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Abstract. We present and discuss the use of Bayesian mod-
eling and computational methods for atmospheric chemistry
inverse analyses that incorporate evaluation of spatial struc-
ture in model-data residuals. Motivated by problems of
refining bottom-up estimates of source/sink fluxes of trace
gas and aerosols based on satellite retrievals of atmospheric
chemical concentrations, we address the need for formal
modeling of spatial residual error structure in global scale
inversion models. We do this using analytically and com-
putationally tractable conditional autoregressive (CAR) spa-
tial models as components of a global inversion framework.
We develop Markov chain Monte Carlo methods to explore
and fit these spatial structures in an overall statistical frame-
work that simultaneously estimates source fluxes. Additional
aspects of the study extend the statistical framework to uti-
lize priors on source fluxes in a physically realistic manner,
and to formally address and deal with missing data in satel-
lite retrievals. We demonstrate the analysis in the context
of inferring carbon monoxide (CO) sources constrained by
satellite retrievals of column CO from the Measurement of
Pollution in the Troposphere (MOPITT) instrument on the
TERRA satellite, paying special attention to evaluating per-
formance of the inverse approach using various statistical
diagnostic metrics. This is developed using synthetic data
generated to resemble MOPITT data to define a proof-of-
concept and model assessment, and then in analysis of real
MOPITT data. These studies demonstrate the ability of these
simple spatial models to substantially improve over standard
non-spatial models in terms of statistical fit, ability to recover
sources in synthetic examples, and predictive match with real
data.
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1 Introduction

1.1 Model and inference setting

Bayesian statistical techniques are increasingly being used
in atmospheric chemistry inverse modeling studies to re-
fine bottom-up trace gas and aerosol source/sink flux esti-
mates. Past inverse studies have generally focused on anal-
ysis of surface and airborne in situ measurements from ge-
ographically distributed sites for species such as CO2, CO,
CH4, (e.g.,Enting et al., 1995; Hein et al., 1997; Houweling
et al., 1999; Bergamaschi et al., 2000; Bousquet et al., 2000,
2006; Gurney et al., 2002, 2003; Kasibhatla et al., 2002;
Petron et al., 2002; Peylin et al., 2002; Gerbig et al., 2003;
Palmer et al., 2003; Rodenbeck et al., 2003; Fletcher et al.,
2004; Michalak et al., 2004; Patra et al., 2005; Rayner et al.,
2005; Baker et al., 2006; Mueller et al., 2008; Gourdji et al.,
2010). More recently, inverse studies based on synthetic and
real satellite retrievals of tropospheric trace gas concentra-
tion fields have identified the potential for these new mea-
surements to further improve our understanding of trace gas
fluxes at regional and sub-regional scales (e.g.,Rayner and
O’Brien, 2001; Jones et al., 2003; Arellano et al., 2004, 2006;
Heald et al., 2004; Houweling et al., 2004; Petron et al.,
2004; Chevallier et al., 2005a,b, 2007, 2009a,b; Stavrakou
and Mueller, 2006; Meirink et al., 2008; Feng et al., 2009;
Kopacz et al., 2009, 2010). To fully exploit the information
content in these high-dimensional, spatially-dense satellite
data sets, we must address questions about the nature of spa-
tial dependencies among observations that are not predicted
by existing models, and how to appropriately integrate spa-
tial dependencies to ensure robust and unbiased inverse anal-
yses. We show here how we can address both modeling and
computational issues via Bayesian analysis of conditional au-
toregressive (CAR) spatial models to characterize spatial ob-
servation error fields.
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The general aims of the paper are to introduce and illus-
trate CAR models in this context, discussing computational
implementations and giving examples in analyses of syn-
thetic and real data. Our model and analysis have additional
practically relevant features, including the use of constrained
priors on source fluxes, and the overall Bayesian analysis de-
fines inference on spatial dependencies and variance param-
eters as well as fluxes. We regard this work as a proof-of-
concept in illustrating the ability to fit, assess and compare
initial classes of spatial models in this context, and – using
formal statistical methods – to highlight the nature and extent
of improvements over non-spatial models using synthetic and
real data. While the class of CAR spatial models used here is
simple and relatively limited in scope for modeling very di-
verse spatial patterns, it represents a first step towards more
elaborate and adaptive models that may become more rel-
evant with inverse analysis at higher resolutions and in the
context of access to increasingly rich satellite data.

We begin with the canonical model

y = Kx +ε (1)

where y is a m × 1 vector of atmospheric concentration
measurements for a particular species,x is a n× 1 vector
of corresponding fluxes with individual elementsxi repre-
senting source/sink categories (e.g. fossil-fuel combustion,
biomass burning, etc.) and/or geographical regions, andK is
am×n Jacobian matrix derived from an atmospheric chem-
istry transport model (CTM) and describing the relationships
between discretized atmospheric concentrations and fluxes
corresponding to source/sink categories. The randomm×1
vectorε accounts for errors associated with the measurement
technique, the chemical transport model, as well as repre-
sentativeness errors arising from differences in resolution be-
tween the measurements and model calculated concentration
fields. The vast majority of inverse modeling applications in
atmospheric chemistry are based on this formulation under
the assumption of linearity of atmospheric transport for un-
reactive species such as CO2, and with additional linearizing
assumptions with regards to chemistry for reactive species
such as CO and CH4. We also note that while the atmo-
spheric concentration measurements are spatially and tempo-
rally resolved, the vectory is constructed by stacking mea-
surements indexed by CTM grid cells and time. Global-scale
atmospheric chemistry inverse modeling studies involving
real or synthetic satellite retrievals have generally focused on
analyzing monthly or weekly mean measurements that are
spatially aggregated to the CTM grid resolution (typically
200–500 km in the horizontal). Satellite atmospheric con-
centration retrievals typically consist of vertically averaged
information which can be accounted for in Eq. (1) by appro-
priately modifyingK based on the specific instrument char-
acteristics. Past studies have generally focused on estimating
regionally-and monthly-aggregated fluxes, though there is in-
creasing interest in estimating fluxes at higher temporal and

spatial resolution. As a result,m≈105–106 andn≈102–105

for applications involving a year’s worth of data.
Bayesian analysis generates the posterior density func-

tion p(x | y) ∝ p(y | x) p(x) using the likelihood function
p(y|x) induced by the model (Eq.1) and a specified prior
p.d.f. p(x). In the context of atmospheric tracer inverse
modeling,p(x) represents prior knowledge of fluxes from
independent, bottom-up estimates. In atmospheric chemistry
inverse modeling applications it has typically been assumed
thatp(x) andp(ε) are multivariate normal distributions, de-
fined byx ∼ N(xa,Sa) andε ∼ N(0,Sε) wherexa andSa are
the prior mean vector and covariance matrix forx, andSε

is the observation error covariance matrix. Then, for known
xa, Sa andSε, inferences are defined by the resulting poste-
rior (x|y) ∼ N(xp,Sp) where

xp = xa+
(
K ′Sε

−1K +Sa
−1)−1

K ′Sε
−1(y −Kxa) or

xp = xa+G(y −Kxa), Sp
−1

= K ′Sε
−1K +Sa

−1 or

Sp = (I −GK)Sa, (2)

whereG = SaK ′(KSaK ′
+Sε)

−1. Herexp andSp are the pos-
terior mean and covariance, respectively. The Gaussian, lin-
ear assumptions underlie analytic tractability in defining the
closed form posterior here, as well as extensions to time se-
ries of data (e.g.,Prado and West, 2010), so continue to be
important in enabling applications.

With some exceptions noted in Sect.1.2, previous applica-
tions in atmospheric chemistry have generally assumed a di-
agonal structure forSε due to the lack of effective and com-
putationally efficient approaches to identifying and integrat-
ing relevant spatial structures. This eliminates the compu-
tational burden associated with the calculation of the matrix
inverse ofSε in Eq. (2). The equations clearly show, how-
ever, that if spatial dependencies in the model errors exist
and can be captured by a relevant non-diagonal and struc-
tured covariance matrixSε , this will impact on the posterior
estimatesxp of fluxes as well as the associated measures of
uncertainties inSp. The impact can be substantial as demon-
strated by some earlier studies (e.g.,Chevallier, 2007) and
our examples below.

1.2 Application context and previous approaches

While the assumption of uncorrelated observational errors
may be reasonable for inverse studies based on surface mea-
surements from a limited number of geographically scattered
locations, it is increasingly untenable for geographically
dense satellite measurements. This is especially true when
mid-and upper tropospheric tracer concentrations (where
transport is relatively fast) contribute disproportionately, rel-
ative to surface and lower tropospheric concentrations, to
satellite weighted column-average retrievals.

A few global scale inverse modeling studies have con-
sidered observation error correlations, and their impact on
posterior flux estimates.Chevallier (2007) considered the
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problem of estimating CO2 fluxes from synthetic OCO mea-
surements with known error correlations, and demonstrated
that posterior source estimates and the corresponding uncer-
tainties are sensitive to the treatment of observation error cor-
relations in the inverse analysis. This study also showed that
the effect of neglecting observation error correlations in the
inverse analysis can be partially compensated for by tech-
niques such as observation thinning and error variance infla-
tion, but at the expense of not fully utilizing the information
content of the measurements.

To avoid this loss of information, one can attempt to ex-
plicitly account for observation error correlations in the in-
verse analysis. For example, it has been proposed that spatial
correlations associated with the CTM-component of the ob-
servation error can be approximated by the spatial error co-
variance structure from pairs of short-term chemical forecast
simulations with different forecast starting times (Jones et al.,
2003). This approach to characterizing the CTM forecast er-
ror is intuitively appealing, but suffers from the drawback
that running multiple forward chemical model simulations
over seasonal and inter-annual time scales is computation-
ally expensive. It is also often impractical to perform sim-
ulations with independent CTMs on a routine basis to more
fully characterize chemical model transport errors.

An alternative approach involves statistically modeling
spatial observation error structures, and determining the as-
sociated parameters of the statistical error model as part of
the inverse analysis. A key challenge in this context is
computation. Traditional spatial modeling utilizing standard
Gaussian processes based on a spatial distance-based correla-
tion function (e.g.,Rue and Held, 2005) have been explored
to a degree (e.g.,Michalak et al., 2004; Mueller et al., 2008;
Gourdji et al., 2010) in terms of characterizing spatial error
structure in the prior. In the context of modeling observation
error structures in a fully Bayesian framework, this approach
is computationally severely limited due to the resulting needs
to perform multiple matrix inversions on covariance matrices
of orderm. Our interest in exploring alternatives that do not
involve approximation short-cuts addresses the scale-up is-
sues head-on while evaluating the flexibility of the class of
conditional autoregressive spatial models.

2 Statistical modeling developments

2.1 Overview

We discuss an approach that uses alternative spatial struc-
tures that (a) recognize and exploit the fact that the data
is inherently grid-based, and (b) provide access to effective
statistical computation using Bayesian simulation methods,
specifically Markov chain Monte Carlo (MCMC) analysis
(e.g.,Gelman et al., 2004; Prado and West, 2010, chapter 1).
We show how this allows direct and appropriate modeling of
spatial dependencies in observation errors in analysis that in-

tegrates evaluation of the spatial field structure together with
inference on source fluxes. Our analysis involves additional
modeling advances for the inverse problem that include use
of non-normal priors for fluxes to properly reflect the fact
that the sources of interest in this study are positive, and the
integration of missing data analysis to account for and infer
missing retrievals. We further note that computer code (in
Matlab) for all our analyses reported is available for others
to explore and use.

Models of spatial structure inSε involve additional un-
known parameters that define the spatial dependencies; de-
note these byθθθ . Further, since satellite retrievals are sub-
ject to substantial missing data we explicitly recognize this;
we denote byM the set of indices of missing retrievals,
M ⊂ {1 : m}, while H is the set of indices for observed re-
trievals. Thus the observed data isyH and the missing data
yM . Then, for a given priorp(x), the formal Bayesian in-
ference problem is to compute and summarize the posterior
p(x,θθθ,yM |yH ). We do this using custom development of
standard Bayesian statistical simulation methods based on
MCMC; some summary aspects are mentioned here and in
the Appendix, with full technical details provided in the sup-
plementary material on statistical computation.

2.2 Spatial error structure: conditional autoregressive
(CAR) model formulation

An approach based on Gaussian conditional autoregressive
(CAR) spatial models is able, as we show, to define realistic
and appropriate spatial structures for geographically dense
satellite retrieval data on a lattice, while leading to a compu-
tationally tractable methodology for atmospheric tracer in-
verse modeling. The approach takes advantage of the fact
that, under certain conditions, it is possible to statistically
model the precision matrixS−1

ε as a very sparse matrix de-
fined by a very small number of parameters, and that these
parameters can be efficiently inferred using MCMC algo-
rithms.

In the basic model of Eq. (1), y represents the vectorized
set of retrievals from the original global rectangular lattice,
or grid. Suppose thaty represents the vector of retrievals
for a single month, and thatεCAR (the notation change is to
explicitly reflect the assumption of a CAR spatial structure)
refers to the corresponding errors. Specification of a CAR
model starts with am×m proximity matrix, W, that des-
ignates weights to the neighbors for each grid cell. In this
application, we define the elements ofW as

wij =

exp(−δij ) if cell i andj are neighbors,
0 if i = j ,

0 otherwise,
(3)

whereδij≥0 measures distance between the centroids of grid
cellsi,j ; with (lati,longi) representing centroid of celli, this
is given byδ2

ij = (lati−latj )2
+(longi−longj )

2.
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The CAR model introduces spatial dependencies through
the complete conditional distributions for all elements of
εCAR; the error in celli depends on its neighbors as in

εCAR
i

∣∣{εCAR
j , j 6= i

}
∼ N

[ ∑
j 6=i

(ρ wij/wi+) εCAR
j ,τ2

c /wi+

]
,

for i = 1,2,...,m, (4)

and wherewi+ =
∑m

j=1wij . It is clear from the forms of
these conditional distributions that the spatial dependence
parameterρ defines association via the implied linear regres-
sion of each cell on its neighbors. In tandem, the scale pa-
rameterτc controls levels of variation in these conditional
distributions. Global correlations between separated grid
cells are induced as a result; celli depends on a more distant
cell k transitively through its neighbors that link to neigh-
bors of cellk, for example. Both parametersρ,τc are to be
estimated.

In the examples in this paper, we adopt a first-order neigh-
borhood approach in which the 8 cells that are physical
neighbors (N, NE, E, SE, S, SW, W, NW) of grid celli are
neighbors in the model, and only those. It turns out that
this first-order dependence structure is capable of capturing
spatial patterns sufficient to reflect much of the residual de-
pendency we see in MOPITT data, though more elaborate
neighborhoods could be examined using the same Bayesian
approach; the changes would simply use a different proxim-
ity matrix.

Define them×m matrix Dw = diag(w1+,w2+,...,wm+)
and the spatial precision matrixU = τ−2

c (Dw−ρW). It fol-
lows from the specification of the CAR model that the joint
distribution of allm error values is

εCAR
∼ N(0,U−1). (5)

That is, the error covariance matrixSε is replaced by the
spatially structured CAR covariance matrixU−1 that has
non-zero pairwise correlations between cells over larger dis-
tances induced by the local neighborhood dependencies even
thoughU itself has zero entries between cells that are not
neighbors. Model fitting and inference relies on posterior es-
timation ofU through estimation ofθθθ = (ρ,τc) as uncertain
parameters. Some of the computational tractability in deal-
ing with the spatial structure as an ingredient of the inverse
analysis comes through the fact that the precision matrixU
is sparse; i.e., the elementsUij are non-zero only when cells
i,j are neighbors.

CAR models are capable of representing spatial structure
that has traditionally been modeled via spatial distance-based
correlation functions, referred to in the statistical literatures
as Gaussian processes (GP) (e.g.,Rue and Held, 2005). One
of several often used forms is the exponential kernel in which
the correlation between grid cellsi,j is exp(−dij/L) where
dij is the great circle distance between the centroids of the
cells andL is the range parameter. The appropriate way to

Fig. 1. Left: conditional regression coefficients from Gaussian
process models (GP) with exponential decay correlation kernel
exp(−d/L) for several values of the range lengthL. Hered is
the centroid-centroid distance between cells and the regression co-
efficients plotted are those for the regression of the central cell (3,3)
on the rest. The mesh size is not constant over the entire lattice;
assuming the mean radius of the Earth to be 6371 km, the average
size of a 4◦ latitude× 5◦ longitude cell is 445 km× 556 km. Right:
conditional regression coefficients from CAR model usingρ values
fitted to match the regressions in the corresponding GP model.

compare with CAR models is to look at the conditional re-
gression coefficients implied by such a GP model in compar-
ison to those that are used to define the CAR model, simply
theρwij/wi+ term of Eq. (4). Figure1 shows such a com-
parison for several relevant values ofL, each plotted side-
by-side with a corresponding CAR model, on a 5× 5 grid
beyond which the GP coefficients are negligible. This ability
to adequately match local spatial patterns is a general feature
of CAR models while its computational accessibility makes
it a clearly dominant choice over GP models for all but very
small problems.

Finally, note that we may aggregate measurements over
a series of time epochs (e.g. from multiple months). In this
case, the variance matrix of the extendedεCAR will be block
diagonal, with the number of diagonal blocksU−1 equal to
the number of time epochs considered in the analysis.

2.3 Prior specification for fluxes

To date, inverse applications in atmospheric chemistry have
relied heavily on the linear-Gaussian theory associated with
multivariate normal priors overx and the resulting analytic
closed-form posterior summaries in Eq. (2). However, the
fluxes of interest are often strictly non-negative, as for ex-
ample, when CO sources are being estimated. In exploring
posterior inferences using the traditional normal priors, we
routinely encounter posterior densities that give appreciable
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probability to negative flux values; this is a purely technical
issue as, in such cases, the data:prior synthesis is surely con-
sistent with very low or zero flux, whereas the mathematical
assumption of normal priors leads to unconstrained posteri-
ors that support practically meaningless negative values.

Modern Bayesian computational methods allow us to do
away with such physically unrealistic assumptions that have
historically been made for purely mathematical tractability
reasons. Here we simply adapt the usual assumptions and uti-
lize priors for strictly positive fluxes that are the usual normal
distributions but now truncated at some small chosen lower
bound to ensure scientifically relevant posterior inferences
that disallow negative values. The traditional normal prior
specification based on bottom-up fluxesxa = (xa,i) has been
to adopt a multivariate normal prior withSa diagonal and
having ith diagonal variance elementSa,i for each source
i = 1,...,n. In particular, we defineSa,i = c2

ax
2
a,i based on

a specified coefficient of variationca. The direct modifica-
tion to ensure non-negative fluxes above a lower value is to
take the prior as a product of independent priors over sources
p(xi) where each is defined by

xi ∼ N(ma,i,va,i) I (xi > ti), i = 1,...,n. (6)

HereI (·) is the indicator function,

I (xi > ti) =

{
1 if xi > ti,

0 if xi ≤ ti,

and ti is a pre-specified small lower bound on realistic flux
levels.

Given the prior flux estimatesxa,i, and prior flux variance
Sa,i we can numerically match the expectation and variance
of the prior distribution given by Eq. (6) with xa,i andSa,i
to determine the values of the required prior parametersma,i
andva,i . In the examples below, we use this specification
with the lower bound on fluxes defined asti = xa,i/4.

2.4 Accounting for missing retrieval data

Satellite retrievals are inherently subject to missing data.
This translates into an index setM for the CO retrievals that
are missing, while those indexed in the setH are recorded.
Writing the observed data sub-vector asyH and the missing
data sub-vector asyM , we include the information thatyM

is missing in the analysis. This is done in standard Bayesian
fashion:yM is included as part of the inference problem in
an extended analysis that computes and summarizes aspects
of the posteriorp(x,θθθ,yM | yH ).

The missing rows of the transport matrixK (i,∗) for each
i ∈ M are linearly interpolated using the neighboring grid
cells (since instrument characteristics required to calculate
the corresponding elements ofK are unavailable) and the
corresponding unknownsyi, i ∈ M are assigned values that
are repeatedly updated via simulations from the relevant
conditional posterior predictive distributions in the Bayesian

MCMC analysis, noted in the next section and detailed fur-
ther in the Appendix.

2.5 Bayesian computation

Iterative posterior simulation using MCMC has been the de
facto standard in the statistical community for Bayesian sta-
tistical computation for some years (Gelman et al., 2004).
Recalling thatθθθ stands for unknown parameters in the error
varianceSε, the full joint posterior distribution for all un-
knowns{x,θθθ,yM} conditional onyH is evaluated by simu-
lating a large Monte Carlo sample, and basing inferences on
numerical summaries of that sample. MCMC analysis per-
forms this simulation iteratively, successively updating each
of the unknowns by simulation from a relevant conditional
distribution that may involve some of the most recently sim-
ulated, or imputed, values of other unknowns. Our MCMC
strategy for the current context is outlined in the Appendix,
with further technical details provided in the supplemental
documentation.

3 Synthetic data studies

We first demonstrate the approach with an extensive set of
synthetic data analyses that parallel the problem of estimat-
ing CO sources from MOPITT data considered byArellano
et al. (2004). We utilize synthetic data in order to provide
a context where the true sourcesx are known, and to com-
pare the CAR spatial model with a non-spatial (NS) statisti-
cal model to evaluate the effect of neglecting “true” spatial
error correlations on the inverse source estimates. The NS
model is a special case of the CAR model obtained when
ρ = 0; in that special case, we denote the scale parameter
by τn rather thanτc. We pay special attention to evaluating
performance of the inverse approach using various statistical
diagnostic metrics.

3.1 Generation of synthetic data with spatially
correlated errors

The inverse problem (Arellano et al., 2004) consists of us-
ing Level 2 V3 MOPITT daytime column CO retrievals
from April–December 2000 to estimate annual CO emis-
sions forn = 15 source categories consisting of: (a) fossil
fuel/biofuel (FFBF) combustion in 7 geographical regions,
(b) biomass burning (BIOM) in 7 geographical regions, and
(c) and oxidation of biogenic isoprene and monoterpenes on
a global-scale (BIOG). The geographical extent of each of
the FFBF and BIOM regions is shown in Fig.2. CO pro-
duction from methane oxidation is not estimated as part of
the inversion, but is taken into account by pre-subtracting
its contribution to the MOPITT retrievals. The Jacobian
matrix K is constructed by applying MOPITT averaging
kernels to gridded CO fields calculated using an offline,
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Fig. 2. Color-coded definition of fossil-fuel (FFBF) and biomass
burning (BIOM) CO source regions (after Arellano et al., 2004).
Numbers represent the source category number used in the text:
1= FFBF North America (FFBF-NAM); 2= FFBF Europe (FFBF-
EUR); 3= FFBF Russia (FFBF-RUS); 4= FFBF East Asia (FFBF-
EAS); 5= FFBF South Asia (FFBF-SAS); 6= FFBF Southeast
Asia (FFBF-SEA); 7= FFBF Rest of the World (FFBF-ROW);
8= BIOM Other (BIOM-OTH); 9= BIOM Northern Latin Amer-
ica (BIOM-NLA); 10= BIOM Southern Latin America (BIOM-
SLA); 11= BIOM Northern Africa (BIOM-NAF); 12= BIOM
Southern Africa (BIOM-SAF); 13= BIOM South and Southeast
Asia (BIOM-SSA); 14= BIOM Boreal (BIOM-BOR). Source cat-
egory 15 (not shown here) represents the global source of CO from
biogenic hydrocarbon oxidation (BIOG).

tagged tracer version of the GEOS-Chem CTM at a res-
olution of 4× 5 degrees. The gridded, quality controlled
MOPITT dataset used in the original analysis spans 50◦ N–
50◦ S, yielding a lattice of 26× 72 grid cells that vector-
izes to 1872 observations on a monthly basis. Combin-
ing data from April–December 2000 yields a complete re-
trievals vectory of lengthm =16 848 andK of dimension
16 848× 15. The original analysis ofArellano et al.(2004)
used only those MOPITT retrievals satisfying certain qual-
ity control metrics. We modified these to require at least
5 days of observations each month for a site to be consid-
ered valid; sites not meeting this are those treated as having
missing data, yielding 139 missing values. Further details
on MOPITT data processing and construction ofK are given
in Arellano et al.(2004); they also give the prior source vec-
tor xa and the diagonal matrixSa with ith diagonal element
Sa,i = c2

ax
2
a,i for a constant coefficient of variationca = 0.5.

We use these values as the basis for positively constrained

priors xi∼N(ma,i,va,i)I (xi>ti) taking ti = xa,i/4 such that
the prior mean of eachxi is the specified bottom-up value
xa,i and the prior variance isSa,i .

We generate a single synthetic MOPITT CO retrieval data
set with spatially-correlated errors by first generating a “true”
source vector,̃x, simply sampling from the truncated normal
priors; we usẽ to denote the synthetic quantities through-
out. We next construct a “true” error covariance matrix,
S̃ε , that includes off-diagonal terms representing spatial er-
ror correlations for cells within the same month; we assume
no between-month dependencies. Individual elements of this
matrix are specified using an exponentially decaying corre-
lation kernel; thus, for grid cellsi,j the covariance element
in S̃ε within each month is̃Sε,ij = σ 2exp(−dij/L) wheredij

is the great circle distance between the cells andL the range
parameter. We further take the constant observation errorσ

as 20 % of the global, annual-mean MOPITT-equivalent CO
columns from the CTM with prior CO source estimates. Cor-
responding error terms are then simulated fromε̃∼N(0,S̃ε)

and the synthetic CO observations vector is calculated di-
rectly from the model, Eq. (1), i.e., ỹ = K x̃+ε̃. Finally, the
grid cells for which the real MOPITT data is missing are then
masked as missing, defining the index setsM andH. We ex-
plore 6 repeat versions of this synthetic data usingL =100,
200, 500, 1000, 2000 and 5000 km, respectively; this gener-
ates 6 synthetic data sets reflecting varying degrees of spatial
error correlation.

We repeat this exercise to generate 1000 replicate simu-
lations in order to quantify Monte Carlo variability and re-
sulting accuracy of reconstructions of the true source fluxes.
Figures3 and4 show spatial plots of elements of the simu-
lated ε̃ andỹ for the month of December 2000 for one par-
ticular realization of̃x randomly drawn from the set of 1000
replicates.

3.2 Results: model adequacy and model comparisons

For each value ofL, we compare the posterior mean esti-
mates of CO fluxes with the known “true” fluxes for each of
1,000 synthetic data sets. Figures5 and6 show the results via
scatter plots of estimated CO flux versus the “truth” for one
FFBF and one BIOM source category, respectively. Similar
comparisons for the remaining source categories are shown
in the supplementary material. For one randomly selected
synthetic data set, Figs.7 and8 display the estimated 95 %
posterior credible intervals for each of the 15 source cate-
gories in both the CAR and NS model analyses; also shown
are the corresponding 95 % prior credible intervals and the
values of the “true” CO fluxes. It is readily evident from
these figures that the performance of the NS model is com-
parable to that of the CAR model when the degree of spatial
error correlation is very low (i.e.,L is rather small). The
CAR model is clearly superior at higher values ofL over the
range of “true” fluxes considered in this analysis. Results
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Fig. 3. Spatial images of randomly selected realizations of the synthetic MOPITT CO column observation errorsε̃ (in units of
1018molecules CO cm−2) for December 2000 for different values ofL. The black cells represent missing observations.

Fig. 4. Spatial images of synthetic MOPITT CO column measurementsỹ (in units of 1018molecules CO cm−2) corresponding to the errors
in Fig. 3. The black cells represent missing observations.
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Fig. 5. Scatter plots of “true”xi versus estimatedxi (in units of Tg CO yr−1) for the FFBF North America (FFBF-NAM) source category
computed from 1000 synthetic data sets. RMSE is the root mean square error metric of the estimatedxi from the “true”xi .

(see supplementary material) are similar across the range of
synthetic data sets considered here.

To summarize performance across the 1000 synthetic
datasets, and to provide further insight into the relative per-
formance of the CAR and NS approaches in reconstructing
source fluxes, we calculate two metrics for each CO source
category using the MCMC-sampled posterior distributions:

Success Rate= (#times the “true” CO flux falls within

posterior 95% interval)/1000, (7)

Learning Ratio= average of(Prior 95% interval length/

Posterior 95% interval length).

Figure 9 shows a combined plot of these two metrics for
each CO category for different values ofL. Notice that the
Learning Ratio>1 in each source category under both mod-
els, indicating both the models learn significant information
from the data; these ratios differ for different sources, reflect-
ing the fact that the measurements provide varying degrees
of information on the magnitude of different sources. The
Success Rates demonstrate precision of the analysis in the
standard statistical coverage sense; Fig.9 supports the point
already noted that at low spatial dependencies the NS and the
CAR models have comparable accuracy, whereas the CAR
model very substantially outperforms the NS model when
spatial structure becomes practically meaningful.

In this synthetic context and with the spatial model based
on a single spatial dependence parameter, posterior distribu-
tions and resulting credible intervals tend to be quite precise

Table 1. Posterior means and 95 % credible intervals for
log(BF(CAR:NS)) from the analyses of 1000 synthetic data sets.

L log(BF(CAR:NS)) 95 % CI

100 3.69 [−36.26, 42.01]
200 154.86 [102.99, 208.23]
500 2331.80 [2136.52, 2535.91]

1000 6040.01 [5643.34, 6473.56]
2000 10 450.46 [9644.83, 11 346.37]
5000 16 059.21 [14 180.68, 17 959.34]

due to the large amount of data. This is perfectly appropri-
ate and a consequence of model assumptions and data-model
match. In this specific model the results serve as a first,
proof-of-concept and example of the approach for account-
ing for spatial error correlation structures only; the high level
of posterior precision about fluxes may be reduced in more
elaborate spatial models for higher resolution data, and fur-
ther work will aim to explore this in new case studies.

Further substantiation in favor of spatial modeling with the
CAR approach comes from formal statistical summaries for
model comparison. A key, standard measure of relative fit
of two models is the Bayes factor (an integrated variant of
a likelihood ratio); to compare the CAR with the NS ap-
proach, this is

BF(CAR : NS) = pCAR(yH )/pNS(yH )
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Fig. 6. Scatter plots as in Fig.5 now for the BIOM Southern Africa (BIOM-SAF) source category.

wherep∗(yH ) is the marginal probability density function
of the observed datayH under the assumptions of the model
∗ = CAR or ∗ = NS, respectively;p∗(yH ) is otherwise re-
ferred to as the marginal likelihood or evidence for model∗,
and the ratio form in the Bayes factor measures relative evi-
dence on a likelihood scale; seeBernardo and Smith(1994,
chapter 6) andWest and Harrison(1997, chapters 11 and 12),
for example. A Bayes factor BF(CAR : NS)>1 indicates that
the data favors the CAR over NS model, with values of 100
or more indicating very substantial evidence indeed. From
the MCMC analysis of each synthetic data set we can esti-
mate the values ofpCAR(yH ) andpNS(yH ) and hence es-
timate the Bayes factor for that particular data set. Table1
reports the averages of the values over the 1000 simulated
data sets, together with the associated 95 % intervals. We see
significantly positive values of log(BF(CAR:NS)) for larger
L, indicating extremely strong evidence in favor of the spa-
tial model over the non-spatial model.

We illustrate the effectiveness of CAR in modeling these
synthetic (non-CAR) spatial dependencies by comparing the
synthetic data with samples from the posterior predictive dis-
tribution. Exploring posterior predictions is a traditional sta-
tistical method for both informal and formal evaluation of
model fit; here we simply present graphical summaries of
prediction from the model. For any of the posterior MCMC
draws of{x,θθθ,yM} we can, using these values, directly sim-
ulate additional synthetic datay from the model; such sim-
ulations generate random draws from the posterior predic-
tive distribution – i.e., synthetic representations of what data
will look like if the model is true. Often, simply exploring

graphical and numerical summaries of posterior predictive
simulated data sets can highlight ways in which the model is
inadequate when compared to the real data (West and Har-
rison, 1997; Gelman et al., 2004). Figures10 and11 show
representative posterior predictive samples from the NS and
CAR models forL =100 km andL =5000 km, respectively.
It is clear that the spatial patterns of posterior predictive sam-
ples from the CAR model are visually similar to the syn-
thetic data, while they are clearly noisier for the NS model
for higher spatial dependences.

4 Analysis of real MOPITT retrievals

We now consider the analysis applied to MOPITT retrievals
of CO columns, paralleling the study ofArellano et al.(2004)
but now including spatial CAR structure, modified priors,
and formal treatment of missing data. Figure12 displays
95 % posterior credible intervals from CAR and NS models
for each source category, and Table2 presents detailed poste-
rior summaries. We observe significant differences between
the two analyses for several of the CO source categories con-
sidered here. In particular, the CAR analysis suggests that,
for several of the FFBF and BIOM source categories the top-
down estimates are not as inconsistent with the bottom-up es-
timates as is suggested by the NS analysis. Again, as with the
synthetic data study above, we note relatively precise poste-
rior intervals based on the MCMC approach; these are accu-
rate summaries of uncertainties conditional on the assumed
form of the model.
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Fig. 7. Plots of 95 % posterior credible intervals for NS and CAR model analyses forL =100, 200 and 500 km, showing summary inferences
of source magnitude for all 15 CO source categories for one synthetic dataset (see Fig.2 for definition of source category numbers). Posterior
means for both are marked with dots inside the corresponding intervals. Alongside we plot 95 % prior credible intervals for the corresponding
source and indicate the “true” CO source with a square.

Model comparison using Bayes factors yields
log(BF(CAR : NS))>10073, simply overwhelming sta-
tistical evidence that the CAR model substantially improves
model:data match due to the presence of significant spatial
residual structure. To further indicate the ability of the
spatial model to reflect realistic spatial structure, Fig.13
displays two randomly selected posterior predictive samples
from the NS and CAR model analyses, together with the
actual data for December 2000. The spatial dependence
patterns in the CAR samples are visually similar to that
in the real data, while the NS samples are again noisier.
These preliminary comparisons suggest that accounting for
spatial error structures in the real data is important in the
context of constraining CO sources using spatially-dense
satellite measurements. Further investigations at higher
spatial and temporal resolution with the latest version of
the MOPITT dataset, as well with retrievals from other
satellite instruments, are required to more fully characterize
and account for these spatial error patterns and to refine
top-down CO source estimates.

5 Concluding remarks

The fast-expanding ability to access increasingly high-
resolution atmospheric data using satellite imagery raises ex-
citing opportunities for substantial advances in data synthe-
sis in inverse modeling. Capitalizing on this opportunity will
involve increased attention to core challenges that are inher-
ently statistical in nature. The work presented here reflects
this view and exemplifies the potential to address rather basic
yet challenging problems of very large-scale spatial model-
ing, coupled with refined prior specifications and treatment
of missing data, in inverse studies of atmospheric trace gas
source/sink flux estimation. To date, although the broader
field of atmospheric chemistry inverse modeling has become
heavily invested in statistical methods, there has been limited
development of what are standard statistical approaches uti-
lizing Bayesian simulation methods, including MCMC. The
work here demonstrates the utility of the Bayesian perspec-
tive and the enabling computational methodology provides
for extending inverse modeling frameworks to incorporate
relevant spatial stochastic structure.
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Fig. 8. Plots as in Fig.7, now based onL =1000, 2000, and 5000 km.

Table 2. Summary of posterior inferences for the CO fluxes (in units of Tg CO yr−1) and model parameters from analysis of actual MOPITT
retrieval data. See Fig.2 for definition of source category numbers.

Prior NS model NS model CAR model CAR model
mean (SD) mean (SD) 95 % CI mean (SD) 95 % CI

x1 102.99 (51.49) 83.13 (3.46) [76.26, 89.85] 73.24 (10.84) [51.97, 94.11]
x2 95.20 (47.60) 37.18 (5.42) [26.90, 48.40] 42.71 (10.87) [25.22, 66.09]
x3 45.72 (22.86) 95.43 (5.98) [83.56, 106.92] 54.17 (11.41) [31.45, 76.10]
x4 108.72 (54.36) 195.06 (3.58) [188.09, 202.19] 158.55 (8.61) [141.74, 175.70]
x5 88.14 (44.07) 147.75 (3.14) [141.61, 153.93] 116.96 (7.48) [102.37, 131.79]
x6 41.03 (20.51) 70.29 (2.84) [64.72, 75.93] 67.90 (7.38) [53.43, 82.71]
x7 120.98 (60.49) 265.42 (5.63) [254.48, 276.36] 108.83 (13.95) [81.20, 136.02]
x8 21.99 (10.99) 64.52 (1.56) [61.49, 67.59] 38.94 (4.24) [30.63, 47.23]
x9 38.58 (19.29) 96.56 (1.68) [93.24, 99.78] 34.23 (4.31) [25.80, 42.77]
x10 88.28 (44.14) 100.03 (1.47) [97.11, 102.93] 59.41 (4.07) [51.39, 67.26]
x11 133.91 (66.95) 92.25 (1.83) [88.70, 95.86] 52.56 (4.53) [43.72, 61.44]
x12 146.51 (73.25) 92.53 (1.50) [89.62, 95.48] 90.99 (3.77) [83.71, 98.61]
x13 41.51 (20.75) 104.48 (2.13) [100.31, 108.66] 44.27 (4.74) [34.78, 53.47]
x14 28.05 (14.02) 13.09 (1.88) [9.45, 16.81] 10.32 (2.20) [7.19, 15.34]
x15 462.12 (231.06) 152.00 (7.73) [136.47, 166.94] 224.74 (20.73) [183.57, 265.80]

τ2
n 0.1333 (0.0666) 0.0277 (3.0e-4)

τ2
c 1.0662 (0.5331) 0.0008 (8.9e-6) [0.0008, 0.0008]

ρ 0.5000 (0.2890) 0.99992 (3.6e-5) [0.99983, 0.99997]
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Fig. 9. Success Rate (top panels) and Learning Ratio (bottom panels) for all CO source categories for different values ofL. See Fig.2 for
definition of source category numbers.

Our analysis framework explicitly paralleled the earlier
work of Arellano et al.(2004) in order to demonstrate the ex-
tensions with spatial CAR modeling and other statistical in-
novations. Based on this proof-of-concept in studies of both
synthetic and real MOPITT retrieval data, some next steps in-
clude expanding the model framework to explicitly represent
time dependencies in data and models. The extension of spa-
tial modeling into a temporal framework is standard, and this,
together with extension to model potential time-variations in
source fluxes, will rely on additional Bayesian computational
methods that are well-developed in other areas of multivari-
ate time series analysis (West and Harrison, 1997; Prado and
West, 2010). Additional important directions include the ap-
plication of these techniques to carbon dioxide and methane
as high quality satellite measurements of these climatically
important gases become available, especially in the context
of source/sink estimation with high spatial resolution.

With regard to computational demands for higher resolu-
tion problems, we note that the running time for the MCMC
algorithm increases roughly linearly withn, the size of the
source vector. This is based on evaluations of computational

time using our current Matlab code and is approximately lin-
ear in FLOP counts, stopwatch time (tic toc) and elapsed
CPU time (cputime). This is the best one can expect and in-
dicates that indeed the analysis and computational approach
is scalable to much larger and higher resolution problems.
Moreover, the matrix multiplications that constitute much of
the computational burden with increasingm can be trivially
parallelized on multi-core machines or clusters, or via ex-
ploitation of GPU parallelization, suggesting the opportunity
for very substantial gains with largerm.

Finally, we note again that the analysis presented is in-
tended as a first, proof-of-principle analysis and example
of the opportunity to integrate spatial structure into inver-
sions. The single-dependence parameter CAR model is
likely overly simplistic as a representation of spatial errors
that combine model misfit and natural local dependencies in
satellite retrieval data. To represent additional complexity in
spatial structure, especially with regard to the potential op-
portunities to fit higher resolution models that can capture
more refined structure, extensions or alternatives to CAR
models will be needed. Indeed, one of our current research
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Fig. 10. Two samples of column CO fields (in units of 1018molecules CO cm−2) from the posterior predictive distributions of NS (lower 2
left panels) and CAR (lower 2 right panels) models for December 2000 forL =100 km; top panels show the corresponding synthetic data.

Fig. 11. Posterior predictive plots as in Fig.10, now withL =5000 km.

projects is to extend the general strategy of the paper to mod-
els that permit changes in the local dependency parameter
across the spatial region; importantly, such extensions will
also need to come through precision matrix models, rather
than covariance models, for both the feasibility of compu-
tations and, we believe, for practical realism. Our work in

this paper demonstrates the ability of simple CAR models to
substantially improve over the standard non-spatial models
in terms of statistical fit, source flux recovery in synthetic ex-
amples, and predictive match with the real data; this gives
us a basis to move ahead with development of more general,
flexible and likely realistic spatial structures in future work.
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Fig. 12.Plots of 95 % prior and posterior credible intervals for the real MOPITT data inversion. Posterior means for both models are marked
with dots inside the corresponding intervals. The squares on the prior credible intervals represent the corresponding prior means. See Fig.2
for definition of source category numbers.

Fig. 13. Two samples of column CO fields (in units of 1018molecules CO cm−2) from the posterior predictive distributions of NS (lower
2 plots, left panels) and CAR (lower 2 plots, right panels) models for December 2000; the top panels show the corresponding MOPITT
retrieval data.

Appendix A

Posterior computation

The Markov chain Monte Carlo posterior simulator succes-
sively re-simulates values of all of the unknowns{x,θθθ,yM}

to draw a large Monte Carlo sample from the full joint pos-
terior p(x,θθθ,yM | yH ). Initializing at (essentially arbitrary)
starting valuesθθθ,yM , the MCMC proceeds through many it-
erations to revise the full set of unknowns, at each iterate
stepping through the stages below to stochastically updatex

conditional on the last values of{θθθ,yM}, thenθθθ conditional
on the latest values of{x,yM}, and thenyM conditional on

the latest values of{x,θθθ}. The specific distributions used for
each of these three stages are summarized here with more
technical details in the supplemental documentation.

We use the following notation:

i. x−i = (x1,...,xi−1,xi+1,...,xn)
′

ii. K (∗,i) is theith column ofK

iii. K (∗,−i) is the submatrix ofK obtained by deleting the
ith column

iv. yA = (yi)i∈A, a subvector ofy

v. K (A,∗) = (K (i,∗))i∈A, a submatrix ofK
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vi. UA,B = (Uij )i∈A,j∈B , a submatrix ofU

vii. M is the set of indices for missing retrievals,M ⊂ {1 :

m}, while H = {1 : m}\M

viii. IG(a,b) stands for an inverse gamma distribution

We give summary details for MCMC in both the non-
spatial and CAR model contexts. As described in Sect.2.3,
analysis is based on the use of the truncated normal pri-
ors for sources with that for thei-th source beingxi ∼

N(ma,i,va,i)I (xi > ti) wherema,i andva,i are numerically
specified so that the prior has meanxa,i and varianceSa,i
with ti = xa,i/4.

A1 Single epoch data

We first give summaries for the analysis of a single epoch of
data – a single monthly retrievaly in the case of MOPITT
data. The extension to the context analyzed in our examples,
parallelingArellano et al.(2004) with multi-month retrievals
and time-invariant fluxes, is then also summarized in the fol-
lowing subsection.

A1.1 Posterior computation for the non-spatial model

The prior distribution forτ2
n is an inverse Gamma distribu-

tion, τ2
n∼IG(αn,λn) where we set the prior mean,E(τ2

n ) =

σ 2 (known), and the coefficient of variation to 0.5 so that
αn = 6 andλn = 5σ 2. The MCMC algorithm alternatively
samples from the following conditional distributions:

– For i = 1,...,n, resample theith source element from(
xi | x−i,τ

2
n ,y,K

)
∼ N(En,i,Vn,i) I (xi > ti)

where

Vn,i =
(
v−1

a,i +τ−2
n K ′

(∗,i)K (∗,i)

)−1

and

En,i = Vn,i

{
v−1

a,i ma,i +τ−2
n K ′

(∗,i)(y −K (∗,−i)x−i)
}
.

– Resample (τ2
n | x,y,K) ∼ IG(αn + m/2,λn + q/2)

whereq = (y−Kx)′(y−Kx).

– Resample values of the missing data vector from
the conditional posterior predictive distribution(yM |

x,τ2
n ,K)∼N(K (M,∗)x,τ2

n I).

A1.2 Posterior computation for the CAR model

The prior forτ2
c ∼IG(αc,λc) with prior mean,E(τ2

c ) = 8σ 2

(known, sets unbiased prior when there is no spatial depen-
dence, i.e.ρ = 0), and coefficient of variation set at 0.5; this
impliesαc = 6 andλc = 40σ 2. Further, we adopt the uniform
prior for ρ on 0<ρ<1. The MCMC algorithm alternatively
samples from the following conditional distributions:

– For i = 1,...,n, resample theith source element from(
xi | x−i,τ

2
c ,ρ,y,K

)
∼ N(Ec,i,Vc,i)I (xi > ti)

where

Vc,i =
(
v−1

a,i +K ′

(∗,i)UK (∗,i)

)−1

and

Ec,i = Vc,i

{
v−1

a,i ma,i +K ′

(∗,i)U(y −K (∗,−i)x−i)
}

with U = τ−2
c (Dw−ρ∗W).

– Resample (τ2
c | x,ρ,y,K)∼IG(αc+m/2,λc+q/2)

whereq = (y−Kx)′(Dw−ρW)(y−Kx).

– Resample (ρ | x,τ2
c ,y,K) with a random-walk

Metropolis step as follows. First, sample a candidate
valueρ∗

∼N(ρ,s2) and computeU∗
= τ−2

c (Dw−ρ∗W).
The candidate value is then accepted with probability

α = min

{
1,

N(y | Kx,U∗−1)

N(y | Kx,U−1)

}
;

if accepted, setρ = ρ∗ andU = U∗
; otherwise retain the

previous valuesρ,U. The step sizes is defined adap-
tively during the initial burn-in phase of the MCMC.

– Resample values of the missing data vector from the
conditional posterior predictive distribution(

yM | x,τ2
c ,ρ,yH ,K

)
∼

N
[
K (M,∗)x −U−1

M,MUM,H (yH −K (H,∗)x), U−1
M,M

]
.

Note here how the spatial covariance structure inU
plays a key role in determining the relative weight-
ings of cells having observed data via the current val-
ues of multiple regression coefficients (in the regres-
sion ofyM onyH ). Actual sampling from this distribu-
tion does not in fact require any matrix inversions; only
a Cholesky decomposition of a square matrix whose di-
mension is the number of missing values|M| (137×137
in our MOPITT study context) (Rue, 2001; Rue and
Held, 2005). As a result, these successive imputations
of missing data to represent the posterior estimates and
uncertainties aboutyM do not add measurably to the
overall computational burden of the MCMC.

A2 Multi-epoch data with time-invariant fluxes

To parallelArellano et al.(2004), consider now the case of
several epochs (e.g. months) of retrieval data. In epocht =

1,...,T , retrievals follow the model of Eq. (1) where we now
index byt, viz. yt = K tx+εt for t = 1,...,T . We can simply
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stack the vectors of retrievals to obtain a model as in Eq. (1)
for the full set ofT epochs. Thus, we now understand that (a)
y is the(mT )×1 vector obtained by stacking theT vectors
yt , (b) K is the(mT )×n matrix obtained by stacking theT
matricesK t , and (c)ε is the (mT )×1 matrix obtained by
stacking theT error vectorsεt . The above MCMC analysis
is modified in minor technical details as a result, as follows.

A2.1 Posterior computation for the non-spatial model

The one modification needed to the summary in Ap-
pendix A.1 above is in resamplingτn; now the degrees-
of-freedom of the inverse gamma distribution ismT in-
stead ofm, reflecting theT epochs of data, viz. (τ2

n |

x,y,K)∼IG(αn+mT/2,λn+q/2) whereq = (y−Kx)′(y −

Kx).

A2.2 Posterior computation for the CAR model

There are three modifications to the single epoch summary
of Appendix A.2 above: details of resamplingτ2

c ,ρ and then
yM , as follows.

– Resample (τ2
c | x,ρ,y,K)∼IG(αc+mT/2,λc+q/2)

whereq =
∑T

t=1(yt−K tx)′(Dw−ρW)(yt−K tx).

– In the Metropolis-Hastings resampling ofρ, the accep-
tance probabilityα is modified to

α = min

{
1,

T∏
t=1

N(yt | K tx,U∗−1)

N(yt | K tx,U−1)

}
.

– Resample values of the missing data vector from the
conditional posterior predictive distribution(

yM | x,τ2
c ,ρ,yH ,K

)
∼

N
[
K (M,∗)x −V−1

M,MVM,H

(
yH −K (H,∗)x

)
, V−1

M,M

]
where V is the (mT ) × (mT ) block diagonal matrix
comprised ofT diagonalM × M blocks U; that is,
V = I⊗U whereI is theT ×T identity matrix and⊗
represents Kronecker product.

Supplementary material related to
this article is available online at:
http://www.atmos-chem-phys.net/11/5365/2011/
acp-11-5365-2011-supplement.zip.
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