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Abstract. We have incorporated a semi-mechanistic iso-
prene emission module into the JULES land-surface scheme,
as a first step towards a modelling tool that can be applied for
studies of vegetation – atmospheric chemistry interactions,
including chemistry-climate feedbacks. Here, we evaluate
the coupled model against local above-canopy isoprene emis-
sion flux measurements from six flux tower sites as well as
satellite-derived estimates of isoprene emission over tropical
South America and east and south Asia. The model sim-
ulates diurnal variability well: correlation coefficients are
significant (at the 95 % level) for all flux tower sites. The
model reproduces day-to-day variability with significant cor-
relations (at the 95 % confidence level) at four of the six flux
tower sites. At the UMBS site, a complete set of seasonal
observations is available for two years (2000 and 2002). The
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model reproduces the seasonal pattern of emission during
2002, but does less well in the year 2000. The model over-
estimates observed emissions at all sites, which is partially
because it does not include isoprene loss through the canopy.
Comparison with the satellite-derived isoprene-emission es-
timates suggests that the model simulates the main spatial
patterns, seasonal and inter-annual variability over tropical
regions. The model yields a global annual isoprene emission
of 535± 9 TgC yr−1 during the 1990s, 78 % of which from
forested areas.

1 Introduction

Isoprene (C5H8) is quantitatively the most important of the
non-methane biogenic volatile organic compounds (BVOCs)
emitted into the atmosphere (Pacifico et al., 2009). Terres-
trial vegetation is the main source (Guenther et al., 2006),
although not all plants emit isoprene (Harley et al., 1999;
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Kesselmeier and Staudt, 1999). Tropical broadleaf trees are
considered to be the main contributors to global isoprene
emissions (Guenther et al., 2006). Isoprene is a carbon-
containing compound and – after oxidation in the atmo-
sphere – a carbon dioxide (CO2) precursor, so it is a poten-
tially significant term in the global carbon cycle (Guenther,
2002). Isoprene also modulates tropospheric ozone (O3) and
methane (CH4) concentrations (Hofzumahaus et al., 2009)
and is a source of secondary organic aerosol (SOA; Claeys
et al., 2004), which affects cloud properties and the surface
radiation budget.

Vegetation species composition determines overall emis-
sion capacity (Niinemets et al., 2010a, b), but the main en-
vironmental controls on isoprene emissions are light (e.g.,
Monson and Fall, 1989), temperature (e.g., Guenther et al.,
1993), atmospheric CO2 concentration (e.g., Monson et al.,
2007) and drought (e.g., Pegoraro et al., 2004; Monson et
al., 2007). In the short-term, isoprene emission increases
with light and falls to near zero almost immediately after il-
lumination ceases. Isoprene emission increases with temper-
ature until a temperature optimum of ca. 40◦C (Niinemets
et al., 1999). Moreover, measurements have demonstrated
that high concentrations of CO2 inhibit isoprene emission,
but with potentially different response patterns to short-and
long-term changes in the CO2 burden (see summary of stud-
ies in Young et al., 2009 and Pacifico et al., 2009). The
limited number of observational and laboratory studies sug-
gest that isoprene emissions are not immediately affected by
mild water stress, even when this stress is already affecting
photosynthesis (e.g., Sharkey and Loreto, 1993), but the on-
set of more severe drought causes isoprene emissions to de-
cline substantially (e.g., Pegoraro et al., 2004; Monson et al.,
2007). The strong dependence of isoprene emissions on tem-
perature means that isoprene emissions are likely to increase
under future climate conditions, although such an increase
may be offset by the inhibition of leaf isoprene production
emissions that is observed at higher levels of CO2 (Arneth et
al., 2007a). Research on quantifying how isoprene emissions
will change (and the magnitude of potential feedbacks on at-
mospheric chemistry and climate) is still in its infancy (see
summary of studies in Pacifico et al., 2009).

Biogenic isoprene emissions were originally modelled us-
ing empirical relationships between specific environmental
controls and emissions, applying a number of algorithms for
the short-and long-term influence of changing environmen-
tal conditions (Guenther et al., 1991, 1993, 1995, 2006).
More recently, photosynthesis-based schemes have been de-
veloped to relate isoprene emission to substrate production
mechanistically (Niinemets et al., 1999; Martin et al., 2000;
Zimmer et al., 2003; Arneth et al., 2007b). Of these semi-
mechanistic models, the Arneth et al. (2007b) scheme is the
only one that includes the atmospheric CO2 inhibition of iso-
prene emission, albeit in an empirical form. The scheme has
already been coupled to the Lund Potsdam Jena Dynamic
Global Vegetation Model (LPJ-DGVM; Sitch et al., 2003)

and to the Lund Potsdam Jena General Ecosystem Simula-
tor (LPJ-GUESS; Smith et al., 2001), and applied at both
regional (Arneth et al., 2008b) and global (Arneth et al.,
2007a) scales. In this paper, we describe the validation of
a modified version of the Arneth et al. (2007b) scheme that
has been implemented in the Joint UK Land Environmen-
tal Simulator (JULES; Best et al., 2011; Clark et al., 2011;
www.jchmr.org/jules). A version of JULES including iso-
prene will be the land-surface component of the new Hadley
Centre Global Environmental Model (HadGEM3). Inclusion
of process-based isoprene emissions is necessary in order to
quantify the feedbacks between biogenic emissions, atmo-
spheric chemistry and climate within a global Earth System
model under current and future climates (e.g., Arneth et al.,
2010). The work described here provides a comprehensive
evaluation of the performance of the land surface model in
simulating isoprene emissions, a necessary step to enhance
confidence in feedback estimates.

2 Methods

We have incorporated the isoprene emission scheme de-
scribed in Arneth et al. (2007b) into the frame work of the
JULES land-surface model. Here, we first describe the most
important features of JULES, we then outline the original
isoprene emission scheme, before describing the necessary
modifications made to couple the two components. We go
onto describe our strategy for the evaluation of the coupled
scheme under present-day climate conditions (various time
periods from 1995 to 2004). Finally, we describe the protocol
for a global simulation of isoprene emissions under present-
day conditions (1990 to 1999).

2.1 The JULES land-surface scheme

JULES is a UK community land-surface model, based on the
MOSES2 (Met Office Surface Exchange Scheme version 2;
Essery et al., 2003) land surface scheme used in the UK Met
Office Hadley Centre climate model HadGEM (Johns et al.,
2006). JULES is intended to replace MOSES in HadGEM3.
JULES can be run at a single point or in gridded mode for
any number of grid boxes, with a typical time step of 30
to 60 min. The meteorological data used to run JULES are:
downward longwave radiation, downward shortwave radia-
tion, precipitation, air pressure, specific humidity, air tem-
perature, and wind speed. These data need to have sub-daily
resolution and can be interpolated by JULES itself to the ap-
propriate model time step if necessary. JULES has five plant-
functional types (PFTs), namely broadleaf trees, needleleaf
trees, C3 grass, C4 grass, and shrubs, and uses a further
four surface types (urban, inland water, bare soil and ice).
Each grid box can consist of a number of vegetation and sur-
face types. In agricultural areas grasses are assumed to rep-
resent crops, without any change in their parameterization
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(following e.g. Arneth et al., 2008b). JULES can simulate
vegetation dynamics using the TRIFFID DGVM (Cox et al.,
2000; Cox, 2001) or the fractional cover of each vegetation
type can be prescribed, as in this study.

The photosynthesis modules for C3 and C4 plants are
based on the work of Collatz et al. (1991) and Collatz
et al. (1992), respectively. A comprehensive description
of the JULES photosynthesis scheme is given in Cox et
al. (1998). The rate of gross photosynthesis is calculated
as the minimum of three limiting factors: the Rubisco lim-
ited rate of gross photosynthesis, the light-limited rate of
gross photosynthesis, and the limitation associated with
transport of photosynthetic products for C3 plants and PEP-
carboxylase limitation for C4 grasses. Photosynthetically ac-
tive radiation (PAR) and leaf nitrogen are assumed to de-
crease exponentially through the canopy (Sellers et al., 1992;
Mercado et al., 2007). Canopy photosynthesis is calculated
as the sum over all canopy layers (10 layers were used in
this study). Leaf phenology is updated on a daily basis, us-
ing accumulated temperature-dependent leaf turnover rates.
The ability of JULES to simulate photosynthesis has been
tested in recent model benchmarking studies, including at ten
eddy correlation sites covering the major biomes of the globe
(Blyth et al., 2010, 2011) and at regional and global scales,
using atmospheric CO2 measurements (Cadule et al., 2010;
Blyth et al., 2010, 2011). Blyth et al. (2010, 2011) demon-
strates the satisfactory performance of JULES in simulating
concurrently the terrestrial carbon and water cycles.

2.2 Isoprene emission scheme

The Arneth et al. (2007b) isoprene emission scheme is based
on the biochemical model for isoprene emission developed
by Niinemets et al. (1999). In the Niinemets et al. (1999)
model, isoprene emission depends on the electron require-
ment for isoprene synthesis. The model assumes that all iso-
prene emitted from plant leaves is synthesized in the chloro-
plasts via the 1-deoxy-xylulose-5-phosphate (DXP) pathway
and that a certain proportion of electrons released by PSII
(Photosystem II) is used in isoprene synthesis. This pro-
portion is calculated from the estimated energy and redox-
equivalents requirements to reduce isoprene from the initial
steps of carbon assimilation, considering the requirements of
6 moles assimilated CO2 for one mole of isoprene produced.
The assumption that co-enzymes, rather than carbon precur-
sors, are the rate-limiting step has been shown to reproduce
the correct response of isoprene emission to light and temper-
ature under present-day conditions (Niinemets et al., 1999;
Arneth et al., 2007b). However, the effects of changing CO2
concentration, which has been hypothetically linked to com-
petition for carbon substrate (Rosenstiel et al., 2004), need to
be included empirically (Arneth et al., 2007b).

When the rate of regeneration of ribulose 1,5-bisphosphate
(RuBP) through electron transport is limiting, photosynthetic
electron transport (J ) is (Farquhar et al., 1980):

J =
(AJ +RD)(4CI +80)

CI −0
(1)

whereAJ is leaf level net photosynthesis when RuBP is lim-
iting; RD is leaf level dark respiration;CI is leaf internal CO2
concentration and0 is photorespiration compensation point.

Based on the co-enzyme and energetic requirements for
isoprene synthesis, Niinemets et al. (1999) assume that iso-
prene emission is nicotinamide adenine dinucleotide phos-
phate (NADPH) limited. Given that the NADPH requirement
per CO2 mole assimilated is 1.17 times higher for isoprene
synthesis than for sugar synthesis and that for each isoprene
molecule released 6CO2 molecules must be assimilated, the
rate of photosynthetic electron transport to sustain isoprene
synthesis and emission at the leaf level (Il) is:

Jisoprene=
6Il(4.67CI +9.330)

CI −0
(2)

So

Il = ε
(AJ +RD)(4CI +80)

6(4.67CI +9.330)
(3)

where

ε =
Jisoprene

Jt
≈

Jisoprene

J
as Jt = J +Je≈ J (4)

Jt is the total electron transport rate andJe is the extra elec-
tron transport rate needed to reduce the sugars to isoprene.
Je is relatively small and can be neglected (Niinemets et al.,
1999).

To take advantage of published isoprene emission factors
(IEFs), i.e. PFT-specific basal isoprene emission at the leaf
level under standard conditions (i.e. temperatureTst of 30◦C,
photosynthetically active radiation of 1000 µmol m−2 s−1

and CO2 atmospheric concentration of 370 ppm, see e.g.
Guenther et al., 1995; Arneth et al., 2007b) assigns PFT-
specific values toε such thatIl is equal to IEF. Leaf-level
isoprene emission (Il) is then given by:

Il = IEF
AJ +RD

(AJ )st+RDst

fT ·fCO2 (5)

and:

fT = min
[
eaT (T −Tst);2.3

]
(6)

fCO2 =
CIst

CI

(7)

whereT is air temperature and the “st” subscript indicates
that the variable is measured under standard conditions (see
above). The empirical factoraT is set to 0.1 K and accounts
for the higher temperature optimum of isoprene synthesis
compared to that of the electron transport rate.

Although isoprene is produced in the chloroplast from pre-
cursors formed during photosynthesis, there are differences
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in the short-term response of carbon assimilation and iso-
prene emission, such as the higher temperature optimum of
isoprene synthase (Monson et al., 1992). The empirical tem-
perature dependent factorfT (Arneth et al., 2007b) simulates
this effect.

The empirical factorfCO2 (Arneth et al., 2007b) mod-
els the inhibition of isoprene emission with increasing at-
mospheric CO2 concentration. While for the simulation of
changes in the long-term CO2 growth environmentCI under
non-water stressed conditions is applied, in principle, the cal-
culation offCO2 could also implicitly include the short-term
response of isoprene emission to drought stress (Monson et
al., 2007). During periods of water limitation, JULES simu-
lates a closure of stomata, thusCI decreases and therefore
fCO2 and consequently isoprene emission increases. This
could compensate – at least for a period of a few days –
for the decline in photosynthesis (and hence isoprene pre-
cursors).

Isoprene is not stored in the leaf (Sanadze, 2004) and
therefore emitted isoprene reflects the instantaneous rate of
synthesis.

2.3 Coupling of the isoprene emission scheme into
JULES

The structure of JULES required a modification of the orig-
inal Arneth et al. (2007b) scheme because electron trans-
port is not explicitly simulated in the JULES photosynthe-
sis scheme. We assume that the rate of net photosynthesis
(A) is a reasonable approximation to the electron transport
dependent rate of net photosynthesis. The limiting rate of
photosynthesis varies during the day and through the canopy
(Sharkey, 1985). Electron transport limits photosynthesis
under low light conditions, i.e. overcast/cloudy conditions,
at the start and end of the day, for shaded leaves and un-
derstory vegetation. Under high light conditions ribulose-
1,5-bisphosphate (RuBP), and not electron transport, limits
photosynthesis, but under those conditions isoprene emission
is mainly controlled by temperature. And simulate above-
canopy isoprene emission (I ) as:

I = IEF
Acanopy+RDcanopy

Ast+RDst

fT ·fCO2 (8)

where canopy level net photosynthesis and dark respiration
are used to scale up isoprene emissions to the canopy level.

Equation (8) describes the strong relationship between iso-
prene production and photosynthesis (Delwiche and Sharkey,
1993), but also takes into account the CO2 inhibition (fCO2)

and the fact that temperature optimum for photosynthesis is
lower than for isoprene synthesis (fT ).

2.4 Evaluation strategy against ground-based isoprene
flux measurements

Ground-based measurements of above-canopy isoprene
fluxes, with temporal resolution and length of measurements

sufficient for our purpose are only available from 6 sites (see
Table 1). These sites are located in broadleaf forests, specif-
ically temperate deciduous broadleaf forest and tropical rain
forest (Table 1). Measurements have generally been made
for a relatively short period within the growing season when
the leaves are mature; only the record from the University of
Michigan Biological Station (UMBS; Pressley et al., 2005)
covers more than one year. We used the available data from
all of the flux tower sites to evaluate diurnal cycle and day-
to-day variability in isoprene emission. The UMBS site has
been used to evaluate the seasonal cycle during 2000 and
2002, while the Harvard forest site has been used to evaluate
the 1995 seasonal cycle. Data acquisition problems delayed
the start of measurements at the UMBS site in 2001 until af-
ter the onset of isoprene emissions and measurements were
not continued until the end of the growing season. We there-
fore cannot use the data from 2001 to evaluate the seasonal
cycle of isoprene emissions.

We simulate isoprene emissions at each flux site using the
single-point version of JULES. We used locally measured
IEFs at La Verdìere and Montmeyan sites (Dominique Serça,
unpublished data); when local IEFs were not available, we
used standard IEF values for the appropriate vegetation type
derived from Guenther et al. (1995): 45 µgC gdw−1 h−1 for
temperate deciduous broadleaf forest and 24 µgC gdw−1 h−1

for tropical rain forest. LAI is simulated by JULES. The me-
teorological data used to run JULES were either measure-
ments made on-site (UMBS, Harvard Forest, Manaus and
Santarem km 67) or were derived from nearby meteorologi-
cal stations (data from Puechabon 43.7◦ N, 3.6◦ E were used
for La Verdìere and Montmeyan). Although isoprene fluxes
were generally only measured for short periods, meteoro-
logical observations were collected for longer (at least two
years). However, meteorological data were not available at
the hourly time step on which the model was run. It was
therefore necessary to fill these observational gaps. Since the
gaps were typically several days long interpolation was not
feasible. Instead missing observations were replaced by the
average values of that time step from other years. For ex-
ample, if data for 11:00 a.m. on the 24 April was missing in
one year, then we used the average value for this time step in
previous years.

This method maintains the diurnal-and seasonal-cycle of
each variable at the expense of reduced variance. The
gap-filling technique was not applied to rainfall or snow-
fall rates because it would potentially lead to erroneous in-
troduction of small-scale precipitation events (from the av-
eraging across years). We therefore assumed no precipita-
tion/snowfall when data are missing. The percentage of time
steps with missing data is less than 1.5 % for rainfall. The
number of missing snowfall data points is larger at most of
the sites (more than 82 %; the exception is Harvard, where
there are no snowfall missing data). However, snowfall is
only likely to occur during times when the trees are leafless,
thus the absence of this information will have no impact on
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Table 1. Description of ground-based isoprene flux tower sites.

Site and
Location

Record Period Biome JULES
PFT

Dominant
Species

Local IEF
(µgC gdw−1

h−1)

IEF from
Guenther et al.
(1995)
(µgC gdw−1 h−1)

CO2 atmospheric
concentration used
in JULES (ppm)

References

University of
Michigan Bio-
logical Station
(UMBS), USA
45.5◦ N
84.7◦ W

May 2000 to
October 2002
(∼5 months
every year)

Temperate
deciduous
broadleaf
forest

Broadleaf
trees

Populus
grandidentata,
P. tremuloides,
Fagus grandi-
folia, Betula
papyrifera,
Acer rubrum,
A. saccharum,
Quercus rubra,
Pinus strobus,
Pteridium
aquilium

45 369 Pressley et
al. (2005)

Harvard Forest,
Massachusetts,
USA
42.5◦ N
72.2◦ W

May to
November
1995
(160 days)

Temperate
deciduous
broadleaf
forest

Broadleaf
trees

Quercus rubra,
Acer rubrum,
Pinus strobus,
Betula lenta,
Tsuga
canadensis,
Castanea
dentata

45 360 Goldstein
et al. (1998)
Müller et
al. (2008)

La Verdìere,
France
43.6◦ N
6.0◦ E

June–July 2000
(∼14 days)

Temperate
deciduous
broadleaf
forest

Broadleaf
trees

Quercus
pubescens

24.2 45 368 Dominique
Serça,
unpublished
data

Montmeyan,
France
43.6◦ N
6.1◦ E

June 2001
(∼13 days)

Temperate
deciduous
broadleaf
forest

Broadleaf
trees

Quercus
pubescens

37.2 45 369 Dominique
Serça,
unpublished
data

60 km NNW of
Manaus, Brazil
2.6◦ S
60.2◦ W

September
2004
(∼9 days)

Tropical
rain forest

Broadleaf
trees

24 376 Karl et al.
(2007)

Santarem km
67, Brazil
2.9◦ S
55.0◦ W

October–
November
2003
(15 days)

Tropical
rain forest

Broadleaf
trees

24 375 M̈uller et
al. (2008)

the simulated isoprene emissions. The gap-filled values were
compared with the actual observations at the site, when avail-
able, and in no case did this procedure introduce a radical de-
parture from the observed variable changes through the day.
The number of data points averaged for gap filling depends
mainly on the site (the more years of data the more years
available for averaging). The proportion of gap-filled tem-
perature and radiation data was always less than 10 % of the
available data.

We quantified how well the model reproduces the magni-
tude, diurnal and day-to-day variability of the observations
using linear correlation of hourly emissions, daily average
emissions and daily maximum emissions. We also evaluated
the simulated seasonal cycle of isoprene emissions against
observations from the UMBS and the Harvard forest sites.

The correlations were calculated only for the hours when ob-
servations were made at each site.

2.5 Evaluation strategy against satellite derived
estimates

Satellite observations of formaldehyde (HCHO) have been
used to estimate biogenic isoprene emissions at a regional
and global scale (e.g., Shim et al., 2005; Palmer et al., 2003,
2006; Fu et al., 2007; Barkley et al., 2008, 2009). In this
study, we use HCHO-derived isoprene estimates over east
and south Asia between 1996 and 2001 (Fu et al., 2007) and
tropical South America between 1997 and 2001 (Barkley et
al., 2008).
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We focus on tropical regions for evaluation against
satellite-derived data because of the assumed importance of
tropical areas as an isoprene source (Guenther et al., 2006),
and because the two tropical flux-tower sites only provide
short-term measurements and thus there is no other source
of data about changes over the seasonal cycle at the tropics.
We have selected satellite-derived isoprene estimates where
the potential contribution of biomass burning to HCHO has
been constrained: Fu et al. (2007) used local reports of an-
nual burning along with satellite fire counts, while Barkley et
al. (2008) used Along Track Scanning Radiometer (ATSR)
fire counts and GOME NO2 columns to estimate the impact
of biomass burning on HCHO. For east and south Asia in
summer, Fu et al. (2007) found that the interference to iso-
prene estimates due to HCHO produced by anthropogenic
VOC is small. Both studies use the Global Ozone Monitoring
Experiment (GOME) satellite observations of HCHO and the
GEOS-Chem chemistry transport model. The east and south
Asia data set provides an average annual emission based on
the period 1996 and 2001. The tropical South America data
set records monthly mean isoprene emissions at the satellite
overpass time (i.e. between 10:00 to 12:00 a.m. local time).
Both data sets can be used to evaluate spatial patterns and
the magnitude of total isoprene emissions; but only the South
America data set can be used to evaluate the seasonal cycle
and year-to-year variability of emissions.

The errors associated with estimating emissions from
remotely-sensed HCHO are typically of the order 100 % and
predominately originate from errors in (a) the HCHO slant
column retrieval, (b) the air-mass factor calculation (which
converts the slant to a vertical column) and (c) uncertainties
in the simplified representation of isoprene oxidation chem-
istry within the chemistry transport model (CTM; Barkley et
al., 2008). Although the uncertainties of these estimates are
large they are nevertheless still comparable to the uncertain-
ties of estimates derived from an inventory approach.

For comparison with the satellite-based estimates of iso-
prene emission, we ran the model globally at half-degree res-
olution with a one-hour time step from 1990 to 2001 using
meteorological inputs from the Integrated Project Water and
Global Change (WATCH) Forcing Data (WFD; Weedon et
al., 2010) and constant 360 ppm CO2 atmospheric concen-
tration.

The WFD data are available at half-degree resolution over
land (excluding Antarctica). However, downward longwave
radiation, air pressure, specific humidity, air temperature,
and wind speed are only provided at 6-hourly time steps, to-
gether with code to allow variable-specific interpolation to 3-
hourly time steps, and downward shortwave radiation, rain-
fall and snowfall are only provided at 3-hourly time steps.
The data were interpolated, by the model itself, to the 1-h
time step required by the model. The 1-h interpolation used
here was variable specific. Air pressure, specific humidity,
air temperature and wind speed were linearly interpolated,
while downward longwave and shortwave radiation, rainfall

and snowfall were interpolated forward with time (Clark et
al., 2011).

The distribution of PFTs in this simulation is based on
the International Geosphere-Biosphere Programme (IGBP)
dataset (Loveland et al., 2000). The 17 land cover classes in
this dataset were translated into proportional cover and char-
acteristics of the five JULES PFTs and the proportional cover
of the four non-vegetation JULES land cover types accord-
ing to the scheme shown in Table 2. PFT distribution is kept
fixed over the simulated time period but the phenological sta-
tus of LAI is simulated for each PFT. IEFs values were de-
rived from Guenther et al. (1995) and are: 35 µgC gdw−1 h−1

for broadleaf trees; 12 µgC gdw−1 h−1 for needleleaf trees;
16 µgC gdw−1 h−1 for C3 grass; 8 µgC gdw−1 h−1 for C4
grass and; 20 µgC gdw−1 h−1 for shrubs. We extracted the
simulated emissions for the same areas and spatial reso-
lutions as in the satellite-derived emission estimates. We
compared simulated against satellite-derived isoprene emis-
sions in magnitude and spatial variability, seasonal and inter-
annual variability are also evaluated when available. We only
consider emissions over land as our scheme focuses on iso-
prene emission and does not include simulation of lateral
transport.

We have also estimated global isoprene emissions from
1990 to 1999 based on the global simulation described above.
These estimates are compared with previous model-derived
estimates from the literature.

3 Results

3.1 Model evaluation against ground-based isoprene
flux measurements

Simulated total daily isoprene emissions are always higher
than observations (Table 3). Using the generic IEF from
Guenther et al. (1995), the model overestimates the total
daily isoprene emissions by a maximum of 236 % at La
Verdière. The use of a locally measured IEF instead of the
generic IEF improves the magnitude of simulated emissions
at La Verdìere, but it has only a small impact on the mag-
nitude of isoprene emissions at Montmeyan, where locally
measured IEF and generic IEF are more similar to each other
than at La Verdìere (Table 1).

The coupled model generally reproduces the trend of the
observed diurnal cycle of isoprene emissions (Fig. 1). In ad-
dition, the model correctly reproduces the onset of emissions,
except at Manaus where modelled emissions start one hour
(1 time step in the model) after observed emissions. Simu-
lated emissions continue for up to two hours after observed
emissions cease. The time of peak emission is correctly sim-
ulated at the UMBS site, but is delayed by between 1 (e.g.,
see Montmeyan in Fig. 1) and 3 h (e.g., see Manaus in Fig. 1)
at the other sites. The magnitude of emissions during the
early part of the day is correctly simulated, but simulated
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Table 2. Conversion of IGBP land cover classes into JULES fractions of surface types.

Fractions of JULES surface types

IGBP description Broadleaf trees Needleleaf trees C3 grass C4 grass Shrubs Urban Water Bare Soil Ice

Evergreen Needleleaf Forest 0.0 69.3 22.2 0.0 0.0 0.0 0.0 8.4 0.0
Evergreen Broadleaf Forest 85.9 0.0 0.9 7.0 0.0 0.0 0.0 6.2 0.0
Deciduous Needleleaf Forest 0.0 65.3 25.6 0.0 0.0 0.0 0.0 9.1 0.0
Deciduous Broadleaf Forest 62.4 0.0 7.0 8.9 3.7 0.0 0.0 18.1 0.0
Mixed Forest 35.5 35.5 20.9 0.0 0.0 0.0 0.0 8.2 0.0
Closed Shrubs 0.0 0.0 25.0 0.0 60.0 0.0 0.0 15.0 0.0
Open Shrubs 0.9 0.0 3.1 14.7 34.2 0.0 0.0 47.2 0.0
Woody Savannah 50.0 0.0 15.0 0.0 25.0 0.0 0.0 10.0 0.0
Savannah 20.0 0.0 0.0 75.0 0.0 0.0 0.0 5.0 0.0
Grass Land 0.0 0.0 66.0 15.7 4.9 0.0 0.0 13.5 0.0
Permanent Wet Land 2.2 0.0 80.9 0.0 1.4 0.0 15.0 0.6 0.0
Cropland 0.1 0.0 66.0 3.4 0.2 0.0 0.0 20.4 0.0
Urban 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0
Crop/Natural Mosaic 5.0 5.0 55.0 15.0 10.0 0.0 0.0 10.0 0.0
Snow and Ice 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
Barren 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0
Water Bodies 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0

Table 3. Observed and simulated average total diurnal budget of isoprene emissions at the flux tower sites listed in Table 1.

Site Observed average total diurnal Simulated average total diurnal Simulated average total diurnal
budget of isoprene emissions budget of isoprene emissions with local IEFs budget of isoprene emissions with IEFs

(mgC m−2 day−1) (mgC m−2 day−1) from Guenther et al. (1995) (mgC m−2 day−1)

UMBS 29 63
Harvard Forest 30 50
La Verdìere 28 57 94
Montmeyan 57 115 125
Manaus 34 102
Santarem 21 56

emissions in the middle of the day and in the afternoons are
generally higher than observed.

The model overestimates observed hourly emissions at all
sites except at the Harvard forest, using either the generic or
the locally-derived IEF (Fig. 2). Hourly emissions are less
well simulated at the Manaus and the Santarem sites, where
(as stated above) simulated emissions are generally too high
in the middle of the day and in the afternoons (Fig. 1). Cor-
relation coefficients for hourly emissions are between 0.41
and 0.68 (all values significant at 95 % level) across the sites
(Fig. 2).

The model generally overestimates daily average emis-
sions at all sites except at the Harvard forest (Fig. 3). The cor-
relation coefficients for daily average emissions at each site
vary between 0.31 and 0.84 (all significant at the 95 % level,
except those at La Verdière) across the sites (Fig. 3). The
model generally overestimates daily maximum emissions at
all sites (Fig. 4). The use of locally-derived IEF significantly
improves the magnitude of simulated peak emissions at La

Verdière (Fig. 4). The correlation coefficients for daily max-
imum emissions vary between 0.08 and 0.76 (all significant
at the 95 % level, except those at La Verdière and Manaus)
across all sites (Fig. 4).

Both the observations and simulations at the UMBS site
(Fig. 5) show a similar seasonal pattern, with emissions start-
ing in May, increasing rapidly through May and June and
reaching their maximum values during June, July and Au-
gust. As observed previously simulated emissions are gener-
ally higher than the observed ones. Despite LAI being better
simulated in 2000 than in 2002, the onset of emissions is
less well simulated in 2000 than in 2002: simulated emis-
sions start ca. 20 days earlier than observed, albeit at a low
rate (Fig. 5). The model reproduces the observed decline in
emissions during the autumn but simulated emissions con-
tinue for 20–30 days longer than shown by the observations.
The onset of leaf fall is well simulated in both years, but
the interval over which leaf fall occurs is not well simulated.
During autumn 2000 simulated LAI is high for longer than
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Fig. 1. Comparison of simulated and ground-based measured mean diurnal cycles of isoprene emissions at the flux tower sites listed in
Table 1. Isoprene emissions were simulated using standard IEFs from Guenther et al. (1995) and local IEFs when available.

observed, which could explain why simulated isoprene emis-
sions continue for longer than shown by observations. Leaf
fall is completed more rapidly than observed in 2002, but
this does not explain simulated isoprene emissions continu-
ing for longer over autumn compared to observations. The
model overestimates LAI magnitude over the mid-summer
period, with simulated emissions 43 % higher than observed
ones. Despite the bigger number of missing data for the ob-
servations compared to the UMBS data set, similar results are
found for the Harvard forest site: the model reproduces the
observed seasonal cycle in magnitude, but it shows a longer
seasonal cycle with simulated emissions starting too early
in spring and continuing too long over autumn (not shown
here).

3.2 Model evaluation against satellite derived estimates

Satellite-derived total annual mean isoprene emissions over
east and south Asia (12◦ S–55◦ N, 70◦ E–150◦ E) aver-
aged over the years 1996–2001 have been estimated as
50 TgC yr−1, with an uncertainty of 26 TgC yr−1 (Fu et al.,

2007), compared to a simulated value of 83 TgC yr−1 on av-
erage over the 6 yr simulation period (standard deviation over
the total annual mean emissions: 2 TgC yr−1). The satellite-
derived spatial distribution of the emissions over east and
south Asia shows a gradient from low emissions in the north-
west, which is mostly deserts and mountains, to high emis-
sions in the south and east (Fig. 6). This pattern is also appar-
ent in the simulation but with a larger gradient (Fig. 6). The
model reproduces the generally low emissions over India and
the higher emissions over Indochina. Simulated emissions
over Indonesia and Papua are higher than observed. The
model produces lower emissions in northern China and into
eastern Siberia than shown in the satellite-derived product.

Satellite-derived area-weighted total isoprene emissions
over tropical South America are 24.3 gC m−2 (standard de-
viation: 0.6 gC m−2) compared to a simulated value of
40.9 gC m−2 (standard deviation: 0.4 gC m−2). The trend
of the simulated seasonal cycle over tropical South Amer-
ica is similar to the observed trend, but of higher magnitude
(Fig. 7). Both satellite-derived and simulated emissions are
higher from August to December (dry season) and generally
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Fig. 2. Scatter plots of simulated and ground-based measured hourly isoprene emissions at the flux tower sites listed in Table 1, including
regression line, 95 % confidence interval (Scheffe’s method) and 1:1 line. Isoprene emissions were simulated using standard isoprene
emission factors (IEFs) from Guenther et al. (1995) and local IEFs when available (second row of figures).

lower from April to August (transition from the wet to the dry
period). We define the wet and dry seasons as December–
May and August–November, as in Barkley et al. (2007).
Inter-annual variability is larger in the satellite-derived esti-
mates, which are derived from generally noisy HCHO satel-
lite data (Barkley et al., 2008).

Spatial variability of isoprene emissions over tropical
South America is broadly reproduced with emissions in-
creasing from northern and western to central Amazonia.
The model generally overestimates emissions especially over
the north-eastern coast. Inter-annual spatial variability is
larger in the satellite-derived estimates, which are also
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Fig. 3. Scatter plots of simulated and ground-based measured daily average isoprene emissions at the flux tower sites listed in Table 1,
including regression line, 95 % confidence interval (Scheffe’s method) and 1:1 line. Isoprene emissions were simulated using standard
isoprene emission factors (IEFs) from Guenther et al. (1995) and local IEFs when available (second row of figures).

noisier (see e.g. Fig. 8 for year 1999). Correlation coeffi-
cients for month-to-month variability are not significant.

3.3 Isoprene emission global estimates

Published estimates of annual global total isoprene emissions
for present-day (based on different time periods between

1971 to 2003) range from 400 to 600 TgC yr−1, with an av-
erage over the different studies of 516 TgC yr−1 (see Table 1
in Arneth et al., 2008a). Our annual global total estimate
ranges between 516 and 552 TgC yr−1, with 535 TgC yr−1

averaged over the period 1990 to 1999; this is higher than
the estimate obtained by Sanderson et al. (2003) for the same
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Fig. 4. Scatter plots of simulated and ground-based measured daily maximum isoprene emissions at the flux tower sites listed in Table 1,
including regression line, 95 % confidence interval (Scheffe’s method) and 1:1 line. Isoprene emissions were simulated using standard
isoprene emission factors (IEFs) from Guenther et al. (1995) and local IEFs when available (second row of figures).

decade (483 TgC yr−1) but falls inside the range of other es-
timates for present-day climate conditions (see Table 1 in Ar-
neth et al., 2008a). The approach used to derive previous es-
timates vary from study to study; determining the underlying
causes for differences between the various estimates would
require analyses beyond the scope of the present paper. In our

simulation, broadleaf trees make the largest contribution to
global isoprene emissions (371 TgC, 69 %), followed by C4
grass (49 TgC, 9 %), C3 grass (47 TgC, 9 %), needleleaf trees
(47 TgC, 9 %) and shrubs (21 TgC, 4 %). Broadleaf trees are
also the most abundant PFT in JULES vegetation distribution
maps (Fig. 10).
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Fig. 5. Comparison of simulated and ground-based measured seasonal cycle of daily mean isoprene emissions (Pressley et al., 2005) and
LAI (Pressley et al., 2006) at UMBS for 2000 and 2002.

Table 4. Sensitivity of total annual emissions to the specification of PFT-specific IEFs.

PFTs IEFs (µgC gdw−1 h−1) Total global annual isoprene emissions IEFs (µgC gdw−1 h−1) needed to achive total
used in this study averaged over the 1990s (TgC yr−1) global annual isoprene emissions of 600 TgC yr−1

Broadleaf trees 35 371 (69 %) 39
Needledleaf trees 12 47 (9 %) 14
C3 grass 16 47 (9 %) 14
C4 grass 8 49 (9 %) 14
Shrubs 20 21 (4 %) 23
Total over PFTs 535

The results from Arneth et al. (2007a) and Guenther et
al. (2006) are based on different time periods (1981–2000
and 2003 respectively) from that covered by our simula-
tion, and they both obtain lower estimates for the global to-
tal (410 TgC yr−1 and 529 TgC yr−1, respectively) but nev-
ertheless these results can be used to compare the first-order
spatial patterns of emissions (Fig. 1 in Arneth et al., 2007a
and Fig. 10 in Guenther et al., 2006). As in our simulation,
both Arneth et al. (2007a) and Guenther et al. (2006) show
the tropics as main source of isoprene (Fig. 9). We simulate
lower emissions over South America and some European ar-
eas and less spatial variability over Amazonia than Arneth et
al. (2007a), while emissions over tropical areas are similar
in magnitude. We also simulate less isoprene emissions over
Australia than Guenther et al. (2006).

We have studied the sensitivity of isoprene emissions to
a change in the conversion factors from IGBP to JULES
surface types (Table 2). A 10 % increase/decrease on
the dominant JULES PFT fraction for each IGBP land
cover class (balanced by a correspondent decrease/increase
over the remaining PFT fractions) results in a 10–12 % in-
creases/decrease in annual global total isoprene emissions.
Mapping from observed biomes to model-specific PFTs is
likely to be at least this uncertain and hence we estimate an
uncertainty of±50 TgC yr−1 in isoprene emission due to un-
certainty in representation of land-cover.

One of the greatest uncertainties in modelling the global
emission of isoprene is the use of generic PFT-dependent
IEFs. We have calculated the IEFs we would need to use
to achieve 600 TgC yr−1 (i.e. the higher published estimate
of global isoprene emissions for present-day; Arneth et al.,
2008a), keeping the relative proportion of emissions between
PFTs constant and without changes to the model (see Ta-
ble 4). The emission factors required to achieve a global total
emission of 600 TgC yr−1 are within the observed range of
species-level IEFs measurements (Hewitt and Street, 1992;
Wiedinmyer et al., 2004) for each of the model PFTs.

Inter-annual variability of global total isoprene emissions
is correlated with global temperature anomalies (Fig. 11).
The 1992 minimum in isoprene emissions is associated with
reduced radiation and cooler and drier conditions following
Mt. Pinatubo eruption in 1991 (also observed in Telford et
al., 2010). The maximum in isoprene emissions occurs dur-
ing the warm phases of the El-Niño Southern Oscillation
(ENSO) in 1997–1998.

4 Discussion and conclusions

We have coupled the Arneth et al. (2007b) isoprene emission
scheme into the JULES land-surface scheme and shown that
the coupled model is able to reproduce the main features of
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Fig. 6. Comparison of spatial patterns of simulated and satellite-derived total annual isoprene emissions over east and south Asia averaged
over 1996 to 2001.
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Fig. 7. Comparison of simulated and satellite-derived monthly total isoprene emissions (10:00–12:00 LT) over tropical South America for
individual years from 1997 to 2001, May to November.

the diurnal cycle, daily variability and seasonal cycle of iso-
prene emissions. The model overestimates observed emis-
sions for all sites, which is partially due to the fact that we do
not include isoprene loss through the canopy. Only a fraction
of isoprene emitted by leaves reaches the canopy because of
biological, chemical and physical processes on soil and veg-
etation surfaces, and chemical reactions within the canopy
atmosphere. There have been few estimates of this loss, but
it is generally accepted that it is<10 % of the total emis-
sion (Karl et al., 2004; Stroud et al., 2005). Comparison

with satellite-derived estimates of isoprene emissions shows
that the model also simulates the spatial patterns of emis-
sion in tropical areas, although it is less good at reproducing
magnitude and year-to-year variability in emissions in these
regions (note the high uncertainty not only associated with
the bottom-up modelling but also with the top-down satellite
derived isoprene estimates).

We have used the rate of net photosynthesis as an approxi-
mation to the more mechanistically correct electron transport
dependent rate of net photosynthesis (Niinemets et al., 1999)
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Fig. 8. Comparison of spatial patterns of simulated and satellite-derived monthly mean isoprene emissions (10:00–12:00 LT) over tropical
South America for 1999.

 
         0                              4                               8                              12                             16                            20                            24 
 

Fig. 9. Annual global simulation of isoprene emissions averaged
over the 1990s.

because JULES does not simulate electron transport explic-
itly. The fact that we are able to reproduce observed patterns
of isoprene emission suggests that this approximation is rea-
sonable.

The simulated time of peak emission in the diurnal cycle
of isoprene emission is delayed up to 3 h at the some sites (in
particular tropical ones). This could be due to a too strong
temperature adjustment in the model (i.e.aT , Eq. 6). In the

diurnal cycle maximum temperature and maximum photo-
synthesis are lagged, so a too strong temperature adjustment
could keep emissions up even though photosynthesis has al-
ready begun to decline.

Some of the mismatches between our simulations and ob-
served isoprene emissions could be due to problems with the
simulated vegetation phenology in JULES. Simulated emis-
sions in autumn 2000 at the UMBS site, for example, con-
tinue for nearly one month longer than observed and this
is because the trees retain their leaves for longer than ob-
served. Our ability to simulate the seasonal cycle of isoprene
emissions, and hence the magnitude of the yearly emissions,
is critically dependent on the phenology of individual PFTs
as simulated by JULES. Improvements to, for example, the
controls of leaf fall in JULES could produce a significant im-
provement in our estimates of isoprene emissions.

A limited number of measurements have shown that young
leaves do not emit isoprene (Centritto et al., 2004) and there
is a typical lag of a few weeks between the onset of photo-
synthesis and that of isoprene emissions (e.g., Wiberley et al.,
2005). We do not take leaf age into consideration in the iso-
prene emission scheme, although this would be possible and
could possibly explain the mismatch between well simulated
isoprene onset and less well simulated LAI at the beginning
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Fig. 11. Inter-annual variability of simulated global total isoprene
emissions anomalies, global average land air temperature anomalies
from the historical surface temperature dataset CRUTEM3 (Brohan
et al., 2006) and Multivariate El Niño/Southern Oscillation (ENSO)
Index (MEI; Wolter and Timlin, 1993, 1998) over the 1990s.

of the season, and vice versa (Fig. 5). Our limited evalua-
tion of the onset of emissions at the UMBS and the Harvard
forest sites does not provide enough guidance as to whether
such a treatment is necessary. However, the lack of this
mechanism in our simulations could be a possible explana-
tion for the mismatch between modelled and satellite-derived
isoprene emissions in the transition from the wet to the dry
period over tropical South America. We have shown that us-
ing locally-derived IEFs instead of generic IEFs from Guen-
ther et al. (1995) produced a better simulation of emissions in
magnitude at one flux measurement sites (La Verdière), but

yielded only a slight improvement in the other site where a
locally measured IEF is available (Montmeyan). In models
that parameterize individual tree species, like LPJ-GUESS,
the use of species-specific emission factors has been shown
to improve the simulation of isoprene emissions (Arneth et
al., 2008a; Schurgers et al., 2009). The vegetation represen-
tation in JULES is much more generic, and at the regional
scale (as shown by the comparisons with the HCHO-derived
emissions) the model is able to reproduce the main features
of isoprene spatial variability, but overestimates emissions in
magnitude using the more general PFT-dependent IEFs from
Guenther et al. (1995). This implies that the model could
overestimate global isoprene emissions. At a local level the
overestimation is reduced by the use of locally measured IEF
in only one case out of two: despite the large uncertainties
on IEF values and the fact that they have a strong impact
on simulated emissions, our comparisons do not indicate that
the use of local IEFs would significantly improve the simu-
lations.

In our simulation broadleaf trees are the major contribu-
tors to total global emissions because they are the most abun-
dant PFT in vegetation distribution maps (Fig. 10), they have
the highest IEF and they are widely present in tropical areas
where temperature and light conditions favour isoprene emis-
sions. Despite their relatively high IEF, shrubs contribute lit-
tle to total global emissions because of their smaller cover-
age in the PFT distribution map used to drive the simulations
(Fig. 10).

We identify the tropics as the main source of isoprene,
as do previous estimates (Arneth et al., 2007a; Guenther et
al., 2006), but we generally simulate less spatial variability
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in emissions. The absence of isoprene “emission hotspots”
in our simulations may explain the lower levels of tropical
emissions. This, in turn, is likely to be related to the rela-
tively simple PFT classification used in JULES. Where other
models include both raingreen and evergreen broadleaf trop-
ical trees (e.g. Arnethet al., 2007a), JULES has only one type
of broadleaf tree in the tropics. The large uncertainty on PFT-
dependent IEFs implies that increasing the number of simu-
lated PFTs in JULES would not make a large difference in
the estimation of global isoprene emissions. We also show
that our global total estimate of isoprene emissions is robust
for reasonable variations in the conversion factors from IGBP
to JULES surface types (Table 2).

Most of the isoprene emission flux measurements have
been collected in tree-dominated biomes, as they are consid-
ered the main emitters (Guenther et al., 2006). Nevertheless
observations collected at a grassland site in Inner Mongo-
lia reach values comparable to a tree-dominated environment
(Bai et al., 2006), while summer-time maxima in a sub-arctic
Swedish wetland reach values similar to boreal and temper-
ate forest locations (Holst et al., 2010). We have been unable
to make a simulation for this these sites because of the lack
of local meteorological data; in particular downward long-
wave and shortwave radiation were not available for a time
period long enough to perform a local simulation. Our global
simulations driven by the WATCH re-analysis meteorologi-
cal data did not show any notable isoprene emissions over
these areas. This might be due to the fact that in the global
simulation we use generic IEFs that are not representative of
the measurement site.

Our ability to evaluate the isoprene emission schemes is
somewhat hampered by lack of data. There are very few
above-canopy isoprene flux measurements available, and the
existing studies sample a limited range of vegetation types.
Additional studies on a range of different biomes and with
measurements made for longer periods are necessary. Ro-
bust evaluation of model performance requires measure-
ments over multiple years in order to validate the simulated
seasonal cycle and to determine whether it is important to
simulate the impact of leaf aging on isoprene emissions ex-
plicitly. Nevertheless, the current evaluation provides in-
creased confidence in our ability to simulate isoprene emis-
sions realistically at the global scale, and hence opens up the
possibility of exploring and quantifying the feedbacks be-
tween biogenic emissions and climate more fully (e.g., Ar-
neth et al., 2010), both in the context of studies of air quality
and future climate change (e.g., Young et al., 2009) as well
as for palaeoclimates (e.g., Valdes et al., 2005).
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