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Abstract. Emissions of CO2 from fossil fuel combustion
are a critical quantity that must be accurately given in es-
tablished flux inversion frameworks. Work with emerging
satellite-based inversions requires spatiotemporally-detailed
inventories that permit analysis of regional natural sources
and sinks. Conventional approaches for disaggregating na-
tional emissions beyond the country and city levels based on
population distribution have certain difficulties in their appli-
cation. We developed a global 1 km×1 km annual fossil fuel
CO2 emission inventory for the years 1980–2007 by com-
bining a worldwide point source database and satellite obser-
vations of the global nightlight distribution. In addition to
estimating the national emissions using global energy con-
sumption statistics, emissions from point sources were es-
timated separately and were spatially allocated to exact lo-
cations indicated by the point source database. Emissions
from other sources were distributed using a special night-
light dataset that had fewer saturated pixels compared with
regular nightlight datasets. The resulting spatial distributions
differed in several ways from those derived using conven-
tional population-based approaches. Because of the inherent
characteristics of the nightlight distribution, source regions
corresponding to human settlements and land transportation
were well articulated. Our distributions showed good agree-
ment with a high-resolution inventory across the US at spatial
resolutions that were adequate for regional flux inversions.
The inventory can be extended to the future using updated
data, and is expected to be incorporated into models for op-
erational flux inversions that use observational data from the
Japanese Greenhouse Gases Observing SATellite (GOSAT).
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1 Introduction

Inventories of carbon dioxide (CO2), which is a major green-
house gas produced by humans, are a basic tool for mon-
itoring compliance with the guidelines for managing na-
tional and global CO2 emissions, and for the analysis of
emission sources and trends in development. The analy-
sis provides quantitative insights into fossil fuel CO2 emis-
sions and facilitates the assessment of practical measures for
emission reduction, as well as informing future projections
related to socioeconomic trends. Inventory monitoring of
CO2 is conducted by the US Department of Energy Car-
bon Dioxide Information Analysis Center (CDIAC), which
maintains a continuous archive of global emission data and
monitors the 20 top-emitting countries’ fossil fuel CO2 emis-
sions (1751–2006) (e.g.Marland et al., 2008). The Inter-
national Energy Agency (IEA,http://www.iea.org/) also col-
lects national CO2 emission data, and the statistics cover fos-
sil fuel CO2 emissions in more than 140 countries and re-
gions worldwide (1971–2005), by sector and by fuel type
(IEA, 2007). National inventory datasets are often avail-
able in gridded form (e.g.Andres et al., 1996; Brenkert,
1998; Olivier et al., 2005) (typically at 1◦ resolution) and are
used as input data for physical models, such as General Cir-
culation Models (GCMs) and atmospheric chemical trans-
port models (CTMs), that simulate the state of atmospheric
CO2 (e.g. IPCC, 2007). CO2 flux inversions, for example,
are commonly used to quantitatively estimate surface CO2
sources and sinks at the continental scale using a combina-
tion of atmospheric CO2 observations and transport simula-
tions (e.g.Gurney et al., 2002; Baker et al., 2006; Stephens
et al., 2007). Flux inversions, which search for the optimal
balance between sources and sinks that is consistent with
observations, require a priori knowledge of fossil fuel CO2
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emissions as well as a priori knowledge of biospheric ex-
change and oceanic fluxes. In most of the common inversion
frameworks, fossil fuel emissions are assumed to be known
quantities, and only biospheric and oceanic fluxes are cor-
rected via optimization (e.g.Gurney et al., 2002). Thus, fos-
sil fuel CO2 emissions are important as a reference for ana-
lyzing a budget of the three fluxes (fossil fuel CO2 emissions,
and biospheric and oceanic fluxes).Gurney et al.(2005) sug-
gested that a potential bias occurs in flux estimates obtained
by flux inversions in the case that poorly articulated fossil
fuel CO2 emission estimates are used as a priori information.
Beyond established flux inversions, recent studies have in-
dicated that flux inversions may be performed at finer spa-
tial resolution using satellite-observed CO2 concentrations
(e.g. Rayner and O’Brien, 2001; Houweling et al., 2005;
Chevallier et al., 2007). Currently, several satellites monitor
CO2 levels. CO2 concentration data are available from the
Atmospheric Infrared Sounder (AIRS) satellite (e.g.Strow
and Hannon, 2008), the SCanning Imaging Absorption spec-
troMeter for Atmospheric CartograpHY (SCIAMACHY) on-
board the Environmental satellite (Envisat) (Schneising et al.,
2008) and the Japanese Greenhouse Gases Observing SATel-
lite (GOSAT) (e.g.Yokota et al., 2009; Yoshida et al., 2010),
although much care is required in adapting these datasets to
flux inversions (Chevallier et al., 2005). Thus, development
of a spatiotemporally detailed inventory is a key requirement
for emerging satellite inversion approaches.

In constructing a gridded global emission map using na-
tional emissions, the geographical distributions of emissions
have been approximated using, for example, the correlation
between CO2 emissions and population density (e.g.Andres
et al., 1996; Brenkert, 1998; Olivier et al., 2005). The dis-
tribution of populations is an appropriate measure of human
activity at the spatial scales of countries and states (typically
1◦ resolution), making it theoretically useful for describing
CO2 emission distributions. Consequently, these data pro-
vide a reasonable approximation of CO2 emissions on these
spatial scales.

However, at spatial resolutions finer than the country and
state levels, population statistics do not explain well the
spatial characteristics of potential sources. In particular,
power plants and land-based modes of transport are impor-
tant sources, but are usually poorly correlated with the pop-
ulation distribution. In addition, population statistics cannot
be used to pinpoint the exact locations of potential sources,
because such data (e.g. census data) usually indicate a sta-
tistical number for a certain unit area. Thus, population
statistics provide only diffuse approximations of the spa-
tial distribution of potential source regions at fine spatial
scales. Furthermore, because human settlements do not have
a uniform density within a region (even in a spatial unit
for statistical data collection), emissions depicted at a finer
scale using population statistics may be distributed in areas
where people do not actually reside, and vice verse. Re-
cently, EC-JRC/PBL(2009) developed a global 0.1◦×0.1◦

(10 km×10 km) spatial resolution inventory, EDGAR v4.0
(the Emission Database for Global Atmospheric Research),
using geographical information such as point source loca-
tions and road networks in addition to population data.

To achieve such fine spatial resolution, satellite observa-
tions of nightlight data have been identified as being poten-
tially useful. The nightlight data provide a global spatial
distribution of the persistent lights on the Earth’s surface,
thereby providing a detailed map of human activities, such
as human settlements, gas flares, fires, and boats that produce
strong and persistent lights (mainly squid-fishing boats) (e.g.
Elvidge et al., 1997). The advantage of employing nightlight
distribution over the population distribution is that it indi-
cates the exact locations and extents of human settlements.
Recently, nightlight-based global CO2 emission maps have
been developed (Doll et al., 2000; Rayner et al., 2010). How-
ever, the use of nightlight data is limited by several factors.
For example, the correlation between nightlight and human
activity (and hence CO2 emissions) is only strong in devel-
oped countries (e.g.Raupach et al., 2009). In addition, such
data do not accurately indicate the variability in intensity of
emissions from power plants and other point sources without
additional information, although they do approximate well
the exact locations of these sources.

For the US, these difficulties (including descriptions of
temporal variations of emissions in addition to spatial pat-
terns, which is another source of uncertainty that may signif-
icantly influence the model results) have been partially over-
come byGurney et al.(2009). The Vulcan project (www.
purdue.edu/eas/carbon/vulcan) based its development on a
fine-scale inventory (10 km×10 km) compiled by individual
source sectors (Gurney et al., 2009). Furthermore, research
into a more detailed fossil fuel CO2 inventory, calledHes-
tia (www.purdue.edu/climate/hestia), has been conducted for
the city of Indianapolis in a pilot study. Using a combination
of in situ measurements, remote sensing, and energy sys-
tems modelling, Hestia will provide a building-scale fossil
fuel CO2 inventory in near-real-time (Gurney et al., 2009).
The Vulcan approach could be applied at the regional scale
using the wealth of detailed information that is potentially
available, but this method is difficult to apply on the global
scale because of a lack of data.

In this study, we developed a global high-resolution an-
nual emission inventory, ODIAC (Open source Data Inven-
tory of Anthropogenic CO2 emission), for the years 1980–
2007. The primary goal of developing the ODIAC inventory
is to provide a priori information on fossil fuel CO2 emis-
sions for regional flux inversions using GOSAT observational
data. This inventory was developed by making use of a point
source database and satellite nightlight data. National emis-
sions were estimated using global fuel consumption statis-
tics, and emissions from power plants were calculated using
the point source database. Point sources were mapped to ex-
act locations using the coordinate information available in
the point source database, and the spatial distribution of the
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Table 1. Summary of the national and regional annual emission estimates for the year 2006. “Code” in the second column refers to the
standard country or area codes defined by the Statistical Division of the United Nations (http://unstats.un.org/unsd/methods/m49/m49.htm).
National and regional emissions are shown in the national total (“total” in the third column), point source emission accompanied by the
percentage of the national total (“point source” in the fourth column), and emissions from other sources (“other” in the last column). Values
are reported in units of Megatonne carbon year−1. (a: Belgium includes Luxemburg.b: Administrative region.)

Country name Code Emissions Country name Code Emission
Total Point source (%) Other Total Point source (%) Other

United Arab Emirates ARE 40.9 7.4 (17.7) 33.5 Republic of Korea KOR 167.3 52.3 (31.3) 115.0
Argentina ARG 41.7 8.7 (21.0) 33.0 Kuwait KWT 19.1 3.5 (18.3) 15.5
Australia AUS 109.8 61.0 (55.6) 48.8 Lithuania LTU 4.4 0.3 (7.3) 4.1
Austria AUT 20.2 4.4 (21.8) 15.8 Mexico MEX 111.2 27.8 (25.0) 83.4

Azerbaijan AZE 9.5 2.7 (28.8) 6.8 Malaysia MYS 43.9 17.7 (40.6) 25.9
Belgiuma BEL 50.4 8.2 (16.4) 42.2 Netherlands NLD 71.7 16.6 (23.2) 55.0

Bangladesh BGD 13.1 3.3 (24.1) 10.1 Norway NOR 11.2 0.3 (2.0) 10.9
Bulgaria BGR 13.9 6.8 (47.9) 7.4 New Zealand NZL 10.4 2.7 (25.2) 7.9
Belarus BLR 16.9 3.8 (22.8) 13.1 Pakistan PAK 36.5 6.8 (18.7) 29.7
Brazil BRA 101.1 6.5 (6.4) 94.6 Peru PER 6.8 1.4 (18.2) 5.4
Canada CAN 171.7 46.9 (27.3) 124.8 Philippines PHL 18.5 9.5 (50.7) 9.3

Switzerland CHE 12.3 0.0 (0.7) 12.3 Poland POL 90.2 49.0 (54.5) 40.9
Chile CHL 18.3 6.5 (35.3) 11.7 Portugal PRT 18.3 6.8 (36.5) 11.7
China CHN 1641.1 849.3 (51.8) 791.8 Qatar QAT 14.2 2.2 (14.6) 12.0

Colombia COL 15.5 2.5 (15.1) 13.1 Romania ROU 28.1 0.0 (0.0) 28.1
Czech Republic CZE 34.9 17.4 (50.0) 17.4 Russian RUS 458.0 130.2 (28.5) 327.5

Germany DEU 242.8 116.9 (48.1) 125.9 Saudi Arabia SAU 118.8 19.3 (16.2) 99.7
Denmark DNK 16.6 6.8 (41.0) 9.8 Singapore SGP 40.3 4.1 (9.8) 36.2
Algeria DZA 24.0 4.6 (18.9) 19.3 Slovakia SVK 10.6 3.0 (27.2) 7.6
Ecuador ECU 6.5 0.8 (11.5) 6.0 Sweden SWE 16.9 0.8 (4.6) 16.1
Egypt EGY 41.4 11.4 (27.5) 30.0 Thailand THA 62.9 21.0 (33.3) 42.0
Spain ESP 104.1 41.4 (39.7) 62.7 Turkmenistan TKM 14.7 1.4 (9.9) 13.1

Finland FIN 16.9 8.7 (51.9) 8.2 Turkey TUR 74.1 27.2 (37.0) 46.6
France FRA 115.3 14.4 (12.6) 100.8 Taiwan TWN 92.1 37.3 (40.5) 54.8

United Kingdom GBR 165.4 61.9 (37.4) 103.5 Ukraine UKR 94.0 19.9 (21.3) 74.1
Greece GRC 28.9 13.6 (47.1) 15.3 United States USA 1746.9 765.1 (43.8) 981.7

Hong Kongb HKG 21.5 0.0 (0.0) 21.5 Uzbekistan UZB 30.5 8.4 (27.2) 22.3
Hungary HUN 16.6 4.4 (26.1) 12.3 Venezuela VEN 37.9 3.3 (8.7) 34.6
Indonesia IDN 90.5 24.8 (27.4) 65.7 South Africa ZAF 122.6 59.4 (48.5) 63.2

India IND 332.4 173.8 (52.2) 158.9
Ireland IRL 12.5 4.6 (38.4) 7.6 North America – 0.0 0.0 – 0.0

Iran IRN 127.0 22.3 (17.6) 104.6 South and Cent. America – 68.9 6.5 (9.6) 62.4
Iceland ISL 0.8 0.0 (0.5) 0.8 Europe and Eurasia – 53.4 17.2 (32.0) 36.2
Italy ITA 134.9 45.8 (33.9) 89.1 Middle East – 89.9 21.8 (24.2) 68.1
Japan JPN 373.6 112.8 (30.2) 260.8 Africa – 76.6 15.5 (20.2) 61.3

Kazakhstan KAZ 51.5 16.3 (31.6) 35.1 Asia Pacific – 66.8 7.1 (10.8) 59.7

residual emissions (total emissions minus point source emis-
sions) was determined using the nightlight data. Because
nightlight data are provided at a resolution of 30 arc seconds
(approximately 1 km), CO2 emissions can also be mapped at
this resolution.

In developing this inventory, the primary focus was dis-
aggregation of national emissions at a finer spatial scale by
combining the point source database and the satellite night-
light data. In the sections that follow, we explain how the
inventory was constructed and discuss its inherent limita-
tions. Herein, the terms fossil fuel (and anthropogenic)
CO2 emissions refer to emissions over land, which are at-
tributable to the combustion of fossil fuels (coal, oil, and
natural gas). Due to the data availability, the use of an

energy statistics as a data source for estimation of emis-
sions and limitations of our method, the definition of fos-
sil fuel CO2 emissions in this study differs from a common
definition in several ways (e.g. cement production, interna-
tional bunkers and gas flares). Emissions from cement pro-
duction, which are commonly included in fossil fuel CO2
emissions, are not considered in this study. This is be-
cause data for the global spatial distributions of the emis-
sions are not available while good emission estimates such as
USGS(2010) are available. Non-land fossil fuel CO2 emis-
sions from sources such as international bunkers (marine and
aviation) and fisheries and were included in the land emis-
sion estimates, as individual fuel consumption statistics are
not available in the energy statistics we used for estimating
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Table 2. Definition of geographic regions in this study. This definition was adopted fromBP (2008).

Region Definition

North America US (excluding Puerto Rico), Canada, Mexico
South and Central America Caribbean (including Puerto Rico), Central and South America
Europe and Eurasia European members of the OECD plus Albania, Bosnia-Herzegovina,

Bulgaria, Croatia, Cyprus, Former Yugoslav Republic of Macedonia,
Gibraltar, Malta, Romania, Serbia and Montenegro, Slovenia,
and Former Soviet Union (Armenia, Azerbaijan, Belarus, Estonia,
Georgia, Kazakhstan Kyrgyzstan, Latvia, Lithuania, Moldova,
Russian Federation, Tajikistan, Turkmenistan, Ukraine and Uzbekistan)

Middle East Arabian Peninsula, Iran, Iraq, Israel, Jordan, Lebanon and Syria
Africa African continent
Asia and Pacific Brunei, Cambodia, China, China Hong Kong SAR, Indonesia, Japan, Laos,

Malaysia, Mongolia, North Korea, Philippines, Singapore,
South Asia (Afghanistan, Bangladesh, India, Myanmar, Nepal, Pakistan,
Sri Lanka), South Korea, Taiwan, Thailand, Vietnam, Australia,
New Zealand, Papua New Guinea, Oceania.

emissions. Thus, we simply kept those emissions in ag-
gregated land emissions. Emissions from gas flares are not
considered because the energy statistics do not provide the
amount of gas loss attributable to gas flares and the emis-
sions could be supplemented using exiting gas flare estimates
such as estimates by the US National Oceanic and Atmo-
sphere Administration (NOAA) (http://www.ngdc.noaa.gov/
dmsp/interest/gasflares.html). Also, the emissions that were
not included herein could be introduced using supplemental
existing inventories, such asUSGS(2010) for cement pro-
duction and EDGAR v4.0 (EC-JRC/PBL, 2009) for interna-
tional bunkers, depending on users’ purposes.

2 Data and methodology

Development of this inventory was performed in a stepwise
manner, as discussed below. First we describe how emissions
were calculated and then we describe how emissions were
distributed.

2.1 National and regional CO2 emissions

Estimates of annual national CO2 emissions obtained in this
work were based on worldwide energy statistics (2007 edi-
tion) compiled by the energy company BP p.l.c. (BP, 2008).
The BP energy statistics were recently used to extend the es-
tablished historical emission inventories (e.g. CDIAC) prior
to updating the original inventories (e.g.Gregg et al., 2007;
Myhre et al., 2009). The 2007 edition of the BP statistics,
which covered the years 1965–2007, included the consump-
tion of commercially-traded primary fuels (e.g. oil, coal, and
natural gas) in 65 countries and an administrative region (see
Table1). Consumption of such fuels in six major geograph-
ical regions (North America, South and Central Americas,

Europe and Eurasia, the Middle East, Africa, and Asia Pa-
cific) was also provided to show the statistics in countries or
regions that were not included inBP (2008). The definitions
of geographical regions are summarized in Table2.

Annual total CO2 emissions for 71 regions (65 nations and
an administrative region as well as the 6 major regions) were
calculated from the consumption statistics for oil, coal, and
natural gas. The oil statistics indicated all inland consump-
tion, international airborne and maritime transport, and refin-
ery fuel production and losses. Consumption of fuel ethanol
and biodiesel were also included in the oil statistics. As the
individual consumption of fuel ethanol and biodiesel were
not provided inBP (2008), emission estimates in this study
include emissions from the combustion of fuel ethanol and
biodiesel, which are not included in common definition of
fossil fuel CO2 emissions. The inclusion may cause over-
estimation in national emission estimates compared to other
studies over some countries and regions. The coal statistics
in BP(2008) included the quantities of solid fossil fuels, such
as bituminous coal, anthracite (hard coal), lignite, and brown
(sub-bituminous) coal.

The CO2 emissions were estimated by calculating the car-
bon content of the consumed fuels. Our estimation pro-
cedure paralleled the methodology specified in the revised
IPCC 1996 guidelines for the national greenhouse gas inven-
tories (IPCC, 1996), except in the estimation of national fuel
consumption. The reference approach of the revised 1996
IPCC guidelines specified that the amount of total fuel sup-
plied, which was correlated with the apparent consumption,
formed the basis of calculations of national carbon supply,
and the amount was calculated as the sum of the produced
and imported quantities, minus the quantities attributable to
international bunkers and stock changes. National emissions,
as defined earlier, were calculated based on the total quan-
tity of consumed primary fuels reported inBP (2008). The
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conversion factors used in the calculation were adopted from
the 2007 statistics report prepared byIEA (2007), unless
specified otherwise. The quantities of nationally and region-
ally consumed primary fuels inBP(2008) (in million tonnes
of oil equivalent per year) were first converted into energy
quantities (in units of Terajoules). The quantity of natural
gas inBP (2008) was given in billions of cubic meters, and
a conversion factor of 0.90 was applied to express this quan-
tity in millions of tonnes of oil equivalent (Mtoe). The ob-
tained quantities of energy were then used to compute the
carbon content of the consumed fuels. The following carbon
emission factors (CFE, in tonnes of carbon per Terajoule)
were applied: 15.3 (natural gas); 26.4 (coal); 20.0 (oil). The
CFE adopted here for coal was calculated as the average of
CFEs for anthracite, coking coal, other bituminous coal, sub-
bituminous coal, and lignite. To account for the fraction of
carbon that was not oxidized in the combustion of the fu-
els, correction factors of 0.99 (oil), 0.98 (coal), and 0.995
(natural gas) were applied. The annual estimates for the na-
tional/regional CO2 emissions from primary fuel combustion
were then found by multiplying the remaining carbon quan-
tities by 44/12, which is the molecular weight ratio of CO2
to carbon.

National and regional annual total emissions were cal-
culated for the years 1980–2007.BP (2008) did not re-
port quantities smaller than 0.05 (in million tonnes of oil
equivalent per year) in their statistics; therefore, those quan-
tities were assumed to be 0.05. In the estimation of an-
nual emissions in this study, we extended emissions of the
eight former Soviet Union countries (Azerbaijan, Belarus,
Kazakhstan, Lithuania, Russian Federation, Turkmenistan,
Ukraine, Uzbekistan) prior to the year 1991 to keep the con-
sistency in the global emission estimates, which are the sum
of 65 national and regional emissions. The consumption
statistics for the eight former Soviet Union countries prior
to 1985 were unavailable, and, therefore, were extrapolated
by scaling to the annual total consumption for the full former
Soviet Union which were provided inBP (2008).

2.2 CO2 emissions from point sources

In addition to national and regional emissions, we sepa-
rately estimated emissions from point sources using a global
power-plant database. We utilized the database CARMA
(Carbon Monitoring and Action, http://carma.org), which
was compiled using data from national publicly disclosed
databases for the US, EU, Canada, and India, and a commer-
cial database of the world’s power plants (Wheeler and Um-
mel, 2008). The database included emission levels and loca-
tions of over 50 000 power plants worldwide for the years
2000 and 2007, including all types of power plants (fos-
sil fuel, nuclear, hydro, and other renewable energy plants).
Data for the fossil fuel-red power plants (emission>0) with
valid location information (n=17668) were selected from
the database, and the values for the national total emis-

sions from such power plants were calculated. Emissions
of individual power plants were assigned to the locations
indicated by CARMA. CARMA power plant emissions lo-
cated in water grid cells were reviewed using Google Earth
(http://earth.google.com/) and if the locations could not be
confirmed, the emissions were included in non-point emis-
sions.

We used data for the year 2007 to extend the emission es-
timation to the entire period of interest (1980–2007). The
17 668 power plants were assumed to be operational dur-
ing this period, and their annual emission levels were sim-
ply scaled by the national (or regional) emission trends ob-
tained from BP (2008). This assumption was taken be-
cause no other database to supplement power plant infor-
mation such as location, intensities, commission years, op-
erational situation (operation/maintenance, etc.) was avail-
able. In practice, the emissions for the year 2007 were
used to account for the emissions for the year 2006. Emis-
sion data available in the CARMA database were derived by
compiling and analyzing the data from different years, such
as the eGRID database (http://www.epa.gov/cleanenergy/
energy-resources/egrid/index.html); therefore, a 1-year shift
in the base year did not critically affect the results.

The global spatial distribution of power plants used in this
study is shown in Fig.1. High concentrations of power plants
can be seen in major emitting countries, such as the US,
European countries, India, China, and Japan. In particular,
power plants that generated emissions exceeding 4 MtC/yr,
which were ranked as the top 100 emitting power plants
in CARMA (orange-red-magenta dots in Fig.1), were lo-
cated mainly in these countries. In the Southern Hemisphere,
power plants of similar size were sparsely distributed across
South America, South Africa and the east coast of Australia.
A scattering of relatively small power plants can be seen
across Africa. By making use of the CARMA database, the
spatial features of the power plant distribution for the year
2007 were directly included in our inventory.

2.3 CO2 emissions from other sources and their spatial
distribution

Emissions from power plants were estimated using the
CARMA database; thus, emissions from other sources (often
denoted as non-point sources) in a country (or a region) were
loosely approximated by subtracting the emissions of power
plants from the national (or regional) total emission distribu-
tions. The non-point sources include industrial, residential,
and commercial sectors, as well as daily land transportation.
Emissions from these sources could be diffuse and were not
as strong or as persistent as emissions from the point sources.
This approximation can be useful in globally analyzing the
locations and strengths of non-point sources using a surro-
gate distribution. A surrogate commonly fails to distinguish
point source from non-point source emissions. Both emis-
sion types are equally distributed, although point sources are
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Fig. 1. Global spatial distributions of power plant emissions for the year 2007. The coordinate
and emission data of power plants were taken from the CARMA database (CARbon Monitoring
and Action, http://carma.org/). Power plant data with invalid coordinate information and no CO2

emissions were excluded, and the 17,668 power plants incorporated into our inventory were
plotted. Values are given in units of Megatonne carbon year−1.

33

Fig. 1. Global spatial distributions of power plant emissions for
the year 2007. The coordinate and emission data of power plants
were taken from the CARMA database (CARbon Monitoring and
Action, http://carma.org/). Power plant data with invalid coordinate
information and no CO2 emissions were excluded, and the 17 668
power plants incorporated into our inventory were plotted. Values
are given in units of Megatonne carbon year−1.

commonly poorly correlated with human activities. With the
approximation described above, we employed a surrogate to
explain only the non-point emissions.

The spatial distribution of non-point sources was deter-
mined using data from the satellite nightlight observations.
The original nightlight data were obtained from the US
Air Force Defence Meteorological Satellite Project Opera-
tional Linescan System (DMSP-OSL) satellites. The US
National Oceanic Atmospheric Administration (NOAA) Na-
tional Geophysical Data Center (NGDC) maintains the data
archive, and the digital archives of standard products are
available for 1997–2003. DMSP-OSL satellites are in sun-
synchronous polar orbits (altitude = 830 km above the sur-
face) and provide global coverage twice per day. The broad-
band visible–near infrared channel (0.4–1.1 µm), with inten-
sification by a photomultiplier tube (PMT) in the night time,
detects the clouds illuminated by moonlight as well as night-
light. Nightlight data have been used to map human settle-
ments (Elvidge et al., 1997, 1999), gas flares (Elvidge et al.,
2001), and populations (Briggs et al., 2007), as well as map-
ping CO2 emissions (Doll et al., 2000; Rayner et al., 2010). It
is known that intense lights such as city lights and gas flares
cause instrumental saturation due to the high sensitivity of
the instruments required for cloud detection. Because the
radiance levels in saturated pixels are truncated, it is gen-
erally difficult to use nightlight data for mapping emissions
across bright regions. Recently,Rayner et al.(2010) devel-
oped a data assimilation system for fossil fuel CO2 emis-
sions, FFDAS (Fossil Fuel Data Assimilation System). FF-
DAS is based on an extended Kaya identity, producing global
emission fields by assimilating nightlights data together with
other data such as population data that constrain the Kaya
identity model. Rayner et al.(2010) compensated for such

saturation using a correction equation derived from the prob-
abilistic analysis presented byRaupach et al.(2009).

‘radiance calibrated light’ In this study, instead of correct-
ing for saturation, the ‘radiance calibrated lights’ data (data
available from http://www.ngdc.noaa.gov/dmsp/download
rad cal 96-97.html) were applied as a surrogate. The ‘ra-
diance calibrated light’ were obtained from special measure-
ments acquired in a reduced-gain (low-sensitivity) mode in
1996 and 1997. This dataset has fewer saturated pixels com-
pared with the datasets obtained by normal measurements
(Elvidge et al., 1999; Cinzano et al., 2000). Cinzano et al.
(2000) used the calibrated radiance data to construct a map
of the night sky brightness. In this study, we utilized the cor-
relation between the calibrated radiance data and population,
which is a common surrogate as mentioned earlier. Corre-
lation between population and the calibrated radiance data
have been observed in the developed country (Elvidge et al.,
1999) and we extended the relationship to whole world. The
correlation however would be different over different coun-
tries and regions as previous study suggested (Raupach et al.,
2009). The data have a resolution of 30 arc second (approx-
imately 1 km) and are provided as 2-year composite data.
Raw data at pixel resolution are provided in digital number
(DN) format across the range 0–255, where 0 signifies that no
lights were observed at a location during the observation pe-
riod and 255 indicates a saturated pixel. DNs between 1 and
254 were valid and could be converted into a radiance quan-
tity using a conversion equation. Here, we replaced DN 255
with 254 for simplicity. Consequently, emissions at pixels
assigned a DN of 254 may be underestimated. As described
earlier, we do not consider emissions from gas flares in this
study. The pixels corresponding to gas flares were identified
using a worldwide dataset of gas flares in 2004, developed
by Elvidge et al.(2007), and were then eliminated.

2.4 Data integration

Annual gridded emission inventories were developed by
combining emission estimates of point sources and non-point
sources. Point source emissions were placed directly at ex-
act locations using coordinate information (latitude and lon-
gitude) available in the CARMA database. National (or
regional) total emissions from non-point sources were dis-
tributed to 1 km×1 km pixels according to the distribution of
nightlight radiance. The distribution was formed by superim-
posing the nightlight data and national boundary data, which
were used to identify the national attributes of pixels. Radi-
ance quantities across all pixels attributed to a country (or a
region) were summed, and the original quantity at each pixel
was normalized by the national (or regional) sum. The CO2
emission intensity at a pixel was scaled by multiplying the
normalized radiance with the annual total emission of a coun-
try or a region. We used 2.5 arc min (approximately 5 km)
national boundary data (year 2000) of the Gridded Popu-
lation of the World version 3 (GPWv3), developed by the
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Center for International Earth Science Information Network
at Columbia University, NY, USA (data available fromhttp:
//sedac.ciesin.columbia.edu/gpw/global.jsp). Boundaries be-
tween land and ocean, river, and water bodies (e.g. coast-
line) were defined using IGBP land-cover classification
data of the NASA TERRA/MODIS HDF-EOS MOD12Q1
V004 product (data available fromhttp://duckwater.bu.edu/
lc/mod12q1.html) (e.g. Belward et al., 1999). Pixels with
DN of 0 (indicating water) were considered to be non-land
pixels. In addition, pixels with DN of 254 (indicating un-
classified) that were apparently located in ocean, river, and
water bodies were included as non-land pixels.

A gridded inventory (ODIAC) for the years 1980–2007
was developed using the procedure described above. Due to
the fine resolution of the nightlight data, the original ODIAC
datasets for each individual year were rather large (approx-
imately 3.5 GB). For convenience in data handling, we de-
veloped a 2.5 arc min (5 km) low-resolution inventory. The
low-resolution inventory was also developed according to the
method presented in this paper using 2.5 arc degree night-
light data reduced from the original 30 arc s (1 km) dataset.
The analysis described in this paper was obtained from the
low-resolution inventory dataset unless stated otherwise.

3 Results and discussion

3.1 Global, national, and regional annual CO2
emissions

The estimates for national and regional annual CO2 emis-
sions for the year 2006 are presented in Table1. The global
total CO2 emission for the year 2006 was estimated to be
29 992 MtCO2/yr (8180 MtC/yr). In the BP-based emission
estimates, the US was initially the country contributing the
largest fraction of emissions (6411 MtCO2/yr, equivalent to
1748 MtC/yr) and remained the world’s emissions leader un-
til the year 2007. The second-largest emitter was China
(6023 MtCO2/yr, 1643 MtC/yr). Other prominent emit-
ting countries were the Russian Federation (1681 MtCO2/yr,
458 MtC/yr), Japan (1371 MtCO2/yr, 374 MtC/yr), and In-
dia (1220 MtCO2/yr, 332 MtC/yr); these five countries ac-
counted for 56% of the global total CO2 emissions, according
to our estimations.

The national emission levels for other countries and the
fraction of point source and non-point source emissions are
shown in Fig.2. Global total CO2 emissions from power
plants were estimated to be 10 246 MtCO2/yr (2794 MtC/yr),
which is 34% of the global total CO2 emission estimates in
this study. Here, we note that the emissions from all power
plant data available in CARMA were not summed, because
invalid power plant data (e.g. zero emissions and incorrect
latitude-longitude coordinate information) were eliminated
at an earlier stage of the analysis. At national and regional
levels, CO2 emissions from point sources may account for

Fig. 2. National and regional total emission estimates for the year 2006. The yellow portion
indicates emissions from point sources, and green indicates emissions from other sources
(non-point). National and regional total point-source emissions (yellow) were calculated using
the CARMA power plant data shown in Figure 1. The non-point source emissions (green) were
estimated by the residual of the total emission minus the point source emissions. Values are
given in units of Megatonne carbon year−1.
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Fig. 2. National and regional total emission estimates for the year
2006. The yellow portion indicates emissions from point sources,
and green indicates emissions from other sources (non-point). Na-
tional and regional total point-source emissions (yellow) were cal-
culated using the CARMA power plant data shown in Fig.1. The
non-point source emissions (green) were estimated by the residual
of the total emission minus the point source emissions. Values are
given in units of Megatonne carbon year−1.

a substantial proportion of the total emissions. Emissions
from point sources contribute to approximately half of the to-
tal emissions in Australia (55.6%), Bulgaria (47.9%), China
(51.8%), the Czech Republic (50.0%), Germany (48.1%),
Finland (51.9%), Greece (47.1%), India (52.2%), the Philip-
pines (50.7%), Poland (54.5%), and South Africa (48.5%).
Because the use of just one of the common surrogates alone
(e.g., nightlight or population) does not generally explain
intense point source emissions, inclusion of point sources
might be practical and offer a reasonable method for deter-
mining part of the spatial emission patterns. Using only one
surrogate for all emissions may underestimate point source
emissions and overestimate non-point sources. This may be
especially important when one is interested in finer spatial
scales.

As the six major geographical regions are aggregated cat-
egories of countries and regions that are not included inBP
(2008), we assumed that the countries and regions within
each major region had the same fraction of CO2 emissions
from point sources and non-point sources. This is a weak as-
sumption but we did not identify a better alternative. Regard-
less of the weak assumption, the fraction of total emissions
from point sources in the six major geographical regions (Ta-
ble 1) appeared to be smaller than the fraction of emissions
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Fig. 3. Comparison of the historical global and national CO2 emission estimates for the years
1980–2007. The red line shows the estimates given using BP (2008) in this study and black
indicates CDIAC (Andres et al., 2009; Boden et al., 2009) estimates (excluding cement pro-
duction and gas flaring). The shaded region shows error bounds for CDIAC taken from the
literature. Values are given in units of Gigatonne carbon year−1.
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Fig. 3. Comparison of the historical global and national CO2 emis-
sion estimates for the years 1980–2007. The red line shows the
estimates given usingBP (2008) in this study and black indicates
CDIAC (Andres et al., 2009; Boden et al., 2009) estimates (exclud-
ing cement production and gas flaring). The shaded region shows
error bounds for CDIAC taken from the literature. Values are given
in units of Gigatonne carbon year−1.

from point sources in 61 countries and regions. This discrep-
ancy may result from the fact that most industrial countries
and regions were included in the 61 countries and regions.
However, CO2 emissions from point sources in the six geo-
graphical regions may still account for a considerable frac-
tion of the total emissions.

To give a measure to the BP-based emission estimates
in this study, we compared our global and national esti-
mates with CDIAC estimates (Boden et al., 2009) (Fig. 3).
The data, calculation methods, and CEFs we used differed
from those inBoden et al.(2009), and thus deviations from
CDIAC estimates were expected. Briefly, national total emis-
sions from CDIAC were estimated using the apparent con-
sumption distribution and were based on energy statistics
published by the United Nations (UN, 2008) (e.g.,Marland
and Rotty, 1984). CDIAC global total emissions were esti-
mated using production statistics based on (UN, 2008) (e.g.
Marland and Rotty, 1984). CDIAC estimates for the com-
parison are the summation of emissions from the combustion
of fuels (gas, liquid, and solid); emissions from cement pro-
duction and gas flaring are not included. The size of error
bound was taken from literature values and we would like
to note that they are not always ones estimated for CDIAC
emission estimates and typical values in general. We as-
signed 10% for global (Marland and Rotty, 1984; Marland,
2008), 5% for US (EPA, 2010) and for Japan, assuming it is
a country with good statistic collection system, and 20% for
China (Gregg et al., 2007). As for Russia and India, we as-
signed 10%, which is an error estimate for OECD countries
(Olivier and Peters, 2002), assuming the two countries have
the good statistic collecting system as OECD countries. We
took largest numbers we found in the literatures. As shown in

Fig. 4. Global distribution of total CO2 emissions for the year 2006. The map was drawn using
a reduced 5-km-resolution ODIAC inventory; therefore, the actual size of each pixel is 5 × 5
km2. Values are given in units of the log (base 10) of tonnes carbon 5 km−2 year−1.
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Fig. 4. Global distribution of total CO2 emissions for the year 2006.
The map was drawn using a reduced 5-km-resolution ODIAC inven-
tory; therefore, the actual size of each pixel is 5×5 km2. Values are
given in units of the log (base 10) of tonnes carbon 5 km−2 year−1.

Fig. 3a, the global total emissions in this study overestimated
CDIAC estimates. Our BP-based estimates were on aver-
age 4% higher than the CDIAC estimates in mean value, but
agreed in error bounds. Comparisons of historical emission
estimates for the top five emitting countries (the US, China,
Russia, Japan, and India) are also shown in Fig.3b–f. The an-
nual national emission trends in this study agreed well with
those of CDIAC, although quantitative differences between
the annual emissions were present. At the national level, in
particular, the deviations from CDIAC may be more appar-
ent than at the global emission level. The calculation method
in the CDIAC national estimate was based on apparent con-
sumption, as described, whereas the national emissions in
this study were derived from the annual total fuel consump-
tion. Thus, deviations from the CDIAC estimate at the na-
tional level may be explained by, for example, the omis-
sion of adjustments for import/export and stock change and
also the inclusion of international bunker emissions. Also,
BP-based estimates may be higher than those of CDIAC be-
cause the BP-based includes fuel ethanol and biodiesel which
CDIAC does not.

3.2 Spatial distribution of CO2 emissions at the global,
regional, and city-level scales

3.2.1 Global scale

The spatial distribution for the gridded global CO2 emissions
during the year 2006 is shown in Fig.4. CO2 emissions in
Fig. 4 are expressed as the log (base 10) of tonnes of car-
bon per cell (5 km×5 km) per year. Point source emissions
imported from the CARMA database were directly placed in
the exact locations indicated by CARMA, but this spatial dis-
tribution, which can be seen in Fig.1, was not apparent in the
global distribution, even though it was based on reduced 5-
km resolution data. The most prominent features of the spa-
tial distribution shown in Fig.4 were dominated by non-point
source emissions, which were represented in the nightlight
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data. Therefore, the spatial features that were readily observ-
able were directly inherited from the native nightlight distri-
bution. Large concentrations of intense source areas can be
seen over Eastern North America, Northern and Western Eu-
ropean countries (e.g. UK, Belgium, and the Netherlands),
and East Asian countries (e.g. India, China, South Korea,
and Japan). In the Southern Hemisphere, in contrast, mas-
sive source regions are not as prevalent as in the Northern
Hemisphere, as one might expect. Although individual point
sources cannot be distinguished, large metropolitan areas
(e.g. Los Angeles, Chicago, Mexico City, Sao Paulo, Lon-
don, Paris, Moscow, Johannesburg, Delhi, Bangkok, Shang-
hai, Beijing, Seoul, and Tokyo) can be identified as intense
sources of millions of tonnes carbon per year. In addition,
we can identify regional spatial characteristics that are de-
picted in detail by the nightlight distribution. For example,
source regions along the interstate highway network in the
US, road networks around Moscow, the Trans-Siberian Rail-
way, the Nile, and the Indus, are visible spatial characteristics
even in the global picture. Those nightlights observed using
DMSP-OLS instruments may not be lights attributable ex-
actly to the sources, and may be lights coming from nearby
cities. However, the distribution may still be used as a sur-
rogate for regional unique sources, such as area sources and
line sources.

As stated above, emissions at a pixel were calculated by
multiplying the national (or regional) total emissions by the
ratio of the radiance level at a pixel to the national (or re-
gional) total radiance. Therefore, if the total emissions are
the same, emissions at a pixel can be overestimated in a coun-
try (or region) that has a smaller number of source region
pixels according to the nightlight distribution. In fact, pix-
els across China indicated more intense emission levels than
those in the US, whereas the total national emission levels in
the US in 2006 were larger than those of China in this study.
This result occurs because China includes smaller source re-
gions than does the US, if one utilizes nightlight as the unique
surrogate. The same explanation may account for the differ-
ences between physically small countries that are assigned
intense emission levels, such as the Netherlands, Belgium,
and Japan. As seen in Fig.4, the fine depiction of source
regions could offer advantages for spatial emission mapping
in countries (or regions) with physically large territories and
small (or concentrated) human settlements, especially at a
regional scale. Source regions indicated by population data
could be diffuse due to the spatial unit used for statistical
data collection, potentially resulting in the underestimation
of emission intensities. Here, we assumed that the nightlight
intensity was linearly and uniformly related to CO2 emis-
sions all over the world. The proportionality constant may
actually be country-specific. Moreover, nightlight may not
explain spatial variations in emissions that are attributable to
differences among source sectors. Because nightlight usu-
ally correlates with human activity, it also correlates with
the population distribution to a similar extent. However, the

Fig. 5. The global distribution of emission ratio between our inventory (power plant data plus
nightlight-based) and the CDIAC gridded inventory (population-based) for the year 2006. The
emission ratio (our inventory divided by CDIAC) is calculated using our inventory (reduced to 1◦

× 1◦ resolution from 5 km × 5 km resolution) and the CDIAC 1◦ × 1◦ gridded inventory (Andres
et al., 2009). The calculated emission ratios are plotted with the range of 0.01 (1/100) and 100
(100 times). An emission ratio of 1 indicates that emissions of our inventory and CDIAC are
identical, and ratios larger than 1 indicate that our inventory overestimates the CDIAC inventory,
and vice versa. The regions with no color (white) indicate zero emission for both inventories.
Emission pixels of our inventory with zero CDIAC emissions were not included in this analysis.
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Fig. 5. The global distribution of emission ratio between our inven-
tory (power plant data plus nightlight-based) and the CDIAC grid-
ded inventory (population-based) for the year 2006. The emission
ratio (our inventory divided by CDIAC) is calculated using our in-
ventory (reduced to 1◦×1◦ resolution from 5 km×5 km resolution)
and the CDIAC 1◦×1◦ gridded inventory (Andres et al., 2009). The
calculated emission ratios are plotted with the range of 0.01 (1/100)
and 100 (100 times). An emission ratio of 1 indicates that emissions
of our inventory and CDIAC are identical, and ratios larger than 1
indicate that our inventory overestimates the CDIAC inventory, and
vice versa. The regions with no color (white) indicate zero emis-
sion for both inventories. Emission pixels of our inventory with
zero CDIAC emissions were not included in this analysis.

spatial distributions of nightlight and population were fairly
different. As a measure of the similarities and differences,
we calculated the spatial correlations and absolute differ-
ences between our inventory and the CDIAC 1◦

×1◦ grid-
ded inventory for the year 2006 (Andres et al., 2009) and
created a map of showing the global distribution of emis-
sion ratios between our inventory and the CDIAC gridded
inventory (Fig.5). Here, emissions ofAndres et al.(2009)
include emissions from cement production and fishery emis-
sions that are not considered in this study. As the CDIAC
gridded inventory was developed at a spatial resolution of
1◦, the comparison was performed at the same resolution
by upscaling our 5 km×5 km emission map to 1◦×1◦ reso-
lution. The emission ratios are calculated by dividing emis-
sions in our inventory by emissions in the CDIAC inventory.
An emissions ratio of 1 indicates that the emissions in our
inventory and those of CDIAC are identical, and emission
ratios larger than 1 indicate that our inventory overestimate
the CDIAC inventory and vice versa. Emission pixels with
zero CDIAC emissions (and corresponding pixels in our in-
ventory) were not used in this analysis. The spatial correla-
tion factor was 0.66 and the absolute difference between the
two inventories was 25 332 MtCO2/yr (6908 MtC/yr). The
differences between the two inventories could be explained
by the differences between the spatial distributions, and by
emissions that were not considered in this study (see Fig.5).
As emissions from non-point sources are distributed using
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Fig. 6. Regional spatial distributions of CO2 emissions for the year 2006. From top left (clock-
wise): North America, Europe, East Asia, and the Middle East and West Asia. The maps shown
here were drawn using reduced 5-km-resolution ODIAC inventory on the same scale. Values
are given in units of the log (base 10) of tonnes carbon 5 km−2 year−1. Note that the maps are
drawn in different scales.
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Fig. 6. Regional spatial distributions of CO2 emissions for the year
2006. From top left (clockwise): North America, Europe, East
Asia, and the Middle East and West Asia. The maps shown here
were drawn using reduced 5-km-resolution ODIAC inventory on the
same scale. Values are given in units of the log (base 10) of tonnes
carbon 5 km−2 year−1. Note that the maps are drawn in different
scales.

the nightlight distribution, our inventory underestimated the
CDIAC inventory in many places. Thus, emission ratios less
than 1 can be seen at many places, especially over South
America, Africa, Australia and some areas in West Asia. The
underestimation over Antarctic sea is attributable to emis-
sions from fishery, which are not considered in this study.
As another feature, our inventory overestimated the CDIAC
inventory at hot spots of population (populated cities and ar-
eas) and underestimated at the suburb areas (e.g., Western
part of United States, South America, some parts in Europe,
Africa, India and China). Our inventory often overestimated
the CDIAC inventory by a factor of more than 2 at such hot
spots of population.

3.2.2 Regional scale

Fig. 6 shows enlarged views of North America, Europe, East
Asia, and West Asia. To determine the spatial emission pat-
terns at the regional scale, combinations of the spatial infor-
mation (e.g. industry, population, and transportation) are of-
ten used (e.g.Ohara et al., 2007; Gurney et al., 2009). In con-
trast, this study assumed that nightlight functioned as a com-
prehensive surrogate for regional sources. In fact, as shown
in Fig. 4, nightlight may indicate the major transportation
networks (e.g., the US and Europe) in addition to human set-
tlements. Although individual power plants were not visible
at this scale, power plants had already been placed at exact
locations. The detailed regional population data may work
in a similar way; however, the resultant distribution may be

Table 3. Comparison, across the US, of our ODIAC map and the
Vulcan map. “Brenkert 1998” (the first column) is a population-
based map constructed at 1◦ resolution (Brenkert, 1998). “FFDAS”
(the second column) was based on nightlight data corrected by pop-
ulation data (Rayner et al., 2010). The total emissions of the par-
ticipating inventories were scaled with respect to the Vulcan total
emission level for the year 2002, and the sum of the absolute of
the Vulcan values minus the map being compared (diff) and spatial
correlations with the Vulcan map (corr) were calculated at different
spatial aggregation levels (0.5◦–4◦) (Rayner et al., 2010). Values
are given in units of Megatonne carbon.

Resolution Brenkert 1998 FFDAS ODIAC
(◦) diff (MtC) corr diff (MtC) corr diff (MtC) corr

0.5 – – 1143 0.74 744 0.87
1.0 1045 0.75 900 0.85 474 0.94
2.0 788 0.84 651 0.91 315 0.97
3.0 654 0.87 545 0.92 262 0.98
4.0 644 0.87 479 0.93 206 0.99

diffuse. It is not realistic to attempt to prepare a detailed,
consistent global population map because of a lack of data.

A comparison of region-focused evaluations was made
by comparing our ODIAC emission map with the Vulcan
inventory (Gurney et al., 2009), together with the CDIAC
(Brenkert, 1998) and FFDAS (Rayner et al., 2010) emission
maps. The comparison was performed according to the cri-
teria described inRayner et al.(2010). A summary of the
comparison is given in Table3. The total emissions from
the maps were scaled with respect to the Vulcan total emis-
sion level for the year 2002. The spatial correlations and
absolute differences (sum of the absolute value of the Vul-
can values minus the map being compared) were then calcu-
lated at different spatial scales (0.5◦–4◦). Among the partic-
ipating maps, the CDIAC map (Brenkert, 1998) was purely
population-based and has been widely used in flux inversion
studies (e.g.,Gurney et al., 2002). As stated earlier, FF-
DAS produces emission fields based on an extended Kaya
identity by assimilating nightlights data together with pop-
ulation data. Thus, FFDAS is not solely based on night-
light data, although the contribution of nightlight data is ap-
parent in the resulting map. The produced spatial distribu-
tion of emissions is intermediate between that of nightlight-
based and population-based approaches, and is more smooth
than that of traditional population-based inventories (Rayner
et al., 2010). FFDAS showed better agreement with Vulcan
compared with emission maps based solely on population or
solely on nightlight data (Rayner et al., 2010).

The comparison results demonstrate that our emission map
showed the best agreement with the Vulcan map at all spatial
levels (e.g., a correlation of 0.87, even at 0.5◦ resolution) in
terms of absolute difference and spatial pattern. Assuming
that the major difference between the procedures used in FF-
DAS and the present study is the inclusion of point sources
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Fig. 7. Spatial distributions of CO2 emissions over heavily populated cities worldwide for the
year 2006. From top left (clockwise): Los Angeles, Moscow, Shanghai, Tokyo, New Delhi,
and Sao Paulo. The maps were drawn using the original 1-km-resolution ODIAC inventory;
therefore, the actual size of each pixel is 1 × 1 km2. Values are given in units of the log (base
10) of tonnes carbon 1 km−2 year−1. Note that the maps are drawn in different scales.
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Fig. 7. Spatial distributions of CO2 emissions over heavily pop-
ulated cities worldwide for the year 2006. From top left (clock-
wise): Los Angeles, Moscow, Shanghai, Tokyo, New Delhi, and
Sao Paulo. The maps were drawn using the original 1-km-
resolution ODIAC inventory; therefore, the actual size of each pixel
is 1×1 km2. Values are given in units of the log (base 10) of tonnes
carbon 1 km−2 year−1. Note that the maps are drawn in different
scales.

in the present study, this factor may be crucial for emission
mapping at fine spatial scales. Regional agreement in spa-
tial pattern on such spatial scales is an appealing feature for
regional flux inversions, including conventional region- and
grid-based types of inversions in which flux estimates are de-
rived based on spatial patterns of a priori fluxes given as a
first guess for optimization. In addition, the good quantita-
tive agreement with the Vulcan emission maps would ben-
efit atmospheric simulations, regardless of the fact that the
comparison was performed by scaling the total emissions to
the Vulcan. Here we would like note that our emission map
showed better agreement with Vulcan among participant in-
ventories as shown above, however this should not be con-
strued to mean that the true distribution is similar to either
of these distributions. The authors are aware of no inde-
pendent measurements to verify any of the inventories men-
tioned here.

3.2.3 City-level scale

Fig. 7 shows the spatial distribution of CO2 emissions at six
major populated cities worldwide (Los Angeles, Sao Paulo,
Moscow, Delhi, Shanghai, and Tokyo). Those maps were
based on the native 30 arc s (1 km) resolution ODIAC inven-
tory. As seen in Fig.7, the local spatial structures of large
cities were clearly depicted by the nightlight data. In ad-
dition, the spatial variability in CO2 emission levels could
be seen even in city cores, where standard measurements
from the DMSP-OLS instruments usually register satura-
tion. Those spatial distributions may be similar in appear-
ance to those expected from a population-based method, and
they may not explain the emission patterns by sector. Re-

gardless of such limitations, however, the use of the ‘radi-
ance calibrated light’ data enabled us to indicate possible
source regions at good spatial resolution and offers a practi-
cal method for mapping emissions that can be applied to the
entire globe. High-emission pixels are readily seen in Fig.7,
and some of the pixels were attributed to pixels containing
power plants. Because such emitting pixels are not indicated
by maps based on population or nightlight data, the individ-
ual mapping of point sources is an advantage inherent in the
procedure used in this study. Because the geographical coor-
dinates of power plants were available in CARMA, this fine-
scale mapping approach fully utilized location information
with reasonably small dilution. In our opinion, the available
information is insufficient to fully evaluate the relationship
between CO2 emissions and nightlight intensity. In addition,
we cannot evaluate the extent to which emission intensities
are reasonable at this global spatial scale, as such informa-
tion is only available for some individual countries, regions,
or cities. Because the associated error usually increases at
finer (higher) spatial resolutions, careful evaluation should
be performed when utilizing the inventory presented in this
study for atmospheric simulations. Regardless of such con-
cerns, however, our high-resolution inventory may be appli-
cable to global or regional high-resolution atmospheric sim-
ulations. In particular, one can perform, for example, atmo-
spheric simulations with different spatial resolutions using
a single consistent inventory. This inventory may also be
applied toward interpreting the spatial variability in satellite
CO2 measurements globally.

3.3 Uncertainties

Here, we discuss the possible sources of uncertainties asso-
ciated with our gridded emission inventory. Our procedure
may include three major sources of uncertainty: (1) the cal-
culation of national and regional emissions, (2) the use of a
point source database, and (3) the use of the nightlight surro-
gate distribution. The first source has already been discussed
in the previous section. Therefore, we will discuss the second
and third sources of error.

The use of a point source database is an appealing fea-
ture of the procedure presented in this paper. To our knowl-
edge, there are no other power plant databases publicly avail-
able that cover the entire globe. This fact was the primary
motivation for utilizing the CARMA database in our de-
velopment. However, CARMA obviously does not cover
all existing power plants worldwide, and the emission esti-
mate was performed using limited data (Wheeler and Um-
mel, 2008). In addition, geographical coordinates provided
by CARMA sometimes indicate false locations. One cause
of these errors is the method for deriving coordinate informa-
tion. The location of power plants was generally indicated by
the plants postal address in the original public data or com-
mercial subscription data. As the postal addresses were con-
verted into coordinate information (latitude and longitude)
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via fuzzy matching using geographical information systems
(Wheeler and Ummel, 2008), the addresses were sometimes
erroneously assigned to places with the same name or a sim-
ilar name. Assuming the locations are correct, we cannot
place emissions to exact source locations if emitting points,
for example boilers, are located apart from its main facility
(e.g., main office mailing address). Apart from the CARMA
database, we extended the CARMA emissions for the year
2007 to the years 1980–2007 using national emission trends,
under the assumption that the power plants had persistently
contributed emissions over the intervening years. Therefore,
uncertainties may increase in the years prior to 2006, which
is actually the year 2007 in the CARMA database. Consider-
ing these points, uncertainties arising from the extrapolation
of emissions may be larger than those associated with se-
lection of the base year. Total emission of CARMA power
plants for the year 2000, which is the sum of year 2000 emis-
sions from 17668 CARMA power plants used in this study,
is 2138 MtC/yr and is smaller than that of year 2007 by 30%
(650 MtC in emission). The difference (change in 7 years)
could be explained by changes in emission intensities and
power plants which are not in operation at the time. In fact,
2543 CAMRA power plants out of 17668 for 2007 (14.4%)
were indicated as not operated (emission = 0) in year 2000.
Our assumption does not allow us to account for both emis-
sion changes and non-operation as no data are included in
CARMA and no available data to fill the gaps. Our scaled
CARMA using BP trends overestimated by 8% in total emis-
sions calculated from CARMA for 2000. With respect to the
available spatial locations of power plants, we reviewed the
coordinate information for 300 power plants in the CARMA
data, one by one, using online resources, such as Google
Earth and Wikimapia (http://wikimapia.org/). In the sample
set of 300 plants, which constitutes less than 3% of the fos-
sil fuel power plants listed in the CARMA dataset, spatial
errors were often present in Chinese power plants and some-
times in Indian plants. Great care must be taken with regards
to the location of power plants when using the current ver-
sion of ODIAC. The next version is expected to contain the
corrected locations of the 300 power plants.

The use of nightlight data is an appealing feature of the
present study. We determined the spatial distribution of the
source regions by assuming that nightlight directly correlates
with CO2 emissions. Whereas this assumption is applica-
ble to developed countries, it is not well suited for develop-
ing countries (e.g.,Raupach et al., 2009). Saturated pixels
were assigned the highest radiance pixel values for simplic-
ity. It was assumed that the relationship between CO2 emis-
sions and nightlight was linear and uniform across the dif-
ferent countries, although the relationship may be strongly
country-dependent. In addition, we applied one composite
radiance data set to all years because of the limited avail-
ability of other radiance data sets. FFDAS utilized a specific
annual composite nightlight data set for each year to compile
the map for that year (Rayner et al., 2010). We expect that

the spatial distribution may not be significantly influenced by
the employed data set, because it is not reasonable to assume
that many large cities may suddenly emerge or move over
the course of two decades. We do expect significant errors
to arise from changes in the light intensity, which may have
changed significantly, especially in developing countries and
regions.

4 Conclusions

We developed a global inventory of fossil fuel CO2 emissions
(the ODIAC) for the years 1980–2007 by combining infor-
mation from the global power-plant database CARMA and
a special product of the DMSP-OSL satellite nightlight data.
In this study, we focused on the disaggregation of national
emissions using these two key components. For this purpose,
we only considered land-based CO2 emissions, which are at-
tributable to the combustion of fossil fuels. Emissions for
international bunkers, fisheries, and gas flares were not con-
sidered due to their unique emission distribution and intensi-
ties. The nightlight map was a good predictor of the spatial
distribution of potential source regions up to the city level,
and fossil fuel power-plant emissions were placed directly
at the locations indicated in the CARMA database. The re-
sultant spatial distribution was somewhat different from that
of previously described population-based inventories. Night-
light was expected to function as a comprehensive surrogate
for regional unique sources, such as population and trans-
portation networks, beyond the features originally attributed
to nightlights. Our emission map was compared with the
Vulcan inventory across the US for the year 2002 and with
other existing global inventories. Our inventory showed bet-
ter agreement with the Vulcan inventory than did other ex-
isting inventories, with respect to spatial patterns and abso-
lute differences, at spatial resolutions that are suitable for re-
gional flux inversions. The comparison suggested that the
inclusion of point sources may be crucial for emission map-
ping at fine spatial scales. Apart from flux inversions, our
inventory may benefit global and regional atmospheric sim-
ulations. However, a careful quantitative evaluation may be
necessary when performing atmospheric simulations using
this inventory. Although it is difficult to find a single com-
prehensive global tool for conducting detailed global evalua-
tions, regional evaluations may be feasible. Emerging satel-
lite CO2 measurements may be applicable to such evalua-
tions. Uncertainties associated with the estimates reported in
this study may arise from the calculations of national and re-
gional emissions, the accuracy of the point source database,
and the use of nightlight maps as the only surrogate emission
map. These uncertainties are largely due to problems with
data quality or availability, and they encompass the limita-
tions associated with the development discussed here.
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The primary motivating factor for this study was to provide
a priori information on fossil fuel CO2 emissions for flux in-
versions using observational data from GOSAT. We focused
on fossil fuel CO2 emissions on land. Other fossil fuel emis-
sions that were not considered in this study, such as cement
production, gas flares, international bunkers, and fisheries,
may need to be accounted for by including such inventories
in a full description of fossil fuel CO2 emissions. The sea-
sonal variations in fossil fuel emissions, as suggested inGur-
ney et al.(2005), may have an impact on flux estimates of
inversions. In addition to annual emissions, gridded monthly
emissions need to be developed for emerging monthly flux
inversions. The derivation of monthly emission fields is cur-
rently under investigation.
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