NO3 (+ O2+ H2O) → CH3COOH + CO2 + HO2 + NO−

3 + H+ 4.8× 106e

38 PRV− + NO3 (+ O2+ H2O) → CH3COO− + CO2 + HO2+ NO−

3 + H+ 1.9× 108e

39 GLX + OH (+ O2) → OXL + HO2 + H2O 3.6× 108g 962g

40 GLX− + OH (+O2) → OXL− + HO2 + H2O 2.8× 109g
4330g

41 GLX + NO3 (+ O2) → OXL + HO2 + NO−

3 + H+ 3.0× 106m

42 GLX− + NO3 (+ O2) → OXL− + HO2 + NO−

3 + H+ 1.1× 108m

43 OXL + 2OH → 2CO2 + 2H2O 1.4× 106 2766n

44 OXL− + OH (+ O2) → 2CO2 + H2O (+ O−

2 ) 1.9× 108g 2766g

45 OXL2− + OH (+ O2) → 2CO2 + HO− (+ O−

2 ) 1.6× 108g 4330g

46 OXL + 2NO3 → 2CO2 + 2NO−

3 + 2H+ 6.8× 107o

47 OXL− + NO3 (+ O2) → 2CO2 + NO−

3 + H+ (+ O−

2 ) 6.8× 107l

48 OXL2− + NO3 (+ O2) → 2CO2 + NO−

3 (+ O−

2 ) 2.2× 108l

a using the gas-phase photolysis rates (Myriokefalitakis et al. (2008) Supplement.), increased by a factor of 1.5 as recommended by Barth et al. (2003);b Seinfeld and Pandis (1998);

K =
7.5×107e

−4430
(

1
T

−
1

298

)[
H+

]
1+13

[
H+

] ; c Seinfeld and Pandis (1998);K1 = 2.4104,K2 = 3.7 105e−530(1/T −1/298),K3 = 1.5 109e−5280(1/T −1/298); d as for GLY + OH;e Herrmann

et al. (2005);f as for MGLY + NO3; g Herrmann (2003);h lumped reactions based on Carlton et al. (2007);i photochemical lumped reaction in aerosol water content based on

Ervens and Volkamer (2010) with rate of 4 s−1 scaled on the photolysis frequencies of H2O2, see text;j Noziere et al. (2009);k Ervens et al. (2004);l Herrmann et al. (2000);m as

for glycolic acid from Herrmann et al. (2005);n as for OXL− + OH; o as for OXL− + NO3
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Table 2. Outline of simulations performed in this study.

Simulation Description

S1 In-cloud OXL formation taking into
account the effect of the ionic strength
of cloud water on GLYAL, GLY and
MGLY.

S1.1 As S1, neglecting the effect of the ionic
strength of cloud water on GLYAL,
GLY and MGLY.

S1.1.1 As S1, neglecting the effect of the ionic
strength of cloud water on GLYAL and
MGLY.

S1.1.2 As S1, neglecting the effect of the ionic
strength of cloud water on MGLY.

S1.2 As S1, omitting the temperature
dependence of Henry constants.

S1.3 As S1, assuming constant pH values of
4.5 for cloud droplets.

S1.4 As S1, assuming a constant droplet ra-
dius of 5 µm.

S1.5 As S1, assuming a Henry law constant
of OH radicals of
9× 103 mol l−1 atm−1

S2 As S1, also taking into account poten-
tial primary sources of OXL.

S3 As S2, also taking into account the
potential chemical formation of OXL
into aerosol water, see text.

S4 As S3, also taking into account GLY
potential source over oceans.

2.4 Simulations

Several sources of uncertainty in the predictions have been
investigated in the simulations (e.g., the dependence of
OXL production on temperature, on the cloud-water pH, on
the phase-transfer of the precursor molecules, the potential
OXL primary emissions and the OXL chemical formation in
aerosol water). For these investigations, simulation S1 has
been used as a reference case for simulations S1.1 (S1.1.1,
S1.1.2) to S1.5, S2, S3 and S4. The differences between the-
ses simulations and S1 are outlined in Table 2.

The base simulation (S1) assumes that the in-cloud OXL
formation is the only source of OXL in the atmosphere. After
cloud evaporation, OXL is considered to remain entirely in
the aerosol phase. The phase change is governed by Henry’s
law, where the effective Henry’s law constants depend on the
aqueous medium composition. Although cloud droplets do
not consist of pure water but contain a range of water soluble

species e.g. sulfate, ammonium, chloride etc., most of the ef-
fective Henry values provided in literature are representative
for pure water. Herrmann (2003) presented ionic strength (I)
values for remote, continental and polluted clouds ranging
between 1×10−4 M and 1.7×10−1 M (1 M = 1 mol l−1). Ip
et al. (2009) suggested an increase of Henry’s law constant
of glyoxal (GLY) by 50 times in the presence of sulfate
at I = 3× 10−2 M, compared to pure water. However, they
found that increasing I to 2.25× 10−1 M, the effective Henry
was enhanced to more than 109 M atm−1. This ionic strength
is in the range – close to the higher values though – reported
by Herrmann (2003) for polluted clouds. In the present study
for the base simulation (S1), in order to represent the effect
of ionic strength of atmospheric cloud water, we assume an
increase of the effective Henry’s law constants (given in Ta-
ble S2) for GLY, GLYAL and MGLY by 2 orders of mag-
nitude that is within the range of reported enhancement for
GLY. Although for MGLY such effect is not known, our as-
sumption can be justified by the similarities in the chemical
structure and behavior between GLY and MGLY. For organic
acids no such enhancement has been applied.

Nevertheless, the ionic strength and composition of cloud
water can certainly be better constrained than the effect of
these parameters on the solubility of organics, therefore an
additional simulation (S1.1) is carried out that neglects any
water ionic composition impact on effective Henry law con-
stants. The phase transfer of the gaseous precursors into the
cloud water is critical for the abundance of OXL. Therefore,
even though some ionic strength always is present in cloud,
S1.1 is used rather as the lower limit for OXL formation. The
temperature dependence of Henry law constants can be an-
other significant source of uncertainty in a global modeling
study where temperature is spanning over a large range of
values. High temperatures are associated with low solubil-
ity constants, which imply lower aqueous-phase OXL con-
centrations near the surface (higher temperatures) and higher
in the free troposphere (lower temperatures) than when ne-
glecting the temperature dependence. The temperature effect
on species solubility (hence OXL production) has been in-
vestigated by an additional simulation (S1.2) where Henry’s
constants for 298K (H298; Table S2, Supplement) have been
used throughout the model domain. Furthermore, the effect
of pH on OXL formation has been studied analyzing simula-
tion S1.3 in which aqueous-phase partitioning and chemical
rates are computed based on a constant pH (4.5) reflective of
a mean value for urban and remote conditions (Herrmann et
al., 2000).

Simulation S2 is similar to S1, but also considers the (po-
tential) primary combustion sources of oxalic acid (i.e.,
biomass burning and fossil fuel combustion). Due to the
scarcity of available oxalic acid emission factors, biomass
burning processes and fossil fuel combustion emissions have
been scaled to the organic carbon (OC) observations by
Schmidl et al. (2008) (about 400 times lower than that
of OC), and the OC emissions from biomass burning and
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Table 3. Global oxalate budget analysis.

Cloud Cloud Particulate Net
Atmospheric Primary Chemical Chemical Chemical Chemical Dry Wet

Burden Source Production Destruction Production Production Deposition Deposition
(Tg) (Tg yr−1) (Tg yr−1) (Tg yr−1) (Tg yr−1) (Tg yr−1) (Tg yr−1) (Tg yr−1)

S1 0.30 – 31.8 10.6 – 21.2 1.3 19.9
S1.1 0.19 – 21.2 8.0 – 13.2 0.8 12.4
S1.1.1 0.20 – 21.9 8.2 – 13.7 0.8 12.9
S1.1.2 0.30 – 31.9 11.0 – 20.9 1.3 19.6
S1.2 0.31 – 35.5 13.7 – 21.8 1.3 20.5
S1.3 0.29 – 34.4 14.2 – 20.2 1.3 18.9
S1.4 0.30 – 32.4 11.1 – 21.3 1.3 20.0
S1.5 0.26 – 37.2 18.8 – 18.4 1.1 17.3
S2 0.31 0.1 31.8 10.6 – 21.2 1.3 19.9
S3 0.33 0.1 35.0 14.2 1.5 22.3 1.4 20.9
S4 0.34 0.1 36.8 14.9 1.8 23.7 1.5 22.2

anthropogenic combustion processes. The adopted biomass
burning OC emissions in TM4-ECPL for the year 2005
amount to roughly 22 TgC yr−1 (GFED v2; Van der Werf
et al., 2006). For simulation S2, 0.2 % of these OC emis-
sions (∼0.04 TgC yr−1) is assumed to occur in the form of
oxalic acid.

Simulation S3 is similar to S2 but considers, in addi-
tion, OXL formation into aerosol aqueous phase (Fig. 1c–
1d). For aerosol water chemistry parameterization in S3, no
enhancement of effective Henry’s Law is applied. Lim et
al. (2010) have shown that the yield of OXL formation from
GLY aqueous phase chemistry is highly variable and depends
on GLY and OH radical concentrations. Therefore, they rec-
ommended the use of explicit chemistry instead of the adop-
tion of a yield in chemistry-transport models where short-
lived species concentrations can show variability higher than
an order of magnitude. However, they concluded that at
cloud relevant GLY concentrations mainly OXL is formed,
whereas at aerosol relevant GLY concentrations, GLY-SOA
is predominated by oligomers with yields of over 80 %. For
simplicity, in the present global modeling study (simula-
tion S3) we assume that in-cloud GLY oxidation is pro-
ducing OXL whereas in aerosol water SOA is produced by
GLY oxidation during daytime and via NH+4 reactions dur-
ing nighttime. During nighttime, the NH+4 reactions in the
aerosol water can be described by a reaction rate constant
thatdepends on ammonium activity and pH and ranges from
1.3× 10−7 mol−1 s−1 to 4.3× 10−1 l mol−1 s−1 (Noziere et
al., 2009; Ervens and Volkamer, 2010). The SOA produced
in aerosol water during daytime consists of 80 % oligomers
and 20 % OXL (by mass, Table 1; Lim et al., 2010). This
yield is used as an upper limit of OXL production in the
aerosol water. Ervens and Volkamer (2010) suggested that
this daytime chemistry in aerosol water is governed by pho-
tochemical processes that can be described by a lumped reac-

tion rate, which varies between 0.8 s−1 and 7 s−1 depending
on the hygroscopicity of seed aerosol.

For this photochemical process, a pseudo-first order reac-
tion rate of 4 s−1 is adopted, which corresponds to an average
rate of SOA production on ammonium sulfate seed in agree-
ment with Ervens and Volkamer (2010). To account for the
impact of light intensity on this photochemically driven re-
action, the rate applied to simulate the glyoxal degradation
in the aerosol water was scaled to follow the diurnal vari-
ability of the photolysis rate of H2O2 and to average glob-
ally and annually at 4 s−1. In TM4-ECPL, the photolysis
rate of H2O2 in the gas phase varies hourly and is calcu-
lated on line by the model as described by Landgraf and
Crutzen (1998) and Lelieveld et al. (2002) and based on the
IUPAC recommendations (Atkinson et al., 2006). In the ab-
sence of light, GLY is considered to exclusively react with
ammonium (NH+4 ) in the aerosol water (Noziere et al., 2009)
producing 100 % SOA (identified by Noziere et al. (2009) to
be mostly oligomeric species; B. Ervens personal communi-
cation, 2010; Table 1).

Simulation S4 is similar to S3 but also considers a poten-
tial GLY source of 20 Tg yr−1over the oceans that is the low
estimate derived by comparison of our model results with
satellite observations (Myriokefalitakis et al., 2008). This
source is distributed geographically and monthly based on
the difference between the TM4-ECPL modeled and SCIA-
MACHY observed GLY columns shown in Myriokefalitakis
et al. (2008).

3 Budget calculations

OXL abundance is strictly connected to the concentration of
its aqueous-phase precursors that are both of anthropogenic
and biogenic origin. OXL precursors are chemically formed
in the aqueous phase or emitted from anthropogenic and
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natural (terrestrial and oceanic) sources. According to sim-
ulation S1, the global in-cloud chemical production of OXL
equals to about 32 Tg yr−1, corresponding to a net chemi-
cal atmospheric source (difference between in-cloud chemi-
cal production and in-cloud chemical destruction by OH and
NO3 radicals) of about 21 Tg yr−1. TM4-ECPL (S1) global
annual mean OXL burden equals to 0.3 Tg, corresponding to
a global mean turnover time of about 3 days. Below, we elab-
orate on the strength of biogenic and anthropogenic sources
on OXL formation and also on each separate sink of OXL
for simulation S1. Budget calculations for the simulations
performed to quantify the uncertainty of our results are pre-
sented in Table 3.

3.1 Biogenic sources

According to TM4-ECPL calculations (S1), oxidation of
biogenic volatile organic compound is responsible for the
79 % of the global OXL chemical production. Isoprene is
the most important precursor of OXL, contributing to about
70 % (∼22 Tg yr−1) to the global OXL production, followed
by terpenes that contribute to about 9 % (∼3 Tg yr−1). Note
that isoprene and terpenes form OXL through their oxidation
products GLY, GLYAL and MGLY. In particular, isoprene
oxidation by OH radicals contributes to the global chemical
production of these OXL precursors by almost 59 % for GLY,
83 % for GLYAL and 81 % for MGLY, whereas terpenes
account for almost 6 %, 13 %, and 13 % respectively. Ac-
cording to TM4-ECPL calculations, MGLY burden of about
0.1 Tg is about 5 times higher than that of GLY (0.02 Tg; see
Myriokefalitakis et al., 2008). MGLY is therefore calculated
to be an important OXL precursor in the aqueous-phase, via
its oxidation to GLX that further reacts to form OXL (Ta-
ble 1). Overall, in the TM4-ECPL simulation (S1), OXL
is produced by about 56 % from GLY (∼18 Tg yr−1), 20 %
from GLYAL (∼6 Tg yr−1) and about 24 % (∼8 Tg yr−1)

from MGLY.

3.2 Anthropogenic sources

Anthropogenic hydrocarbons contribute by about
21 % (∼7 Tg yr−1) to the global OXL chemical pro-
duction. TM4-ECPL takes into account the chemistry of
ethene (C2H4), propene (C3H6), acetylene (C2H2) and
aromatics (benzene, toluene and xylene), which affect
OXL abundance through their impact on GLY, GLYAL and
MGLY formation (Myriokefalitakis et al., 2008). Aromatics
contribute almost 13 % and acetylene almost 21 % to GLY
chemical formation. Moreover, according to TM4-ECPL
model calculations, ethene contributes almost 4 % to GLYAL
production. TM4-ECPL simulations show that propene and
aromatics are responsible for about 3 % and 2 % of MGLY
global chemical formation, respectively. Alkenes (ethene
and propene), acetylene and aromatics (benzene, toluene and

xylene) contribute 3 % (∼1 Tg yr−1), 10 % (∼3 Tg yr−1) and
8 % (∼3 Tg yr−1) respectively to global OXL production.

3.3 Sinks of oxalate

In TM4-ECPL, OXL is removed from the atmosphere by
OH and NO3 radical in-cloud oxidation (Table 1), wet and
dry deposition. According to model calculations (simu-
lation S1), OXL in-cloud oxidation by OH radicals con-
sumes about 30 % (∼10 Tg yr−1) and NO3 radicals about 4 %
(∼1 Tg yr−1) of the in-cloud produced amount of OXL. The
resulting global mean turnover times of OXL due to in-cloud
oxidation by OH and NO3 radicals are calculated to be about
12 days and 94 days, respectively.

OXL is drastically removed from the atmosphere via
wet deposition due to its high water solubility (Table S2;
Supplement). TM4-ECPL calculates that about 62 % of
OXL is removed from the atmosphere via wet deposi-
tion (∼20 Tg yr−1). Dry deposition has a smaller impact on
OXL abundance, removing about 4 % of OXL (∼1 Tg yr−1)

on the global scale. The resulting wet and dry deposition
global OXL turnover times are calculated to be about 6 days
and 83 days, respectively. The global mean lifetime of OXL
according to both chemical and physical processes in the at-
mosphere is calculated to be about 3 days.

4 Oxalate atmospheric concentrations

Figure 1 presents the annual mean cloud LWC (Fig. 1, b)
and aerosol LWC (Fig. 1c, d) for the year 2005. The mean
calculated distributions (S1 simulation) of OXL for the low-
est (surface) model level and the zonal mean vertical distri-
bution for December, January and February (DJF) and for
June, July and August (JJA) are presented in Fig. 2. OXL
concentrations reflect its precursor distributions and LWC
abundance and maximize over tropical Africa and the Ama-
zon basin (where abundant biogenic VOC emissions occur).
During DJF, OXL calculated concentrations reach 1 µg m−3

in the tropics over land. During JJA, because of enhanced
photochemistry in the Northern Hemisphere (NH), the model
calculates a secondary OXL concentration maximum (0.2–
0.4 µg m−3) in northern mid-latitudes. According to TM4-
ECPL calculations, the summertime OXL peak in the NH can
be attributed to about two times higher aqueous-phase OH
radical production than during winter (Fig. S5 and discussion
in the Supplement). Summertime aqueous-phase OH radical
concentrations in the NH are supported both by higher gas-
phase OH radical uptake in the aqueous-phase (∼2 times)
and by enhanced aqueous-phase OH production due to more
intense in-cloud H2O2 photolysis (∼2.5 times). Note, how-
ever, that on the global scale the seasonality is reversed, since
the aqueous-phase OH radical production in June is about
2.5 % lower than in January, which may be attributed to the
higher biogenic VOC emissions occurring during the warm
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Fig. 2. Calculated OXL surface(a, c)and zonal mean(b, d) concentrations (in µg m−3) for Northern Hemisphere winter (DJF mean)(a, b)
and Northern Hemisphere summer (JJA mean)(c, d) for S1.

season that suppress OH radical concentration in the gas-
phase. Conversely, intense wet scavenging during wintertime
keeps OXL concentrations low.

The model also calculates significant OXL concentrations
in the free troposphere, although almost 5 times lower than
the surface concentrations. In the tropics, biogenic hydro-
carbons like isoprene are convectively transported to the
mid and high troposphere, where cloud LWC is also high
(Fig. 1b). Maximum OXL concentrations (>0.2 µg m−3) in
the tropical free troposphere (up to∼300 hPa) are calculated
during DJF. The enhanced photochemical production of OXL
from the intense biogenic emissions during summertime is
reflected on the vertical distribution. During JJA, a second
free tropospheric maximum (>0.1 µg m−3) is calculated to
occur over the mid-latitudes in the NH.

On annual mean basis OXL maximizes over the tropics
both at surface (Fig. 3a) and in the free troposphere (Fig. 3b),
pointing to the dominance of biogenic sources of OXL pre-
cursors, to intensive photochemistry and to strong convective

activity in the tropics year around. Non negligible OXL an-
nual mean concentrations are also computed over polluted
regions in the Northern Hemisphere near the surface.

As outlined in Sect. 2.2, in addition to OXL aqueous-phase
formation, TM4-ECPL calculates the chemical production
of SOA components that can be grouped in SOAa, SOAb,
SOAocean and aged SOA (Myriokefalitakis et al., 2010).
The contribution of each of these groups depends, however,
on time and space (Fig. S1; Supplement). OXL, which has a
high OM:OC ratio, is calculated to be an important contrib-
utor to SOA mass both near the surface (Fig. 3c) and in the
free troposphere (Fig. 3d). Figure 3c shows that cloud pro-
cessing is calculated to be an important source of SOA over
the global ocean, where it accounts for 40–50 % of the SOA
mass (with the exception of the Southern Ocean and South-
ern Hemisphere tropical Pacific, where TM4-ECPL predicts
a significant contribution of sulfur-containing SOA on total
SOA; Myriokefalitakis et al., 2010). Remarkably, although
in TM4-ECPL, OXL is mainly driven by isoprene chemistry,
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Figure 3. Calculated annual mean for S1 of OXLin µg m-3: a) at surface b) at 500 hPa; OXL/SOA 1 
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Fig. 3. Calculated annual mean for S1 of OXL in µg m−3: (a) at surface(b) at 500 hPa; OXL/SOA mass ratio:(c) at surface(d) at 500 hPa;
OXL/nss-SO2−

4 mass ratio:(e)at surface,(f) at 500 hPa.

high fractions of OXL to SOA total mass are calculated over
oceans, possibly due to long range transport of oxidation
products of terrestrial biogenic VOC and subsequent cloud
processing, as well as to the multiphase processing of the
marine VOC emissions. In the free troposphere (∼500 hPa),
almost everywhere, but especially in the NH∼50 % of SOA
is calculated to consist of OXL.

In Fig. 3e, the OXL concentrations are compared with
those of nss-SO2−

4 , which is also partly a cloud-processing
product and a major contributor to cloud condensation nuclei

activity. The OXL to nss-SO2−

4 mass ratios shown in Fig. 3e
indicate that nss-SO2−

4 is about 9 times higher than OXL
in terms of mass in the NH continental polluted regions but
not in the tropics, where OXL reaches half the mass of nss-
SO2−

4 over terrestrial biogenic sources (e.g., Amazon Basin
and Central Africa). A similar pattern between the OXL con-
centrations and SO2−

4 is also predicted for 500 hPa (Fig. 3f),
although with slightly higher OXL to nss-SO2−

4 mass ratios
over larger areas. This also depicts the different precursor
sources of these two aerosol components. Although OXL
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and nss-SO2−

4 correlate both in the observational (r2 = 0.44)
and in the TM4-ECPL simulated dataset (r2

= 0.53), about
30 % higher slope (mean OXL/SO2−

4 mass ratio; Fig. S2,
Supplement) and about 2 times higher intercept are derived
from the observations than reproduced by the model. The
correlation points to the importance of multiphase chem-
istry for both aerosol components but might also indicate an
underestimation of the sources or/and an overestimation of
sinks of OXL by TM4-ECPL.

The annual mean total OC distribution as computed by
our model is depicted in Fig. S1 (Supplement). Comparison
with available observations of OC for the year 2005 shown
in Fig. S3 (Supplement) indicates roughly an overall under-
estimate of OC levels by 50 %, mostly occurring over ur-
ban regions. The contribution of the major OC components
to the computed total OC is also provided in Fig. S1. The
OXL contribution to the total WSOC amount is depicted in
Fig. 4; about 20 % of the total WSOC over oceanic regions,
mainly in the tropical Pacific Ocean, both at surface and the
free troposphere (Fig. 4a, b). However, high OXL contri-
bution is not necessarily tied to high absolute levels of OXL,
since over ocean SOA levels are significantly lower than over
land. Zonal mean OXL (expressed in OC) to WSOC frac-
tion, presents a maximum over the tropics (∼15 %), where
high biogenic emissions and LWC occur. Moreover, a sec-
ond maximum over the NH is seen (more than 10 %), which
depicts the relative importance of OXL formation over an-
thropogenically influenced areas. Note however, that in the
present study the in-cloud OXL formation is calculated to
be mostly biogenically driven, since potential OXL forma-
tion from other pathways like photo-ageing of OA (Eliason
et al., 2003) and/or aqueous-phase oxidation of longer chain
carboxylic acids to shorter diacids (Legrand et al., 2007),
which could form OXL, especially over anthropogenically
influenced regions (i.e in the NH), are not currently included
in the present study.

5 Comparison with observations

The ability of the model to reproduce the seasonality and
levels of OXL is investigated in Fig. 5, which shows the
comparison of OXL monthly mean observation in bulk or
PM10 aerosol with the TM4-ECPL simulations. OXL obser-
vations include measurements at the Finokalia atmospheric
monitoring station of the University of Crete (Mihalopoulos
et al., 1997) in the Eastern Mediterranean, Amsterdam Is-
land (Sciare et al., 2009) in the Southern Indian Ocean, Mace
Head Atmospheric Research Station on the west coast of Ire-
land (Jennings et al., 1997) and the CARBOSOL sites in Eu-
rope (Legrand et al., 2007).

TM4-ECPL is able to reasonably simulate OXL concentra-
tions and their seasonal variation for most locations. Com-
puted OXL concentrations show strong seasonal dependence,
with the maxima occurring during the warm season. How-

ever, TM4-ECPL simulation S1 appears to underestimate
winter OXL concentrations, likely due to either (i) missing
OXL primary sources (tentatively taken into account in S2),
or (ii) deficient parameterization of OXL formation in the
aqueous-phase (tested in S3), or (iii) missing OXL precursors
abundance (tentatively accounted for in S4). The high pho-
tochemical activity and enhanced precursor emissions dur-
ing summertime result in more efficient OXL formation in
the aqueous phase. Analysis of variance (ANOVA) applied
on the monthly mean data depicted in Fig. 5 for all simula-
tions and each station shows that the model reproduces rea-
sonably (0.1< r2 < 0.7) the seasonality at most studied loca-
tions (Table S4, Supplement) except at Azores and K-Pustza
stations. There, the model fails to reproduce the OXL obser-
vation variability, most probably due to important contribu-
tion from unaccounted regional sources like OXL formation
from the degradation of higher fatty acids or in the polluted
atmosphere.

Finokalia, located on the northern coast of Crete, is a
site representative for the background atmospheric compo-
sition of the Eastern Mediterranean (Mihalopoulos et al.,
1997; Kouvarakis et al., 2002). The Eastern Mediter-
ranean is the receptor of transported pollution and sub-
ject to intensive photochemistry, but also affected by ter-
restrial and marine biogenic local emissions. Maximum
monthly mean OXL concentrations are observed during sum-
mer (∼270± 100 ng m−3 in July; Fig. 5a) and minimum
during autumn (∼55± 40 ng m−3 in October; Fig. 5a) in
2005. Koulouri et al. (2008) showed strong correlations
between OXL and ammonium (NH+4 ), nitrate (NO−

3 ) and
nss-SO2−

4 , which indicate secondary heterogeneous forma-
tion of OXL in this region. They pointed that the ob-
served significant correlation between OXL and methanesul-
fonate (MS−) in this region indicates that at least a frac-
tion of OXL originates from marine sources. Such sources
could be partly attributed to secondary formation from ma-
rine biogenic hydrocarbons (e.g. isoprene) (Liakakou et al.,
2007), or photo-oxidation of biogenic fatty acids and longer
chain acids (Legrand et al., 2007). In summertime, Fi-
nokalia is also influenced by biomass burning (Koulouri et
al., 2008; Sciare et al., 2008), known to emit OXL and its
precursors in the atmosphere. Figure 5a shows that S3 and
S4 simulate more realistically the observed OXL concentra-
tions (slope = 0.9± 0.2,r2

= 0.6), compared to the base sim-
ulation (S1) (slope = 0.7± 0.2,r2

= 0.5).

Amsterdam Island, located in the Southern Indian Ocean,
is representative of pristine marine conditions, especially
during summer when low wind speeds are prevailing (Sciare
et al., 2009). OXL presents its maximum (∼17± 14 ng m−3

in September; Fig. 5b) during early spring and mini-
mum (∼7± 1 ng m−3 in April; Fig. 5b) during early au-
tumn (J. Sciare, unpublished data) in 2005. Sciare et
al. (2009) observed that both non-MS− water soluble or-
ganic carbon (WSOC) and MS− increase during summer,
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Fig. 4. Annual mean carbon mass ratios of oxalate, OCoxl, to total
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tion (a) surface,(b) 500 hPa, and(c) Zonal mean.

which would suggest a similar (secondary) production mech-
anism for WSOC and MS− that can be linked to the sea-
sonality in marine productivity. TM4-ECPL (S1) predicts
reasonably well the OXL observations at Amsterdam Is-
land in both winter and summer periods (slope = 0.9± 0.2,
r2

= 0.5). During wintertime, fossil fuel emitted mainly
from South Africa and biomass burning originating from
the whole Austral Africa and Madagascar influence Ams-
terdam Island by long range transport (LRT), that is, how-

ever, weak. Simulation S2 accounting for potentially pri-
mary combustion sources of OXL, shows that transport of
such emissions (e.g. from Africa) and additional OXL for-
mation in aerosol water (S3) does not significantly enhance
OXL abundance, (slope = 0.9± 0.2, r2

= 0.6). In case of di-
rect marine GLY emissions (S4) (slope = 1.3± 0.6,r2

= 0.2),
the calculated OXL concentrations are enhanced, especially
during summer.

The Mace Head atmospheric research station (Jennings et
al., 1997) is located on the west coast of Ireland, about 86 km
westward of Galway City. The station is westerly exposed to
the North Atlantic Ocean, with the Atlantic shipping routes
located more than 150 km to the west of the station. The
OXL observations depicted in Fig. 5c were performed from
May 1998 to September 1999 (Kleefeld et al., 2002). From
April to September marine air masses influenced the station,
whereas from September to October pollution from continen-
tal Europe and UK was received. OXL (Fig. 5c) shows ele-
vated concentrations from May to September and a decrease
during winter (November–December). The model (S1) rea-
sonably simulates the observations (slope = 0.4± 0.1, r2

=

0.5) as reported by Kleefeld et al. (2002). However, pri-
mary OXL sources (S2) and OXL formation in aerosol wa-
ter (S3) do not enhance significantly the model OXL concen-
trations. On the contrary, adoption of an additional source
of GLY in the marine environment (S4) improves OXL sim-
ulations (slope = 0.6± 0.1, r2

= 0.6), especially during the
warm season (April to September).

Aveiro is a rural background station located in an area
characterized by maritime pine, eucalyptus forests and
small-scale agricultural fields used to grow maize in spring
and summer, in Portugal (Pio et al., 2007). The maxi-
mum OXL monthly mean concentrations are observed in
late summer (∼429± 200 ng m−3 in August; Fig. 5d) and
the minimum in winter (∼160± 43 ng m−3 in December;
Fig. 5d) (Legrand et al., 2007). The observations show a
bi-modal seasonality with a secondary maximum in early
spring that is not captured by the model. TM4-ECPL sig-
nificantly under predicts the OXL observations year around.
This could be attributed to high removal by precipitation
in the model, shortening the atmospheric lifetime of OXL,
or more likely to missing or not accurately distributed pri-
mary and secondary sources of OXL in the model (as dis-
cussed in Sect. 4). Figure 5d shows that S3 and S4
simulate more realistically the observed OXL concentra-
tions (slope = 0.5± 0.1,r2

= 0.5), compare to the base simu-
lation (S1) and when biomass burning emissions of OXL are
taken into account (S2) (slope = 0.4± 0.1,r2

= 0.5).
Azores sampling station is representative of the back-

ground marine atmosphere over the mid-north Atlantic
Ocean, influenced by LRT from North America, Europe and
Africa and from local agricultural activities (Pio et al., 2007).
Maximum OXL concentrations are observed during summer-
time (∼100± 16 ng m−3 in June; Fig. 5e) and minimum dur-
ing early spring (∼15± 15 ng m−3 in March). Legrand et
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are taken from the Finokalia environmental monitoring station in Eastern Mediterranean (Koulouri et al., 2008; N. Mihalopoulos, personal
communication, 2011) for the year 2005, Amsterdam Island in the Southern Indian Ocean (J. Sciare, personal communication, 2011) for
the year 2005 and other locations in Europe (CARBOSOL sites from Legrand et al., 2007 and Simpson et al., 2007 for monthly mean
measurements for period September 2002–September 2004, Mace Head Atmospheric Research Station on the west coast of Ireland from
Kleefeld et al., 2002 for monthly mean measurements for period September 1998–September 1999).

al. (2007) suggested that LRT to Azores enhances organic
diacid concentrations. In addition to the transported precur-
sors for the in-cloud formation of OXL, local sources could
also play a significant role in OXL abundance. Legrand et
al. (2007) found that aerosols in Azores consist of unsatu-
rated fatty acids that are commonly present in phytoplank-
ton, particularly during summer, and have been suggested as
OXL precursors (Oliveira et al., 2007). TM4-ECPL (S1–S3)
is able to capture the mean levels of OXL with a yearly av-
erage OXL concentration of about 57± 37 ng m−3, but can-
not simulate the late spring/early summer high OXL obser-
vations (no correlation). Adoption of an additional source of

GLY in the marine environment (S4) slightly improves OXL
simulations during summer at Azores.

The Schauinsland sampling site is a rural background
station situated on a mountain ridge (1205 m a.s.l.) in
the Black Forest (southwestern Germany). The site is
surrounded by forests and agricultural fields, and dur-
ing summer is influenced by LRT polluted air masses
from the city of Freiburg in the Rhine valley (Legrand et
al., 2007). The maximum OXL concentrations are ob-
served in summer (∼410± 169 ng m−3 in June; Fig. 5f)
and the minimum in winter (∼67± 37 ng m−3 in Decem-
ber; Fig. 5f). Again, the model (S1 and S2) fails in
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reproducing the late spring/summer OXL observed high con-
centrations (slope = 0.3± 0.1, r2 = 0.4), although significant
improvement is achieved when accounting for OXL forma-
tion in aerosol water (S3) (slope = 0.2± 0.1, r2 = 0.1). OXL
formation during OA ageing (Eliason et al., 2003) might be
a candidate to fill in the gap between model results and ob-
servations.

The Puy de Dome site, located on the top of the Puy de
Dome mountain (1450 m a.s.l.) in central France, is a conti-
nental background sampling station, influenced by intensive
agriculture and forest management activities, while in win-
ter it is often under free tropospheric conditions (Legrand
et al., 2007). The maximum OXL concentrations are ob-
served during early summer (∼265± 122 ng m−3 in June;
Fig. 5g) and the minimum during winter (∼41± 21 ng m−3

in December; Fig. 5g). The model (S1) simulates res-
onably the seasonality of OXL concentrations and the ob-
served values (slope = 0.6± 0.1, r2 = 0.7). OXL emissions
taken into account by the model (S2) do not seem to con-
siderably enhance the calculated OXL concentrations, al-
though significant changes are computed in S3 that ac-
counts for the additional OXL production in the aerosol water
(slope = 0.5± 0.1,r2 = 0.6).

K-Puszta, a characteristic rural background station, is lo-
cated in the middle of the Hungarian Plain, surrounded by
forests, 60 km southeast from Budapest (Legrand et al.,
2007). The maximum concentrations (Fig. 5h) are observed
in early spring (∼401± 290 ng m−3 in March) and the mini-
mum in late spring (∼173± 41 ng m−3 in May). Legrand et
al. (2007) found that the K-Puszta region is highly influenced
by vehicular emissions that represent a plausible source of
oxalic acid, either primary or secondary. Vehicular emissions
such as toluene and ethene, which are known OXL precur-
sors, enhance its secondary formation. The model (S1, S2)
significantly underpredicts the observed OXL concentrations
during winter, indicating missing potential OXL sources (pri-
mary and secondary) or an overestimate of OXL removal by
the model. On the contrary, during summer (May to July),
high photochemical activity and enhanced precursor emis-
sions result in more efficient OXL formation in the aqueous
phase, and OXL concentrations calculated by TM4-ECPL
are closer to observations. Again, OXL production in the
aerosol water (S3) shows enhanced levels of OXL, closer to
observations.

Further comparison of TM4-ECPL model results with ob-
servations from these stations is shown in Fig. S4 (Supple-
ment) for OXL, OC, water soluble organic carbon (WSOC),
SO2−

4 and the carbon mass ratios of OXL/WSOC, OXL/OC
and OXL/SO2−

4 (C to S mass ratio). This comparison in-
dicates that TM4-ECPL is satisfactorily capturing the main
observed patterns of these chemical variables.

In Fig. 6, OXL observations reported in literature are
compared with monthly mean predictions for simulation S1.
OXL measurements around the world are sparse (Fig. 6a).

The observations used in the present study and summarized
in Table S3 (Supplement) show large variability both in the
sampling duration (from a few minutes to several days) and
in the timing of the sampling (daytime or nighttime). He and
Kawamura (2010) have shown that nighttime observations
of oxalic acid over polluted areas are about 1.3 times higher
than the daytime ones. However, most of the data used for
Fig. 6 concern relative long samplings, over several days, and
have therefore trapped both daytime and nighttime levels of
OXL. Comparison of the model results with available ob-
servations is nevertheless valuable to increase confidence in
simulations and evaluate associated uncertainties (Fig. 6b).
This is achieved by comparing monthly averaged model out-
put for simulation S1 with the mean concentrations reported
for the specific month at each location. Due to the rela-
tively low resolution of the global model, the high spatial
variability of urban emissions is not resolved by TM4-ECPL,
thus classification of the stations as urban, rural and marine
can facilitate data interpretation. Comparisons are focus-
ing on locations representative of the regional background.
Urban core observations, shown only for completeness, in-
dicate a large underestimate by the model and have to be
viewed with caution. ANOVA applied on the data depicted
in Fig. 6b, shows that the model successfully represents the
observations. Figure 6b shows that the model simulates
more realistically the marine (slope = 1.13± 0.17,r2 = 0.46,
N =50, a = 0.05, F = 43, p-value = 3.85× 10−8), and ru-
ral (marine and rural together: slope = 1.16± 0.14,r2 = 0.36,
N = 114; a = 0.05, F = 66, p-value = 7.48× 10−13) obser-
vations, rather than the urban ones (no correlation). The sta-
tistical analysis of Figs. 5 and 6 (summarized in Table S4;
Supplement) indicates that the model tends to underestimate
significantly the importance of anthropogenic contribution
to OXL atmospheric levels. Earlier publications report ob-
servations of fairly high oxalic acid concentrations up to
1370 ng m−3 in summer and 1440 ng m−3 in winter were also
reported (14 cities of China; Ho et al., 2007), where the
main sources in these areas are anthropogenic emissions of
aerosols and their precursors of anthropogenic origin, fol-
lowed by photochemical oxidation. Further, Kawamura et
al. (unpublished data, 2007) measured oxalic acid concen-
trations up to 4 µg m−3 in the aerosols collected at Mt. Tai,
North China Plain, in early summer, attributed to the biomass
burning of agriculture wastes (wheat straw) after the harvest-
ing. High concentrations of oxalic acid (0.4–4.5µg m−3)

have also been observed in New Delhi, India (Miyazaki et
al., 2009). Overall, as can be seen by the slopes of the
correlations, the model tends to underestimate OXL obser-
vations, which indicates that the model either misses OXL
sources (primary and secondary) or possibly overestimates
OXL sinks.
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al. (2009, 2010); M̈uller et al. (2005); Neususs et al. (2002); Norton et al. (1983); Pavuluri et al. (2010); Plewka et al. (2006); Puxbaum et
al. (2000); Ruellan et al. (1999); Saarnio et al. (2010); J. Sciare (personal communication, 2011); Sempere and Kawamura (1994); Souza et
al. (1999); Stone et al. (2010); Talbot et al. (1988); Topping et al. (2004); Viana et al. (2008); Wang et al. (2010) (see details in Table S3 in
Supplement).

6 Conclusions

The global 3-dimensional chemistry/transport model TM4-
ECPL has been adapted to simulate the temporal and spa-
tial OXL distribution. The global OXL net chemical
source has been estimated to be between 13 Tg yr−1 and
24 Tg yr−1. Primary biomass burning OXL sources of about
0.1 Tg yr−1 have not enhanced much the calculated OXL
concentrations, which indicates that further investigations are
needed on OXL emissions from combustion processes. The
potential OXL formation into aerosol water is predicted to
enhance its chemical formation up to∼2 Tg yr−1 and is a
strong candidate to explain the observed OXL concentrations
at NH locations. A potential GLY source over oceans of
20 Tg yr−1 is calculated to significantly contribute to OXL
net chemical production (by∼1.5 Tg yr−1); although further
study is required to understand the atmospheric levels and
distribution of GLY over marine areas.

Isoprene is calculated to be the most important OXL pre-
cursor (∼70 %). More than 60 % of OXL is removed from
the atmosphere via wet deposition. The global tropospheric
burden of OXL is calculated to be about 0.2–0.3 Tg. The
computed OXL global mean turnover time against deposi-
tion is about 5 days. The composition of cloud droplets and
especially cloud water ionic strength is shown to be a crit-
ical factor of uncertainty in the calculations of OXL atmo-
spheric chemical production, due to its impact on the effec-
tive Henry’s law constant values and deserves further inves-
tigations.

The present global 3-dimensional modeling study under-
lines the significant contribution of the atmospheric aqueous-
phase processes to the organic aerosol mass in the atmo-
sphere. According to TM4-ECPL model calculations, OXL
increases the calculated global tropospheric burden of water
soluble organic carbon by 5–9 % when expressed in carbon
mass. Comparison of calculated OXL concentrations with
observations shows that TM4-ECPL underestimates OXL
measurements, especially during winter. This indicates that
potentially other secondary or primary sources or weaker
sinks need to be considered to better describe the global tro-
pospheric OXL abundance.

Further investigations are needed to improve our knowl-
edge on such processes and in particular to properly ac-
count for gas-to-aqueous phase organic compounds transfer.
Aqueous-phase oxidation of longer carboxylic acids and ma-
rine unsaturated fatty acids to shorter diacids and carboxylic
acid formation during OA photo-ageing processes, which are
neglected in the present study, could lead to a further en-
hancement of OXL and OA in the troposphere.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/11/5761/2011/
acp-11-5761-2011-supplement.pdf.
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