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Abstract. Low ice crystal concentration and sustained in-
cloud supersaturation, commonly found in cloud observa-
tions at low temperature, challenge our understanding of cir-
rus formation. Heterogeneous freezing from effloresced am-
monium sulfate, glassy aerosol, dust and black carbon are
proposed to cause these phenomena; this requires low up-
drafts for cirrus characteristics to agree with observations
and is at odds with the gravity wave spectrum in the upper
troposphere. Background temperature fluctuations however
can establish a “dynamical equilibrium” between ice produc-
tion and sedimentation loss (as opposed to ice crystal forma-
tion during the first stages of cloud evolution and subsequent
slow cloud decay) that explains low temperature cirrus prop-
erties. This newly-discovered state is favored at low tempera-
tures and does not require heterogeneous nucleation to occur
(the presence of ice nuclei can however facilitate its onset).
Our understanding of cirrus clouds and their role in anthro-
pogenic climate change is reshaped, as the type of dynamical
forcing will set these clouds in one of two “preferred” micro-
physical regimes with very different susceptibility to aerosol.

1 Introduction

Cirrus clouds are composed of ice crystals that form at
high altitudes and temperatures typically below 235 K (Prup-
pacher and Klett, 1997). They play a key role in climate
by modulating the planetary radiative balance (Liou, 1986)
and heat transport in the upper troposphere (Ramanathan and
Collins, 1991). They strongly impact water vapor transport
across the tropopause level (Jensen and Pfister, 2004) and
play an important role in lower stratospheric chemistry (Pe-
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ter, 1997). Cirrus may be affected by aircraft emissions (Se-
infeld, 1998) and long range transport of pollutants and play
an important (but highly uncertain) role in anthropogenic cli-
mate change.

A key microphysical parameter required for understand-
ing the climate impact of cirrus is their concentration of ice
crystals,Nc. At temperatures between 200 and 235 K cirrus
ice crystals form primarily by homogenous freezing of super-
cooled deliquesced aerosol (DeMott et al., 2003; Heymsfield
and Sabin, 1989), which occurs if the saturation ratio with
respect to ice,S, (i.e., the ratio of water vapor partial pres-
sure to its equilibrium value over ice) reaches a characteris-
tic threshold value,Shom (Koop et al., 2000). Heterogeneous
freezing of water upon existing aerosol particles (termed “ice
nuclei”, IN) can also occur (atS lower thanShom) and con-
tribute to ice crystal concentrations (DeMott et al., 2003;
Froyd et al., 2009), especially in polluted and dust-rich re-
gions (Barahona et al., 2010a; Haag et al., 2003). The level
of water vapor supersaturation (i.e.,S −1) is the thermody-
namic driver for ice formation, and is generated by expansion
of air parcels forced by large scale dynamics, gravity waves,
and small scale turbulence (Kim et al., 2003).

At temperatures below 200 K (typically near the tropical
tropopause layer, TTL) the simple conceptual model for cir-
rus formation presented above is at odds with observations
(Jensen et al., 2010; Krämer et al., 2009; Peter et al., 2006).
Temperature fluctuations from mesoscale gravity waves are
common at high altitudes and can produce localized vertical
motion with updraft velocity as large as 1 m s−1 (Bacmeis-
ter et al., 1999; Herzog and Vial, 2001; Jensen and Pfister,
2004; Sato, 1990). Such motion can increase the rate of ex-
pansion cooling at the point of freezing so that a large num-
ber of ice crystals is nucleated before the local supersatura-
tion is depleted by ice crystal growth. Homogeneous freez-
ing driven by gravity wave motion would produce high ice
crystal number concentration,Nc, between 1 and 10 cm−3
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near the TTL (Barahona et al., 2010a). Such high concentra-
tions however are not observed;Nc remains low, sometimes
even lower (0.005–0.2 cm−3) than concentrations observed
in weak updraft zones at cold temperatures (Krämer et al.,
2009; Lawson et al., 2008). This “lowNc” paradox is ac-
companied by other phenomena, such as low supersaturation
relaxation times (Kr̈amer et al., 2009), which in turn leads to
sustained supersaturation levels inside clouds (i.e., “the su-
persaturation puzzle”) (Gao et al., 2004; Krämer et al., 2009;
Peter et al., 2006), high clear-sky supersaturation (Jensen et
al., 2005), and broad ice crystal size distributions (i.e., large
crystal sizes, Jensen et al., 2008). These phenomena occur
despite the strong dynamical forcing and the ample amounts
of deliquesced aerosol available for homogeneous freezing.
Suppressed freezing by organics (Murray, 2008), slow wa-
ter vapor transfer to the ice phase (Gao et al., 2004; Magee
et al., 2006), and freezing to cubic instead of hexagonal ice
(Murray et al., 2005), have been proposed to explain these
features. These mechanisms are however not capable of ex-
plaining the lowNc in low temperature cirrus clouds (Peter
et al., 2006). Lacking the predictive understanding of such
phenomena hinders the ability of climate models to capture
the climate effects of cirrus clouds and their response to an-
thropogenic perturbations.

Heterogeneous freezing of IN as the main path of cirrus
formation has been proposed to explain the features of cir-
rus clouds at low temperature (Abbatt et al., 2006; Jensen
et al., 2010; Murray et al., 2010). Owing to their ability to
freeze ice at much lower supersaturation than homogeneous
freezing requires, IN can deplete water vapor, reduce super-
saturation and inhibit homogeneous freezing; this can drasti-
cally reduce the number of ice crystals that forms in the cirrus
(Barahona and Nenes, 2009b; DeMott et al., 1994; Kärcher
et al., 2006). Much of the anthropogenic impact on cirrus
clouds and climate is thought to occur through this IN-Nc
feedback mechanism (Lohmann and Feichter, 2005). Dust
(Khvorostyanov et al., 2006), effloresced ammonium sulfate
(Abbatt et al., 2006; Jensen et al., 2010; Wise et al., 2010),
and glassy aerosol (Murray et al., 2010) have been identified
as potential heterogeneous IN at the TTL .

The evolution of cirrus clouds at lowT has been addressed
in several studies. Using a one dimensional (1-D) cloud
model, Jensen and Pfister (2004) found that the superposi-
tion of temperature fluctuations along Lagrangian trajecto-
ries near the TTL resulted in rapid cooling cycles that in-
creased the rate of crystal production by homogeneous nu-
cleation leading toNc above 1 cm−3. Khvorostyanov et
al. (2006) used a 1-D cirrus model to investigate the evo-
lution of a cirrus layer initialized at 200 K and found that
regardless of the predominant nucleation mechanism, tem-
perature fluctuations increased the maximumNc in the cloud
(up to 0.6 cm−3). Nc however rapidly decreased after the ini-
tial freezing pulse due to the vertical advection of ice crys-
tals precluding new nucleation events and dilutingNc down
to about 0.05 cm−3. Gensch et al. (2008) used box model

simulations along Lagrangian trajectories to test homoge-
neous and heterogeneous nucleation scenarios in the forma-
tion of cirrus at lowT . It was found that only heterogeneous
nucleation scenarios (with prescribed IN number concentra-
tion around 0.1 cm−3) would result inNc close to observa-
tions. This conclusion was echoed by Froyd et al. (2009) and
Jensen et al. (2010) using 1-D models along prescribedT

trajectories.
The formation of cirrus clouds however exhibits complex

non-linear behavior that may not be captured by box and 1-
D models. Ice falling through active freezing zones (typi-
cally located at the top of the cirrus layer, Spichtinger and
Gierens, 2009b) in clouds consume water vapor and can in-
hibit homogeneous freezing much like IN do (Kay et al.,
2007; Spichtinger and Gierens, 2009b). Their effectiveness
depends on their residence time in freezing zones and hence
depends on their size. Large ice crystals tend to quickly fall
out of freezing zones and have limited effect on new ice for-
mation events; small crystals (typically those with terminal
velocity, uterm, less or equal to the mean updraftu of the
cirrus layer) fall slowly and can remain long enough in the
upper part of the cloud to affect new freezing events. This
suggests that at low temperatures, preexisting (and typically
small, Kr̈amer et al., 2009) ice crystals may locally dehydrate
the freezing zone sufficiently to inhibit the formation of new
ice. The rate of crystal production is not uniform through the
freezing zone, as the “local” saturation ratio,S, and updraft
velocity,u (defined at the scale of individual cloud “parcels”
∼100–102 m, Pruppacher and Klett, 1997) may be affected
by fluctuations in wind speed and temperature induced by
gravity waves (Jensen et al., 2010; Kärcher and Haag, 2004;
Kim et al., 2003). These internalS variations are usually ne-
glected in cirrus cloud studies on the basis that the long-term
evolution of the cloud is determined by the mean values ofS

andu.
In this work we analyze the range of conditions for which

heterogeneous freezing may explain the features of cirrus
clouds at low temperature, and propose an alternative view
(based on a statistical description of cirrus formation and
evolution) in which the interplay of temperature fluctuations,
and ice crystal production and sedimentation leads to pre-
viously unidentified natural cirrus states of low ice crystal
concentration and sustained high supersaturation.

2 Heterogeneous freezing at low temperature

The impact of IN onNc depends on their concentration,
NIN . If too low (NIN < 1× 10−4 cm−3), a negligible im-
pact is seen onNc, as too few (heterogeneously-frozen)
ice crystals form to quench supersaturation below the ho-
mogeneous/heterogeneous freezing threshold (Barahona and
Nenes, 2009b). LowNc favors large crystal size and there-
fore heterogeneously frozen ice crystals may sediment out of
the cloud layer before significantly modifyingS (Spichtinger
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and Gierens, 2009a). WhenNIN approaches a characteristic
“limiting” concentration (which depends on updraft velocity,
the IN freezing threshold and size),Nlim , supersaturation is
quenched, homogeneous freezing is suppressed, andNc de-
creases steeply (Barahona and Nenes, 2009b). ForNIN ≥

Nlim , homogeneous nucleation is inhibited andNc = NIN .
Thus, Nlim is the minimumNc that can form in an active
nucleation zone in a freshly-formed cirrus cloud (Barahona
and Nenes, 2009b) and presents the maximum reduction in
Nc possible from IN.

Figure 1 showsNc accounting for the competition between
homogeneous and heterogeneous freezing during cloud for-
mation (Barahona and Nenes, 2009b) (details of the calcu-
lation are described Sect. 3.3). AsNc is strongly influenced
by the vertical velocity at the point of freezing and much less
sensitive to smallT variations, the curves in Fig. 1 represent
the peakNc that would be obtained in box models after a sin-
gle freezing event (Barahona and Nenes, 2008; Hoyle et al.,
2005; K̈archer and Lohmann, 2002; Spichtinger and Gierens,
2009a). IfNIN is always very close toNlim , competition be-
tween homogeneous and heterogeneous freezing could yield
Nc close to observations. This requiresNIN ∼ 0.1 cm−3,
which is 20-fold higher than measured dust concentrations
(∼.005 cm−3) at the tropopause level (Froyd et al., 2009).
Ammonium sulfate aerosol is present at much higher concen-
trations than dust, and can serve as IN (Abbatt et al., 2006;
Wise et al., 2010) if a fraction of them is effloresced (which
is possible, given that it deliquesces at∼90% relative humid-
ity) (Fountoukis and Nenes, 2007; Shilling et al., 2006).

To inhibit homogeneous freezing and reproduce obser-
vations ofNc, the concentration of ammonium sulfate IN
needs to be within 10% ofNlim ; if concentrations fall below
0.9Nlim , homogeneous freezing is triggered and predictedNc
is significantly above observations (Fig. 1). If higher concen-
tration thanNlim is present, homogeneous freezing is com-
pletely suppressed, but too many crystals still form (Bara-
hona and Nenes, 2008). In fact, if all ammonium sulfate is
available as IN,Nc from heterogeneous freezing and pure ho-
mogeneous freezing are always comparable (Fig. 2), because
crystals formed from ammonium sulfate IN are very small
(with size close to the dry aerosol; 0.02–0.05 µm, Froyd et
al., 2009) and grow too slowly to quench supersaturation be-
fore a large fraction of the aerosol freezes heterogeneously.
Nc is within observed values only if the average size of
crystals at the point of freezing is 2 µm or larger (Fig. 2),
which is too large for upper tropospheric aerosol (Froyd et
al., 2009). Experimental studies suggest that heterogeneous
freezing of ammonium sulfate IN atT ∼ 240 K can be very
selective (about 1 in 105 particles nucleate ice, Shilling et
al., 2006). If the same selectivity maintains at lowerT , too
few IN would be available to prevent homogeneous freezing
(therefore resulting in highNc). Higher nucleation selectivity
(e.g., about 1 in 102 particles actively nucleating ice) would
result in complete inhibition of homogeneous freezing and
still maintainNc close to observations (not shown). A pure

Fig. 1. Ice crystal concentration,Nc, as a function of updraft
velocity, u. The cloud was assumed to form atT = 185 K and
p = 100 hPa (details provided in Sect. 3.3.1). Low values ofu cor-
respond to cloud formation driven primarily by large scale dynam-
ics, whereasu > 50 cm s−1 is characteristic of cirrus developing in
the vicinity of convective systems with intense gravity wave break-
ing (Kim et al., 2003). Solid line indicateNc calculated for pure
homogeneous freezing, dashed line forNIN = Nlim , and dotted for
NIN = 0.75Nlim . ForNIN = Nlim , Nc lies close to the observed val-
ues foru < 50 cm s−1 (Krämer et al., 2009) but is very sensitive to
small fluctuations inNIN .

heterogeneous scenario of ice nucleation on ammonium sul-
fate however implies a maximum supersaturation below 20%
(Fig. 3b), i.e.,S greater than 1.2 would be rarely observed
as newly formed crystals would rapidly remove supersatura-
tion. This is at odds with observations of relative humidity
that suggest that clear-sky supersaturation in the vicinity of
cirrus up to 70% (and occasionally above) is very common at
low temperature (Kr̈amer et al., 2009). Hence the lowNc and
high S observed at high-level cirrus can be reconciled with
box-model results only if the concentration of ammonium
sulfate IN is remarkable constant (0.1± 0.01 cm−3), the con-
centration of dust is exceptionally large, or, the fluctuations
in vertical velocity from gravity wave motion are neglected.

The freezing fraction of organic glassy aerosol can be
much lower than that of ammonium sulfate and maintain
NIN close toNlim (hence yield lowNc, Fig. 3a) if the ver-
tical velocity is below 15 cm s−1 (Murray et al., 2010). At
larger updrafts however, homogeneous nucleation is trig-
gered, producing highNc (Fig. 3a). When integrated over
a normal distribution of updrafts with standard deviationσu
(Fig. 3c), Nc remains within observed values forσu up to
40 cm s−1 at T = 195 K. The onset of homogeneous nucle-
ation occurs at even loweru for colder temperatures and
Nc deviates from observations forσu as low as 10 cm s−1

at T = 185 K. Predominance of heterogeneous nucleation
from glassy IN would also imply maximum supersaturation
around 30% if the new formed ice crystals efficiently remove
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Fig. 2. Simulations of ice crystal concentration by pure heteroge-
neous freezing.Nc is presented as a function of the initial size of the
ice nuclei. Conditions (Lawson et al., 2008) used wereT = 185 K,
p = 100 hPa, and vapor-to-ice deposition coefficient,αd, of 0.07
(dashed line), and 1.0 (solid line). The IN population was assumed
to be monodisperse with total number concentration of 100 cm−3

(Lawson et al., 2008). Freezing of solid ammonium sulfate was
assumed to occur in a “burst” around the heterogeneous freezing
threshold described by sigmoidal freezing spectrum with inflection
point Shet= 15% (Abbatt et al., 2006), where 99% of the aerosol
freeze within a 2% supersaturation interval aboutShet (inset plot).

supersaturation (Barahona et al., 2010a; Murray et al., 2010).
However as the freezing fraction of glassy IN is small,S can
increase even after heterogeneous nucleation has occurred.
Still, S would have to remain belowShom for Nc to remain
low unless homogeneous freezing is suppressed. The later
scenario is however not supported by observations. Both, in-
cloud and clear-sky RH are generally limited by the homoge-
neous freezing threshold indicating efficient supersaturation
removal by homogeneously-frozen ice crystals (Krämer et
al., 2009; Selkirk et al., 2010). Although uncertainty in RH
can be typically up to 20% (Krämer et al., 2009), it is still
smaller than the difference between the homogeneous and
heterogeneous freezing thresholds, typically between 30%
and 40%, giving this support to the idea that homogeneous
freezing occurs at low temperatures. All together, this im-
plies that in the presence of (ubiquitous)T fluctuations, the
presence of glassy IN may contribute, but not fully account
for the observed characteristics of lowT cirrus.

3 Parcel statistical ensemble model

The main processes affecting the evolution ofNc and mean
saturation ratio,So, within a cirrus layer are the freezing of
new ice, the sedimentation of existing ice crystals, the lift-
ing of air masses (which generates supersaturation), and the
relaxation (i.e., mass transfer) of water vapor to/from the ice

Fig. 3. Comparison between heterogeneous effects from solid am-
monium sulfate (Abbatt et al., 2006) and glassy citric acid aerosol
(Murray et al., 2010), using the analytical model of Barahona and
Nenes (2009a) for homogeneous and heterogeneous freezing.(a)
Maximum ice crystal concentration as a function of updraft velocity
for a single freezing event.(b) Maximum supersaturation achieved
for a single freezing event.(c) Ice crystal concentration averaged
over a normal distribution of updraft velocities with zero mean and
standard deviationσu. The gray lines represent the range ofNc
typically observed (Kr̈amer et al., 2009).

phase. The magnitude of each process can be expressed in
terms of a characteristic timescale, i.e.,τfr, τsed, τlift , andτrel
for freezing, sedimentation, lifting, and relaxation, respec-
tively. Fluctuations inS andu can have a strong impact on
all cloud processes; we therefore represent them in terms of a
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probability distribution centered about the cirrus-average sat-
uration ratio,So, and vertical velocity,u. The width of these
probability distributions is largely determined by the mean
amplitude of temperature fluctuations,δT (Bacmeister et al.,
1999; Hoyle et al., 2005; K̈archer and Burkhardt, 2008). The
rate of ice production is given by the frequency with which
S exceeds the homogeneous freezing threshold (Kärcher and
Burkhardt, 2008) times the length and intensity of each freez-
ing event (henceτfr) (Barahona and Nenes, 2008; Pruppacher
and Klett, 1997). The same fluctuations also affect the local
mass transfer rate between the ice and vapor phases, so that
when averaged over the cloud, water deposition/sublimation
occurs at an “effective” saturation ratio,Seff, that may differ
from So.

Supersaturation and crystal number in the cirrus cloud
are determined using a “Lagrangian statistical ensemble” ap-
proach. This involves determining the time-dependant state
of i homogeneous Lagrangian “parcels” that move with a
(time-dependant) vertical velocity,ui ; ensemble averaging
of the parcel solutions (outlined below) weighted by the ap-
propriate probability distribution give approximate equations
that describe the time-dependant properties for the whole cir-
rus. From these considerations, simple equations can be de-
rived that represent the evolution ofNc andSo in the cirrus
(Sects. 3.1, 3.2).

3.1 Evolution of saturation ratio

In the absence of ice nucleation, the rate of change of satu-
ration ratio,S, within the ith Lagrangian parcel is given by
(Barahona and Nenes, 2009a; Seinfeld and Pandis, 1998)

dSi

dt
= αuiSi −γ

∞∫
Dmin

D2
c,i

dDc,i

dt
nc,i(Dc)dDc (1)

whereα =
g1HsMw
cpRT 2 −

gMa
RT

and γ =
ρi

ρa

π
2

Map

Mwpo
i
, 1Hs is the

latent heat of sublimation of water,g is the acceleration of
gravity, cp is the heat capacity of air,po

i is the ice satura-
tion vapor pressure atT (Murphy and Koop, 2005),p is the
ambient pressure,Mw andMa are the molar masses of wa-
ter and air, respectively,R is the universal gas constant,ρi

andρa are the ice and air densities, respectively, andDc is
the volume-equivalent diameter of an ice particle (assuming
spherical shape).nc,i(Dc) is the ice crystal size distribution
in theith parcel, and

dDc,i

dt
=

G(Si −1)

Dc,i
(2)

where G ≈

[
ρiRT

4po
i D

′

vMw
+

1Hsρi

4kaT

(
1HsMw

RT
−1

)]−1

, ka is the

thermal conductivity of air,D
′

v = D
′

v(T ,p,αd) is the water
vapor diffusion coefficient from the gas to ice phase corrected
for non-continuum effects, andαd is the water vapor depo-

sition coefficient. Substituting Eq. (2) into Eq. (1) provides
after evaluation of the integral,

dSi

dt
= αuiSi −

(Si −1)

τrel,i
(3)

whereτrel,i =
(
βNc,iD̄c,i

)−1
is the relaxation time scale in

the ith parcel,β = γG, and,Nc,i , D̄c,i are the concentration
and mean size of ice crystals in theith parcel, respectively.

Equation (3) provides the supersaturation “state” for every
Lagrangian parcel considered in the ensemble. Knowledge
of the distribution ofui (from the spectrum of gravity waves
in the cirrus) can then be used to “drive” the parcels in the en-
semble to find the resulting distribution ofSi . Averaging is
carried out first over all parcels reaching a given cloud level
with vertical velocityuj (referred to as the “j th cloud veloc-
ity state”), and then averaging over all cloud states. Based on
this, the average saturation ratio,So, of the cloud over a time
interval1t is

So(t) =

+∞∫
−∞

∫
X(t)

1∫
0

Si(µ,x̃,τ )P (µ,x̃,τ )dτdx̃dµ (4)

whereµ =
u
ū
, u andū are the instantaneous and average verti-

cal velocity, respectively,̃x denotes the position in the cloud,
τ =

t ′

1t
, wheret ′ is the averaging time, andX(t) is the do-

main of x̃. P(µ,x̃,τ ) is the normalized probability at time
t ′ of finding a parcel between positioñx andx̃ +dx̃ (where
dx̃ =

dxdydz
Vcloud

), with vertical velocity withinu andu+du.
Equation (1) can be simplified, by considering that fluctu-

ations generated by gravity waves are random in nature (i.e.,
follow a Gaussian distribution, Fig. 4d). Thus, under the as-
sumption thatP(µ,x̃,τ ) does not vary with space and time
over1t , P(µ,x̃,τ ) ' P(µ) and Eq. (4) simplifies to

So(t) =

+∞∫
−∞

∫
X(t)

1∫
0

Si(µ,x̃,τ )P (µ)dτdx̃dµ (5)

Equation (5) assumes thatSo is affected by processes that act
throughout the volume of the cirrus cloud. Other processes,
like entrainment and radiative cooling, are neglected. Al-
though this will not affect the conclusions of our study, they
could be included in future studies e.g. indirectly through
appropriate modification of the vertical velocity distribution
(Barahona and Nenes, 2007).

DefiningS̄j =
∫

X(t)

1∫
0

Si(µ,x̃,τ )dτdx̃ as the average super-

saturation of parcels in the “j ” velocity state over the time
interval1t , Eq. (5) can be rewritten as

So(t) =

+∞∫
−∞

S̄j (µj )P (µj )dµj (6)

the time derivative of which gives,
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Fig. 4. Evolution of a cirrus cloud under pure homogeneous freez-
ing, lifting at 1 cm s−1 with initial T = 195 K and cloud thickness,
H = 500 m, andαd = 1. Shown are(a) the ice crystal number con-
centration,(b) mean supersaturation,(c) characteristic timescales
of freezing (gray dots), relaxation (solid lines), and sedimentation
(dotted lines), and,(d) frequency distribution of vertical velocity,
for different values of the mean amplitude temperature fluctuations,
δT .

dSo

dt
=

+∞∫
−∞

dS̄j (µj )

dt
P (µj )dµj+

+∞∫
−∞

S̄j (µj )
dP (µj )

dt
dµj (7)

the second integral on the right hand side of Eq. (7) de-
pends on the source of vertical velocity fluctuations. Distant
sources of gravity waves result in stationaryP(µj ), hence
dP (µj )

dt
→ 0. HoweverP(µj ) can be perturbed by near con-

vective and orographic sources; in such casesP(µj ) is not
completely Gaussian and exhibits a tail towards high veloc-
ities (Bacmeister et al., 1999). For the purpose of this study

it is assumed that
dP (µj )

dt
= 0, which implies that the char-

acteristic amplitude of temperature fluctuations,δT , remains
constant during the entire period of simulation. Equation (7)
then becomes

dSo

dt
≈

+∞∫
−∞

dS̄j (µj )

dt
P (µj )dµj (8)

Using the definition of̄Sj ,

dS̄j

dt
=

∫
X(t)

1∫
0

dSi(µ,x̃,τ )

dt
dτdx̃ (9)

Substitution of Eq. (3) into above provides

dS̄j

dt
=

∫
X(t)

1∫
0

{
αujSi−

(Si −1)

τrel,i

}
dτdx̃=αuj

∫
X(t)

1∫
0

Sidτdx̃

−

∫
X(t)

1∫
0

(
Si −1

τrel,i

)
dτdx̃ (10)

which can be rewritten as,

dS̄j

dt
= αuj S̄j −

∫
X(t)

1∫
0

(
Si −1

τrel,i

)
dτdx̃ (11)

IntroducingS̄eff,j so that,

∫
X(t)

1∫
0

(
Si −1

τrel,i

)
dτdx̃ =

(
S̄eff,j −1

) ∫
X(t)

1∫
0

1

τrel,i
dτdx̃ (12)

From Eq. (3),

1

τrel,j
=

∫
X(t)

1∫
0

1

τrel,i
dτdx̃ =

[
βNcD̄c

]
µ=µj

(13)

Combining Eqs. (12) and (13), Eq. (11) can be written as

dS̄j

dt
= αuj S̄j −

S̄eff,j −1

τrel,j
(14)

whereτrel,j is the relaxation time scale associated with the
j th state. S̄eff,j is an “effective” saturation ratio for de-
position/sublimation processes, defined below. Introducing
Eq. (14) into Eq. (8),

dSo

dt
=

+∞∫
−∞

(
αuj S̄j −

S̄eff,j −1

τrel,j

)
P(µj )dµj (15)

or,

dSo

dt
=

+∞∫
−∞

αuj S̄jP(µj )dµj−

+∞∫
−∞

(
S̄eff,j−1

τrel,j

)
P(µj )dµj (16)

The first term in the right hand side of Eq. (16) must be equal
to ūSo, as in the absence of deposition/sublimation,So in
the layer increases exponentially with time (Pruppacher and
Klett, 1997). With this, Eq. (16) becomes,

dSo

dt
=

So

τlift
−

+∞∫
−∞

(
S̄eff,j −1

τrel,j

)
P(µj )dµj (17)

whereτlift = (αū)−1. Equation (17) must be solved for each
time step specifyingP(µj ) and then evaluatinḡSeff,j and the
integral on the right hand side. SinceP(µj ) is determined

Atmos. Chem. Phys., 11, 3757–3771, 2011 www.atmos-chem-phys.net/11/3757/2011/



D. Barahona and A. Nenes: Dynamical states of low temperature cirrus 3763

by the random overlapping of gravity waves of different fre-
quency and amplitude (e.g.,uj is given by a Fourier series
in time, Sect. 3.3), then for a time step of integration much
smaller thanτlift (∼102 s) Eq. (17) can be approximated by

dSo

dt
= αūSo−

S̄eff,j −1

τrel,j

∣∣∣∣∣
µ=µj

(18)

whereS̄eff,j andτrel,j are calculated at the instantaneous ver-
tical velocity.

Equation (18) gives the evolution of theSo in the cirrus
cloud; its solution however requires the knowledge ofS̄eff,j .
This is accomplished by considering the properties of the dif-
ferent parcels reaching the cloud layer att . For example, if
Si in theith parcel is a pseudo-steady state,dSi

dt
∼ 0 (Korolev

and Mazin, 2003) and from Eq. (3),

Si,ss=
τlift ,i

τlift ,i −τrel,i
(19)

whereτlift ,i = (αui)
−1 and Si,ss is the steady state satura-

tion ratio in theith parcel. If τlift ,i < 0 thenSi,ss< 1, and
vice-versa. Thus, ifuj < 0, the layer would likely be sub-
saturated over1t (e.g., Eq. 6), and vice-versa whenuj >

0. Thus, depending on the sign ofuj there is net deposi-
tion/sublimation of water vapor in the cloud layer. Not all
parcels however reach steady state; therefore the degree of
saturation/subsaturation associated with thej th state depends
on the probability distribution of saturation within the cloudy
layer,Ps(S,So,δT ), which is a function ofSo and the aver-
age amplitude of temperature fluctuations,δT . Thus,Seff for
uj < 0 is found by averaging over all states that would lead
to subsaturation, i.e.,Ps(S,δT ,So) for which S < 1. Sim-
ilarly, when uj > 0, the supersaturated (S > 1) region of
Ps(S,δT ,So) is used,

S̄eff,j =

b∫
a
S

dPs(S,δT ,So)
dS

dS

b∫
a

dPs(S,δT ,So)
dS

dS

(20)

where a=

{
1 uj > 0
0 uj ≤ 0

andb =

{
Shom uj > 0
1 uj ≤ 0

The homogeneous freezing threshold,Shom, is set as the up-
per limit of Ps(δT ,So) as ice crystal production quickly re-
moves supersaturation aboveShom (Kärcher and Burkhardt,
2008; K̈archer and Haag, 2004).

3.2 Evolution of ice crystal number concentration

The evolution of the number concentration within a cloudy
layer is given by

dNc

dt
=

dNc

dt

∣∣∣∣
fr

+
dNc

dt

∣∣∣∣
sed

(21)

where dNc
dt

∣∣∣
fr

is the rate production of ice crystals within

the layer, anddNc
dt

∣∣∣
sed

is their sedimentation rate. If homo-

geneous and heterogeneous nucleation are active,dNc
dt

∣∣∣
fr

is

given by,

dNc

dt

∣∣∣∣
fr

=
dNc

dt

∣∣∣∣
fr,hom

+
dNc

dt

∣∣∣∣
fr,het

where dNc
dt

∣∣∣
fr,hom

and dNc
dt

∣∣∣
fr,het

are the ice crystal produc-

tion rates from homogeneous and heterogeneous nucleation,
respectively.

3.2.1 Homogeneous nucleation

Ice crystal production by homogeneous nucleation is driven
by local motions and occurs within single parcels when
Si > Shom. The maximum ice crystal concentration produced
by homogeneous freezing within theith parcel is given by
(Barahona and Nenes, 2008; Pruppacher and Klett, 1997)

Nc,i = No

1−exp

−

tmax,i∫
0

v̄oJ (Si)dt

 (22)

wheretmax,i is the time at which ice crystal nucleation stops,
J is the homogeneous nucleation rate coefficient andNo, v̄o
are the deliquesced aerosol number concentration and av-
erage volume, respectively. Taking the time derivative of
Eq. (22) gives,

dNc,i

dt

∣∣∣∣
fr,hom

= Nov̄oJ (Si)exp

−

tmax,i∫
0

v̄oJ (Si)dt

 (23)

which can be approximated by (Barahona and Nenes 2008)

dNc,i

dt

∣∣∣∣
fr,hom

≈ Nov̄oJmax,i exp

−
v̄o

αui

Smax∫
0

J (Si)dSi

 (24)

whereJmax,i = J (Smax,i). Smax,i is the maximum saturation
ratio reached in theith parcel, calculated by settingdSi

dt
= 0

in Eq. (1),

Smax,i =
γ

αui

∞∫
D̄o

D2
c,i

dDc,i

dt
ni,nuc(Dc)dDc (25)

whereni,nuc(Dc) is the size distribution of the recently nucle-
ated ice crystals, and̄Do is the mean size of the deliquesced
aerosol. Equation (25) assumes that only recently nucleated
ice crystals are contained within the parcel. In reality, a frac-
tion of preexisting crystals remain in nucleation zones (typ-
ically located near the cloud top, Spichtinger and Gierens,
2009b) inhibiting the homogeneous freezing of ice. Ice crys-
tals experience gravitational settling, hence only those crys-
tals with terminal velocity,uterm, belowū would be found at
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the cloud top. Adding the consumption of water vapor from
preexisting crystals to the right hand side of Eq. (25) gives

Smax,i =
γ

αui

 ∞∫
D̄o

D2
c,i

dDc,i

dt
ni,nuc(Dc)dDc

+

Dterm∫
Dmin

D2
c
dDc

dt
nc(Dc)dDc

 (26)

wherenc(Dc) is the cloud ice crystal size distribution,Dterm
is the size of the crystal for whichuterm = ū, andDmin is
the minimum size of the preexisting crystals in the cloud.
Equation (26) can be combined with Eq. (2) to obtain

Smax,i =
γ

αui

 ∞∫
D̄o

D2
c,i

dDc,i

dt
ni,nuc(Dc,Smax,i)dDc

+GNcD̄cfps(Smax,i −1)
]

(27)

where,fps=
1

NcD̄c

Dterm∫
Dmin

Dcnc(Dc)dDc, is the fraction of pre-

existing ice crystals remaining in nucleation zones. As ice
crystals remaining in the cloud layer were produced by pre-
existing freezing events, Eq. (27) provides a link between the
history of different parcels and the nucleation of new crystals.
The analytical solution of Eq. (27) is presented elsewhere
(Barahona and Nenes, 2009b; Barahona et al., 2010b).

The rate of ice crystal production by homogeneous nucle-
ation in thej th cloud velocity state is given by the concentra-
tion of nucleated crystals over the freezing timescale,

dNc,j

dt

∣∣∣∣
fr,hom

=
Ps(S >Shom)No

τhom,j

Hv(uj ) (28)

where τ−1
hom,j = v̄oJmax,j exp

(
−

v̄o
αuj

Smax∫
0

J (Sj )dSj

)
.

Hv(uj ) is the Heaviside function and is introduced because
homogeneous nucleation is very unlikely in parcels with
negative vertical velocity (i.e., updraft must be maintained
for some time beforeShom is reached after which it is quickly
depleted by crystal nucleation and growth, Barahona and
Nenes, 2008; K̈archer and Lohmann, 2002) .Ps(S > Shom)

represents the fraction of parcels for whichS > Shom. Using
the same averaging procedure as for the supersaturation
equation, we obtain

dNc

dt

∣∣∣∣
fr,hom

= No Ps(S >Shom)
Hv(µj )

τhom,j

∣∣∣∣
µ=µj

(29)

3.2.2 Heterogeneous nucleation

The formulation of the ice crystal production rate by het-
erogeneous freezing is simplified by using the ice nucle-
ation spectrum,NIN(S,T ) (Barahona and Nenes, 2009a) .

Assuming thatNIN(S,T ) is weakly dependent onT and
NIN(S,T ) = No,hetfhet(S), then following Eq. (29) we write,

dNc

dt

∣∣∣∣
fr,het

= No,het
dfhet

dS

dS

dt
Ps(S >Shet)Hv(µj )

∣∣
µ=µj

(30)

where,No,het is the total number concentration of IN species,
andfhet, Shet its freezing fraction and heterogeneous nucle-
ation threshold, respectively. AsNIN is usually small,S is
not immediately depleted by ice crystal growth anddS

dt
can

be approximated by the instantaneous rate of increase of su-
persaturation (this is further justified in the case of glassy IN
as dfhet(S)

dS
is constant , Murray et al., 2010). Therefore,

dNc

dt

∣∣∣∣
fr,het

=No,het
dfhet

dS
αujS Ps(S>Shet)Hv(µj )

∣∣
µ=µj

(31)

which can be written as

dNc

dt

∣∣∣∣
fr,het

= No,hetPs(S >Shet)
Hv(µj )

τhet,j

∣∣∣∣
µ=µj

(32)

whereτhet,j =

(
dfhet
dS

αujS
)−1

.

3.2.3 Sedimentation of ice crystals

Sedimentation processes out of the cloud layer depend pri-
marily on the bulk properties of the cloud, i.e., the mean ice
crystal size distribution and number concentration (interac-
tion of individual parcels with falling crystals within the layer
is accounted for in Eq. 27). The ice crystal loss rate by sedi-
mentation is then given by,

dNc

dt

∣∣∣∣
sed

=
1

H

∞∫
Dmin

uterm(Dc)n(Dc)dDc (33)

whereH is the cloud layer thickness. Asuterm∼ Dc (Heyms-
field and Iaquinta, 2000), Eq. (33) can be further simplified
to

dNc

dt

∣∣∣∣
sed

=
Ncūterm

H
=

Nc

τsed
(34)

whereūterm= uterm(D̄c).

3.3 Numerical solution

3.3.1 Competition between homogeneous and
heterogeneous freezing

Calculation of ice crystal number concentration,Nc in in-
situ cirrus from combined homogeneous and heterogeneous
nucleation in Figs. 1 and 3 is done using an analytical pa-
rameterization developed for in situ formed cirrus clouds and
freezing fractions below 0.6 (Barahona and Nenes, 2009b).
When the calculated freezing fraction exceeds 0.6, a sig-
moidal increase inNc is assumed (Barahona et al., 2010a),
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in agreement with parcel model simulations and field obser-
vations (Barahona and Nenes, 2008; DeMott et al., 2003).
For combined homogeneous and heterogeneous nucleation,
it was assumed that the IN freeze instantaneously at a super-
saturation freezing threshold,shet, of 15%, typical of deposi-
tion mode IN (Abbatt et al., 2006), with a 0.1 µm diameter at
freezing (Froyd et al., 2009). Glassy aerosol was assumed to
have a total concentration of 50 cm−3 and a freezing fraction
given by the nucleation spectrum of Murray et al. (2010).

3.3.2 Vertical velocity spectrum

Observations suggest that the spectrum of gravity wave per-
turbations near the tropopause is pseudorandom in nature, a
result of the superposition of waves from different sources,
and therefore varies temporally and spatially (Bacmeister et
al., 1999; Jensen and Pfister, 2004; Kim et al., 2003; Sato,
1990). On average, the associated vertical velocity spec-
trum can be approximated by a Gaussian function, although
this may underestimate the frequency of high amplitude per-
turbations (Bacmeister et al., 1999; Herzog and Vial, 2001;
Kim et al., 2003). A representative spectrum of vertical ve-
locity fluctuations can be generated using a Fourier series
(Bacmeister et al., 1999; Jensen and Pfister, 2004) of the
form u = ū+

∑
j

A($j )cos($j t +mH +ϕ) wherem is the

vertical wave number,H is the cloud thickness, and$j ,
A($j ), andϕ, are the wave frequency, phase, and amplitude,
respectively. We have adopted this representation as follows.
For each cirrus simulation, a time series ofu was generated
over the frequency interval$ = [3.35×10−7,9.44×10−4

]

Hz (Jensen and Pfister, 2004), using randomly generatedϕ

andm. A($j ) was calculated using a power spectrum scal-
ing law of −1.85 for $j > 1× 10−5 Hz and of−0.25 for
$j ≤ 1×10−5 Hz (Herzog and Vial, 2001; Jensen and Pfis-
ter, 2004). This procedure resulted in a normal distribution
of u (Fig. 4d) centered around̄u. The maximum amplitude
was assumed to occur at$j = 1×10−3 Hz (Jensen and Pfis-
ter, 2004) as it reproduces the results of Gayet et al. (2004)
(Fig. 4 green line) which give positiveu around 0.23 m s−1

for δT = 1 K (i.e., A(1× 10−3) ≈ 2.1δT ). Representative
time series foru(t) are presented in Fig. 5a.

3.3.3 Ice crystal production

The homogeneous freezing timescale,τhom,j , was calculated
using the parameterization of Barahona and Nenes (2008,
2009b, a). Precursor aerosol was assumed to be composed of
deliquesced ammonium sulfate, lognormally distributed with
dry mean geometric diameter of 40 nm, geometric dispersion
of 2.3, and number concentration of 100 cm−3 (Lawson et
al., 2008). To account for possible compositional impacts
on crystal growth kinetics, the water-vapor deposition coef-
ficient was varied between 0.006 (Magee et al., 2006) and
1.0. Homogeneous freezing is described using the param-
eterization of Koop et al. (2000). The termPs(S > Shom)

Fig. 5. Time series of(a) updraft velocity,u, (b) total water con-
tent,qtot, andD̄c (c) mean ice crystal diameter,̄Dc, for the condi-
tions presented in Fig. 4;(d) time series ofD̄c for initial S andNc
of −0.2 and 0, respectively, and homogeneous and heterogeneous
nucleation active (conditions similar to Fig. 8c).

in Eq. (28) is the probability of findingS aboveShom, and
is introduced to account for the threshold behavior of ho-
mogeneous freezing (K̈archer and Burkhardt, 2008; Koop et
al., 2000). The effect of preexisting ice crystals on freez-
ing was accounted for by allowing a fraction ofNc to de-
plete water vapor and increaseτhom,j (Barahona and Nenes,
2009b; Barahona et al., 2010b). The fraction of preexist-
ing crystals remaining in freezing zones was calculated as

fps=
1

NcD̄c

Dterm∫
Dmin

Dcnc(Dc)dDc, wheren(Dc) is the ice crys-

tal size distribution,Dmin is the minimum pre-existing crys-
tal size, andDterm is the crystal size for which its termi-
nal velocity, uterm, is equal to the uplift velocity of the
cirrus later,ū. uterm was calculated assuming ice crystals
have columnar shape with maximum dimension equal toD̄c
(Heymsfield and Iaquinta, 2000). Following Heymsfield and
Platt (1984) it was assumedn(Dc) = AD−3.15

c ; the parame-
tersA andDmin were calculated from the moments ofn(Dc):
Nc =

∫
∞

Dmin
n(Dc)dDc andD̄c =

1
Nc

∫
∞

Dmin
Dcn(Dc)dDc. The

calculation ofD̄c is described below. Integration of equations
of Eqs. (18) and (21) was accomplished using a fixed time
step of 2 s. Initial values forNc,0 = 0.01 cm−3 andSo = 1.0
were set. Sensitivity to using different initial values affected
only the time required to establish dynamic equilibrium (by
a few hours) and is assessed in Fig. 8.

The heterogeneous freezing timescale,τhet,j , (e.g., Eq. 32)
was calculated at each time step using the instantaneous ver-
tical velocity,uj , and the effective supersaturationSeff,j . For
the simulations presented in Sect. 4, the aerosol freezing frac-
tion, fhet, was calculated from the spectrum of Murray et
al. (2010). No,het andShet were set to 1 cm−3 and 1.35, re-
spectively (Murray et al., 2010).
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3.3.4 Ice crystal sedimentation

The rate of ice crystal sedimentation over the cloud scale,
H , was assumed proportional to the terminal velocity of the
mean crystal sizēDc (Eq. 33). Other removal processes (ice
crystal sublimation and detrainment) are neglected;H how-
ever was varied over a wide interval (100 to 5000 m) to ac-
count for the uncertainty associated with neglecting these
processes.D̄c was calculated so that the total water vapor
in the layer was partitioned between ice and vapor phases,

i.e., D̄c =

(
6qice

πρiNc

)1/3
whereqice = qtot −

poSoMw
RT

, ρi is the

ice density (Pruppacher and Klett, 1997),R is the univer-
sal gas constant,Mw is the molecular mass of water, and
po is the saturation water vapor pressure over ice (Murphy
and Koop, 2005); the minimum ice crystal size was set to
4 µm in agreement with theoretical studies and experimen-
tal observations (Barahona and Nenes, 2008; Durran et al.,
2009; Kr̈amer et al., 2009). Loss of total water content,
qtot, from the cloudy layer is also accounted for by solution

of dqtot
dt

= −
π
6 ρiD̄

3
c

dNc
dt

∣∣∣
sed

. Representative time profiles of

D̄c andqtot are presented in Fig. 5. The timescale of relax-
ation atu = uj , τrel,j , was calculated usingNc andD̄c of the
cloud layer (e.q., Eq. 13). Mass transfer limitation from non-
continuum effects are taken into account in the calculation of
τhom,j but neglected in the calculation ofτrel,j . The latter is
justified asD̄c > 10 µm.

4 Cirrus in dynamical equilibrium

The model developed in Sect. 3 is used to describe the evolu-
tion of a cirrus layer at low temperature taking into account
the effect of internalS variations onNc. Forward integration
of Eqs. (18) and (29) and (34) is carried out using the proce-
dure described in Sect. 3.3. A wide range of initial conditions
and model parameters are selected to describe the cirrus evo-
lution under different scenarios.

Figure 4 shows the evolution of a cirrus layer subject to
gravity-wave fluctuations with an initial average temperature
of 195 K and lifting atū = 1 cm s−1. Only homogeneous
freezing is considered (heterogeneous freezing is “switched
off”, i.e., No,het= 0). For values ofδT > 1 K, the cloud ini-
tially experiences a strong homogeneous nucleation pulse,
so thatNc initially increases steeply (Fig. 4a); the consump-
tion of water vapor by crystal growth decreasesSo (Fig. 4b)
which prevents any new freezing events.Nc slowly decreases
from sedimentation loss; only after enough ice crystals sed-
iment out of the cloud layer,So increases (e.g.,δT = 1 K,
green lines) and new freezing events occur. ForδT > 1.4 K
(purple lines) this is possible even if the layer remains on
average slightly subsaturated (So ∼ 1) because the probabil-
ity distribution of S is broad enough for a non-negligible
probability withS > Shom. However it is likely that recently
formed crystals will sublimate within a few hours in the sub-
saturated environment returning the moisture to the layer (ice

crystal removal by sublimation is not considered). The cir-
rus is then maintained by new, independent freezing events.
This “pulse-decay” behavior is characterized byτsed� τrel
so ice crystals reside long enough in the cloud to relax super-
saturation (Fig. 4c); this behavior is also consistent with the
parcel model concept of cirrus (where highNc and lowSo
coexist within the parcel). The subsaturation levels (Fig. 4b)
achieved in this state are in agreement with in situ observa-
tions of relative humidity in dissipating clouds (Gao et al.,
2004; Kr̈amer et al., 2009).

The cirrus evolution is however quite different whenδT is
small; the distribution ofS is narrow, and substantial ice pro-
duction is only possible after enough supersaturation (i.e.,
So) builds up in the cloudy layer to allow a non-negligible
probability whereS > Shom. Thus, freezing events produc-
ing largeNc (associated with largeu fluctuations; Fig. 4d) are
less frequent. LowNc allows the formation of large ice crys-
tals (Fig. 5c, d) which sediment out of the layer before sub-
stantially depleting supersaturation, leading to new freezing
events. This “dynamic equilibrium” between ice production
and loss is a previously unidentified microphysical regime of
cirrus, characterized byτsed∼ τrel,j (Fig. 4c); it maintains
low Nc and highSo in the cloudy layer (Fig. 4a, b) and
is consistent with observations of low-temperature cirrus.
Clouds in “dynamic equilibrium” also exhibit broad crys-
tal size distribution, because large ice crystals coexist with
freshly-formed (small) crystals in the cloud. The average
ice crystal size in this case converges to values around 15 to
20 µm, in agreement with observations (Krämer et al., 2009).
Before equilibrium is reached,Dc exhibits larger values due
to the model’s sensitivity to initial conditions (Fig. 5c, d).

When simulations (such as those of Fig. 4) are placed on a
“state diagram” ofNc vs.So, the two microphysical regimes
described above clearly emerge. Examples are presented in
Figs. 6 and 7 for a range model parameters and a variety
of δT (lines of distinct color). For example, decreasing the
cloud thickness to 100 m (Fig. 4b) increases the sedimenta-
tion rate (Eq. 34) allowingS to replenish quickly and facil-
itating the onset of equilibrium. Similarly, the rate of ice
crystal growth increases withT (Fig. 4d) increasing the av-
erage ice crystal size (hence decreasingτrel andτsed) and fa-
cilitating the onset of equilibrium. Dynamical equilibrium
would however lead to lowerNc than observed atT ∼ 225 K
(Gayet et al., 2004; Krämer et al., 2009) and it is likely that
clouds at these conditions would evolve following a pulse-
decay behavior. Figure 7 shows state diagrams for different
values ofū, T andH for the similar initial conditions. In gen-
eral, progression towards a “dynamic equilibrium” is favored
when supersaturation replenishes quickly (i.e., at highū) as
ice crystal growth and sedimentation are favored (leading to
low τsed), and vice-versa for “pulse-decay” behavior. Rapid
consumption of supersaturation by the growing ice crystals
also decreases the time between freezing pulses and replen-
ishment ofS. Thus the period of theS andNc oscillations in
the dynamic equilibrium state is mainly controlled byτrel.
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Fig. 6. Sensitivity ofNc andSo evolution to cloud formation con-
ditions for different values ofδT (color scheme same as in Fig. 4);
(a) same conditions as in Fig. 4,(b) cloud thickness,H = 100 m
(increased ice crystal removal rate),(c) deposition coefficient equal
to 0.006 (Magee et al., 2006) (slow water vapor transfer), and(d)
initial temperature 225 K and cloud lifting at 5 cm s−1. The yellow
star in each panel indicates initial conditions. The arrows indicate
the temporal progression along each trajectory. The integration time
was 40 h cases, except in(d) were it was 15 h.

Clouds in the “dynamic equilibrium” regime are also much
less sensitive to slow water vapor deposition than predicted
by box-model simulations. Figure 6c shows that dynamic
equilibrium is possible even forαd as low as 0.006 (com-
pared toαd = 1 used in Figs. 4 and 6a for the same sim-
ulation conditions). Still, the high rate of production of ice
crystals forαd = 0.006 increasesNc and decreases̄Dc, there-
fore increasingτsedand slowing the replenishment of super-
saturation. Thus, dynamic equilibrium is only possible for
δT < 0.8 as opposed toδT < 1.0 for αd = 1. Figure 6c how-
ever shows that the existence of strong kinetic limitations to
the diffusional growth of ice crystals cannot be ruled out.

4.1 Effect of heterogeneous IN and initial conditions

It is important to study the sensitivity of the dynamical states
of cirrus to initial conditions used in the simulation and to the
presence of heterogeneous IN. Figure 8a showsS andNc for
the conditions of Figs. 4 and 6a but starting atSo,ini = −0.4
andNc,o = 0. For this set of initial conditions, the onset of
oscillating behavior is delayed by a few hours before super-
saturation is reached. This implies that the temperature of the
first freezing pulse is lower than in the case withSo,ini = 1,
slightly increasing its strength; the system however dampens
out these variations and eventually follows a similar trajec-
tory as in Fig. 6a.

a b

c d

e f

Fig. 7. Similar to Fig. 6, but varying cloud mean vertical velocity,ū,
initial layer temperature,To, cloud thickness,H , and mean ice crys-
tal terminal velocity,uterm. The yellow star in each plot indicates
initial conditions. The integration time was 40 h in forū = 1 cm s−1

and 15 h forū = 5 cm s−1.

Figure 8b and c present simulations where both homoge-
neous and heterogeneous nucleation are active for different
initial conditions. IN are assumed to originate from glassy
aerosol withNo,het= 1 cm−3. By allowing ice crystal for-
mation at lowS, heterogeneous IN decrease the ice crystal
production rate by homogeneous nucleation hence lower the
maximumNc. This makes the system more stable to high
amplitude vertical velocity perturbations, facilitating the on-
set of dynamic equilibrium, which can be maintained up to
δT ∼ 1.2. The “stabilizing” effect of IN is exemplified in
Fig. 8c where homogeneous freezing was suppressed, i.e.,
only heterogeneous freezing is active. This leads to a damp-
ened response to vertical velocity fluctuations so that dynam-
ical equilibrium is possible even forδT as high as 1.8 K.
Thus, in a cirrus cloud where heterogeneous nucleation is
dominant, dynamical equilibrium is very robust against ex-
ternal perturbations. The values ofNc and S at the equi-
librium state are however not significantly influenced by the
initial conditions nor the ice nucleation mechanism, e.g., af-
ter sometime the system oscillates about the same values as
in Figs. 6 and 7. This means that the presence of IN can
“help” the cirrus to achieve dynamical equilibrium without
modifying the equilibrium values.
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Fig. 8. Similar to Fig. 6, varying initialS andNc and the active
freezing mechanism.

Figures 6 to 8 also show that the “dynamic equilibrium”
state occurs spontaneously whenδT goes below a charac-
teristic transition value (which depends onū, T and the pre-
dominant freezing mechanism). It can also be reached after a
cloud initially resides in a “pulse-decay” state, ifδT is close
to the characteristic value (δT ∼ 1 K in Fig. 6). When max-
imum Nc and time-averagedSo are presented on the state
diagram for all simulations considered where homogeneous
freezing is active, the conditions ofδT that separate “pulse-
decay” and “dynamic equilibrium” regimes seem to be uni-
versal (Fig. 9). If only heterogeneous nucleation is active,
the cloud resides mostly in the dynamic equilibrium state.

5 Conclusions and implications

From the discussion above, cold cirrus clouds will reside in
the “dynamic equilibrium” regime ifδT is below a charac-
teristic threshold. High-amplitude, orographically-generated
gravity waves are ubiquitous (Kim et al., 2003) but often
lose intensity with altitude, weakening their contribution to
the background spectrum of temperature fluctuations.δT

can thus decrease enough at high altitude for cirrus to transi-
tion from a “pulse-decay” to a “dynamic equilibrium” state
(Fig. 9). This would explain why lowNc and highSo are ob-
served at low temperatures near the tropopause. Dynamical
equilibrium is also possible at warmer conditions (particu-
larly for high ū; Fig. 6d) but require smallδT ; given that
high amplitude fluctuations are widespread at lower altitudes
(Hoyle et al., 2005), cirrus clouds are likely forced to always
follow a pulse-decaying behavior. Heterogeneous IN never-
theless may help to stabilize the system so that the dynamic
equilibrium manifests at higherδT than for clouds with pure
homogeneous freezing.

Fig. 9. Maximum ice crystal concentration obtained during the
cloud evolution simulations against the time-averaged mean satu-
ration ratio. Results presented for all simulations carried out in this
study. Integration time varied between 15 and 40 h. Symbols are
colored by the value ofδT used. Regions where the cloud sponta-
neously transitions to a “pulse-decay” and “dynamic equilibrium”
state are noted; the “transitional” region marks where the cloud gen-
erally initially exhibited “pulse-decay” behavior over few hours and
then transitioned to a “dynamic equilibrium” regime. (©) Homo-
geneous freezing is active; (1) Homogeneous freezing suppressed.

In summary, cirrus clouds at low temperature exhibit char-
acteristics (e.g., lowNc and sustained high saturation ratios)
that cannot be explained with the simple “conventional” pic-
ture of homogeneous freezing driven by expansion cooling
in the presence of ubiquitous temperature fluctuations. Even
if heterogeneous nucleation is dominant, conventional mod-
els of cirrus could explain the characteristics of low-T cir-
rus only for weak updrafts, and require neglecting the higher
amplitude components of the vertical velocity spectrum. In-
stead, we show that small-scale fluctuations from the action
of gravity waves can switch a cloud into a previously un-
known “dynamic equilibrium” regime, with sustained levels
of low Nc and high saturation ratios consistent with “puz-
zling” characteristics observed in low temperature cirrus.

With this study, a new understanding for cirrus clouds
emerges, where the “unperturbed” microphysical state is one
of dynamical equilibrium with low crystal number and high
supersaturation. Only when the mean amplitude of tem-
perature fluctuations exceeds a threshold value (δT ∼ 1 K
when homogeneous freezing is active) cirrus exhibit the well-
known “pulse-decay” microphysical state. Throughout much
of the atmosphere, the latter state dominates, simply because
δT is larger than the characteristic threshold value. In the
TTL, δT is still remarkably large (0.6–0.8 K) (Bacmeister et
al., 1999; Jensen and Pfister, 2004; Sato, 1990), but does
not systematically exceed the threshold for “pulse-decay”
behavior, so cirrus regress to their “unperturbed” dynamic-
equilibrium state. The presence of heterogeneous IN can
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also dampen the effect of vertical velocity perturbations on
ice crystal production facilitating the transition to dynamic
equilibrium. However, the existence of IN is not a neces-
sary condition to explain the characteristics of cirrus clouds
at low temperature. Figure 6c shows that dynamic equilib-
rium states can also exist even under conditions of strong ki-
netic limitations (very lowαd) and therefore their existence
cannot be ruled out based on simplified models of cirrus for-
mation.

The structure and responses of cirrus to dynamical and mi-
crophysical forcings can also be portrayed. For example,
cirrus formed in the region of convective anvils might ex-
hibit “pulse-decay” state until gravity-wave fluctuations de-
cay to below theδT threshold and transition to a dynamic-
equilibrium state. For the same reasons, IN impacts on cirrus
properties can be strong for clouds in pulse-decay state, but
not for clouds in dynamic equilibrium; e.g., IN can force the
cloud to fall towards equilibrium however will not modify
the equilibrium state. In conclusion, the discovery of dy-
namic equilibrium states reshapes our understanding of cir-
rus clouds and their role in anthropogenic climate change, as
the type of dynamical forcing and the presence of IN will set
these clouds in one of two “preferred” microphysical regimes
with very different susceptibility to anthropogenic aerosol.
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