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Abstract. Recent studies have shown that orographic pre-
cipitation and the water resources that depend on it in the
Colorado Rocky Mountains are sensitive to the variability of
the region’s aerosols, whether emitted locally or from dis-
tant sources. However, observations of cloud droplet nucle-
ating aerosols in western Colorado, climatologically upwind
of the Colorado Rocky Mountains, have been limited to a
few studies at a single, northern site. To address this knowl-
edge gap, atmospheric aerosols were sampled at a ground
site in southwestern Colorado and in low-level north to south
transects of the Colorado Western Slope as part of the Inhibi-
tion of Snowfall by Pollution Aerosols (ISPA-III) field cam-
paign. Total particle and cloud condensation nuclei (CCN)
number concentrations were measured for a 24-day period in
Mesa Verde National Park, in September and October 2009.
Regression analysis showed a positive relationship between
mid-troposphere atmospheric pressure to the west of the site
and the total particle count at the ground site, but no simi-
lar statistically significant relationship was found for the ob-
served CCN. These data were supplemented with particle
and CCN number concentration, as well as particle size dis-
tribution measurements collected aboard the King Air plat-
form during December 2009. A CCN closure attempt was
performed and suggested that the sampled aerosol may have
had a low hygroscopicity that changed little with the large-
scale wind direction. Together, the sampled aerosols from
these field programs were characteristic of a rural continen-
tal environment with CCN number concentrations that varied
slowly in time, and little in space along the Western Slope.
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1 Introduction

Variations in the concentration of cloud condensation nuclei
(CCN) in the atmosphere have been shown to impact the mi-
crostructure of clouds (Andreae and Rosenfeld, 2008), lead-
ing to changes in cloud radiative properties (e.g. Twomey,
1977; Kaufman et al., 2002) and precipitation efficiency
(e.g. Warner, 1968; Givati and Rosenfeld, 2004; Saleeby et
al., 2009). In general, an increase in CCN number concen-
tration results in a higher cloud droplet number concentration
(CDNC) and smaller droplets compared to a cloud with sim-
ilar liquid water content (LWC) but relatively fewer CCN,
potentially causing numerous microphysical and dynamical
feedbacks (Ramanathan et al., 2001). Since a majority of
atmospheric particles originate from or are influenced by an-
thropogenic activities (Andreae, 2007) the CCN population
is an essential element in our understanding of the human
impacts on clouds, which modulate regional and global cli-
mate (Charlson et al., 2001; Ghan and Schwartz, 2007). De-
spite numerous studies on this topic, there is considerable
uncertainty regarding the effect of anthropogenic aerosols
on global precipitation. Global climate model simulations
in general predict that increasing aerosols has suppressed
precipitation globally (Levin and Cotton, 2009). However,
Zhang et al. (2007) reported that precipitation increased in
the Northern Hemisphere mid-latitudes during the latter half
of the 20th century, suggesting that the role of anthropogenic
aerosols is poorly understood. In fact, the magnitude and
even the sign of the feedbacks of aerosols on clouds and
precipitation depend on the cloud regime being affected and
in many cases are not well known (Stevens and Feingold,
2009), making studies of CCN variability important on local
and regional scales.

Previous studies show that orographic clouds are par-
ticularly susceptible to aerosol effects (Levin and Cotton,
2009). In mixed-phase orographic clouds, where ice crys-
tals co-exist with water droplets, a decrease in the size of
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supercooled cloud droplets reduces the riming efficiency
which may lead to a decrease in the liquid water content of
precipitation falling as snow or a change in the spatial distri-
bution of the precipitation (Borys et al., 2003; Saleeby et al.,
2009). Investigations of precipitation climatology in moun-
tainous regions in the western US have demonstrated a long-
term decrease in accumulated precipitation downwind and
upslope of urban areas (Givati and Rosenfeld, 2004; Rosen-
feld and Givati, 2006). Jirak and Cotton (2006) found similar
results along the Colorado Front Range, attributing the lower
precipitation to increases in pollution from the urban corri-
dor. Case studies of mixed-phase orographic clouds have
also shown a connection between lower precipitation pro-
duction and local anthropogenic aerosol sources (Borys et
al., 2000, 2003), and recent modeling studies of these clouds
by Lynn et al. (2007) and Saleeby et al. (2009) have demon-
strated sensitivity in the precipitation fields to changes in
CCN number concentration (Nccn).

Issues of orographic precipitation modification are of par-
ticular significance in western Colorado where water sup-
plies depend largely on the snow produced by orographic
clouds (Saleeby et al., 2009). The sharp rise in elevation
from west to east along Colorado’s Western Slope leads to
frequent formation of precipitating orographic clouds. This,
in combination with the location of an aerosol and cloud mi-
crophysics observing station in the northern Colorado Park
Range, makes the Western Slope region an ideal laboratory
for studying aerosol-orographic cloud interactions. In fact, a
substantial portion of the data on this topic has been collected
in northwestern Colorado and southeastern Wyoming.

While the observational evidence supports a potentially
important aerosol impact on orographic clouds in western
Colorado (Borys et al., 2003), the scope of the impact re-
mains largely unknown. For example, it has been hypoth-
esized that precipitation from high LWC mixed-phase oro-
graphic clouds may be more sensitive to increases in aerosol
because of the greater potential for riming compared to low
LWC clouds that contain more ice (Borys et al., 2000). High
LWC clouds are more common in southwest Colorado than
in northwest Colorado and, thus, may be more susceptible to
decreases in riming efficiency due to increases inNccn. How-
ever, observational records of droplet-nucleating aerosol do
not exist for the majority of the Western Slope. A few stud-
ies have measured CCN at the northern end of this region
and in southern Wyoming (e.g. Saleeby and Cotton, 2009;
Politovich and Vali, 1983; Delene and Deshler, 2001) but to
our knowledge no measurements ofNccn have ever been pub-
lished for the central Colorado Western Slope leaving a gap
in our understanding of aerosol/cloud interactions in a region
that is potentially sensitive toNccn variations.

In this study, atmospheric aerosols were sampled in south-
western Colorado and along the length of the Western Slope.
The cloud active portion, that is the fraction of the aerosol
population that will nucleate a cloud droplet for given con-
ditions, was measured at fixed supersaturations. Data were

Fig. 1. Detail map of the western United States centered on the
Colorado Western Slope. Topography is contoured. The location
of the Mesa Verde field site is indicated with a teal star. King Air
flight tracks are shown in light blue and the vertical stack locations
are given by squares. The vertical stack locations are(1) Steamboat
Springs,(2) Nucla, and(3) Cortez. Several local coal-fired power
stations are marked with black triangles.

collected as part of the 2009–2010 Inhibition of Snowfall
by Pollution Aerosols (ISPA)–III field campaign in western
Colorado. The goals of this paper are to (1) establishNccn
datasets for fall and winter in this region, (2) identify the lo-
cation of possible sources of the observed CCN, (3) report
on the bulk hygroscopicity of Western Slope aerosols and
(4) point out the limitations of the applied methods to guide
future research.

2 Mesa Verde observations

Mesa Verde National Park (MVNP) was chosen as the south-
western Colorado sampling site for this phase of the ISPA-III
project. The site is located to the southwest of the higher
elevations in the San Juan Mountains at an elevation of
2190 m a.m.s.l. Figure 1 shows the location of the sampling
site with reference to the surrounding topography. The local
ecosystem consists mainly of juniper and pinyon pine trees
and the topsoil contains loess, a fine, red-colored silt. It is
a location that endures frequent forest fires especially during
the summer, although none burned in the vicinity during this
project.

Mesa Verde is located in a region of low population den-
sity and the typical airmass in the region is of continental
origin (Hobbs et al., 1980). The main local industry is agri-
culture. Most of the agricultural activity takes place in small
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areas to the north of MVNP and to the east in the Mancos
River Valley. Despite the rural setting, there are several large
point sources of particles and gas-phase particle precursors
that are local to the observation site. The most important of
these, potentially, is the Four Corners power plant located
about 100 km south-southeast of Mesa Verde (Fig. 1). To-
gether with two additional power plants positioned between
the Four Corners plant and Mesa Verde, these sources are
responsible for SO2 emissions in excess of 10 tons per day
on average and the emission of large amounts of NOx (US
EPA, 2009). Decreased visibility was often observed in the
direction of these sources, which stand at a lower altitude
than the sampling site. Other substantial power plant aerosol
sources, the Navajo and Cholla plants, are located to the west
and southwest of Mesa Verde but are more distant than Four
Corners.

The sampling site is co-located with the Interagency Mon-
itoring of Protected Visual Environments (IMPROVE) net-
work collection site MEVE (Fig. 1). Atmospheric aerosol
samples are collected at IMPROVE sites on four separate fil-
ters for 24 h periods once every three days. The mass ratios of
collected particulate species are determined by several differ-
ent analysis techniques (Hyslop and White, 2008). It is im-
portant to note that sulfate and nitrate aerosol are assumed to
exist as ammonium sulfate and ammonium nitrate and their
mass is not measured as separate from ammonium. Also,
these data do not provide information about particle number
concentration. Here, IMPROVE data will be used only to
gain a general sense of the long-term total aerosol mass con-
centration and composition of particles with diameters less
than 2.5 µm (PM2.5).

Figure 2 shows the contribution to total PM2.5 by IM-
PROVE estimated species at MEVE averaged from 1999–
2008 for the dates of the ISPA-III observations. The IM-
PROVE samples are collected for one day out of every three
days, but the sampling date is not the same from year to year.
To reconcile this, three-day periods were defined that would
each contain one sampling day from each year. The aver-
ages are for the three-day period centered on the date shown
in the figure. For example, the 18 September average repre-
sents samples collected on 17, 18, or 19 September. The av-
erage aerosol mass concentration for this location was about
3 µg m−3 during the September–October time period making
MEVE one of the cleaner locations in the network, but typi-
cal for a site in the Rocky Mountains (Debell, 2006). Similar
sulfate and organic aerosol mass are evident in Fig. 2 with
only small contributions from nitrate aerosol and elemental
carbon.

2.1 Methods

Two instruments were deployed to sample aerosols at
MVNP: a Droplet Measurement Technologies (DMT) CCN-
100 instrument and a TSI 3010 condensation particle counter
(CPC). These were setup inside a climate controlled build-

Fig. 2. PM2.5 composition as measured by the IMPROVE program
at the MEVE1 site and averaged over the ten year period, 1999–
2008. EC = elemental carbon; OC = organic carbon.

ing at the Mesa Verde Research Center. An inlet was in-
stalled on the building solely as an intake for the CCN-100
and CPC. The main inlet was constructed out of 4′′ diam-
eter aluminum tubing with a sheltered opening at a height
of 4.15 m above the ground and 3.1 m above the CCN-100
inlet manifold. At the bottom of the main inlet a fan was in-
stalled to maintain flow from the top of the tubing. Flow was
directed from the main inlet to each instrument by a combi-
nation of 0.3 m 3/8′′ copper tubing and flexible 12 mm (out-
side diameter) tubing (0.4 m for CCN-100, 0.7 m for CPC).
The copper tubing is used to navigate the necessary change
in flow direction from vertical (main inlet) to horizontal (in-
let manifolds on the CCN-100 and CPC). To diminish the
loss of particles by impaction on the tubing walls the cop-
per tubing was bent only slightly in two locations and the
remainder of the required 90◦ turn was accomplished with
the flexible tubing. The access opening of the copper tub-
ing was tapered. The instrument shed was collocated with a
meteorological observation tower that recorded wind speed
and direction, temperature, dewpoint temperature, solar radi-
ation, and precipitation.

The DMT CCN-100 is a continuous-flow instrument
that creates a controlled supersaturated environment within
which particles can grow to droplet size. It was developed
by Roberts and Nenes (2005) and has been used in many
field programs and laboratory studies since its introduction
(e.g. Medina et al, 2007; Petters et al., 2007; Ervens et al.,
2007; Cubison et al., 2008; Quinn et al., 2008; Gunthe et al.,
2009). Supersaturation (SS) is maintained in the CCN-100
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by imposing a tightly controlled temperature gradient on the
sheath/sample flow within a moist growth chamber. The
SS produced is not constant within the growth chamber but
reaches a maximum in the center. The maximum SS value
achieved is considered the instrument sampling SS. While
the flow rates are kept constant the SS can be set higher or
lower by increasing or decreasing the temperature gradient.
Particles enter the growth chamber at slightly above the am-
bient temperature, flow up the temperature gradient through
the supersaturated environment in the center of the chamber
and either reach stable equilibrium or grow into cloud droplet
size. An optical particle counter (OPC) detects droplets that
have reached a threshold size and reports these as CCN. The
threshold droplet diameter was set to 2 µm for the ISPA-
III measurements. There is a risk at this size that a few
of the smallest particles will activate but not have time to
reach the threshold at the SS settings that were used (Roberts
and Nenes, 2005). The decision to use 2 µm was made to
ensure consistency between this dataset and previously col-
lected datasets at Storm Peak Lab (SPL) in northwestern Col-
orado. The CCN-100 was operated at a 10:1 sheath to sam-
ple flow ratio and at two values of SS: 0.3 % and 0.5 %. It
was set to alternate between the two SS settings every 15
minutes, running continuously for the entire project period
taking one measurement per second. Therefore, CCN-100
measures the subset of atmospheric aerosols that will acti-
vate cloud droplets, i.e. the cloud-active subset, at SS that are
likely found in potential downwind orographic clouds.Nccn
is reported at the ambient pressure and instrument tempera-
ture.

The CCN-100 used at Mesa Verde was calibrated on
9/14/09 at the DMT facility in Boulder, Colorado. The SS
in the instrument is calibrated by sampling a distribution of
particles for which the CCN activity is known, usually am-
monium sulfate. The instrument-set SS is then compared to
the theoretically determined SS and adjusted for accuracy.
Instrument uncertainty regardingNccn measurements is con-
sidered less than 10 % for the conditions expected during this
project, and uncertainty in the SS instrument setting has been
reported as less than 1 % (Roberts and Nenes, as cited by
Quinn et al., 2008). Rose et al. (2008) estimate the uncer-
tainty in the DMT CCN-100 SS, represented as the observed
standard deviation from their experiments, as±5 % of the
instrument SS setting when used in the field.

The CPC detects total particle number concentration (Ncn)

in a similar way. The sample flow passes through a region in
the instrument that is saturated with butanol vapor and then
down a temperature gradient to cause the vapor to condense
onto the particles. The resulting droplets are counted by an
OPC and divided by the flow volume to compute a particle
number concentration. It was shown by Mertes et al. (1995)
that the lower detection limit of the CPC could be decreased
to diameter(D) = 5 nm particles by increasing the tempera-
ture difference between the saturation and condensation re-
gions. This detection limit is defined as the diameter at which

50 % of the particles will activate and become detectable. At
Mesa Verde, the CPC was run with the recommended tem-
perature differential which results in a lower detection limit
of approximatelyD = 10 nm.

2.2 Mesa Verde results

The high-frequency data (one observation per second for the
CCN-100 and CPC, but recorded every 10 s for the CPC)
were smoothed using a 30 min running average. Note that
a 30 min average of theNccn at a specific SS includes only
15 min of data because of the instrument SS cycling. For this
averaging an assumption is made that the CCN-100 is sam-
pling similar ambient air during the 30 min when the instru-
ment cycles once through each SS. Data that met certain cri-
teria were flagged and set as missing. This was done any time
the temperature gradient in the CCN-100 was not stabilized,
which occurs between every change in instrument SS and
sometimes lasts between 1–2 min. Other flagging criteria,
including sharp changes in the air pressure and a significant
change in the flow rate through either instrument, were not
encountered. An attempt was made to eliminate observations
that may have been contaminated by exhaust from nearby
vehicles. Surges inNcn that exceeded five standard devia-
tions from the mean (computed from the 24 h period in ques-
tion, midnight to midnight) and lasted less than two minutes
were removed from the dataset. Thirteen such events were
identified, all occurring between the hours of 7:55 a.m. and
5:00 p.m. LT and all on weekdays. Corresponding CCN ob-
servations were also disregarded, although the surges in that
dataset were not as extreme.

Figure 3b shows the time series ofNccn at both SS val-
ues for the entire project. The averageNccn at SS = 0.3 %
was 302 cm−3 and at SS = 0.5 % was 481 cm−3 (Table 1).
Episodes of comparable values ofNccn that lasted for one to
several days are evident in the time series. TheNcn, shown
in Fig. 3a, appears to vary on much shorter timescales. To
further this comparison, the lag autocorrelations of each time
series are given in Table 1. TheNccn time series exhibits a
high autocorrelation, especially relative to that for theNcn
time series. According to VanReken et al. (2003) this is an
indication that the largest particle number variations in time
occur for particles that are too small to activate droplets at
the prescribed SS.

A direct comparison of the observed CN and CCN is given
by the activated fraction (see Table 1). The average values of
activated fraction are well below 0.5, indicating that the ma-
jority of particles counted by the CPC are too small to acti-
vate at the instrument SS. These values for activated fraction
compare well to observations of, presumably, aged continen-
tal aerosols collected by Gunthe et al. (2009) in the Amazon
rain forest. In contrast, Bougiatioti et al. (2009) found acti-
vated fraction values well above 0.5 even at SS = 0.4 %. They
sampled at a marine location where the aerosol is likely to be
larger and consist principally of sea-salt.
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Table 1. Statistical information for physical quantities observed at MVNP. These represent the entire time series from 9/22-10/16. Lag
quantities are autocorrelations for lags of 1, 10 and 24 h. The effective sample size,n′, is computed using Eq. (1). Labels are as follows:
CCN3 =Nccn (SS = 0.3 %); CCN5 =Nccn (SS = 0.5 %); ACT3 =Nccn (SS = 0.3 %)/Ncn; ACT5 =Nccn (SS = 0.5 %)/Ncn; and C5/C3 =Nccn
(SS = 0.5 %)/Nccn (SS = 0.3 %).

Units Mean Min Max StDv Lag 1 Lag 10 Lag 24 n′

Temp ◦C 54 31 82 10.6 0.96 0.06 0.74 11
Dpt ◦C 22 −5 48 10.5 0.96 0.63 0.26 11
RH % 32 9 98 16.9 0.95 0.26 0.46 14
Wind mph 6 1 16 2.8 0.77 0.11 0.27 74
Ncn cm−3 1773 336 10 944 1427 0.94 0.25 0.07 33
CCN3 cm−3 302 72 631 128 0.98 0.78 0.61 10
CCN5 cm−3 481 123 1090 204 0.98 0.75 0.57 10
C5/C3 – 1.6 1.14 2.38 0.17 0.84 0.45 0.22 10
ACT3 – 0.23 0.01 0.72 0.14 0.95 0.58 0.44 32
ACT5 – 0.37 0.02 0.97 0.21 0.95 0.60 0.51 28

Fig. 3. Time series of(a) Ncn and (b) Nccn (Nccn at SS = 0.3 %
shown in light blue,Nccnat SS = 05 % shown in dark blue) observed
at MVNP during the ISPA field project.

2.3 Aerosol and geopotential height regression analysis

Previous research shows that differences in the observed
regional meteorology can explain some of the variability
in aerosol properties observed on board aircraft or at sur-
face sites (e.g. VanReken et al., 2003; Medina et al., 2007;
Quinn et al., 2008; Furutani et al., 2008; Bougiatioti et
al., 2009). Traditionally these distinctions are made using
trajectory analysis and are often limited to labeling obser-
vations as marine-source or continental-source, as in Van-
Reken et al. (2003), Furutani et al. (2008), and Bougiatioti
et al. (2009). Moreover, it is difficult to test whether the re-
lationship between the computed trajectories and observed

aerosols would apply generally to future cases. In this sec-
tion regression analysis will be used to investigate a more
broadly applicable relationship between the large-scale wind
and MVNP CCN and CN number concentrations.

The 700 mb and 500 mb geopotential height fields from
the North American Regional Reanalysis (NARR) dataset
(Mesinger et al., 2006) were used to represent the large-scale
wind in this analysis. NARR data are output on a 349 x by
277 y polar-stereographic grid with a horizontal grid spacing
of about 32 km in the lower latitudes. The data are avail-
able in 3 h increments. Output from 9/23/09 00:00 GMT to
10/16/09 00:00 GMT was used to construct the time series of
the geopotential height fields.

The 700 mb and 500 mb geopotential height fields were
weighted by the cosine of the latitude. This equalizes the in-
fluence of each grid point on the basis of grid-box area. The
24 h time mean was removed from all grid points. Missing
data were removed from the dataset before analysis. Next,
the time series ofNcn andNccn from MVNP were averaged
over 3 h time periods, centered on the corresponding NARR
output time. The time series were standardized and the 24 h
time mean was removed from each. Then, the 500 mb and
700 mb geopotential height time series were regressed onto
the time series ofNccn and Ncn. The resulting regression
maps were plotted and the correlations at each grid point
were computed. The correlations are used to test whether the
regression relationship is significant and could be applied to
cases outside of the ISPA-III observation period, or if the re-
lationship is specific to this case and not representative of the
potential population of regression coefficients at each grid
point. The latter is the null hypothesis. The correlations were
checked for significance against the null hypothesis using a
two-tailed student t test. An effective sample size was calcu-
lated for the test using equation 5.12 from Wilks (1995):

n′ ∼= n
1−ρ1

1+ρ1
(1)
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whereρ1 is the lag-1 autocorrelation coefficient,n is the
sample size andn′ is the effective sample size, or the equiv-
alent number of independent samples. The effective sample
size corrects for the persistence in the CCN dataset. The high
persistence in the CCN datasets, given by the autocorrela-
tions in Table 1, reduces the effective sample size to 10. The
result is the same whenn′ is computed using the lag-1 auto-
correlation for the 3 h standardized dataset. TheNcn series
varies on a shorter timescale and, therefore, has a higher ef-
fective sample size,n′

= 33. This is reduced in the regression
analysis to one independent sample per day (n′

= 23), the as-
sumed sample size for the NARR datasets. Significance was
tested at the 95 % confidence level.

Figure 4a shows the regression of the 500 mb height field
onto theNccn (SS = 0.3 %) time series. This is the pat-
tern of 500 mb heights that explains the most variance in the
Nccn (SS = 0.3 %) time series. The pattern includes positive
regression coefficients over the central and western United
States, as well as over the northern Pacific. High (low) pres-
sure in these regions was associated with high (low)Nccn at
MVNP during this project. The dashed line indicates areas
that would be statistically significant for an effective sample
size ofn′

= 23, or one independent sample per day. None
of the regression coefficients were statistically significant at
the 95 % confidence level using the computedn′

= 10. This
indicates that the height pattern in Fig. 4a may express the
influence of one or more specific events. Therefore it would
not be appropriate to extend conclusions drawn from these
data to future cases.

The pattern is similar for the regression of 500 mb height
onto Nccn (SS = 0.5 %) and for 700 mb height ontoNccn at
both values of SS (not shown). However, the regression onto
the Ncn time series (Fig. 4b) results in a region of negative
regression coefficients off the west coast of the United States
of which a large portion is statistically significant at a 95 %
confidence level. This pattern, with negative regression co-
efficients to the west and positive to the east suggest that
high pressure off the coast of western United States and a
weak trough over the intermountain west is related to low
Ncn at MVNP. The increased likelihood of wet deposition of
aerosols from precipitation under low pressure both locally
and to the west of MVNP could reduceNcn at MVNP. How-
ever, very little precipitation was observed at MVNP (0.65′′)
or in the intermountain west during this field study making
this explanation difficult to substantiate.

Contributions to the regression pattern in Fig. 4b could al-
ternatively have been made by a strong low in the northeast
Pacific coupled with a weak ridge of high pressure over the
central US that led to increasedNcn at MVNP. High pressure
is most often associated with a stable airmass, increased so-
lar radiation at the surface and light winds. These airmass
characteristics will tend to increase aerosol aging and reduce
long-range transport, enhancing the impact of local aerosols
sources. The emissions from the sources near MVNP (Fig. 1)
could have contributed to the increasedNcn under this sce-

Fig. 4. Regression of 500 mb geopotential height onto the time se-
ries of (a) Nccn sampled at MVNP with SS = 0.3 % and(b) Ncn.
Units are geopotential meters (gpm) per standard deviation of(a)
Nccn and(b) Ncn. Regions where the correlation between(a) Nccn
or (b) Ncn and height is significant at the 95 % confidence level
assumingn′

= 23 are outlined with a dashed line.

nario. The relationship between increasedNccn and high
pressure in the western US (Fig. 4a) also supports this idea.

The regression maps in Fig. 4 suggest that 500 mb winds
from the east were associated with highNccn at MVNP and
weak southerly winds were associated with highNcn. To test
whether these signals appear in the surface winds at MVNP,
Nccn and Ncn data were binned by the corresponding sur-
face wind direction observed at MVNP. The averageNccn
and activated fraction for four different wind directions are
given in Fig. 5a and b, respectively. The four bins cover
the entire 360-degree compass rose with each bin centered
on the direction shown in Fig. 5. The differences between
the plotted means are not statistically significant. The high-
est averageNccn was observed with a southeasterly surface
wind, as was the lowest average activated fraction (meaning
the highestNcn values were also associated with the south-
east wind). This could be evidence that airmasses containing
numerous particles from the power plant sources to the south
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Fig. 5. Mean(a) Nccn (cm−3) and(b) activated fraction for differ-
ent surface wind directions observed at the MVNP site. Light grey
indicates data for SS = 0.3 % and dark grey for SS = 0.5 %. The
error bars show one standard deviation above and below the mean.

and southeast of MVNP were transported to the site. Freshly
emitted particles are likely to be small and may act to de-
crease the activated fraction (Medina et al., 2007).

2.4 Discussion

CCN number concentration data were collected with a DMT
CCN-100 at a site in MVNP. These were supplemented with
Ncn and meteorological data, all measured continuously for
a period of 24 days. TheNccn observations varied within
a range of about one order of magnitude and rarely ex-
ceeded 1000 cm−3 at SS = 0.5 %. The averageNccn at the
surface site was 302 cm−3 at SS = 0.3 % and 481 cm−3 at
SS = 0.5 %. These values show that the MVNP environ-
ment is clean when compared to observations in the north-
eastern and southeastern United States that typically average
2–3 times greater than the MVNP measurements (Medina et
al., 2007; Ervens et al., 2007; Hudson, 2007; Quinn et al.,
2008). TheNccn observations at MVNP were remarkably
episodic, with high or low events lasting for one to several
days.

The MVNP measurements are comparable in magnitude
to Ncn andNccn at SPL collected in January and February
of 2007 as reported by Saleeby et al. (2009) and Ward et
al. (2010). TheNccn observed at MVNP is on average some-
what higher, although this is not unexpected given the differ-
ence in seasons. Also, SPL should be expected to be some-
what cleaner because of its high altitude and frequent discon-
nection from the surface layer below. The MVNP aerosol
may be considered, by geographic proximity to SPL, to also
be characteristic of rural continental airmasses, although typ-
ically size distribution information would be used to make
this distinction. CDNC and CCN at Elk Mountain in south-
ern Wyoming during January and April were found to be be-
tween 100 to 300 cm−3 for SS estimated to be between 0.4 %
to 0.65 % using the Twomey (1959) power law equation for
CCN concentration spectra (Politovich and Vali, 1983). Elt-
groth and Hobbs (1979) measured ambientNcn in excess of
3500 cm−3 on three separate days in northern New Mexico.

Although, they sampled air closer to the Four Corners power
plant and these observations are more than 30 years old.

At MVNP in 2009, it is unclear whether the large, local
aerosol sources impacted the measurements ofNccn andNcn.
Observed spikes inNcn were not always accompanied by
similar spikes inNccn. This could be evidence of the influ-
ence of a nearby combustion source introducing a large num-
ber of small particles into the environment (Medina et al.,
2007), or producing enough SO2 to bring about an aerosol
nucleation event in the area.

3 King Air observations

CCN data have been collected in northwestern Colorado at
SPL (Saleeby et al., 2009), and nearby at Elk Mountain (Poli-
tovich and Vali, 1983), and now in southwestern Colorado
(see Sect. 2). About 350 km separate these sites from north
to south, a stretch through which much of the aerosols in
the central Rocky Mountains of Colorado will pass on the
prevailing westerlies that are common to the region. In De-
cember of 2009, sixteen low-altitude transects of this region,
also known as the Western Slope, were made during eight
flights from Laramie, WY to Cortez and Montrose, CO. Ver-
tical profiles were carried out at the northern and southern
ends of transects near SPL and Cortez, CO. On-board mea-
surements ofNcn, aerosol size distribution, andNccn at three
different values of SS were made on all transects.

3.1 The King Air observational platform

The King Air is a twin-propeller turboprop aircraft oper-
ated by the University of Wyoming in Laramie, WY, for
tropospheric research. On-board instruments measure cloud
physics parameters, atmospheric radiation and atmospheric
state quantities. For the ISPA flights the main interest was
sampling of aerosols and their CCN activity. For this reason
a CPC was operated aboard the aircraft as well as a Parti-
cle Measuring Systems passive cavity aerosol spectrometer
probe (PCASP) for differentiating particle sizes and a static-
diffusion, thermal-gradient CCN instrument.

3.1.1 Instruments and calibration

The University of Wyoming (UWYO) CCNC-100A mea-
suresNccn by introducing ambient aerosols to an environ-
ment that is supersaturated with respect to water and detect-
ing the particles that activate droplets. The instrument itself
consists of a chamber that is circular in the horizontal dimen-
sion with ports for sample intake and exhaust, a temperature-
controlled plate on the chamber bottom, and a photodetector.
The theory and operation of this instrument is described by
Delene and Deshler (2000), Snider et al. (2003), and Snider
et al. (2006). The method for creating a supersaturated envi-
ronment in the CCNC-100A is similar to that for the DMT
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continuous flow diffusion chamber in that a sharp tempera-
ture gradient across a small space is used to establish and
control the SS. In the CCNC-100A, aerosols are admitted
into the chamber, where they are sealed off from the flow and
exposed to the supersaturated environment controlled by the
temperature gradient. Particles with a critical supersaturation
(SSc) less than the instrument SS will grow to droplet size.
The detection stage lasts for 20 s during which a steady SS
is maintained within the chamber (Snider et al., 2006). The
entire process takes 30 to 40 s including the time needed to
flush the old sample out of the chamber, admit the new sam-
ple, and achieve the steady state SS which can be as much as
15 s depending on how long it takes for the temperature gra-
dient within the chamber to stabilize (Delene and Deshler,
2000; Snider et al., 2006).

A laser illuminates the center of the chamber (assumed to
be the region of maximum SS) where the light is scattered
by cloud droplets forming on activated CCN. The amount of
scattering is monitored by a photodetector and can be used to
derive the number concentration of large particles (droplets)
in the chamber. During the detection stage the scattering in-
creases as droplets grow. If the SS of the chamber exceeds
the SSc of some of the particles, these will activate and begin
to fall. The photodetector voltage reaches its peak value at
this point. The peak voltage is used to determine theNccn.
The relationship between the light scattering, as indicated by
the peak photodetector voltage, and the droplet number con-
centration is calibrated by testing an aerosol population with
a 100 % activated fraction and known number concentration
(Snider et al., 2006). The variability in the resulting peak
voltage measured for test aerosol populations with the same
Nccn is used to estimate the uncertainty associated with the
CCN instrument detector as shown by Snider et al. (2006).

The temperature gradient within the chamber is moni-
tored by thermocouples and the nominal SS (SSnom) is com-
puted from the reported temperature gradient and chamber-
top temperature. Water vapor is supplied to the chamber by
wetted pads that are re-moistened every 1–2 h. Snider et
al. (2006) report that the activation behavior of particles in
the CCNC-100A is characteristic of a SS below the SSnom.
They define an effective SS (SSeff) to describe this behav-
ior, and explain the method for computing SSeff and the as-
sociated uncertainty. Three SSnom settings were used dur-
ing ISPA-III and correspond to average values for SSeff of
0.22 %, 0.46 % and 0.96 %. The SSeff:SSnom ratio and asso-
ciated uncertainty are estimated during a chamber calibra-
tion in which the activation behavior of size-selected am-
monium sulfate particles is tested (Snider et al., 2010). The
true chamber SS can be determined from the activation be-
havior of the ammonium sulfate and a Köhler theory model
(Snider et al., 2006). This is compared to the theoretical
SSnom to give SSeff:SSnom. For ISPA-III, the original cham-
ber calibration found SSeff:SSnom= 0.61. During the project
a plate temperature sensor failed and the result of a new cali-
bration (SSeff:SSnom= 0.7) was retroactively applied to data

collected after the failure (11 December through 19 Decem-
ber). Using results from Snider et al. (2006) the chamber
calibration uncertainty is estimated to be 10 % of SSeff:SSnom
for the current study. It is assumed in the following analysis
that the SSeff represents the true SS experienced by particles
within the chamber and will be referred to simply as SS for
the remaining discussion of this instrument and its measure-
ments.

The PCASP is an optical particle counter, measuring the
forward scattered light from particles passing through a laser
beam (Snider and Petters, 2008). The scattering is relative
to particle size (assuming particles are spherical and have an
index of refraction equal to 1.59) so particles can be sepa-
rated into size bins. The PCASP defines 30 bins of particle
concentrations but the lower size limit of the first bin is un-
certain. Data from the 29 bins with certain bin limits com-
prise a range of particle diameters between 0.122 to 3 µm. It
is assumed that particles are classified into size bins by their
dry diameter. However, hygroscopic particles deliquesce at
relative humidity (RH) well below 100 %. To ensure that the
PCASP sampling environment is dry enough to rule out wet-
ted particles, heaters are installed at the inlet. The sample
flow rate is not constant but averages about 1 cm3 s−1. The
bin number concentration is defined as the count rate divided
by the flow rate for each sample.

3.2 ISPA flight plan

Clear-sky aerosols were targeted for measurement during
the King Air flights with the additional goal of sampling
in different large-scale flow regimes. Eight days during the
project period (1 December to 19 December) were consid-
ered clear enough to collect a complete cloud free dataset
along the Western Slope. Flight days were separated into
three flow regimes based on the general direction of the wind
at 700 mb and 500 mb in the western United States. Com-
posite images of 500 mb heights for each regime are shown
in Fig. 6. The westerly regime was characterized by zonal
flow from the west coast through Colorado. The remaining
flights were conducted on days with a 500 mb ridge to the
west of Colorado and a trough to the east. The amplitude of
the ridge/trough pattern dictated whether flow through west-
ern Colorado was northwesterly or northerly. Distant sources
of particles to the southwest, such as the southern California
urban areas, were of interest but unfortunately no episodes of
southwest flow were observed.

Dates and other information about each flight are given in
Table 2. As indicated in Table 2, two separate flight plans
were used (shown in Fig. 1). The first was used for the west-
erly and northwesterly regimes. Vertical profiles were taken
just west of Steamboat Springs and over Cortez. These were
done in “vertical stacks” where the aircraft flies at a constant
altitude for 40–60 km then turns 180 degrees and abruptly
rises, repeating the 40–60 km leg at a higher altitude and in
the opposite direction. The stacks included 5 altitudes, the
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Table 2. Flight dates and information about the flight paths, flow regimes, and data observed for all King Air flights in December 2009. Note
that the flight duration is the total time from the southward and northward flights from each day.

Flight Date Launch Duration Flight Stacks Flow
time (UTC) (hours) Plan # (AM,PM)

F1 12/3/09 17:05 4.7 2 Steamboat Springs (SB), Nucla (Nc) N
F2 12/5/09 16:06 5.6 1 SB W
F3 12/10/09 16:25 5.3 1 NW
F4 12/11/09 17:27 6.0 1 SB, Cortez (Cz) W
F5 12/15/09 16:01 6.0 1 SB, Cz W
F6 12/17/09 16:07 6.0 1 SB, SB NW
F7 12/18/09 16:47 6.3 1 Cz, SB NW
F8 12/19/09 15:59 5.8 2 SB, Nc N

Fig. 6. Composite of 700 mb geopotential height and temperature
for the northerly, northwesterly, and westerly flow regime cases.
Temperature (shaded) is in units of K and height (contours) is in
geopotential meters.

lowest between 250–500 m a.g.l. and increasing about 500 m
on each leg with some variation. Flight plan #2 was used dur-
ing northerly wind events. It differed in the location of the
southern stack, which was moved north to Nucla to sample
flow into the San Juan Mountains better in this regime. Each
flight day contained two flights with a stop at a southern Col-
orado airport for refueling. These airports were Cortez (CTZ;
see Fig. 1) for flight plan #1 and Montrose for flight plan #2
(MJT; see Fig. 1). The north to south transects were simi-
lar in both flight plans. These were flown at constant height
above mean sea level meaning the distance above ground
level varied, but in general this was less than 1000 m a.g.l.
The flight leg between Laramie and the northern stack was
necessarily run at higher altitudes and was used for instru-
ment setup. Data from this leg are not included in the analy-
sis.

3.3 Results

The Nccn data collected on these flight paths underwent
a check for quality of the photodetector voltage out-
put. The percentages of valid measurements for the entire
project at each SS setting were 55 % (SS≈ 0.22 %), 76 %
(SS≈ 0.46 %), and 85 % (SS≈ 0.96 %). Flagged measure-
ments ofNccn were set to missing. PCASP aerosol size dis-
tribution bins and CPC particle number were averaged over
20 s time periods (20 observations), beginning ten seconds

before the CCN instrument chamber opened and ending ten
seconds after it was opened. The averaged values were then
matched with the derivedNccn.

Figure 7a shows the averageNccn for all valid data points,
except those collected during the vertical profiles, plotted
against SS. The mean observedNccn indicate a somewhat
clean atmosphere with the majority of the observations of
Nccn < 100 cm−3 at the lowest SS. This plot also illus-
trates the expected increase inNccn with increasing SS that
has been represented using the power law relationship from
Twomey (1959). The dataset is separated into large-scale
flow regimes, as defined in Fig. 6, and the composite plots
are shown as different colors (Fig. 7b–d). The meanNccnwas
similar for the northerly (Fig. 7b) and northwesterly regimes
(Fig. 7c), although the latter showed less variation at each SS.
The westerly regime (Fig. 7d) was cleaner in general, with
a meanNccn of about 50 cm−3 at SS≈ 0.22 %. The parti-
cle number concentration measured by the PCASP (for bins
with known size limits, that is particles overD = 0.122 µm)
is shown in Fig. 7 to fall between theNccn at the middle and
highest SS settings in the CCN instrument. This could indi-
cate the presence of a population of particles that are smaller
thanD = 0.122 µm but will activate at high SS despite their
small size.

To test for spatial trends in theNccn at SS≈ 0.22 % along
the horizontal transects, the data were binned by latitude.
The latitude bins were averaged and plotted for all transects
in Fig. 8.Nccn averaged higher in the northern portion of the
flights, but the difference was small. In general,Nccn varied
little along the Western Slope. The latitude bin-averageNcn
is also plotted on Fig. 8 (on a different scale) to show the
variation in activated fraction. Values of activated fraction
were low in magnitude across the entire flight track, although
higher in the southern portions than in the north. On average,
only 5–10 % of particles counted by the CPC were counted
as CCN by the CCN instrument. The implications are that
greater than 90 % of the ambient particles along the flight
track were too small or non-hygroscopic to activate droplets
at this SS.
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Fig. 7. Plots ofNccn (y-axis; log scale; cm−3) at the CCN instru-
ment SS (x-axis; log scale; %) for(a) all King Air horizontal tran-
sects,(b) transects through northerly flow,(c) northwesterly flow,
and(d) westerly flow. The meanNccn are marked with filled circles
and the error bars represent one standard deviation from the mean.
The mean and standard deviation of the PCASP total number con-
centration is shown in the shaded region of each plot.

Fig. 8. Nccn (SS≈ 0.22 %) andNcn plotted against latitude for all
horizontal transects. The data were binned by latitude and averaged.
The Nccn is plotted as the blue, solid line. The dark blue shaded
region represents one standard deviation from the mean for each
latitude bin and the range in values in each bin is represented with
the light blue shaded region. Bin averagedNcn is plotted as the
black, dashed line and uses the scale on the right-hand side.

Data collected during the vertical stacks also exhibit a low
activated fraction. A distance of 40–60 km was flown at each
stack leg to collect several data points at each SS at a constant
altitude, and legs were repeated if necessary. The data were
averaged over each altitude, disregarding horizontal varia-
tions in sampling along the flight leg. For the purpose of
plotting these data, any stack leg with less than 3 valid data
points was set as missing. The altitude of the stacks some-
times varied between profiles, often because clouds were en-
countered at target altitudes. The approximate ground levels
at the three locations are 2100 m.s.l. for Steamboat Springs,
1840 m.s.l. for Cortez and 1850 m.s.l. for Nucla.

Fig. 9. Vertical profiles ofNccn collected during the(a) F1, (b) F4,
(c) F5, (d) F6, (e) F7, (f) F8 flights. The plotted values areNccn
at SS = 0.46 % for the northern stacks (solid line) and the southern
stacksSupersaturation (SS) is maintained (dashed line).

The vertical profiles are given in Fig. 9 for all stacks. They
are set in order by date and time flown and showNccn at
SS≈ 0.46 % for both the northern and southern stack loca-
tions. In general, the King Air flew through higher number
concentrations of particles and CCN in the lowest level of
the stack compared to the highest level. This difference was
most pronounced on the F7 and F8 flights for both northern
and southern stacks (Fig. 9e and f). Still, the averageNccn
measured at SS≈ 0.46 % never exceeded 300 cm−3 even at
the lowest altitudes. Activated fraction did not vary consid-
erably with height for the majority of profiles.

On the F1 and F5 flights (Fig. 9a and c),Nccn andNcn
did not decrease constantly with altitude. Instead, a relative
clean layer was observed on these days with slightly higher
Nccn andNcn in the altitudes above the clean layer. During
the F1 stacks the clean layer was evident in both the northern
and southern profiles and at similar altitudes. For F5, the
clean layer was more pronounced in the southern stack and
difficult to discern in the northern stack.

Very similar trends inNccn andNcn with height were ob-
served between the northern and southern stacks for F1, F6,
F7 and F8 (Fig. 9a, d, e, f). In general, the magnitudes of
Nccn andNcn were also similar on these days (with the ex-
ception of F1), all of which were characterized by northerly
or northwesterly flow. This suggests that the King Air was
sampling within the same, or similar airmasses. Aerosol
measurements are more available in northwestern Colorado
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in comparison to southwestern Colorado. It now appears
that, especially under north and northwesterly winds, the
northern measurements could be used to estimateNccn in the
southern locations. In contrast, the vertical profiles for the
westerly flow flights F4 and F5 do not appear to be as con-
sistent from north to south. Differences in aerosol sources to
the west of the Colorado mountains may lead to these incon-
sistencies with westerly winds.

3.4 CCN prediction

3.4.1 CCN closure review

CCN closure is regarded as one of the most effective tech-
niques for evaluating the characteristics of aerosols that af-
fect their potential to act as CCN and assessing our abil-
ity to predict this activity. A CCN closure study, as ex-
plained by VanReken et al. (2003), is an attempt to match
observed CCN number concentrations with those predicted
using one of several methods, usually involving knowledge
of the aerosol size distribution, composition, or both. Squires
and Twomey (1961) and Twomey and Warner (1967) pub-
lished two of the earliest studies along these lines, although
their goal was to show a predictive relationship between
CCN and CDNC observed in the low-levels of nearby clouds.

More recent closure studies use Köhler theory to model
Nccn at a fixed SS. Covert et al. (1998) describe one of
the first attempts at CCN closure using this method. They
measuredNccn with a static diffusion, thermal gradient in-
strument at a coastal site in southern Australia. Simultane-
ous observations of aerosol size distribution and hygroscopic
growth were made. For each sample the critical dry size for
droplet activation was computed from the Köhler equations
using the hygroscopic growth information and temperature
and SS set in the CCN instrument. The number of observed
particles larger than the critical size is counted and regarded
as the prediction ofNccn used to test for closure. Covert et
al. (1998) found thatNccn was, on average, overpredicted by
about 20 %. Subsequent studies have achieved a wide range
of results with respect to CCN closure. Chuang et al. (2000)
systematically, and substantially, underpredicted CCN in ma-
rine aerosol samples. The majority of their error probably
resulted from instrument bias but they also note the impor-
tance of the treatment of aerosol composition in CCN pre-
diction. This was also pointed out in earlier work by Liu
et al. (1996) who combined aerosol composition measure-
ments with CCN predictions and found that some chemical
constituents were correlated withNccn.

A CCN closure study in south Florida reported by Van-
Reken et al. (2003) found excellent agreement between mea-
sured and predictedNccn assuming all particles were com-
posed of pure ammonium sulfate. While they speculated that
the simplified representation of aerosol composition might
apply in other environments, this was not the case for rural
continental aerosol sampled by Medina et al. (2007). They

observed CCN and size-dependent aerosol composition at a
site in southern New Hampshire for 7 days in August. By in-
cluding a size-dependent insoluble fraction parameter, based
on the observations, in their CCN model, they realized sub-
stantial improvement in CCN predictions relative to CCN
measurements. Chang et al. (2007) reached similar conclu-
sions in a 14-day dataset of size-dependent aerosol composi-
tion in CCN measurements in a semi-rural environment.

Recent attempts have focused on measuring aerosol com-
position as the key to achieving CCN closure (Ervens et al.,
2007; Quinn et al., 2008; Furutani et al., 2008; Bougiati-
oti et al., 2009). Broekhuizen et al. (2006) and Cubison et
al. (2008) both show evidence that CCN closure can be im-
proved with knowledge of size-dependent composition. Cu-
bison et al. (2008) also found that assumptions about the
aerosol mixing state (internal or external) can adversely im-
pact CCN predictions. They sampled aerosol near Los An-
geles, California in an urban airmass. For this case, assum-
ing an external mixture of aerosol increased the accuracy of
the CCN predictions. The assumption of externally mixed
aerosol was also used by Stroud et al. (2007) to improve
CCN closure at a polluted site in North Carolina. The work
of Stroud et al. (2007) aptly reflects the current state of CCN
closure studies by pointing out that inadequate understanding
of aerosol composition effects on hygroscopicity and instru-
ment inaccuracies are the main barriers to achieving CCN
closure.

3.4.2 CCN closure attempt

As in the studies outlined above, to predictNccn for the
King Air horizontal transects, information about the aerosol
size distribution and composition are applied to a model of
Köhler theory. Petters and Kreidenweis (2007) show how
the representation of the hygroscopic growth of a particle
solution in Köhler theory can be simplified using a single,
empirically-derived parameter,κ. This is given in Eq. (6)
from Petters and Kreidenweis (2007):

S(D) =
D3

−D3
d

D3−D3
d(1−κ)

exp

[
4σs/aMw

RTρwD

]
(2)

Here the saturation ratio,S, is shown as a function of the so-
lution diameter, whereD is the diameter of the droplet solu-
tion, Dd is the dry particle diameter,σ s/a the surface tension
of the solution/air interface,Mw the molecular weight of wa-
ter,R is the universal gas constant,T is the temperature and
ρw is the density of water. Theκ parameter is determined
experimentally for different aerosol species and is listed by
Petters and Kreidenweis (2007) for most common aerosol
constituents. Since its introduction,κ has been used to rep-
resent hygroscopicity (relative ability of a particle to grow
by vapor condensation) in both observational (e.g. Shantz
et al., 2008; Gunthe et al., 2009; Koehler et al., 2009) and
modeling studies (e.g. Reutter et al., 2009; Eidhammer et al.,
2009). Here the Petters and Kreidenweis (2007)κ-Köhler
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theory is used to predictNccn from the King Air measure-
ments. A constant value ofT = 298.15K is used for these
calculations. This is considerably warmer than the average
CCN instrument chamber temperature but is consistent with
the standard values forσ s/a given in Petters and Kreiden-
weis (2007). Snider et al. (2010) show that the particle SSc
can be sensitive to the temperature-dependence ofσ s/a and
recommend using the standard values (as done here) where
the temperature-dependence is not accounted for.

Size distribution data forNccn prediction are given by the
PCASP but since composition measurements were not taken
in flight, a reasonable estimate for the averageκ must be
used instead. This estimate is, unfortunately, constrained
by the detection limits of the PCASP. The PCASP lower
limit for measurements between known bin size bounds was
given as 0.122 µm earlier in this section. However, even at
SS = 0.22 % a particle with theκ of ammonium sulfate will
have a critical dry diameter of 0.077 µm using theT and other
constants given in Petters and Kreidenweis (2007). There-
fore, if the value ofκ for ammonium sulfate was used to pre-
dict Nccn, an unmeasured portion of the aerosol size distribu-
tion would exist above the critical size. These particles would
go uncounted andNccn could be underpredicted consider-
ably. Only less hygroscopic particles would possess a critical
dry diameter larger than 0.122 µm. To ensure that the com-
puted critical size will fall within the detection range of the
PCASP at SS = 0.22 % a value ofκ ≤ 0.15 must be assumed.
A value ofκ = 0.1 is used for this study. This is equivalent
to assuming the sampled aerosols have a low hygroscopic-
ity, more characteristic of organic aerosol species than inor-
ganics, such as sulfates or nitrates. The assumption of low
hygroscopicity is, therefore, inconsistent with observations
from the IMPROVE network site at Mount Zirkel (MOZI)
in the Colorado Park Range which show a large inorganic
component. The composition of the PM2.5 aerosol sampled
at MOZI in December from 1999–2008 averaged more than
50 % sulfate and nitrate by mass. This is corroborated by the
analysis of Borys et al. (2000) who found substantial sulfate
and nitrate mass in cloud water samples collected at SPL dur-
ing the winter. Richardson et al. (2007) used an aerosol mass
spectrometer and other methods to measure aerosol compo-
sition at SPL during April and May of 2004. They also found
high proportions of inorganic compounds that dominated the
total aerosol mass except during dust events. In light of these
observations, it should be noted that the hygroscopicity value
used in this analysis is likely a low estimate.

Using the estimatedκ = 0.1, a critical diameter is com-
puted using the form of the K̈ohler equations given as Eq. (2).
This is done separately for each data point since the SS varies
between measurements. Particles in size bins greater than
the critical size, as counted by the PCASP, are summed. The
sum is regarded as the predictedNccn. Note, due to the lim-
itations of the PCASP size range, only CCN measurements
at SS≈ 0.22 % were used in this analysis. A more robust
method for predictingNccn from aerosol size distribution in-

Fig. 10.Observed vs. predictedNccn (cm−3) for all horizontal tran-
sects during westerly flow (blue), northwesterly flow (green), and
northerly flow (red). Error bars are defined in the text. The 1:1
relation line is plotted.

formation was introduced by Petters et al. (2007) but this
method requires size-selection of particles during sampling.

Figure 10 shows the predictedNccn plotted against the
measuredNccn for all horizontal transects. Error bars de-
pict the estimated uncertainty for the CCNC-100A measure-
ments and the PCASP counts (which were used to derive the
predictedNccn). For the CCNC-100A, the uncertainty is esti-
mated from the detector calibration using the fitting method
shown in Snider et al. (2006). The predictedNccn uncer-
tainty is plotted as plus and minus the standard deviation of
the 20 PCASP measurements (taken 10 s before and after the
CCN instrument chamber was opened) of the number con-
centration of particles with diameters larger than the com-
puted critical diameter. The error bars extend from values
of Nccn predicted for SS = SS± 0.1× SS to account for the
uncertainty in the chamber SS (Sect. 3.1.1).

Despite the low prescribed value ofκ compared to nearby
observations of aerosol composition, the data do not exhibit
an underprediction bias. There are several possible explana-
tions for this unexpected result. First, the ambient aerosol
during this project could have been dominated by organic
compounds which are characterized by low hygroscopicity.
This conclusion is at odds with the IMPROVE dataset and
other published observations in the region. If the ISPA-III
ambient aerosol hygroscopicity was more consistent with
these previous composition observations (i.e. the ambient
aerosolκ was higher thanκ assumed for the closure study),
it is possible that the predictedNccn were simply insensitive
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to variations in aerosol composition. However, parcel model
results suggest that at the low SS used here some sensitiv-
ity could be expected (Ward et al., 2010). A final explana-
tion is suggested by Shantz et al. (2008). They note that the
light scattering within the CCN instrument is proportional to
droplet number, but also droplet size. The pure ammonium
sulfate particles used in the detector calibration are likely to
be more hygroscopic than internally mixed ambient aerosols
and, therefore, will grow at a higher rate and possibly scatter
more light within the instrument chamber. This could re-
sult in a low number bias when the CCN instrument samples
ambient, presumably less hygroscopic particles. Additional
detector calibrations using particles with a different hygro-
scopicity than ammonium sulfate would be needed to explore
this possible explanation. Figure 10 also shows substantial
spread of the data points but in general,Nccn was predicted
within a factor of three when compared to the measurements.

The CCN closure plot is separated into flow regime by
colors in Fig. 10. The noted differences in magnitude of
Nccn between regimes are apparent. Low values ofNccn,
mainly between 30 and 50 cm−3, were observed under west-
erly flow and these were consistently underpredicted. Ob-
servations under northwesterly flow show the largest average
deviation from the plotted 1:1 relation line. This could indi-
cate a change in aerosol mixing state or average composition
sampled during these flights.

4 Summary and conclusions

In combination with observations from MVNP and SPL, the
foundation for fall and winter season CCN climatologies now
exists for the Western Slope. TheNccn and activated frac-
tions are consistent with remote continental, aged aerosol.
These characteristics were true from SPL, south to MVNP,
and somewhat consistent in time as well as space. This result
suggests that variability of CCN in this region may be less
important than originally thought. This has implications for
studies of aerosol effects on orographic clouds in this region.
CCN transported to the San Juan Mountains and other loca-
tions along the Western Slope can be estimated by the avail-
able measurements from northwestern Colorado, at least for
particular wind regimes and seasons. This may also be en-
couraging from a modeling perspective. The lack of variabil-
ity associated with CCN along the Western Slope could jus-
tify simplified representations of aerosols in numerical sim-
ulations, provided the simplifications are based on averaged
observed quantities.

Several conclusions about the nature of CCN flowing into
the Colorado Rocky Mountains from the Western Slope can
be drawn from these results. The CCN observed at SPL,
MVNP, and on a line between the two sites, was character-
istic of rural continental aerosol as defined by Seinfeld and
Pandis (2006). For rural continental aerosols, the particle
number distribution is dominated by a nuclei (Aitken) mode,

particle surface area is largest in the accumulation mode, and
particle mass is dictated by a small number of coarse mode
particles.

According to Seinfeld and Pandis (2006), the nuclei mode
receives its largest contributions of particles from local an-
thropogenic sources. This is difficult to reconcile with the
December observations of CCN along the Western Slope that
suggest local sources make only minor contributions to the
regional CCN field. One explanation is that number fluctua-
tions in the nuclei mode do not impact CCN at the instrument
SS due to their small size. The CCN in this region would
then be dependent on the aged, accumulation mode particles
that are more likely to have distant origins. The observa-
tions from MVNP, whereNcn was highly variable butNccn
changed slowly and within a much smaller range, support
this view. Additionally, the low activated fraction computed
from the measurements suggests that a large number of the
ambient particles are too small to activate droplets at the set
values of SS.

Many questions remain unanswered, especially concern-
ing the sources of the CCN, and potential differences with
season that are not captured here. Future studies should in-
corporate aerosol composition measurements, as suggested
by Medina et al. (2007) or include size-separated CCN sam-
pling as an estimate of aerosol hygroscopicity as in Petters et
al. (2007). With these additional measurements the conclu-
sions of this work could be better substantiated.
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